

RE: 6252401 - 2240-B 2Car

MiTek, Inc.

16023 Swingley Ridge Rd.
Chesterfield, MO 63017

Customer Info: Adams Homes-Gainesville 2240-B 2Car Frame Project Name: The Preserve at Laurel Lake 035 Model: 2
Lot/Block: 035 Subdivision: The Preserve at Laurel Lake
Address: 525 SW Bellflower Dr, .
City: Lake City State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:
Address:
City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2023/TPI2014

Design Program: MiTek 20/20 8.8

Wind Code: ASCE 7-22

Wind Speed: 130 mph

Roof Load: 40.0 psf

Floor Load: N/A psf

This package includes 49 individual, Truss Design Drawings and 0 Additional Drawings.

With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T38769165	A01	10/7/25	23	T38769187	B01	10/7/25
2	T38769166	A02	10/7/25	24	T38769188	B02	10/7/25
3	T38769167	A03	10/7/25	25	T38769189	BV1	10/7/25
4	T38769168	A04	10/7/25	26	T38769190	C1	10/7/25
5	T38769169	A05	10/7/25	27	T38769191	C1E	10/7/25
6	T38769170	A06	10/7/25	28	T38769192	C3	10/7/25
7	T38769171	A07	10/7/25	29	T38769193	C5	10/7/25
8	T38769172	A08	10/7/25	30	T38769194	D01	10/7/25
9	T38769173	A09	10/7/25	31	T38769195	D02	10/7/25
10	T38769174	A10	10/7/25	32	T38769196	E01	10/7/25
11	T38769175	A14	10/7/25	33	T38769197	E02	10/7/25
12	T38769176	A15	10/7/25	34	T38769198	E03	10/7/25
13	T38769177	A16	10/7/25	35	T38769199	E3	10/7/25
14	T38769178	A17	10/7/25	36	T38769200	E3E	10/7/25
15	T38769179	A18	10/7/25	37	T38769201	E04	10/7/25
16	T38769180	A19	10/7/25	38	T38769202	E05	10/7/25
17	T38769181	A20	10/7/25	39	T38769203	E5	10/7/25
18	T38769182	A21	10/7/25	40	T38769204	E7	10/7/25
19	T38769183	A22	10/7/25	41	T38769205	E77	10/7/25
20	T38769184	A23	10/7/25	42	T38769206	G01	10/7/25
21	T38769185	A24	10/7/25	43	T38769207	G02	10/7/25
22	T38769186	A25	10/7/25	44	T38769208	G03	10/7/25

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Tibbetts Lumber Co., LLC.

Truss Design Engineer's Name: Lee, Julius

My license renewal date for the state of Florida is February 28, 2027.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

Lee, Julius

1 of 2

RE: 6252401 - 2240-B 2Car

MiTek, Inc.

16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200

Site Information:

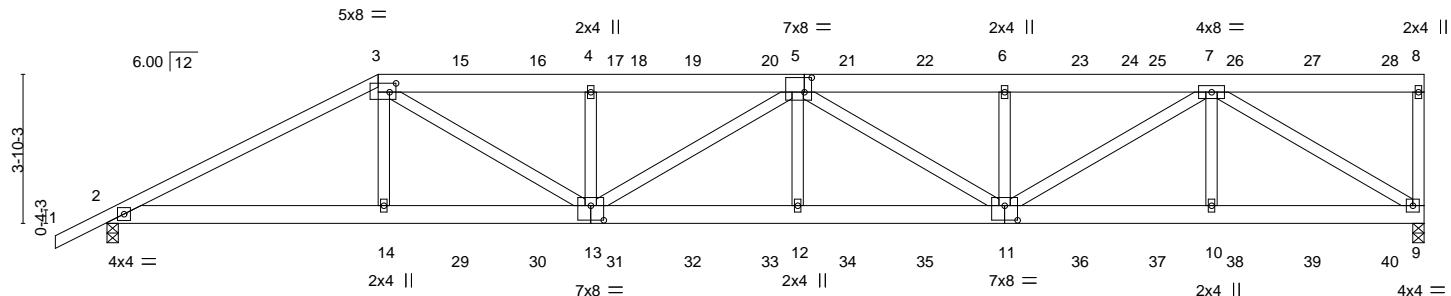
Customer Info: Adams Homes-Gainesville 2240-B 2Car Frame Project Name: The Preserve at Laurel Lake 035 Model

Lot/Block: 035

Subdivision: The Preserve at Laurel Lake

Address: 525 SW Bellflower Dr, .

City: Lake City State: FL


No.	Seal#	Truss Name	Date
45	T38769209	G04	10/7/25
46	T38769210	H3E	10/7/25
47	T38769211	HJ3	10/7/25
48	T38769212	HJ5	10/7/25
49	T38769213	HJ7	10/7/25

Job 6252401	Truss A01	Truss Type HALF HIP GIRDER	Qty 1	Ply 2	2240-B 2Car	T38769165
----------------	--------------	-------------------------------	----------	-----------------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:29 2025 Page 1 ID:y6bLPA9E28LfkUn2vm8QUz1P?1-jtDVCELeh1PBbsoRn?d3hN_V6KmOyydQCgFj1yVul0

-1-4-0 7-0-0 12-5-14 17-9-15 23-2-1 28-6-2 34-0-0
1-4-0 7-0-0 5-5-14 5-4-2 5-4-2 5-4-2 5-5-14

Scale = 1:59.5

7-0-0 12-5-14 17-9-15 23-2-1 28-6-2 34-0-0
7-0-0 5-5-14 5-4-2 5-4-2 5-4-2 5-5-14

Plate Offsets (X,Y)-- [3:0-2-0,0-2-12], [5:0-2-4,0-4-8], [11:0-4-0,0-4-8], [13:0-4-0,0-4-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.67	Vert(LL)	-0.19 12-13	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.69	Vert(CT)	-0.38 12-13	>999	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.69	Horz(CT)	0.10 9	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.13 12	>999	240	Weight: 452 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 *Except*
1-3: 2x4 SP No.2

BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-5-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 9=0-3-8, 2=0-3-8
Max Horz 2=107(LC 27)
Max Uplift 9=-271(LC 8), 2=-267(LC 8)
Max Grav 9=2962(LC 1), 2=2874(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-5745/478, 3-4=-7055/641, 4-5=-7053/641, 5-6=-6438/585, 6-7=-6438/585,

8-9=-318/102

BOT CHORD 2-14=-453/5054, 13-14=-445/5073, 12-13=-680/7460, 11-12=-680/7460, 10-11=-368/4012,

9-10=-368/4012

WEBS 3-14=0/674, 3-13=-230/2409, 4-13=-768/242, 5-13=-503/54, 5-12=0/463,

5-11=-1211/111, 6-11=-657/216, 7-11=-258/2873, 7-10=0/504, 7-9=-4695/430

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl. GCpI=0.18; MWFRS (directional); cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
9=271, 2=267.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

Continued on page 2

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 6252401	Truss A01	Truss Type HALF HIP GIRDER	Qty 1	Ply 2	2240-B 2Car	T38769165
----------------	--------------	-------------------------------	----------	-----------------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:29 2025 Page 2
ID:y6bLPA9E28LflkUn2vm8QUz1P?1-jjtDVCELeh1PBbsoRn?d3hN_V6KmOyydQCgFj1yVul0

NOTES-

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 455 lb down and 255 lb up at 7-0-0, 134 lb down and 89 lb up at 9-0-12, 134 lb down and 89 lb up at 11-0-12, 134 lb down and 89 lb up at 13-0-12, 134 lb down and 89 lb up at 15-0-12, 134 lb down and 89 lb down and 89 lb up at 19-0-12, 134 lb down and 89 lb up at 21-0-12, 134 lb down and 89 lb up at 23-0-12, 134 lb down and 89 lb up at 25-0-12, 134 lb down and 89 lb up at 27-0-12, 134 lb down and 89 lb up at 29-0-12, and 134 lb down and 89 lb up at 31-0-12, and 140 lb down and 87 lb up at 33-0-12 on top chord, and 318 lb down at 7-0-0, 96 lb down at 9-0-12, 96 lb down at 11-0-12, 96 lb down at 13-0-12, 96 lb down at 15-0-12, 96 lb down at 17-0-12, 96 lb down at 19-0-12, 96 lb down at 21-0-12, 96 lb down at 23-0-12, 96 lb down at 25-0-12, 96 lb down at 27-0-12, 96 lb down at 29-0-12, and 96 lb down at 31-0-12, and 100 lb down at 33-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

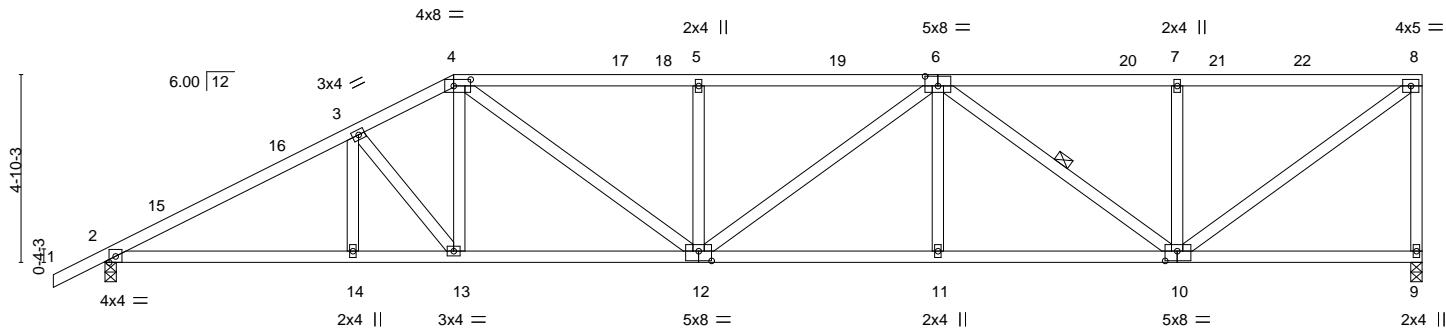
1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-60, 3-8=-60, 2-9=-20

Concentrated Loads (lb)

Vert: 3=-408(F) 14=-268(F) 11=-48(F) 6=-134(F) 15=-134(F) 16=-134(F) 17=-134(F) 19=-134(F) 20=-134(F) 21=-134(F) 22=-134(F) 23=-134(F) 25=-134(F)
26=-134(F) 27=-134(F) 28=-140(F) 29=-48(F) 30=-48(F) 31=-48(F) 32=-48(F) 33=-48(F) 34=-48(F) 35=-48(F) 36=-48(F) 37=-48(F) 38=-48(F) 39=-48(F) 40=-50(F)


Job 6252401	Truss A02	Truss Type HALF HIP	Qty 1	Ply 1	2240-B 2Car	T38769166
----------------	--------------	------------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:30 2025 Page 1

-1-4-0 6-4-13 9-0-0 15-3-14 21-6-0 27-8-2 34-0-0
1-4-0 6-4-13 2-7-3 6-3-14 6-2-2 6-2-2 6-3-14

Scale = 1:59.5

6-4-13 9-0-0 15-3-14 21-6-0 27-8-2 34-0-0
6-4-13 2-7-3 6-3-14 6-2-2 6-2-2 6-3-14

Plate Offsets (X,Y)-- [4:0-5-4,0-2-0], [6:0-4-0,0-3-0], [10:0-3-12,0-3-0], [12:0-4-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.64	Vert(LL)	-0.16	12	>999	360	MT20
TCDL 10.0	Lumber DOL	1.25	BC 0.69	Vert(CT)	-0.33	11-12	>999	240	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.43	Horz(CT)	0.10	9	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.10	12	>999	240	Weight: 190 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

REACTIONS.

(size) 9-0-3-8, 2-0-3-8
Max Horz 2=132(LC 12)
Max Uplift 9-65(LC 12), 2=-94(LC 12)
Max Grav 9=1346(LC 1), 2=1439(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2521/168, 3-4=-2221/185, 4-5=-2523/195, 5-6=-2523/196, 6-7=-1552/107,
7-8=-1552/107, 8-9=-1289/132

BOT CHORD 2-14=-222/2166, 13-14=-222/2166, 12-13=-173/1951, 11-12=-166/2359, 10-11=-166/2359
WEBS 3-13=349/75, 4-13=-9/361, 4-12=-33/780, 5-12=-404/121, 6-10=-1002/77,
7-10=-403/116, 8-10=-130/1900

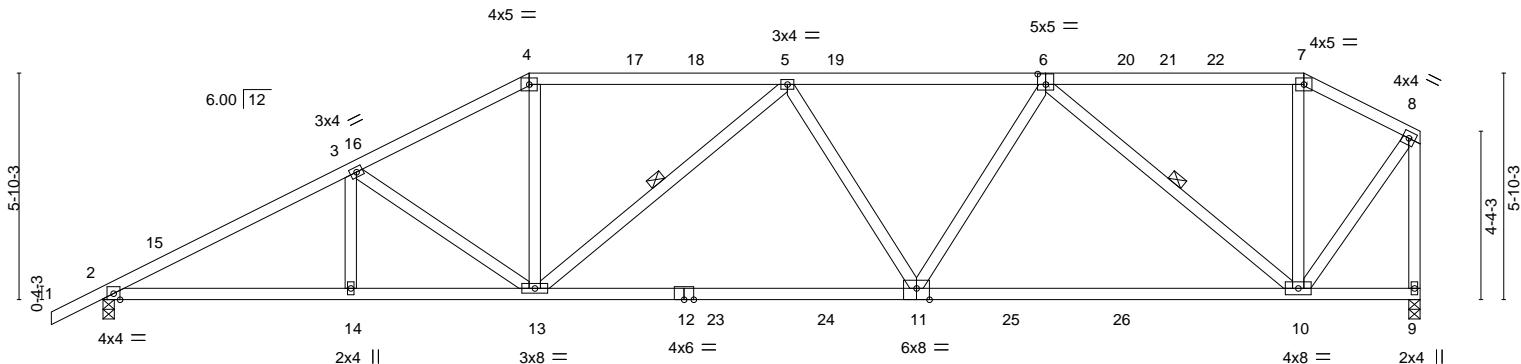
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 -1-4-0 to 1-8-0, Zone1 1-8-0 to 9-0-0, Zone2 9-0-0 to 13-2-15, Zone1 13-2-15 to 33-10-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 2.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 6252401	Truss A03	Truss Type HIP	Qty 1	Ply 1	2240-B 2Car	T38769167
----------------	--------------	-------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:30 2025 Page 1
ID:y6bLPA9E28Lf1kUn2vm8QUz1P?1-BvQbiYFzP?9GpR_?VWscuw9dWds7SKnesPpFTyVul?

-1-4-0 6-4-12 11-0-0 17-8-0 24-4-0 31-0-0 34-0-0
1-4-0 6-4-12 4-7-4 6-8-0 6-8-0 6-8-0 3-0-0

Scale = 1:59.5

6-4-12 11-0-0 21-0-0 31-0-0 34-0-0
6-4-12 4-7-4 10-0-0 10-0-0 3-0-0

Plate Offsets (X,Y)-- [6:0-2-8,0-3-4], [11:0-4-0,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20.0	Plate Grip DOL	1.25	TC 0.64	Vert(LL)	-0.28	11-13	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.90	Vert(CT)	-0.53	11-13	>770	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.49	Horz(CT)	0.10	9	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.07	11-13	>999	240	Weight: 190 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP M 31 or 2x4 SP SS *Except*
2-12: 2x4 SP No.2
WEBS 2x4 SP No.2

REACTIONS.

(size) 2=0-3-8, 9=0-3-8
Max Horz 2=121(LC 12)
Max Uplift 2=-96(LC 12), 9=-64(LC 12)
Max Grav 2=1599(LC 17), 9=1493(LC 19)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=-2814/182, 3-4=-2353/180, 4-5=-2077/183, 5-6=-2228/160, 6-7=-793/85,
7-8=-901/74, 8-9=-1519/109
BOT CHORD 2-14=-217/2474, 13-14=-217/2474, 11-13=-170/2326, 10-11=-141/1890
WEBS 3-13=-495/92, 4-13=0/767, 5-13=-432/45, 5-11=-252/111, 6-11=0/675, 6-10=-1440/130,
8-10=-70/1340

NOTES-

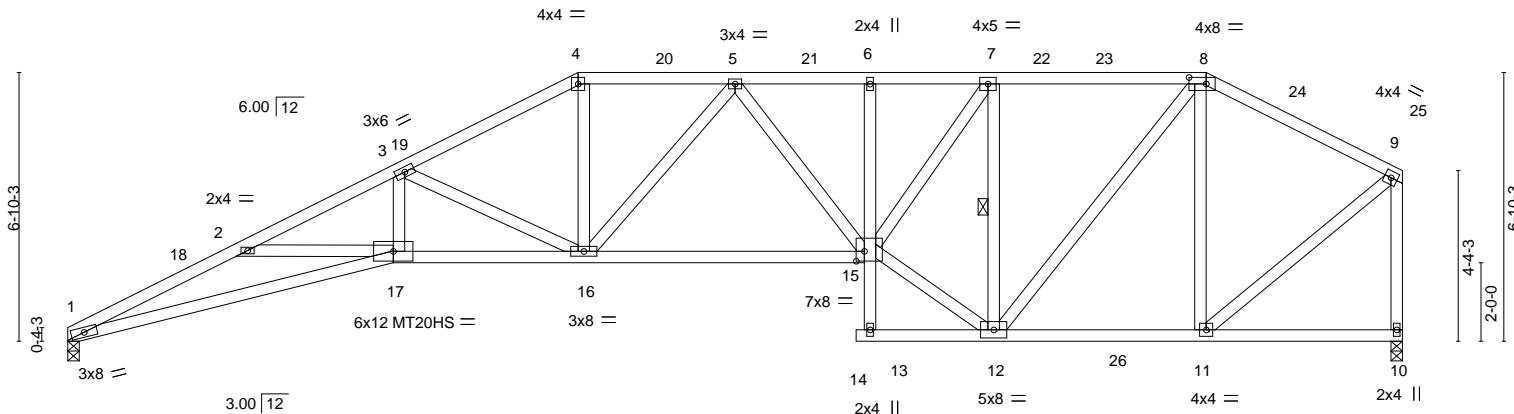
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (directional) and C-C Zone3-1-4-0 to 1-8-0, Zone1 1-8-0 to 11-0-0, Zone2 11-0-0 to 15-2-15, Zone1 15-2-15 to 31-0-0, Zone3 31-0-0 to 33-10-4 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))


Job 6252401	Truss A04	Truss Type Hip	Qty 1	Ply 1	2240-B 2Car	T38769168
----------------	--------------	-------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:31 2025 Page 1

4-6-15 8-3-8 13-0-0 17-0-0 21-0-0 23-7-1 29-0-0 34-0-0
4-6-15 3-8-9 4-8-8 4-0-0 4-0-0 2-7-1 5-4-15 5-0-0

Scale = 1:58.7

8-3-8 13-0-0 20-3-8 21-0-0 23-7-1 29-0-0 34-0-0
8-3-8 4-8-8 7-3-8 0-8-8 2-7-1 5-4-15 5-0-0

Plate Offsets (X,Y)-- [8:0-5-4,0-2-0], [15:0-2-8,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.69	Vert(LL)	-0.33	1-17	>999	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.69	Vert(CT)	-0.65	1-17	>618	MT20HS	187/143
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.82	Horz(CT)	0.33	10	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.18	16-17	>999	Weight: 212 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
1-17,15-17: 2x4 SP M 31 or 2x4 SP SS
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
9-2-14 oc bracing: 1-17
6-0-0 oc bracing: 12-13.
10-0-0 oc bracing: 13-15
WEBS 1 Row at midpt 7-12

REACTIONS.

(size) 1=0-3-8, 10=0-3-8
Max Horz 1=99(LC 12)
Max Uplift 1=-51(LC 12), 10=-62(LC 12)
Max Grav 1=1501(LC 17), 10=1477(LC 18)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=5069/465, 2-3=4852/374, 3-4=3000/246, 4-5=-2676/245, 5-6=-2657/230,
6-7=-2635/231, 7-8=-1639/174, 8-9=-1151/114, 9-10=-1404/141
BOT CHORD 1-17=-505/4654, 16-17=-353/4263, 15-16=-195/2758, 11-12=-57/976
WEBS 3-17=-49/1340, 3-16=-1782/196, 4-16=-29/1093, 5-16=-294/39, 12-15=-109/1938,
7-15=-100/1751, 7-12=-1698/174, 8-12=-77/1065, 8-11=-610/115, 9-11=-72/1260

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 0-1-12 to 3-1-12, Zone1 3-1-12 to 13-0-0, Zone2 13-0-0 to 17-0-0, Zone1 17-0-0 to 29-0-0, Zone2 29-0-0 to 33-2-15, Zone1 33-2-15 to 33-10-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10.

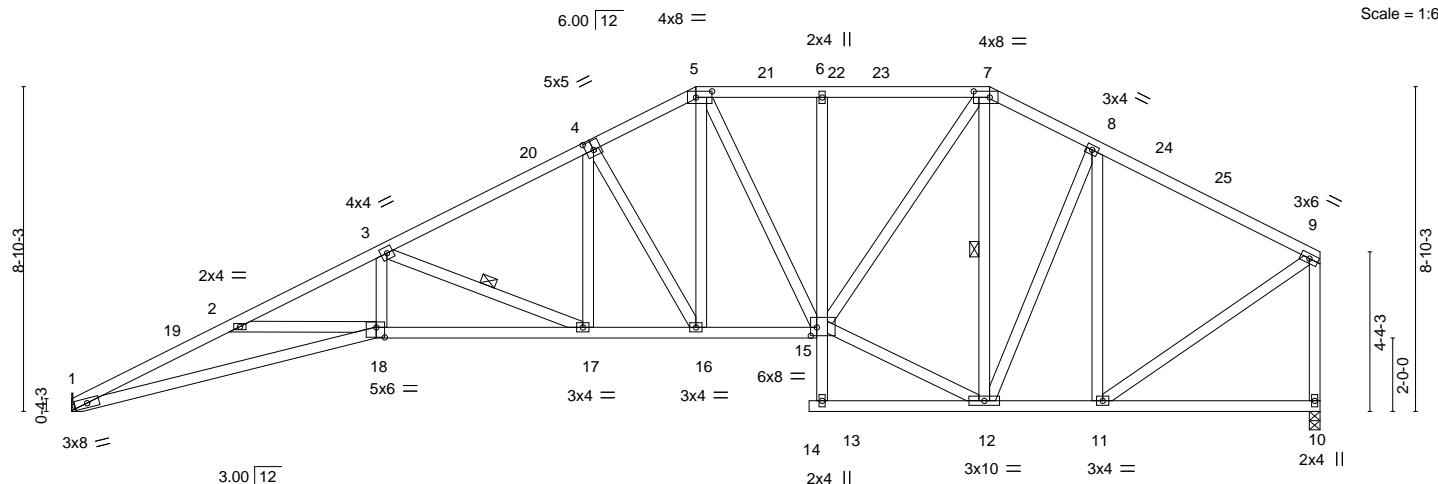
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DS-B22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 6252401	Truss A06	Truss Type Hip	Qty 1	Ply 1	2240-B 2Car	T38769170
----------------	--------------	-------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:32 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-7YL7EGDxcP_22bN6vYKhJ?VWKlpbLc36AuvJMyVuHz

4-6-15 8-3-8 14-0-13 17-0-0 21-0-0 25-0-0 27-11-4 34-0-0
4-6-15 3-8-9 5-9-4 2-11-4 4-0-0 4-0-0 2-11-4 6-0-13

Scale = 1:62.8

8-3-8 14-0-13 17-0-0 20-3-8 21-0-0 25-0-0 27-11-4 34-0-0
8-3-8 5-9-4 2-11-4 3-3-8 0-8-8 4-0-0 2-11-4 6-0-13

Plate Offsets (X,Y)-- [4:0-2-8,0-3-0], [5:0-5-4,0-2-0], [7:0-5-4,0-2-0], [15:0-2-0,0-2-12], [18:0-2-12,0-3-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.68	Vert(LL)	-0.30 17-18	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.93	Vert(CT)	-0.60 17-18	>676	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.57	Horz(CT)	0.32 10	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.19 17-18	>999	240	Weight: 239 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
1-18: 2x4 SP M 31 or 2x4 SP SS
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
9-2-5 oc bracing: 1-18
2-2-0 oc bracing: 17-18.
10-0-0 oc bracing: 13-15
WEBS 1 Row at midpt 3-17, 7-12

REACTIONS.

(size) 1=Mechanical, 10=0-3-8
Max Horz 1=108(LC 11)
Max Uplift 1=51(LC 12), 10=-63(LC 12)
Max Grav 1=1355(LC 1), 10=1356(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=4696/470, 2-3=4413/374, 3-4=2562/249, 4-5=2001/244, 5-6=1691/225,

6-7=1689/226, 7-8=1232/189, 8-9=1153/128, 9-10=1299/148

BOT CHORD 1-18=-510/4252, 17-18=-354/3842, 16-17=-177/2213, 15-16=-112/1757, 6-15=-276/91,
11-12=-66/967

WEBS 3-18=-39/1177, 3-17=-1743/191, 4-17=-15/748, 4-16=-939/132, 5-16=-80/871,
12-15=-66/1105, 7-15=-93/1140, 7-12=-610/44, 8-12=-4/301, 8-11=-553/109,
9-11=-77/1147

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 0-0-12 to 3-0-12, Zone1 3-0-12 to 17-0-0, Zone2 17-0-0 to 21-2-15 , Zone1 21-2-15 to 25-0-0, Zone2 25-0-0 to 29-2-15, Zone1 29-2-15 to 33-10-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10.

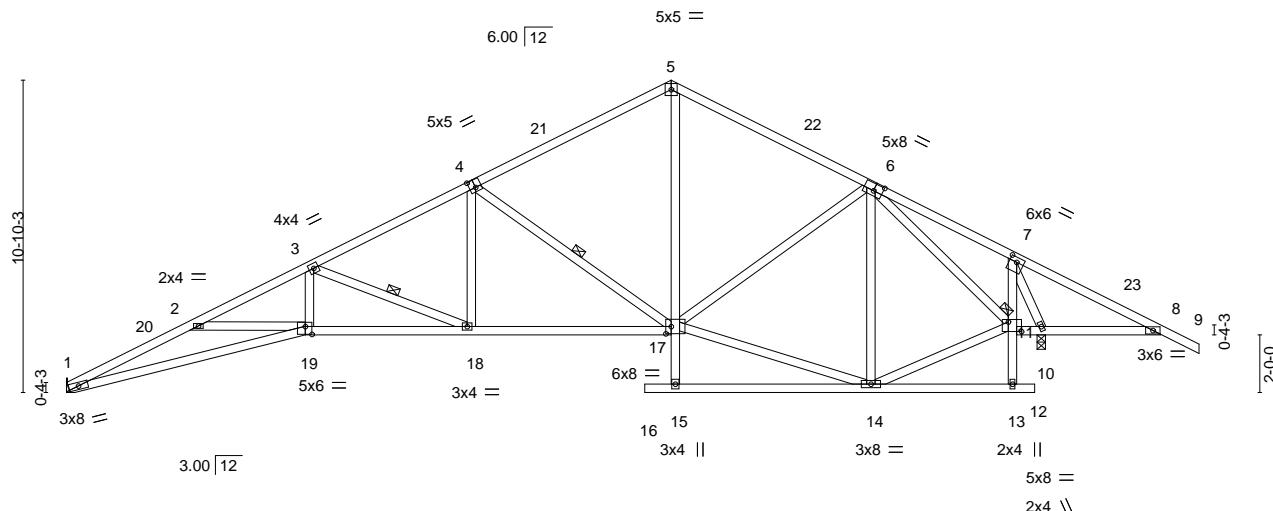
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com



Job 6252401	Truss A08	Truss Type ROOF SPECIAL	Qty 1	Ply 1	2240-B 2Car	T38769172
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:34 2025 Page 1 ID:y6bLPA9E28LfkUn2vm8QUz1P?1-4hg6YvITTEgiMIEKaomk4rM7_D3C_MZUN0NFyVuHx

4-6-15 8-3-8 14-0-12 21-0-0 27-11-4 33-0-0 38-0-0 39-4-0
4-6-15 3-8-9 5-9-3 6-11-4 6-11-4 5-0-12 5-0-0 1-4-0

Scale = 1:80.0

8-3-8 14-0-12 21-0-0 27-11-4 33-0-0 34-0-0 38-0-0
8-3-8 5-9-3 6-11-5 6-11-4 5-0-12 1-0-0 4-0-0

Plate Offsets (X,Y)-- [4:0-2-8,0-3-4], [6:0-3-12,0-3-0], [7:0-3-0,0-2-0], [11:0-5-8,0-4-0], [17:0-2-4,0-3-0], [19:0-2-12,0-3-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.66	Vert(LL)	-0.29 18-19	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.93	Vert(CT)	-0.58 1-19	>703	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.77	Horz(CT)	0.27 10	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.17 18-19	>999	240	Weight: 237 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
1-19: 2x4 SP M 31 or 2x4 SP SS
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
2-2-0 oc bracing: 18-19
6-0-0 oc bracing: 8-10.
10-0-0 oc bracing: 15-17, 11-13
WEBS 1 Row at midpt 3-18, 4-17
JOINTS 1 Brace at Jt(s): 11

REACTIONS.

(size) 1=Mechanical, 10=0-3-8
Max Horz 1=165(LC 10)
Max Uplift 1=47(LC 12), 10=-100(LC 12)
Max Grav 1=1332(LC 1), 10=1820(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=4613/435, 2-3=4305/288, 3-4=2515/200, 4-5=-1463/180, 5-6=-1478/166,
6-7=-340/4, 7-8=-321/592
BOT CHORD 1-19=-397/4177, 18-19=-186/3743, 17-18=-48/2180, 5-17=-7/832, 7-11=-45/999,
10-11=0/287, 8-10=-463/354
WEBS 3-19=-21/1150, 3-18=-1672/149, 4-18=0/769, 4-17=-1188/138, 14-17=0/874, 6-17=0/471,
6-14=-500/70, 11-14=0/920, 6-11=-956/285, 7-10=-1738/209

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=5ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 0-0-12 to 3-0-12, Zone1 3-0-12 to 21-0-0, Zone2 21-0-0 to 25-2-15, Zone1 25-2-15 to 39-4-0 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb)
10=100.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-Us.com](#)

Job 6252401	Truss A14	Truss Type HIP	Qty 1	Ply 1	2240-B 2Car	T38769175
----------------	--------------	-------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MITek Industries, Inc. Tue Oct 7 06:20:35 2025 Page 1
ID:y6bLPA9E28LfkUn2vm8QUz1P?1-YtEUIFJ6ExoZvWJyn261Jyd2_XLrocaWo87ZvhvVuHw

-1-4-0 4-6-15 8-3-8 14-0-12 20-8-0 21-4-0
1-4-0 4-6-15 3-8-9 5-9-4 6-7-4 0-4-0
4x8 =

Scale = 1:61.9

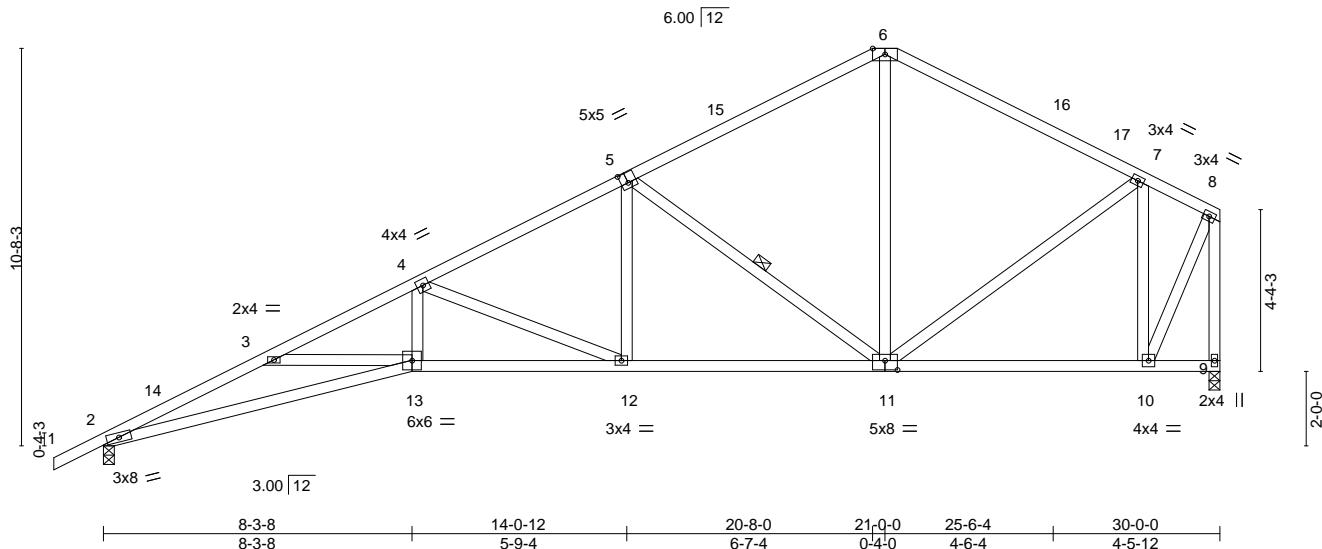


Plate Offsets (X,Y)-- [5:0-2-4,0-3-4], [11:0-4-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.54	Vert(LL)	-0.23	13	>999	360	
TCDL 10.0	Lumber DOL	1.25	BC 0.78	Vert(CT)	-0.47	2-13	>752	240	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.94	Horz(CT)	0.21	9	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.15	13	>999	240	Weight: 178 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
2-13: 2x4 SP M 31 or 2x4 SP SS
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-7-5 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS 1 Row at midpt 5-11

REACTIONS.

(size) 2=0-3-8, 9=0-3-8
Max Horz 2=169(LC 12)
Max Uplift 2=-80(LC 12), 9=-66(LC 12)
Max Grav 2=1279(LC 1), 9=1186(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=-3951/387, 3-4=-3654/295, 4-5=-2062/186, 5-6=-1094/148, 6-7=-1093/153,
7-8=-497/49, 8-9=-1191/100
BOT CHORD 2-13=-484/3551, 12-13=-332/3171, 11-12=-176/1792, 10-11=-45/474
WEBS 4-13=-38/998, 4-12=-1489/167, 5-12=0/685, 5-11=-1115/156, 7-11=-6/515,
7-10=-908/170, 8-10=-108/1120, 6-11=-1/543

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (directional) and C-C Zone3-1-4-0 to 1-8-0, Zone1 1-8-0 to 21-0-0, Zone2 21-0-0 to 25-2-15, Zone1 25-2-15 to 29-10-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-Us.com

Job 6252401	Truss A15	Truss Type HIP	Qty 1	Ply 1	2240-B 2Car	T38769176
----------------	--------------	-------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:36 2025 Page 1

ID:y6bLPA9E28LfkUn2vm8QUz1P?1-03oszbJk?rwQXfu8LldGr9AbtxicXCdf1os7S7yVuHv

-1-4-0 4-6-15 8-3-8 12-0-12 18-8-0 23-4-0 30-0-0
1-4-0 4-6-15 3-8-9 3-9-4 6-7-5 4-8-0 6-8-0

Scale = 1:56.4

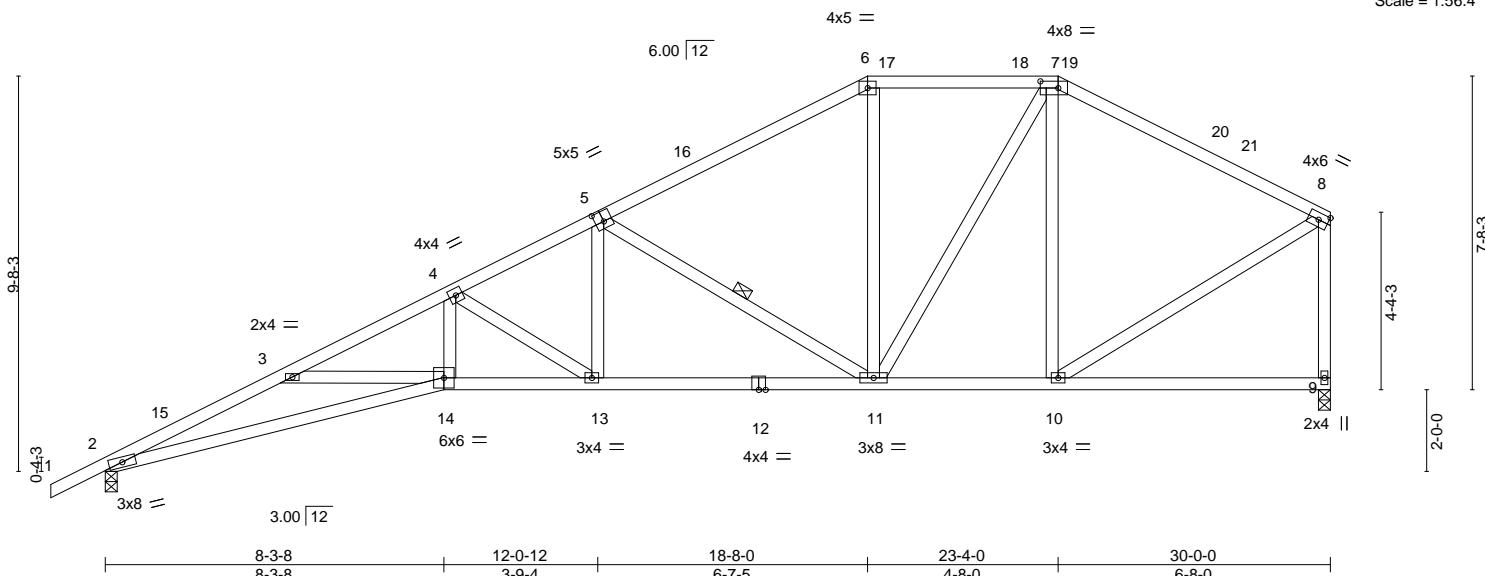


Plate Offsets (X,Y)-- [5:0-2-8,0-3-0], [7:0-5-4,0-2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.66	Vert(LL)	-0.22	14	>999	360	
TCDL 10.0	Lumber DOL	1.25	BC 0.74	Vert(CT)	-0.47	2-14	>759	240	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.37	Horz(CT)	0.20	9	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.14	14	>999	240	Weight: 179 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
2-14: 2x4 SP M 31 or 2x4 SP SS
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-7-9 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 9-1-8 oc bracing.
WEBS 1 Row at midpt 5-11

REACTIONS. (size) 2=0-3-8, 9=0-3-8

Max Horz 2=169(LC 12)
Max Uplift 2=-80(LC 12), 9=-66(LC 12)
Max Grav 2=1279(LC 1), 9=1186(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3961/425, 3-4=-3633/324, 4-5=-2413/239, 5-6=-1355/175, 6-7=-1133/189,

7-8=-1038/139, 8-9=-1122/158

BOT CHORD 2-14=-518/3561, 13-14=-353/3146, 11-13=-241/2117, 10-11=-65/842

WEBS 4-14=-59/980, 4-13=-1196/132, 5-13=-6/744, 5-11=-1161/164, 6-11=0/319,

7-11=-68/606, 7-10=-389/110, 8-10=-71/957

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 1-4-0 to 1-8-0, Zone1 1-8-0 to 18-8-0, Zone2 18-8-0 to 22-10-15, Zone1 22-10-15 to 23-4-0, Zone2 23-4-0 to 27-6-15, Zone1 27-6-15 to 29-10-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-US.com](#)

Job 6252401	Truss A17	Truss Type ROOF SPECIAL	Qty 1	Ply 1	2240-B 2Car	T38769178
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:37 2025 Page 1 ID:y6bLPA9E28LfkUn2vm8QUz1P?1-UGMExKMI92H9pTkV8VONiPhL2AGaupFScg_ZyVuHu

-1-4-0 4-6-15 8-3-8 12-0-13 17-0-0 19-4-0 23-4-0 27-4-0 30-10-0
1-4-0 4-6-15 3-8-9 3-9-5 4-11-3 2-4-0 4-0-0 4-0-0 3-6-0

Scale = 1:57.8

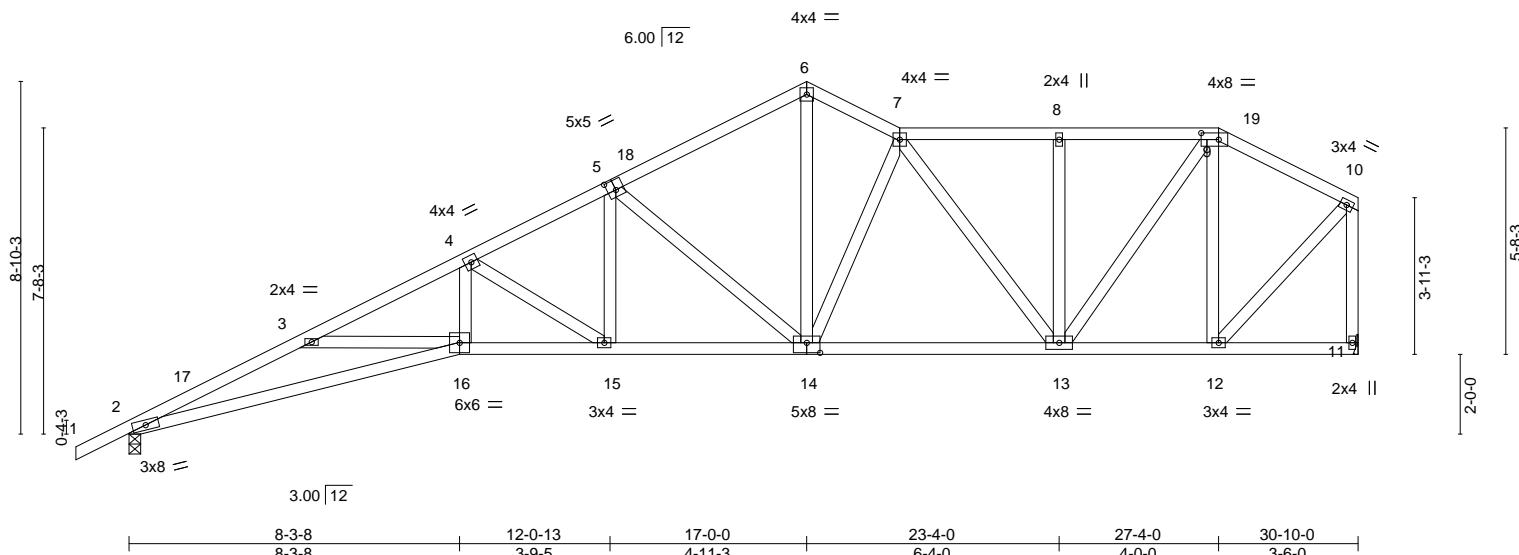


Plate Offsets (X,Y)-- [5:0-2-8,0-3-0], [9:0-5-4,0-2-0], [14:0-4-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.46	Vert(LL)	-0.23	15-16	>999	360	
TCDL 10.0	Lumber DOL	1.25	BC 0.72	Vert(CT)	-0.48	2-16	>764	240	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.69	Horz(CT)	0.21	11	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.15	16	>999	240	Weight: 192 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
2-16: 2x4 SP M 31 or 2x4 SP SS
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-6-12 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 8-9-11 oc bracing.

REACTIONS. (size) 2=0-3-8, 11=Mechanical
Max Horz 2=159(LC 12)
Max Uplift 2=83(LC 12), 11=-65(LC 12)
Max Grav 2=1313(LC 1), 11=1220(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=4086/486, 3-4=3780/392, 4-5=2500/299, 5-6=1663/235, 6-7=1613/253,
7-8=1289/210, 8-9=1289/210, 9-10=834/138, 10-11=1185/195
BOT CHORD 2-16=558/3674, 15-16=401/3279, 14-15=276/2182, 13-14=187/1610, 12-13=82/689
WEBS 4-16=61/1017, 4-15=1274/147, 5-15=36/747, 5-14=-991/166, 6-14=-123/1191,
7-14=-472/107, 7-13=-539/70, 8-13=-270/95, 9-13=-106/1006, 9-12=-666/128,
10-12=-119/1011

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 1-4-0 to 1-8-0, Zone1 1-8-0 to 17-0-0, Zone3 17-0-0 to 19-4-0, Zone1 19-4-0 to 27-4-0, Zone3 27-4-0 to 30-8-4 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 6252401	Truss A18	Truss Type ROOF SPECIAL	Qty 1	Ply 1	2240-B 2Car	T38769179
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:38 2025 Page 1

1-4-0 6-4-11 12-0-12 17-0-0 19-9-0 21-4-0 25-4-0 29-4-0 30-10-0
1-4-0 6-4-11 5-8-0 4-11-4 2-9-0 1-7-0 4-0-0 4-0-0 1-6-0

Scale: 3/16"=1'

6x8 =

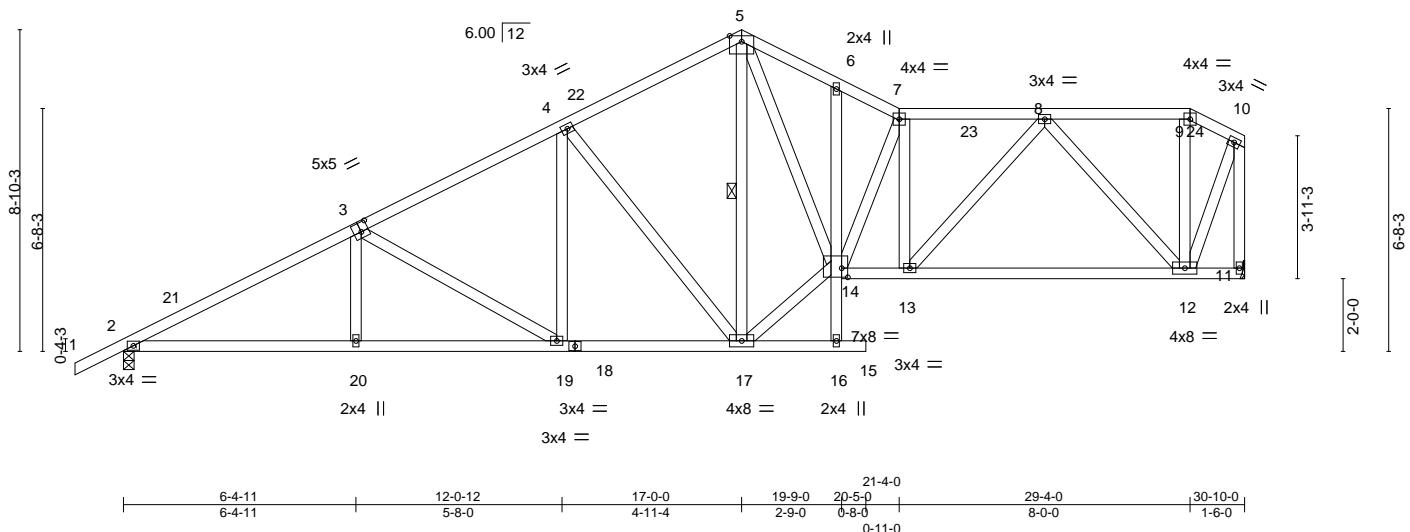


Plate Offsets (X,Y)-- [3:0-2-8,0-3-0], [14:0-2-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.53	Vert(LL)	-0.10	15	>999	360	
TCDL 10.0	Lumber DOL	1.25	BC 0.65	Vert(CT)	-0.23	12-13	>999	240	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.74	Horz(CT)	0.09	11	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.07	15	>999	240	Weight: 216 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-3-1 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 10-0-0 oc bracing: 14-16
WEBS 1 Row at midpt 5-17

REACTIONS. (size) 2=0-3-8, 11=Mechanical
Max Horz 2=159(LC 12)
Max Uplift 2=-80(LC 12), 11=-58(LC 12)
Max Grav 2=1318(LC 1), 11=1230(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2=227/166, 3-4=1752/188, 4-5=1304/202, 5-6=1858/277, 6-7=1875/231, 7-8=1831/199, 8-9=422/62, 9-10=483/54, 10-11=1260/121
BOT CHORD 2=20-232/1946, 19-20=234/1942, 17-19=176/1497, 13-14=176/1848, 12-13=146/1247
WEBS 3-20=0/263, 3-19=-522/67, 4-19=0/406, 4-17=-632/109, 5-17=-266/48, 14-17=-133/1331, 5-14=-191/1482, 7-14=-523/29, 7-13=-499/129, 8-13=-57/885, 8-12=-1251/169, 10-12=-91/1102

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 1-4-0 to 1-8-0, Zone1 1-8-0 to 17-0-0, Zone3 17-0-0 to 21-4-0, Zone1 21-4-0 to 29-4-0, Zone3 29-4-0 to 30-8-4 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

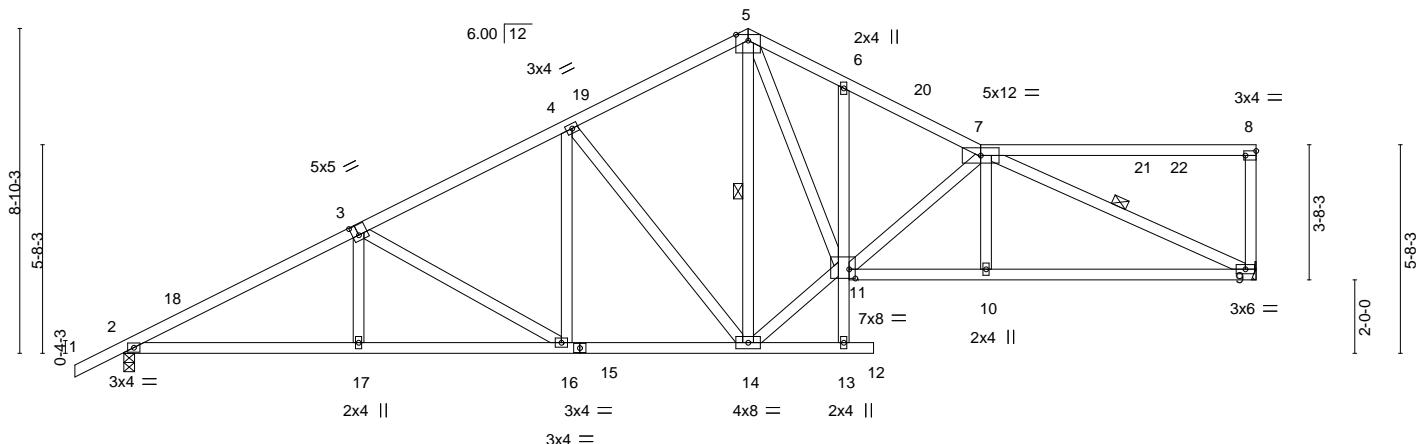
October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-Us.com

Job 6252401	Truss A19	Truss Type ROOF SPECIAL	Qty 1	Ply 1	2240-B 2Car	T38769180
----------------	--------------	----------------------------	----------	----------	-------------	-----------


Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:38 2025 Page 1

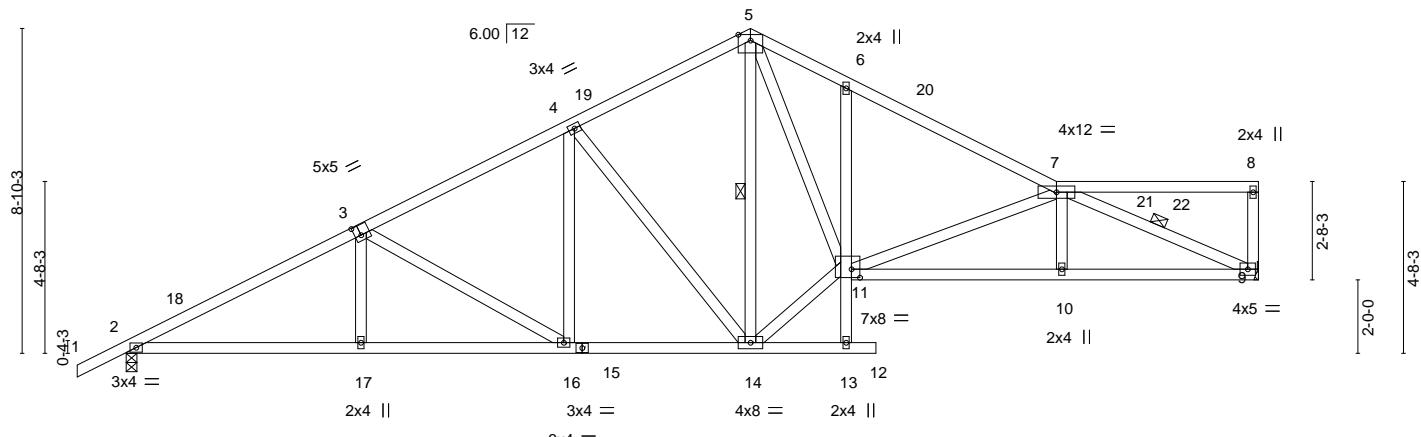
ID:y6bLPA9E28LfkUn2vm8QUz1P?1-ySvdOHL_WSA7mz2WTAfkwFWqlOa?0TyU6LEW0yVuHt
-1-4-0 6-4-11 12-0-12 17-0-0 19-9-0 23-4-0 30-10-0
1-4-0 6-4-11 5-8-0 4-11-4 2-9-0 3-7-0 7-6-0

Scale = 1:62.7

6x8 =

Job 6252401	Truss A20	Truss Type ROOF SPECIAL	Qty 1	Ply 1	2240-B 2Car	T38769181
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,


8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:39 2025 Page 1

ID:y6bLPA9E28LfkUn2vm8QUz1P?1-QeT?bdMcHml_O7dj0uAzTookl8m_kTi5jm5n2SyVuHs

1-4-0 6-4-11 12-0-12 17-0-0 19-9-0 25-4-0 30-10-0
1-4-0 6-4-11 5-8-0 4-11-4 2-9-0 5-7-0 5-6-0

Scale = 1:62.7

6x8 =

6-4-11 12-0-12 17-0-0 19-9-0 20-5-0 25-4-0 30-10-0
6-4-11 5-8-0 4-11-4 2-9-0 0-8-0 4-11-0 5-6-0

Plate Offsets (X,Y)-- [3:0-2-0,0-3-4], [11:0-2-12,0-2-12]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.49	Vert(LL)	-0.13	12	>999	360	
TCDL 10.0	Lumber DOL	1.25	BC 0.64	Vert(CT)	-0.28	10-11	>999	240	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.67	Horz(CT)	0.12	9	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.08	12	>999	240	Weight: 193 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-4-2 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 13-14.
WEBS 10-0-0 oc bracing: 11-13
WEBS 1 Row at midpt 5-14, 7-9

REACTIONS.

(size) 9=Mechanical, 2=0-3-8
Max Horz 2=128(LC 12)
Max Uplift 9=53(LC 12), 2=85(LC 12)
Max Grav 9=1230(LC 1), 2=1318(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3-2276/150, 3-4-1755/169, 4-5-1304/184, 5-6-1916/260, 6-7-1968/209
BOT CHORD 2-17-214/1952, 16-17-213/1954, 14-16-156/1498, 6-11-287/148, 10-11-207/2325,
9-10-203/2332
WEBS 3-17=0/263, 3-16=-529/65, 4-16=0/403, 4-14=-635/111, 5-14=-274/20, 11-14=-93/1356,
5-11-165/1558, 7-11=-679/69, 7-9=-2495/209

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 1-4-0 to 1-8-0, Zone1 1-8-0 to 17-0-0, Zone2 17-0-0 to 21-2-15, Zone1 21-2-15 to 30-8-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 2.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](http://www.tpiinst.org) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](http://www.sbcsc.com) available from the Structural Building Component Association (www.sbcsc.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 6252401	Truss A21	Truss Type ROOF SPECIAL	Qty 1	Ply 1	2240-B 2Car	T38769182
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:39 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-QeT?bdMcHml_O7dj0uAzToof38jmkTl5jm5n2SyVuHs

|-1-4-0| 7-9-4 15-0-0 19-0-0 23-7-5 27-4-0 30-10-0
1-4-0 7-9-4 7-2-12 4-0-0 4-7-5 3-8-11 3-6-0

Scale = 1:57.8

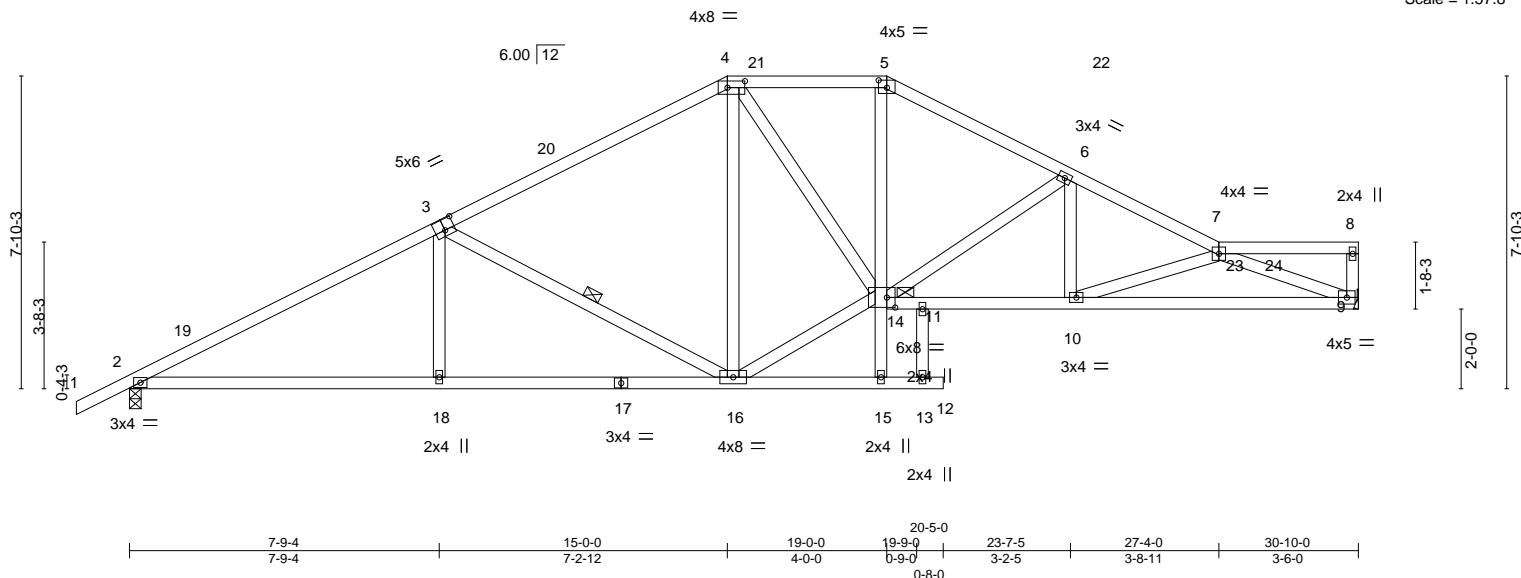


Plate Offsets (X,Y)-- [3:0-3-0,0-3-4], [4:0-5-4,0-2-0], [5:0-2-8,0-2-4], [14:0-2-8,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.79	Vert(LL)	-0.13	12	>999	360	
TCDL 10.0	Lumber DOL	1.25	BC 0.78	Vert(CT)	-0.27	2-18	>999	240	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.67	Horz(CT)	0.11	9	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.08	13	>999	240	Weight: 182 lb FT = 20%

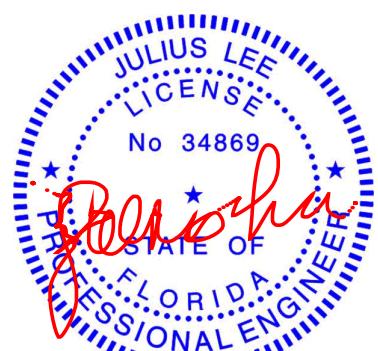
LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS 1 Row at midpt 3-16
JOINTS 1 Brace at Jt(s): 14

REACTIONS.


(size) 9=Mechanical, 2=0-3-8
Max Horz 2=105(LC 11)
Max Uplift 9=52(LC 12), 2=90(LC 12)
Max Grav 9=1226(LC 1), 2=1316(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=2217/213, 3-4=1511/231, 4-5=1606/276, 5-6=1855/277, 6-7=2387/279
BOT CHORD 2-18=236/1889, 16-18=238/1886, 5-14=38/568, 11-14=227/2113, 10-11=227/2113,
9-10=331/2593
WEBS 3-18=0/339, 3-16=726/121, 14-16=140/1398, 4-14=77/630, 6-14=622/89, 6-10=0/376,
7-10=-511/130, 7-9=-2724/364

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3-1-4-0 to 1-8-0, Zone1 1-8-0 to 15-0-0, Zone3 15-0-0 to 19-0-0, Zone2 19-0-0 to 23-2-15, Zone1 23-2-15 to 30-8-4 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 2.

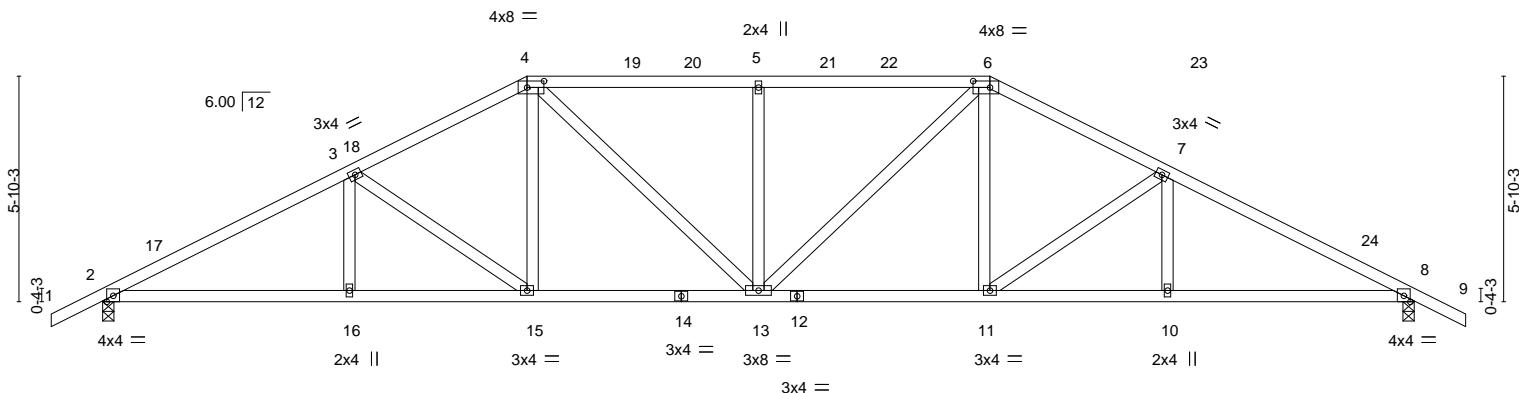
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 6252401	Truss A23	Truss Type HIP	Qty 1	Ply 1	2240-B 2Car	T38769184
----------------	--------------	-------------------	----------	----------	-------------	-----------


Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:41 2025 Page 1

ID:y6bLPA9E28LfkUn2vm8QUz1P?1-M1bl0INspNYidRn58ICRYDt2LyRoCTdOA4au7LyVuHq

-1-4-0 6-4-12 11-0-0 17-0-0 23-0-0 27-7-4 34-0-0 35-4-0
1-4-0 6-4-12 4-7-4 6-0-0 6-0-0 4-7-4 6-4-12 1-4-0

Scale = 1:59.7

6-4-12 11-0-0 17-0-0 23-0-0 27-7-4 34-0-0
6-4-12 4-7-4 6-0-0 6-0-0 4-7-4 6-4-12

Plate Offsets (X,Y)-- [4:0-5-4,0-2-0], [6:0-5-4,0-2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.61	Vert(LL)	-0.14	13	>999	360	
TCDL 10.0	Lumber DOL	1.25	BC 0.68	Vert(CT)	-0.29	13-15	>999	240	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.26	Horz(CT)	0.11	8	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.08	13	>999	240	Weight: 181 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-10-13 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 2=0-3-8, 8=0-3-8
Max Horz 2=102(LC 11)
Max Uplift 2=-100(LC 12), 8=-100(LC 12)
Max Grav 2=1437(LC 1), 8=1437(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2524/198, 3-4=-2073/206, 4-5=-2084/227, 5-6=-2084/227, 6-7=-2073/206,
7-8=-2524/198

BOT CHORD 2-16=-106/2169, 15-16=-106/2169, 13-15=-39/1798, 11-13=-45/1798, 10-11=-113/2169,
8-10=-113/2169

WEBS 3-15=-465/82, 4-15=0/394, 4-13=-37/495, 5-13=-410/120, 6-13=-37/495, 6-11=0/394,
7-11=-465/82

NOTES-

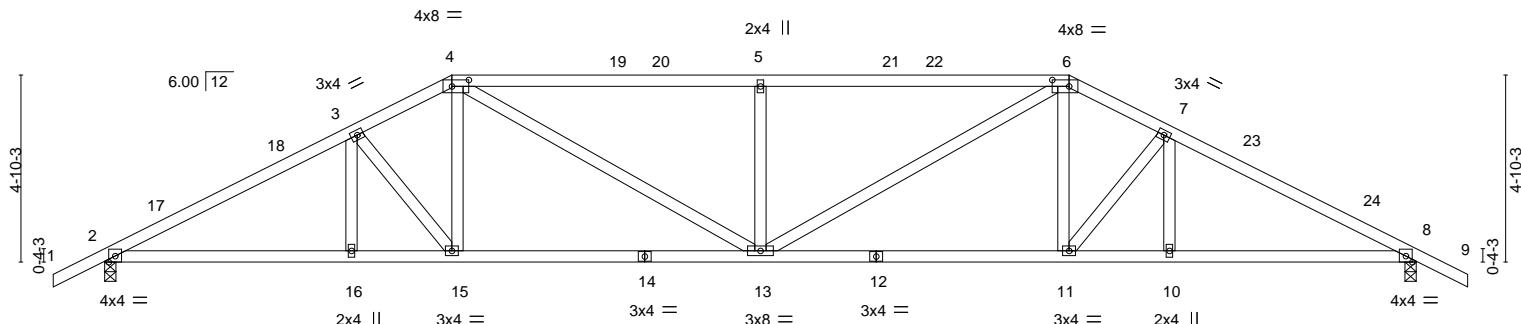
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (directional) and C-C Zone3 1-4-0 to 1-8-0, Zone1 1-8-0 to 11-0-0, Zone2 11-0-0 to 15-2-15, Zone1 15-2-15 to 23-0-0, Zone2 23-0-0 to 27-2-15, Zone1 27-2-15 to 35-4-0 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
2=100, 8=100.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)


Job 6252401	Truss A24	Truss Type HIP	Qty 1	Ply 1	2240-B 2Car	T38769185
----------------	--------------	-------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:41 2025 Page 1
ID:y6bLPA9E28LfkUn2vm8QUz1P?1-M1bl0INspNYidRn58ICRYDt1kyPOCUZOAAu7LyVuHq

-1-4-0 6-4-13 9-0-0 17-0-0 25-0-0 27-7-3 34-0-0 35-4-0
1-4-0 6-4-13 2-7-4 8-0-0 8-0-0 2-7-4 6-4-13 1-4-0

Scale = 1:59.7

6-4-13 9-0-0 17-0-0 25-0-0 27-7-3 34-0-0
6-4-13 2-7-4 8-0-0 8-0-0 2-7-4 6-4-13

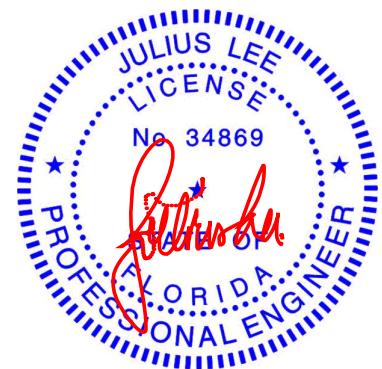
Plate Offsets (X,Y)-- [4:0-5-4,0-2-0], [6:0-5-4,0-2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.65	Vert(LL)	-0.16	13	>999	360	
TCDL 10.0	Lumber DOL	1.25	BC 0.77	Vert(CT)	-0.36	13-15	>999	240	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.20	Horz(CT)	0.11	8	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.09	13	>999	240	Weight: 174 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*
4-6: 2x4 SP M 31 or 2x4 SP SS
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

REACTIONS.


(size) 2=0-3-8, 8=0-3-8
Max Horz 2=85(LC 11)
Max Uplift 2=-100(LC 12), 8=-100(LC 12)
Max Grav 2=1437(LC 1), 8=1437(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=-2515/196, 3-4=-2225/209, 4-5=-2594/243, 5-6=-2594/243, 6-7=-2225/209,
7-8=-2514/196
BOT CHORD 2-16=-103/2159, 15-16=-103/2159, 13-15=-55/1961, 11-13=-59/1961, 10-11=-111/2159,
8-10=-111/2159
WEBS 3-15=-326/79, 4-15=0/395, 4-13=-60/817, 5-13=-552/159, 6-13=-60/817, 6-11=0/395,
7-11=-326/79

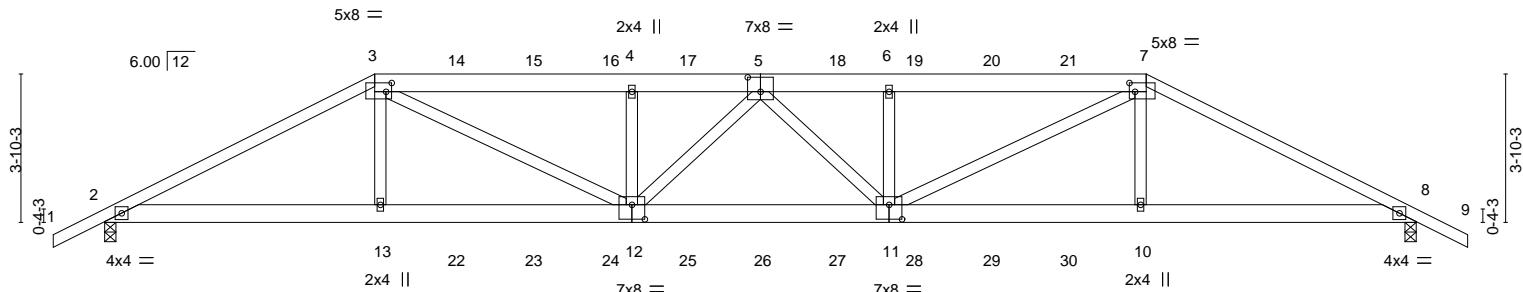
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 1-4-0 to 1-8-0, Zone1 1-8-0 to 9-0-0, Zone2 9-0-0 to 13-2-15, Zone1 13-2-15 to 25-0-0, Zone2 25-0-0 to 29-2-15, Zone1 29-2-15 to 35-4-0 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
2=100, 8=100.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DS-B-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 6252401	Truss A25	Truss Type HIP GIRDER	Qty 1	Ply 2	2240-B 2Car	T38769186
----------------	--------------	--------------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:42 2025 Page 1 ID:y6bLPA9E28LflkUn2vm8QUz1P?1-rD97DeOvahgZFaMli0kg5QQCFMI7xwBYPkJRfnvVuH

-1-4-0 7-0-0 13-8-0 17-0-0 20-4-0 27-0-0 34-0-0 35-4-0
1-4-0 7-0-0 6-8-0 3-4-0 3-4-0 6-8-0 7-0-0 1-4-0

Scale = 1:59.7

7-0-0 13-8-0 20-4-0 27-0-0 34-0-0
7-0-0 6-8-0 6-8-0 6-8-0 7-0-0

Plate Offsets (X,Y)-- [3:0-1-12,0-2-12], [5:0-4-0,0-4-8], [7:0-1-12,0-2-12], [11:0-4-0,0-4-8], [12:0-4-0,0-4-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.67	Vert(LL)	-0.21 11-12	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.74	Vert(CT)	-0.42 11-12	>953	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.30	Horz(CT)	0.10 8	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.14 11-12	>999	240	Weight: 410 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*
3-5,5-7: 2x6 SP No.2

BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-4-13 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 2=0-3-8, 8=0-3-8

Max Horz 2=68(LC 26)

Max Uplift 2=-271(LC 8), 8=-271(LC 8)

Max Grav 2=2932(LC 1), 8=2932(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-5890/485, 3-4=-7539/679, 4-5=-7537/678, 5-6=-7537/678, 6-7=-7539/679,

7-8=-5891/485

BOT CHORD 2-13=-354/5186, 12-13=-345/5206, 11-12=-596/7635, 10-11=-345/5206, 8-10=-354/5186

WEBS 3-13=0/725, 3-12=-254/2698, 4-12=-831/271, 6-11=-831/272, 7-11=-254/2698,

7-10=0/725

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (directional); cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
2=271, 8=271.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

Continued on page 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 6252401	Truss A25	Truss Type HIP GIRDER	Qty 1	Ply 2	2240-B 2Car	T38769186
----------------	--------------	--------------------------	----------	-----------------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:43 2025 Page 2
ID:y6bLPA9E28LflkUn2vm8QUz1P?1-JPjWR_P7L?oQtkxFvdeyN?m5MgNRheO3?BDyVuHo

NOTES-

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 455 lb down and 255 lb up at 7-0-0, 134 lb down and 89 lb up at 9-0-12, 134 lb down and 89 lb up at 11-0-12, 134 lb down and 89 lb up at 13-0-12, 134 lb down and 89 lb up at 15-0-12, 134 lb down and 89 lb up at 17-0-0, 134 lb down and 89 lb up at 18-11-4, 134 lb down and 89 lb up at 20-11-4, 134 lb down and 89 lb up at 22-11-4, and 134 lb down and 89 lb up at 24-11-4, and 455 lb down and 255 lb up at 27-0-0 on top chord, and 318 lb down at 7-0-0, 96 lb down at 9-0-12, 96 lb down at 11-0-12, 96 lb down at 13-0-12, 96 lb down at 15-0-12, 96 lb down at 17-0-0, 96 lb down at 18-11-4, 96 lb down at 20-11-4, 96 lb down at 22-11-4, and 96 lb down at 24-11-4, and 318 lb down at 26-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

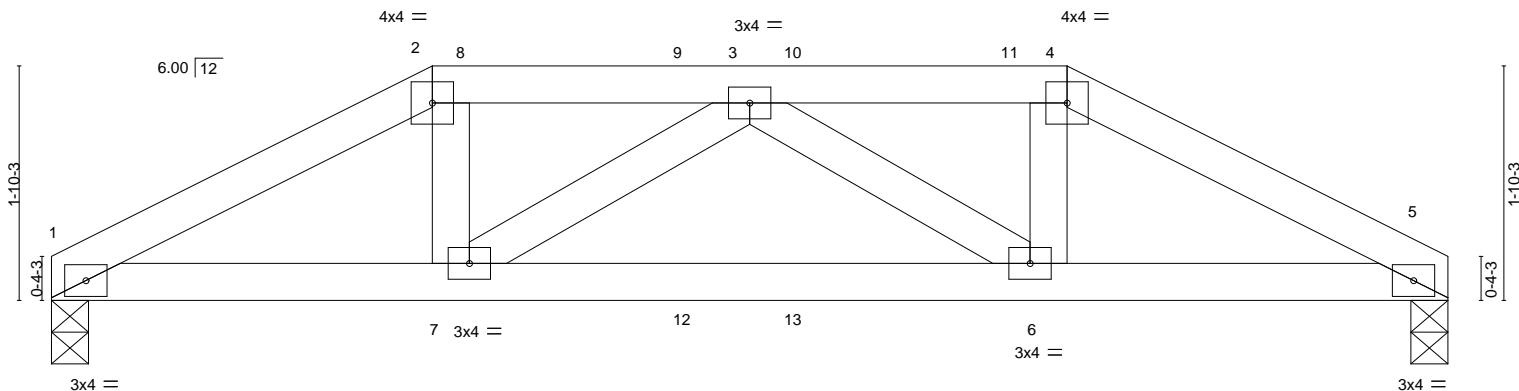
Vert: 1-3=-60, 3-7=-60, 7-9=-60, 2-8=-20

Concentrated Loads (lb)

Vert: 3=-408(B) 5=-134(B) 7=-408(B) 13=-268(B) 10=-268(B) 14=-134(B) 15=-134(B) 16=-134(B) 17=-134(B) 18=-134(B) 19=-134(B) 20=-134(B) 21=-134(B) 22=-48(B) 23=-48(B) 24=-48(B) 25=-48(B) 26=-48(B) 27=-48(B) 28=-48(B) 29=-48(B) 30=-48(B)

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TP1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com


Job 6252401	Truss B01	Truss Type Hip Girder	Qty 1	Ply 1	2240-B 2Car	T38769187
----------------	--------------	--------------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:43 2025 Page 1

3-0-0 5-6-0 8-0-0 11-0-0
3-0-0 2-6-0 2-6-0 3-0-0

Scale = 1:18.1

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.13	Vert(LL)	-0.02	6-7	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.34	Vert(CT)	-0.05	6-7	>999	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.06	Horz(CT)	0.01	5	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.01	6-7	>999	240		Weight: 46 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=0-3-8, 5=0-3-8
Max Horz 1=25(LC 6)
Max Uplift 1=17(LC 8), 5=17(LC 8)
Max Grav 1=469(LC 1), 5=469(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=815/22, 2-3=710/29, 3-4=710/29, 4-5=815/22

BOT CHORD 1-7=7/702, 6-7=41/821, 5-6=1/691
WEBS 2-7=0/255, 4-6=0/255

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 137 lb down and 77 lb up at 3-0-0, 51 lb down and 27 lb up at 5-0-12, and 51 lb down and 27 lb up at 5-11-4, and 137 lb down and 77 lb up at 8-0-0 on top chord, and 38 lb down at 3-0-0, 16 lb down at 5-0-12, and 16 lb down at 5-11-4, and 38 lb down at 7-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S)

Standard
1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=60, 2-4=60, 4-5=60, 1-5=20

Concentrated Loads (lb)

Vert: 2=13(B) 4=13(B) 7=19(B) 6=19(B) 9=0(B) 10=0(B) 12=8(B) 13=8(B)

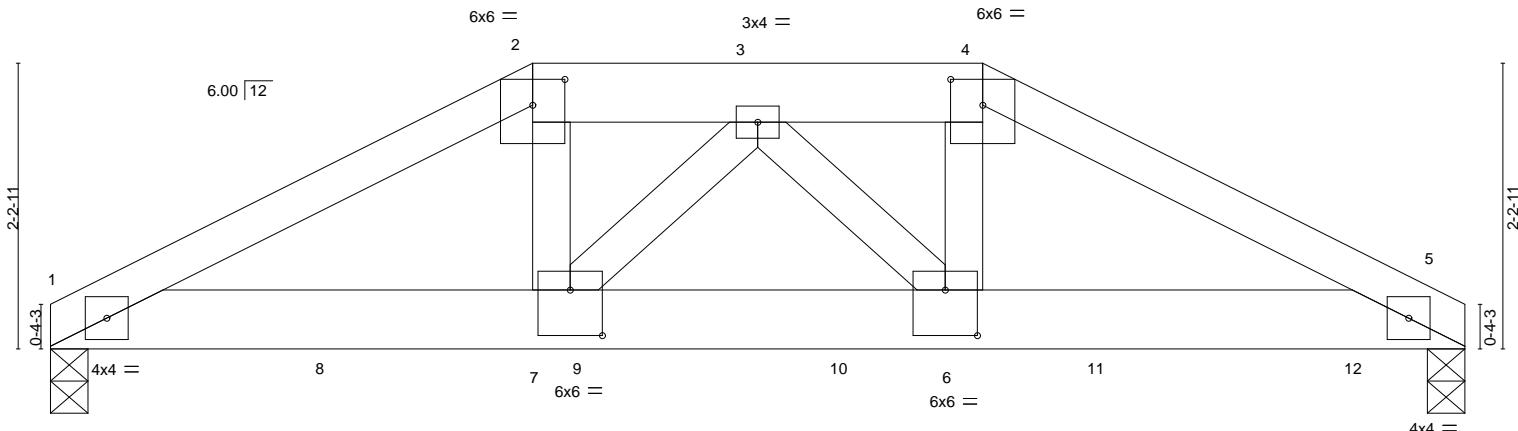
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 6252401	Truss B02	Truss Type Hip Girder	Qty 1	Ply 2	2240-B 2Car	T38769188
----------------	--------------	--------------------------	----------	-----------------	-------------	-----------


Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:44 2025 Page 1

ID:y6bLPA9E28Lf1kUn2vm8QUz1P?1-ncHueKQI6lwHuUvgpRm8ArVeE9NuPq_qs2oYkfVuHn

3-9-0 5-6-0 7-3-0 11-0-0
3-9-0 1-9-0 1-9-0 3-9-0

Scale = 1:17.9

3-9-0 7-3-0 11-0-0
3-9-0 3-6-0 3-9-0

Plate Offsets (X,Y)-- [2:0-3-0,0-2-7], [4:0-3-0,0-2-7], [6:0-3-0,0-4-4], [7:0-3-0,0-4-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.31	Vert(LL)	-0.05	6-7	>999	360	MT20
TCDL 10.0	Lumber DOL	1.25	BC 0.97	Vert(CT)	-0.10	6-7	>999	240	
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.29	Horz(CT)	0.03	5	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.03	6-7	>999	240	Weight: 113 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

2-4: 2x6 SP No.2

BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-9-13 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=0-3-8, 5=0-3-8

Max Horz 1=30(LC 25)

Max Uplift 1=153(LC 8), 5=193(LC 8)

Max Grav 1=3305(LC 1), 5=4176(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=6070/287, 2-3=5602/278, 3-4=5694/280, 4-5=-6164/288

BOT CHORD 1-7=229/5404, 6-7=240/5639, 5-6=-231/5494

WEBS 2-7=85/2497, 4-6=-85/2527

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-4-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

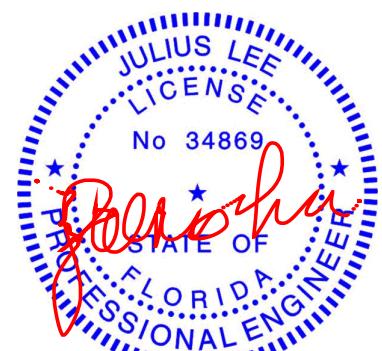
5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
1=153, 5=193.


10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1335 lb down and 71 lb up at 2-2-12, 1335 lb down and 71 lb up at 4-2-12, 1438 lb down and 68 lb up at 6-2-12, and 1312 lb down and 67 lb up at 8-2-12, and 1304 lb down and 69 lb up at 10-2-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Continued on page 2

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

MiTek
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 6252401	Truss B02	Truss Type Hip Girder	Qty 1	Ply 2	2240-B 2Car	T38769188
----------------	--------------	--------------------------	----------	-----------------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:44 2025 Page 2
ID:y6bLPA9E28LflkUn2vm8QUz1P?1-ncHueKQl6lwHuUvgpRm8ArVeE9NuPq_qs2oYkfYVuHn

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=-60, 2-4=-60, 4-5=-60, 1-5=-20

Concentrated Loads (lb)

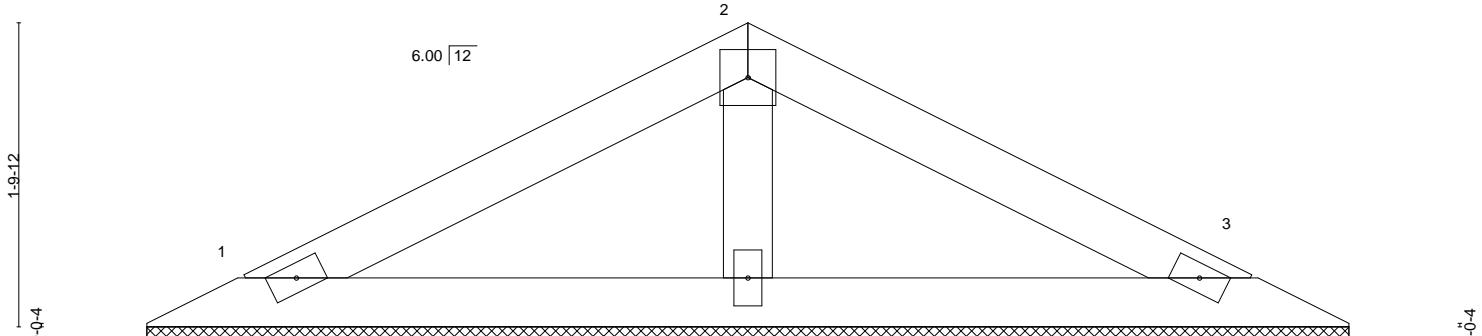
Vert: 8=-1335(F) 9=-1335(F) 10=-1340(F) 11=-1312(F) 12=-1304(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 6252401	Truss BV1	Truss Type Valley	Qty 1	Ply 1	2240-B 2Car	T38769189
----------------	--------------	----------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,


8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:44 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-ncHueKQl6lwHUUvGpRm8ArVga9biPu1qs2oYkfVuHn

3-7-8 3-7-8 7-3-0 3-7-8

Scale = 1:13.7

4x4 =

0-0-8
0-0-8

7-3-0
7-2-8

2x4 ≈

2x4 ||

2x4 ≈

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.09	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.03	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-P						Weight: 22 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Max Horz 1=25(LC 11)

Max Uplift 1=15(LC 12), 3=15(LC 12)

Max Grav 1=121(LC 1), 3=121(LC 1), 4=237(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

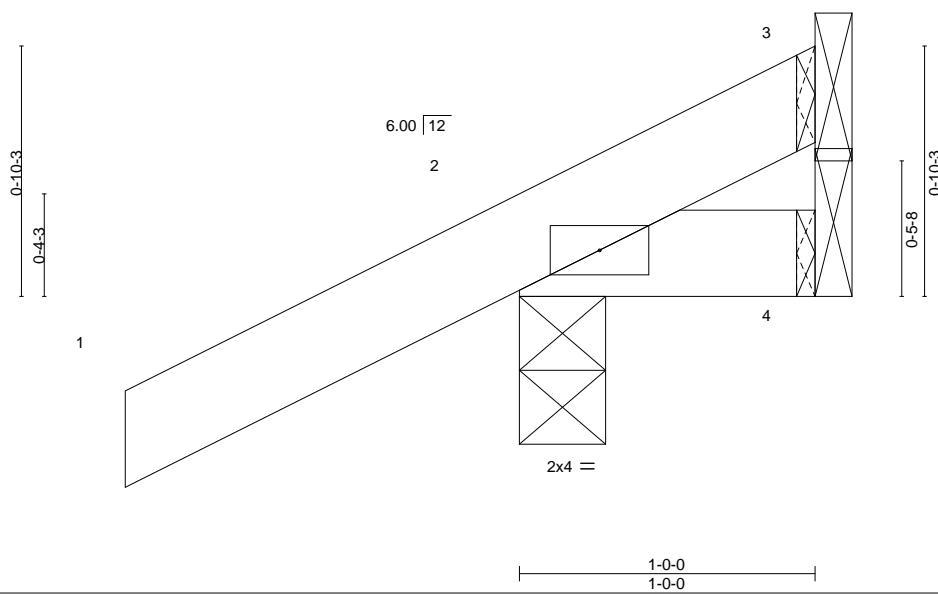
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 6252401	Truss C1	Truss Type CORNER JACK	Qty 16	Ply 1	2240-B 2Car	T38769190
----------------	-------------	---------------------------	-----------	----------	-------------	-----------


Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:45 2025 Page 1
ID:y6bLPA9E28LflkUn2vm8QUz1P?1-FoqGsgQNtc28624tN8Hnj32s1ZyC8Lh_5iY5G6yVuHm

-1-4-0
1-4-0

1-0-0
1-0-0

Scale = 1:7.8

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.12	Vert(LL)	-0.00	2 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.01	Vert(CT)	-0.00	2 >999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	-0.00	3 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-P	Wind(LL)	0.00	2 ****	240	Weight: 6 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 1-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical
Max Horz 2=36(LC 12)
Max Uplift 3=29(LC 1), 2=71(LC 12)
Max Grav 3=24(LC 12), 2=178(LC 1), 4=19(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

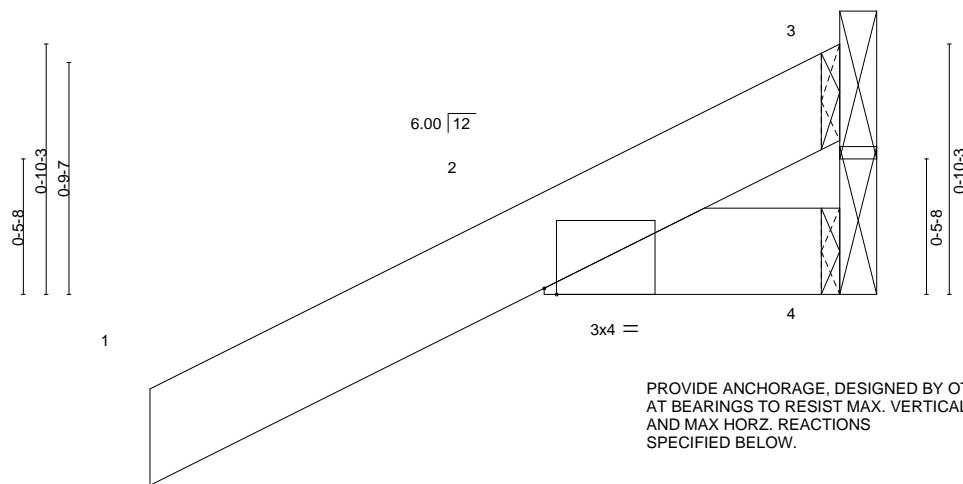
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))


Job 6252401	Truss C1E	Truss Type CORNER JACK	Qty 4	Ply 1	2240-B 2Car	T38769191
----------------	--------------	---------------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:45 2025 Page 1
ID:y6bLPA9E28LfkUn2vm8QUz1P?1-FoqGsgQNtc28624tN8HNj32n5Zul8Lh_5iY5G6yVuHm

-1-4-0
1-4-0

1-0-0
1-0-0

Scale = 1:7.8

1-0-0
1-0-0

Plate Offsets (X,Y)-- [2:0-0-8,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.43	Vert(LL)	0.00	2	n/r	120	
TCDL 10.0	Lumber DOL	1.25	BC 0.29	Vert(CT)	-0.01	2	n/r	120	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	0.00	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-P					Weight: 6 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 1-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical
Max Horz 3=322(LC 1), 4=322(LC 1)
Max Uplift 4=58(LC 12)
Max Grav 4=159(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=311/281

BOT CHORD 2-4=322/425

NOTES-

- 1) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

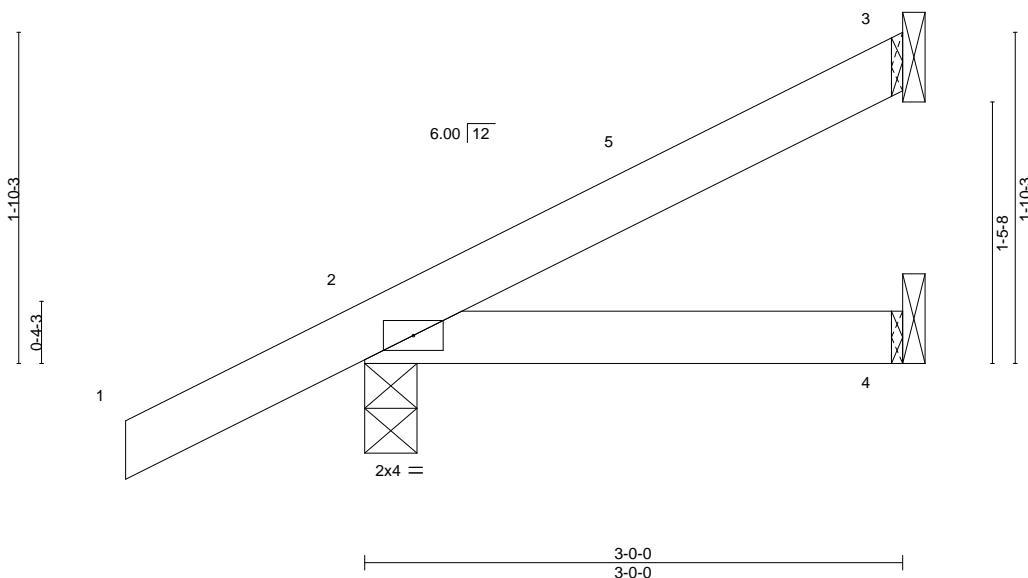
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-Us.com


Job 6252401	Truss C3	Truss Type CORNER JACK	Qty 12	Ply 1	2240-B 2Car	T38769192
----------------	-------------	---------------------------	-----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:45 2025 Page 1
ID:y6bLPA9E28LfkUn2vm8QUz1P?1-FoqGsgQNtc28624tN8HNj32rkZxz8Lh_5iY5G6yVuHm

-1-4-0 3-0-0
1-4-0 3-0-0

Scale = 1:12.8

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.14	Vert(LL) -0.00 2-4 >999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.09	Vert(CT) -0.01 2-4 >999 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 12 lb	FT = 20%

LUMBER-
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-
TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical
Max Horz 2=59(LC 12)
Max Uplift 3=18(LC 12), 2=50(LC 12)
Max Grav 3=60(LC 1), 2=224(LC 1), 4=56(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 -1-4-0 to 1-8-0, Zone1 1-8-0 to 2-11-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

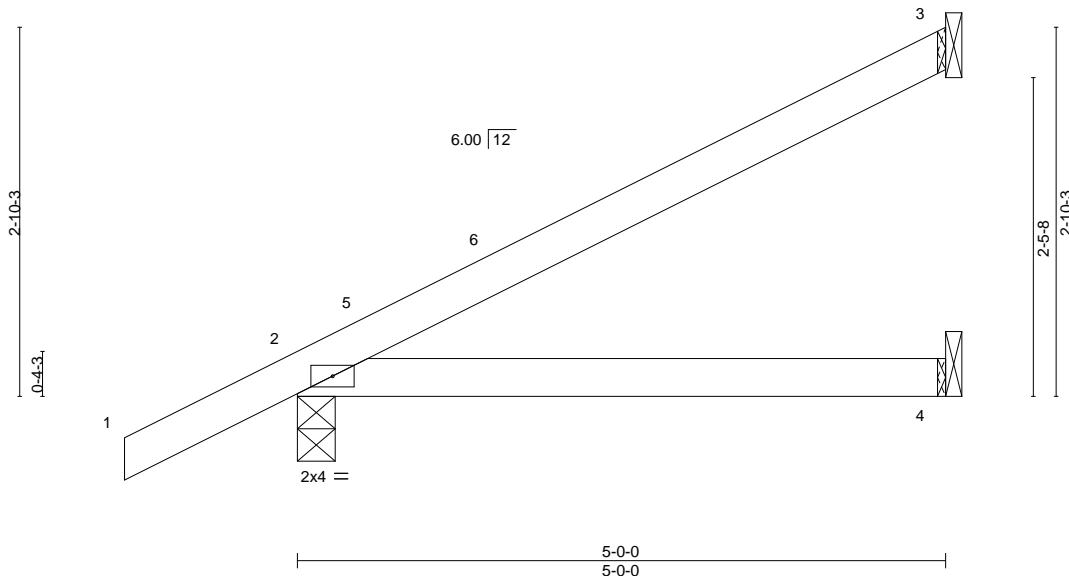
October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-US.com](#)

Job 6252401	Truss C5	Truss Type CORNER JACK	Qty 10	Ply 1	2240-B 2Car	T38769193
----------------	-------------	---------------------------	-----------	----------	-------------	-----------


Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:46 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-j_Oe30R?ewA?kCf3xsocFGazJzE9tox7KMHfoYyVuHI

-1-4-0 1-4-0 5-0-0 5-0-0

Scale = 1:17.8

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.34	Vert(LL) -0.03 2-4 >999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.28	Vert(CT) -0.06 2-4 >909 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 18 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical
Max Horz 2=83(LC 12)
Max Uplift 3=45(LC 12), 2=42(LC 12)
Max Grav 3=130(LC 1), 2=294(LC 1), 4=96(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

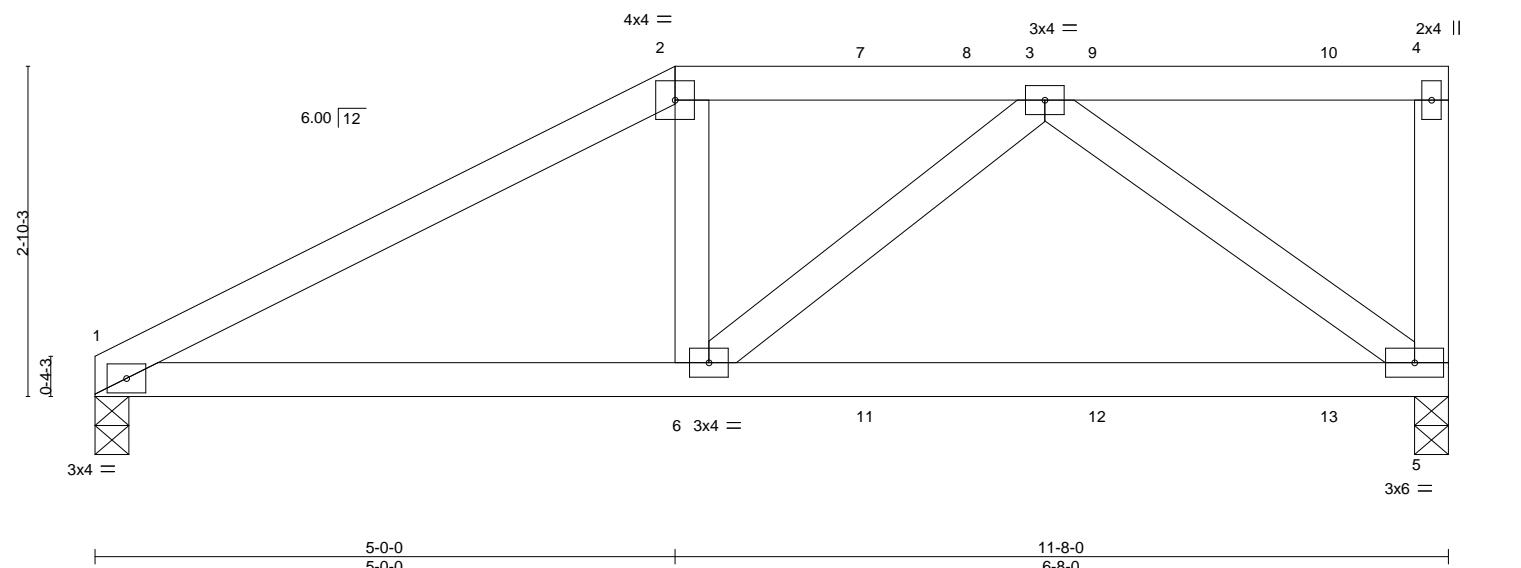
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 -1-4-0 to 1-8-0, Zone1 1-8-0 to 4-11-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-Us.com](#)

Job 6252401	Truss D01	Truss Type Roof Special Girder	Qty 1	Ply 1	2240-B 2Car	T38769194
----------------	--------------	-----------------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:46 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-j_Oe30R?ewA?kCl3xsocFGay6z8rtkR7KMHfoYyVuHI
5-0-0 8-2-4 11-8-0
5-0-0 3-2-4 3-5-12

Scale = 1:19.9

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.42	Vert(LL)	-0.08	5-6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.69	Vert(CT)	-0.17	5-6	>795	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.29	Horz(CT)	0.02	5	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.02	1-6	>999	240		Weight: 54 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-8-8 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=0-3-8, 5=0-3-8
Max Horz 1=61(LC 27)
Max Uplift 1=-58(LC 8), 5=-82(LC 8)
Max Grav 1=706(LC 1), 5=818(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=1234/101, 2-3=1037/104
BOT CHORD 1-6=112/1035, 5-6=118/768
WEBS 3-6=0/385, 3-5=920/160

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 291 lb down and 197 lb up at 5-0-0, 85 lb down and 64 lb up at 6-8-12, and 85 lb down and 64 lb up at 8-8-12, and 83 lb down and 63 lb up at 10-8-12 on top chord, and 134 lb down at 5-0-0, 56 lb down at 6-8-12, and 56 lb down at 8-8-12, and 60 lb down at 10-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)

Vert: 1-2=60, 2-4=60, 1-5=-20

Concentrated Loads (lb)

Vert: 2=244(B) 6=67(B) 7=70(B) 9=70(B) 10=-76(B) 11=-28(B) 12=-28(B) 13=-30(B)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

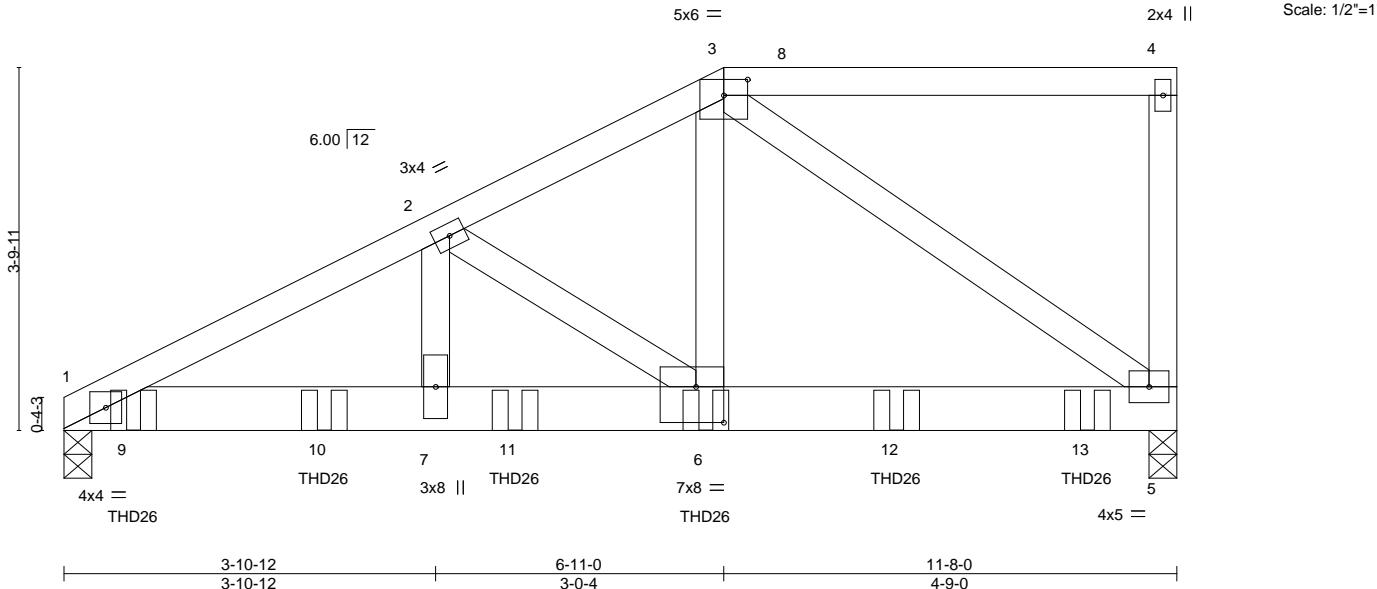
October 7, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 6252401	Truss D02	Truss Type Half Hip Girder	Qty 1	Ply 2	2240-B 2Car	T38769195
----------------	--------------	-------------------------------	----------	-----------------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,


8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:50 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-cme9vNUWi8hQCpqAhtYQ6lfPaQUpUfjFzFsxJyVuHh

3-10-12
3-10-12

6-11-0
3-0-4

11-8-0
4-9-0

3-10-12
3-10-12

6-11-0
3-0-4

11-8-0
4-9-0

Plate Offsets (X,Y)-- [3:0-3-0,0-2-0], [6:0-3-8,0-4-8]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.33	Vert(LL)	-0.06	5-6 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.96	Vert(CT)	-0.11	5-6 >999	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.53	Horz(CT)	0.03	5 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.03	5-6 >999	240	Weight: 140 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-10-5 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

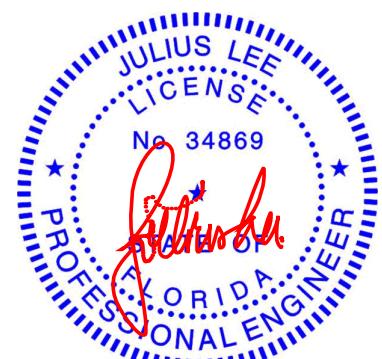
(size) 1=0-3-8, 5=0-3-8
Max Horz 1=82(LC 27)
Max Uplift 1=-179(LC 8), 5=-239(LC 8)
Max Grav 1=4151(LC 1), 5=4015(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-5970/294, 2-3=-4018/218

BOT CHORD 1-7=-317/5296, 6-7=-317/5296, 5-6=-200/3395


WEBS 2-7=-50/1829, 2-6=-2074/131, 3-6=-181/4016, 3-5=-4108/239

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-3-0 oc.
Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=179, 5=239.
- 10) Use MiTek THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-8-12 from the left end to 10-8-12 to connect truss(es) to front face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S)

Standard
1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

Continued on page 2

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 6252401	Truss D02	Truss Type Half Hip Girder	Qty 1	Ply 2	2240-B 2Car	T38769195
----------------	--------------	-------------------------------	----------	-----------------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:50 2025 Page 2
ID:y6bLPA9E28LflkUn2vm8QUz1P?1-cme9vNUWi8hQCpqAhtYQ6lfPaQUpUfjFzFsxJyVuHh

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 6=-1210(F) 9=-1218(F) 10=-1206(F) 11=-1210(F) 12=-1210(F) 13=-1202(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 6252401	Truss E01	Truss Type HIP GIRDER	Qty 1	Ply 1	2240-B 2Car	T38769196
----------------	--------------	--------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:50 2025 Page 1

ID:y6bLPA9E28LfkUn2vm8QUz1P?1-cme9vNUWi8hQCpqAhtYQ6lgsaZMpcFjFzFsJyVuHh

-1-4-0 3-0-0 5-0-0 8-0-0 9-4-0
1-4-0 3-0-0 2-0-0 3-0-0 1-4-0

Scale = 1:20.0

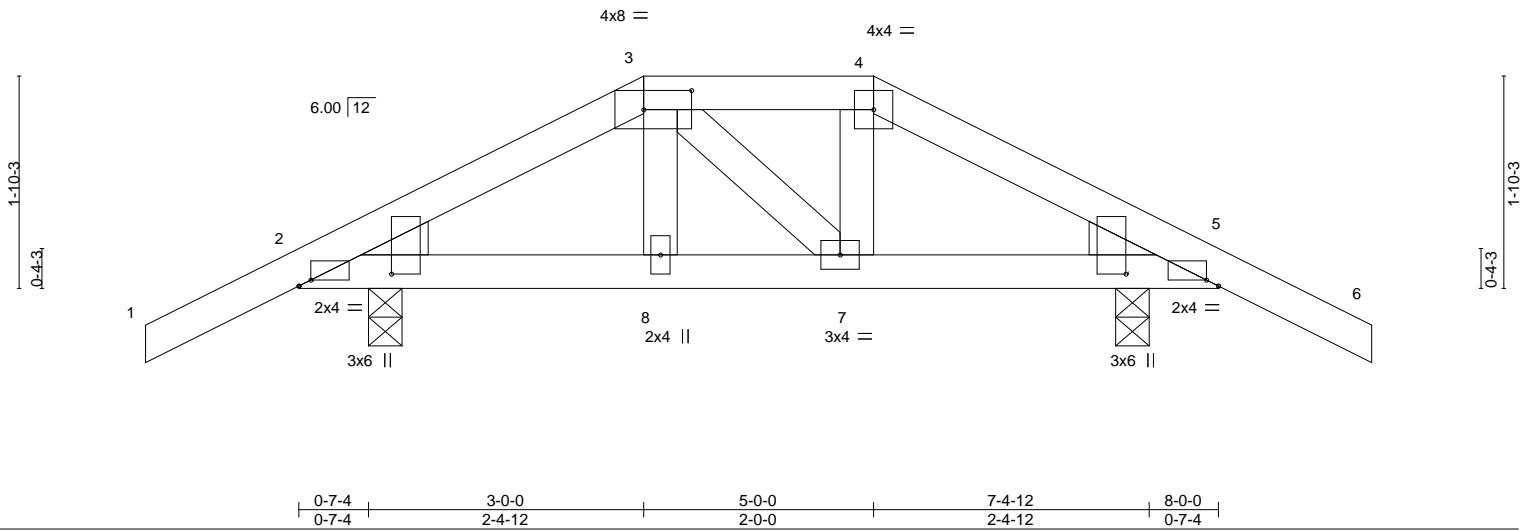


Plate Offsets (X,Y)-- [2:0-1-4,0-9-11], [2:0-1-4,Edge], [3:0-5-0,0-2-0], [5:0-1-4,Edge], [5:0-1-4,0-9-11]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.30	Vert(LL)	-0.01	8 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.39	Vert(CT)	-0.02	8 >999	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.04	Horz(CT)	0.01	5 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-P	Wind(LL)	0.01	8 >999	240	Weight: 38 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS.

(size) 2=0-3-8, 5=0-3-8
Max Horz 2=36(LC 26)
Max Uplift 2=-174(LC 8), 5=-174(LC 8)
Max Grav 2=533(LC 19), 5=533(LC 20)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=-694/205, 3-4=-583/190, 4-5=-695/206
BOT CHORD 2-8=-157/567, 7-8=-162/583, 5-7=-156/568

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (directional); cantilever left and right exposed ; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=174, 5=174.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 129 lb down and 82 lb up at 3-0-0, and 129 lb down and 82 lb up at 5-0-0 on top chord, and 115 lb down and 79 lb up at 3-0-0, and 115 lb down and 79 lb up at 4-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

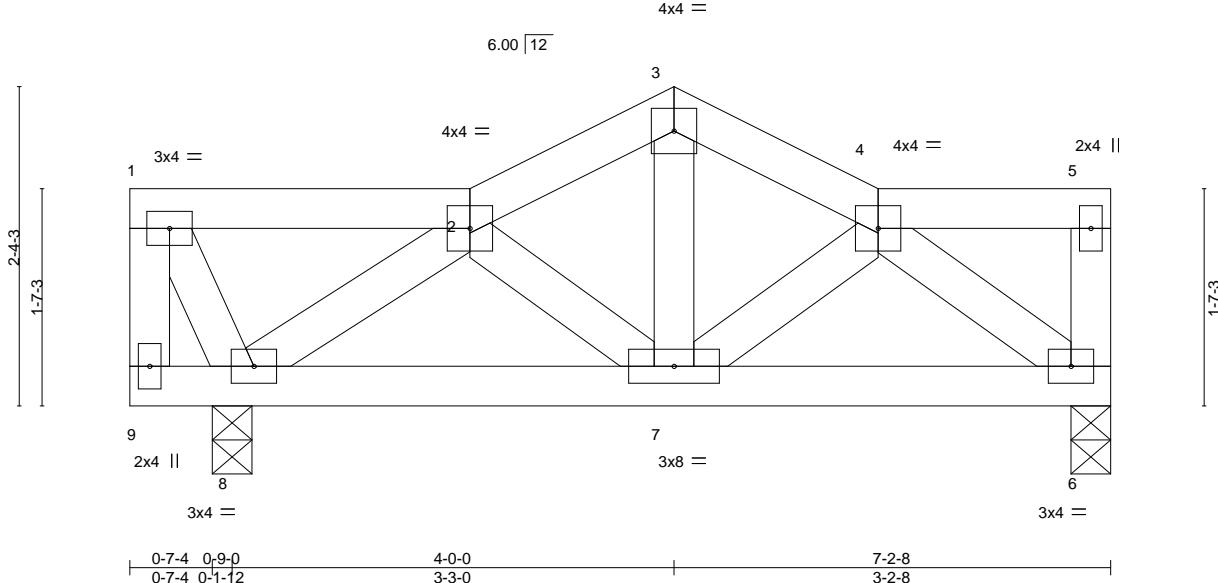
- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-3=-60, 3-4=-60, 4-6=-60, 2-5=-20
Concentrated Loads (lb)
Vert: 3=19(F) 4=19(F) 8=-115(F) 7=-115(F)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)


Job 6252401	Truss E03	Truss Type Roof Special	Qty 1	Ply 1	2240-B 2Car	T38769198
----------------	--------------	----------------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:51 2025 Page 1
ID:y6bLPA9E28LfkUn2vm8QUz1P?1-4yCX6jV8SSpHqzY0jPOnyJluv_4Y3UsTd?QTlyVuHg

0-9-0 2-6-0 4-0-0 5-6-0 7-2-8
0-9-0 1-9-0 1-6-0 1-6-0 1-8-8

Scale = 1:16.9

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.09	Vert(LL) -0.00	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.11	Vert(CT) -0.01		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT) 0.00		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-P	Wind(LL) 0.00	Weight: 40 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 6=0-3-8, 8=0-3-8

Max Horz 8=12(LC 11)
Max Uplift 6=64(LC 12), 8=79(LC 12)
Max Grav 6=247(LC 1), 8=307(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=311/254, 4-6=273/200

NOTES-

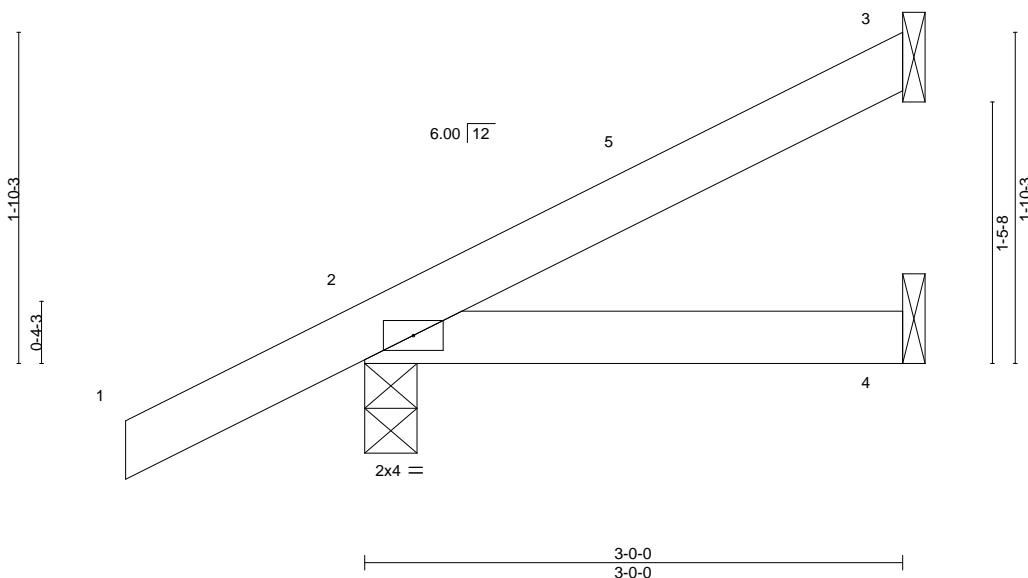
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 0-1-12 to 2-6-0, Zone1 2-6-0 to 4-0-0, Zone3 4-0-0 to 5-6-0, Zone1 5-6-0 to 7-0-12 zone; cantilever left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 8.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))


Job 6252401	Truss E3	Truss Type JACK-OPEN	Qty 4	Ply 1	2240-B 2Car	T38769199
----------------	-------------	-------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:53 2025 Page 1

ID:y6bLPA9E28Lf1kUn2vm8QUz1P?1-0LJXPWO_33?3HhPrqQF1kNCjogr0zg9xxUWYeyVuHe

-1-4-0 3-0-0
1-4-0 3-0-0

Scale = 1:12.8

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.14	Vert(LL) -0.00 2-4 >999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.09	Vert(CT) -0.01 2-4 >999 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 12 lb	FT = 20%

LUMBER-
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-
TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical
Max Horz 2=59(LC 12)
Max Uplift 3=18(LC 12), 2=50(LC 12)
Max Grav 3=60(LC 1), 2=224(LC 1), 4=56(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 -1-4-0 to 1-8-0, Zone1 1-8-0 to 2-11-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 6252401	Truss E3E	Truss Type JACK-OPEN	Qty 2	Ply 1	2240-B 2Car	T38769200
----------------	--------------	-------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:53 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-0LJXPWO_33?3HPrqQF1kNBkogr0zg9xxUWYeyVuHe

-1-4-0 3-0-0
1-4-0 3-0-0

Scale = 1:12.8

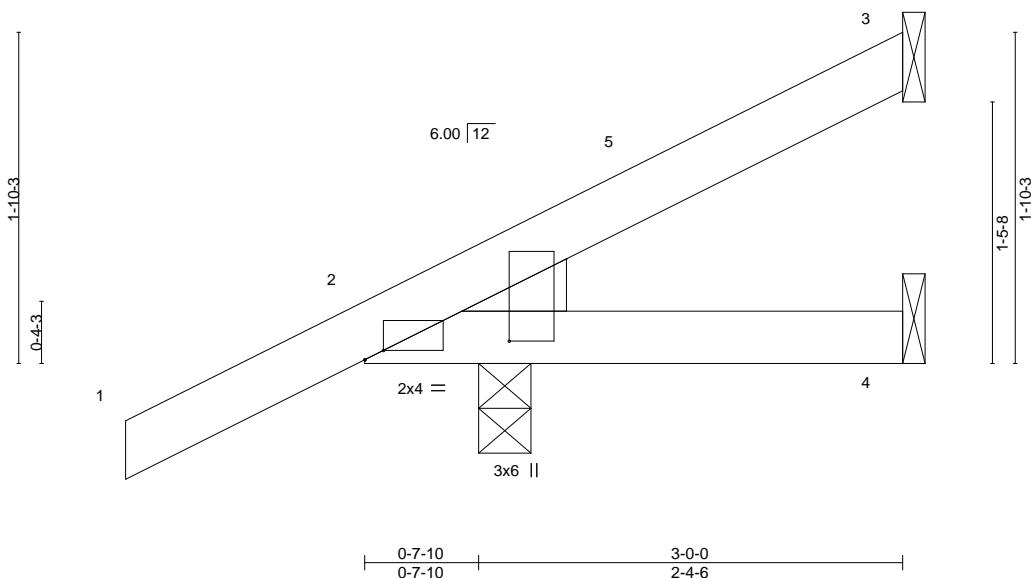


Plate Offsets (X,Y)-- [2:0-1-4,Edge], [2:0-1-4,0-9-11]

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.20	Vert(LL)	-0.00	2-4 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.09	Vert(CT)	-0.01	2-4 >999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	-0.00	3 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-P	Wind(LL)	0.00	2-4 >999	240	Weight: 13 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 2=0-3-8

Max Horz 2=59(LC 12)

Max Uplift 3=18(LC 12), 4=7(LC 8), 2=74(LC 12)

Max Grav 3=60(LC 1), 4=56(LC 3), 2=224(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat.

II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 -1-4-0 to 1-8-0, Zone1 1-8-0 to 2-11-4 zone; cantilever left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 2.

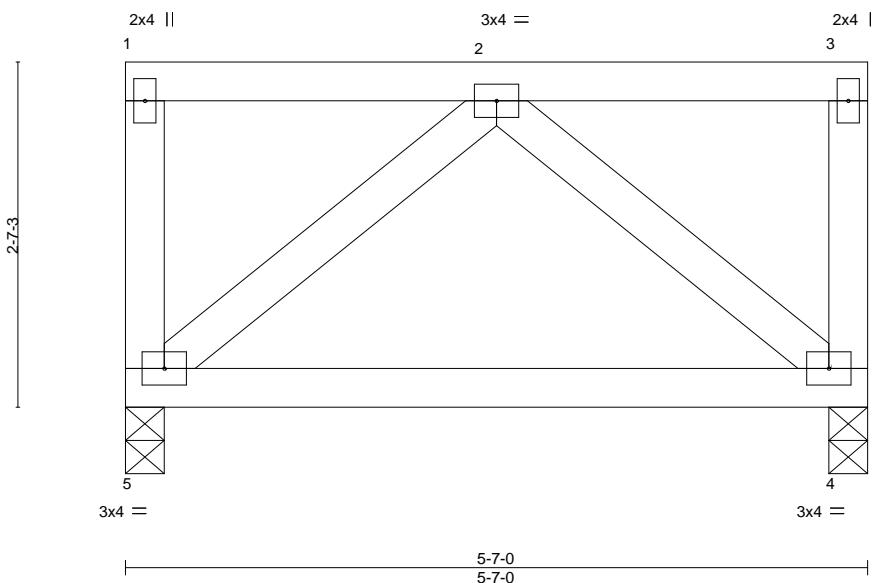
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 6252401	Truss E04	Truss Type Flat	Qty 1	Ply 1	2240-B 2Car	T38769201
----------------	--------------	--------------------	----------	----------	-------------	-----------


Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:52 2025 Page 1
ID:y6bLPA9E28LflkUn2vm8QUz1P?1-Y8mvK3WmDmx8S77DH6v0VXq3eOGNHWv0iHkz0CyVuHf

2-9-8
2-9-8

5-7-0
2-9-8

Scale = 1:17.3

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.09	Vert(LL)	-0.05	4-5	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.36	Vert(CT)	-0.09	4-5	>675	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.03	Horz(CT)	0.00	4	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-P	Wind(LL)	0.04	4-5	>999	240	Weight: 32 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-7-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 4=0-3-8

Max Uplift 5=60(LC 8), 4=60(LC 8)
Max Grav 5=212(LC 1), 4=212(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

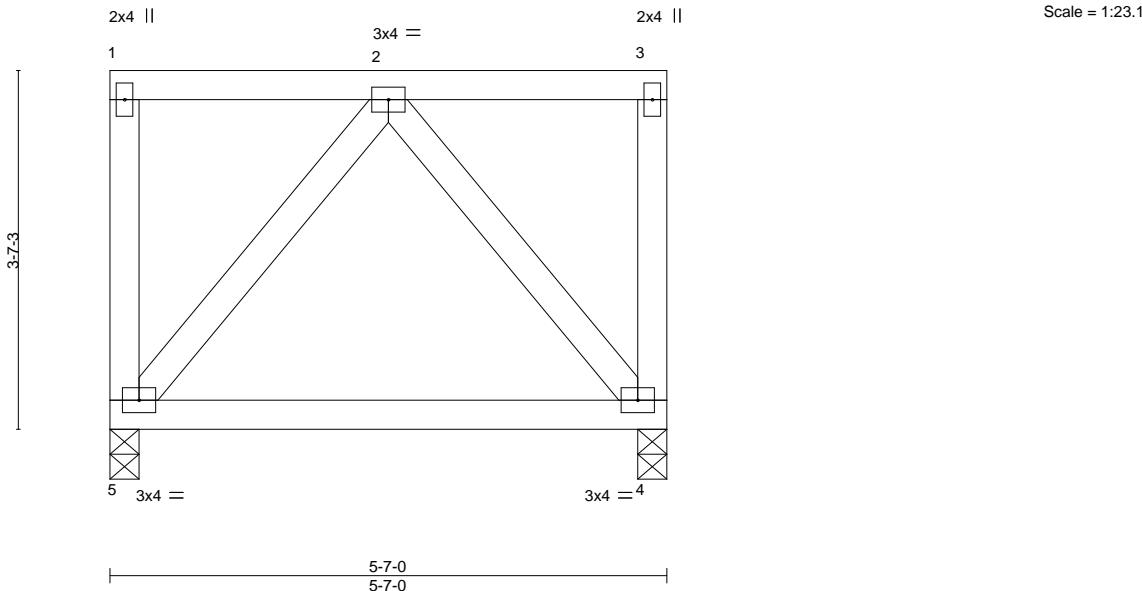
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed ; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))


Job 6252401	Truss E05	Truss Type Flat	Qty 1	Ply 1	2240-B 2Car	T38769202
----------------	--------------	--------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:52 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-Y8mvk3WmDmx8S77DH6v0VXq3cOGPHWp0iHkz0CyVuHf

2-9-8 5-7-0 2-9-8

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.10	Vert(LL)	-0.05	4-5	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.36	Vert(CT)	-0.09	4-5	>675	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.04	Horz(CT)	0.00	4	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-P	Wind(LL)	0.04	4-5	>999	240	Weight: 37 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-7-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 4=0-3-8

Max Uplift 5=60(LC 8), 4=60(LC 8)
Max Grav 5=212(LC 1), 4=212(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed ; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.

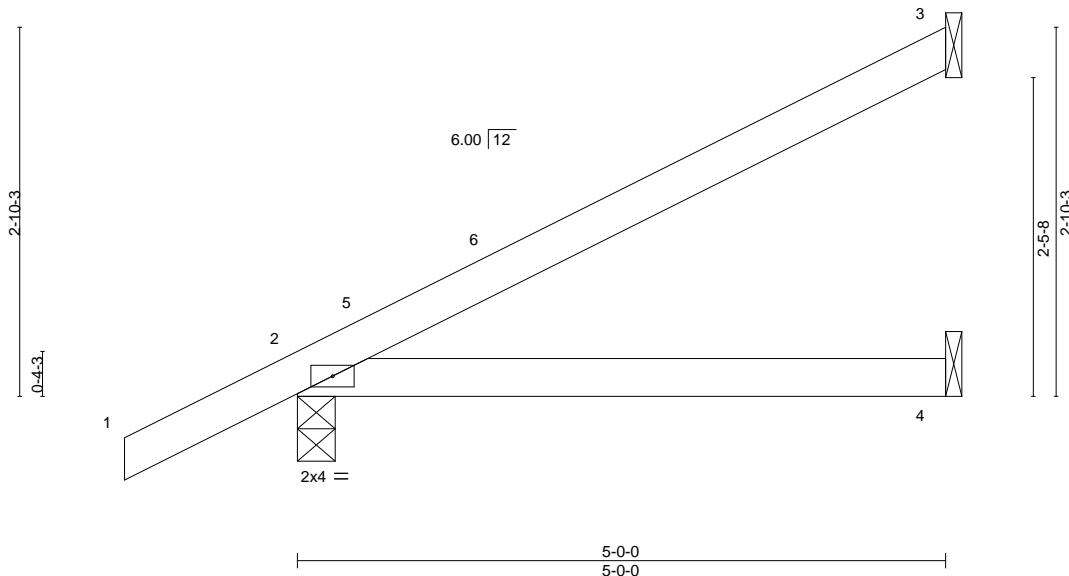
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 6252401	Truss E5	Truss Type JACK-OPEN	Qty 4	Ply 1	2240-B 2Car	T38769203
----------------	-------------	-------------------------	----------	----------	-------------	-----------


Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:53 2025 Page 1

ID:y6bLPA9E28LfIkUn2vm8QUz1P?1-0LJIXPWO_33?3HhPrqQF1kN9Yodo0zg9xxUWYeyVuHe

-1-4-0 1-4-0 5-0-0 5-0-0

Scale = 1:17.8

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.34	Vert(LL) -0.03 2-4 >999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.28	Vert(CT) -0.06 2-4 >909 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 18 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical
Max Horz 2=83(LC 12)
Max Uplift 3=45(LC 12), 2=42(LC 12)
Max Grav 3=130(LC 1), 2=294(LC 1), 4=96(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 -1-4-0 to 1-8-0, Zone1 1-8-0 to 4-11-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

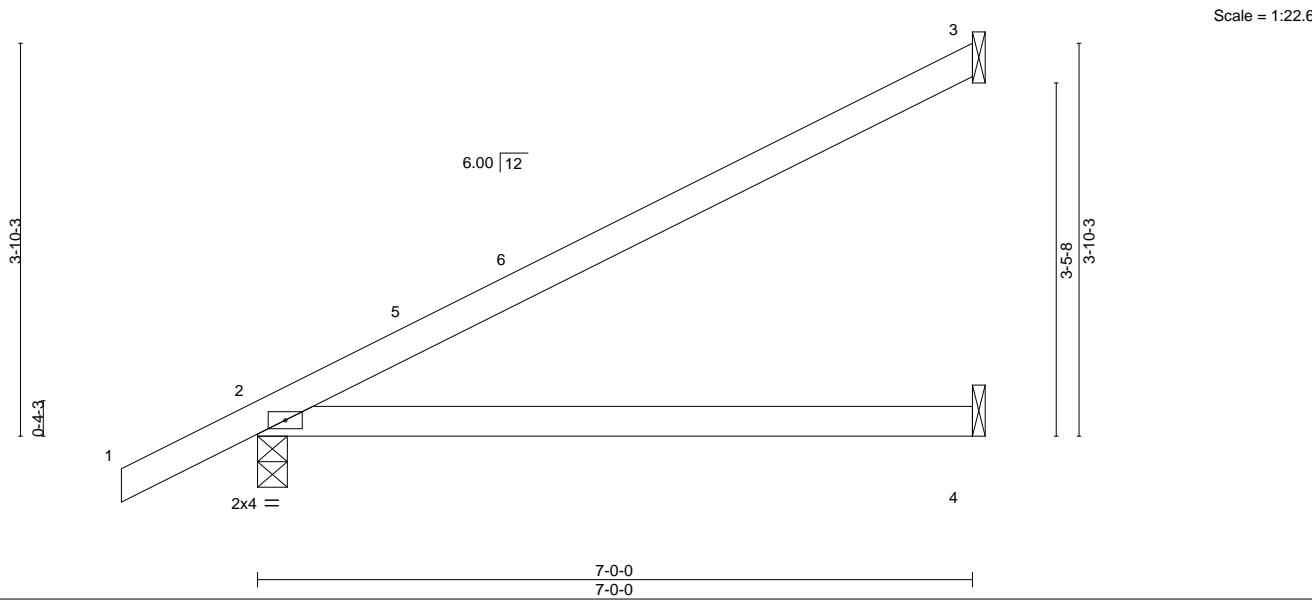
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 6252401	Truss E7	Truss Type JACK-OPEN	Qty 29	Ply 1	2240-B 2Car	T38769204
----------------	-------------	-------------------------	-----------	----------	-------------	-----------


Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:54 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-UxtglIX0NBshQGbPxuayvD4Bt0lQwJAbD444yVuHd

7-0-0

7-0-0

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.80	Vert(LL) -0.13 in (loc) 2-4 >639 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.60	Vert(CT) -0.26 2-4 >319 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 24 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical
Max Horz 2=107(LC 12)
Max Uplift 3=69(LC 12), 2=37(LC 12)
Max Grav 3=194(LC 1), 2=370(LC 1), 4=136(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 -1-4-0 to 1-8-0, Zone1 1-8-0 to 6-11-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

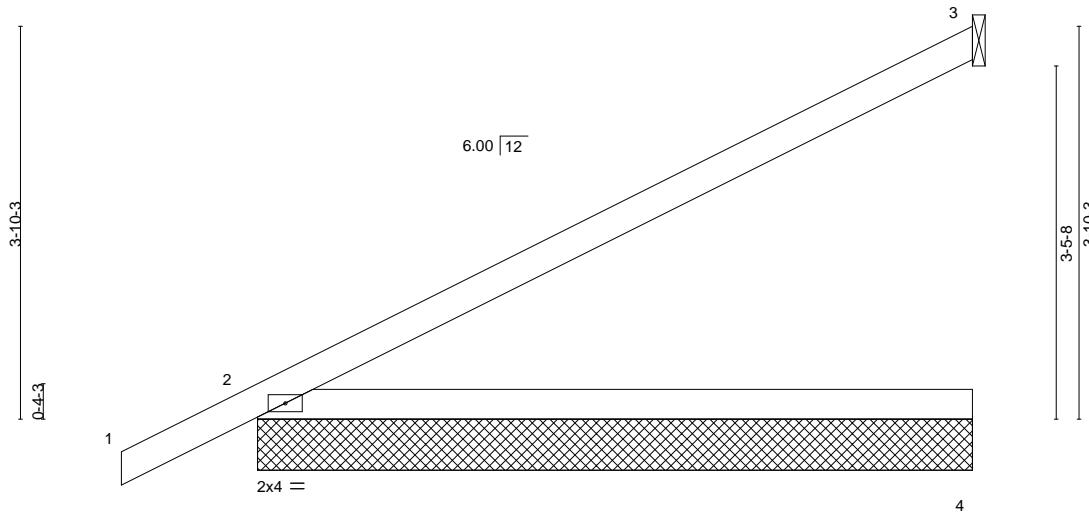
Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-US.com](#)


Job 6252401	Truss E77	Truss Type MONOPITCH SUPPORTED	Qty 1	Ply 1	2240-B 2Car	T38769205
----------------	--------------	-----------------------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:54 2025 Page 1
ID:y6bLPA9E28LflkUn2vm8QUz1P?1-UxtglIX0NBshQGbPxUayvBIBsNIQwJAbD444yVuHd

-1-4-0
1-4-0
7-0-0
7-0-0

Scale = 1:22.6

4

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.95	Vert(LL) -0.14 2-4 >578 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.65	Vert(CT) -0.29 2-4 >289 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-P	Wind(LL) 0.00 2 *** 240	Weight: 24 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 7-0-0.

(lb) - Max Horz 2=107(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 3, 2

Max Grav All reactions 250 lb or less at joint(s) 3, 3, 4 except 2=366(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

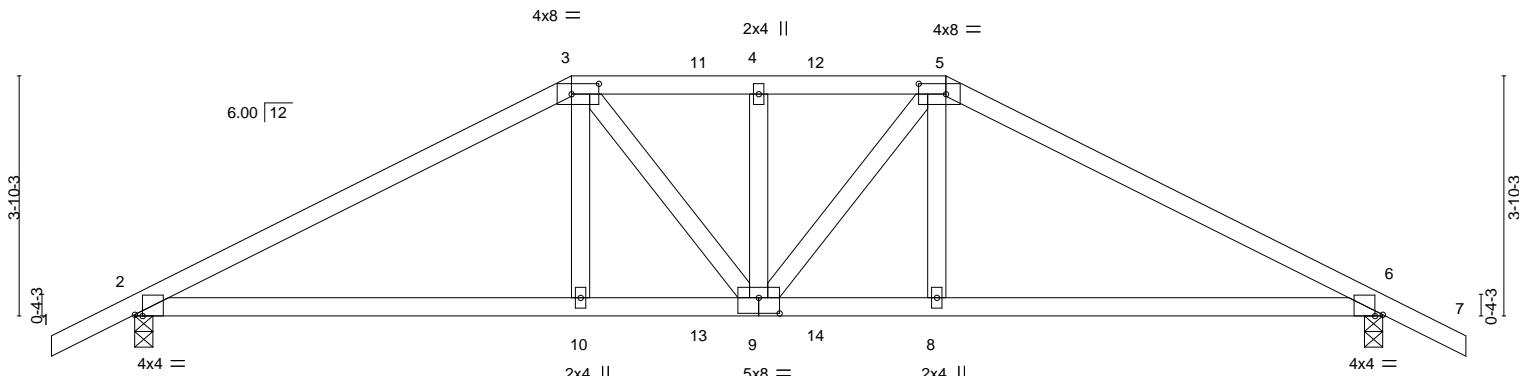
NOTES-

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 6252401	Truss G01	Truss Type HIP GIRDER	Qty 1	Ply 1	2240-B 2Car	T38769206
----------------	--------------	--------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep. 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:55 2025 Page 1 ID:y6bLPA9E28LfkUn2vm8QUz1P?1-yjR2y5YfWhJjJaryoFSj79SNHb8GUr_SOFzddXyVuHc

-1-4-0 7-0-0 10-0-0 13-0-0 20-0-0 21-4-0
1-4-0 7-0-0 3-0-0 3-0-0 7-0-0 1-4-0

Scale = 1:36.9

7-0-0 10-0-0 13-0-0 20-0-0
7-0-0 3-0-0 3-0-0 7-0-0

Plate Offsets (X,Y)-- [2:0-1-8,Edge], [3:0-5-4,0-2-0], [5:0-5-4,0-2-0], [6:0-1-8,Edge], [9:0-4-0,0-3-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.84	Vert(LL)	-0.10	9 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.92	Vert(CT)	-0.21	2-10 >999	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.14	Horz(CT)	0.09	6 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.06	9 >999	240	Weight: 94 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP M 31 or 2x4 SP SS *Except*

3-5: 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 2=0-3-8, 6=0-3-8

Max Horz 2=69(LC 25)

Max Uplift 2=161(LC 8), 6=161(LC 8)

Max Grav 2=1735(LC 1), 6=1735(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=3119/239, 3-4=2857/258, 4-5=2857/258, 5-6=3119/239

BOT CHORD 2-10=134/2687, 9-10=127/2704, 8-9=125/2704, 6-8=132/2687

WEBS 3-10=0/620, 3-9=104/323, 4-9=347/128, 5-8=104/323, 5-8=0/620

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCp=0.18; MWFRS (directional); cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=161, 6=161.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 455 lb down and 255 lb up at 7-0-0, 134 lb down and 89 lb up at 9-0-12, and 134 lb down and 89 lb up at 10-11-4, and 455 lb down and 255 lb up at 13-0-0 on top chord, and 318 lb down at 7-0-0, 96 lb down at 9-0-12, and 96 lb down at 10-11-4, and 318 lb down at 12-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=60, 3-5=60, 5-7=60, 2-6=-20

Concentrated Loads (lb)

Vert: 3=408(F) 5=408(F) 10=268(F) 8=268(F) 11=134(F) 12=134(F) 13=-48(F) 14=-48(F)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

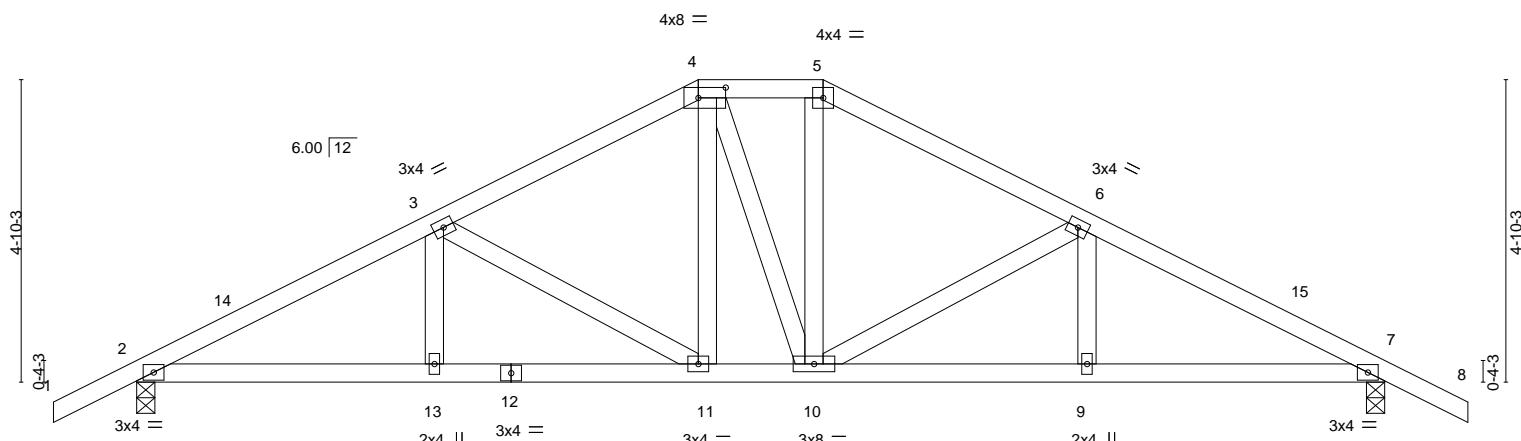
October 7, 2025

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-US.com

Job 6252401	Truss G02	Truss Type HIP	Qty 1	Ply 1	2240-B 2Car	T38769207
----------------	--------------	-------------------	----------	----------	-------------	-----------


Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:55 2025 Page 1

ID:y6bLPA9E28LfkUn2vm8QUz1P?1-yjR2y5YfWhJjJaroyFSj79SX1bHHUrWSOFzddXyVuHc

-1-4-0 4-9-4 9-0-0 11-0-0 15-2-12 20-0-0 21-4-0
1-4-0 4-9-4 4-2-12 2-0-0 4-2-12 4-9-4 1-4-0

Scale = 1:36.9

4-9-4 9-0-0 11-0-0 15-2-12 20-0-0
4-9-4 4-2-12 2-0-0 4-2-12 4-9-4

Plate Offsets (X,Y)-- [4:0-5-4,0-2-0]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.21	Vert(LL)	-0.04	11	>999	360	
TCDL 10.0	Lumber DOL	1.25	BC 0.35	Vert(CT)	-0.09	11-13	>999	240	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.17	Horz(CT)	0.04	7	n/a	n/a	
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.02	11	>999	240	Weight: 107 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-10-3 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 2=0-3-8, 7=0-3-8
Max Horz 2=-85(LC 10)
Max Uplift 2=-76(LC 12), 7=-76(LC 12)
Max Grav 2=877(LC 1), 7=877(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=-1391/116, 3-4=-999/120, 4-5=-845/128, 5-6=-1000/120, 6-7=-1390/116
BOT CHORD 2-13=-45/1178, 11-13=-45/1178, 10-11=0/843, 9-10=-54/1177, 7-9=-54/1177
WEBS 3-11=-398/70, 4-11=0/257, 5-10=-2/259, 6-10=-395/70

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional) and C-C Zone3 1-4-0 to 1-8-0, Zone1 1-8-0 to 9-0-0, Zone3 9-0-0 to 11-0-0, Zone2 11-0-0 to 15-2-12, Zone1 15-2-12 to 21-4-0 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

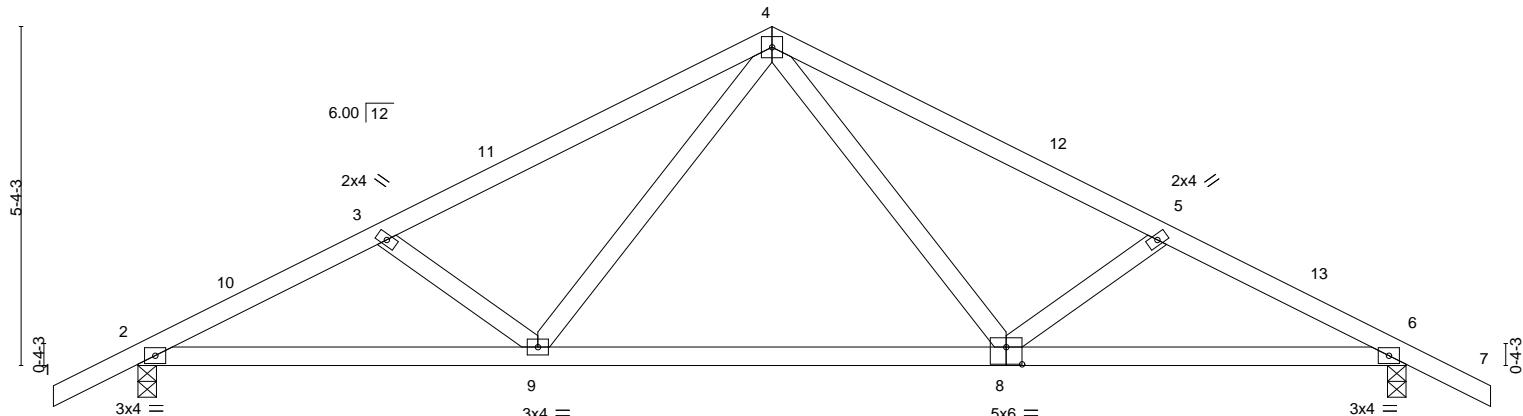
October 7, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 6252401	Truss G03	Truss Type COMMON	Qty 3	Ply 1	2240-B 2Car	T38769208
----------------	--------------	----------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,


8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:56 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-Qv?Q9RZHH_RaxkQ_Wy_yfN?bf?VSDIBcdviB9zyVuHb

-1-4-0 3-11-1 10-0-0 16-0-15 20-0-0 21-4-0
1-4-0 3-11-1 6-0-15 6-0-15 3-11-1 1-4-0

Scale = 1:36.3

4x4 =

Plate Offsets (X,Y)-- [8:0-3-0,0-0-3-4]		6-3-11	13-8-5	20-0-0					
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.67	Vert(LL)	-0.05	8-9 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.86	Vert(CT)	-0.30	8-9 >801	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.14	Horz(CT)	0.04	6 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.03	8-9 >999	240	Weight: 95 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
2-8: 2x4 SP M 31 or 2x4 SP SS
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-9-10 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 6=0-3-8
Max Horz 2=-93(LC 10)
Max Grav 2=1025(LC 1), 6=1025(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1790/0, 3-4=-1570/0, 4-5=-1563/0, 5-6=-1783/0
BOT CHORD 2-9=0/1546, 8-9=0/973, 6-8=0/1540
WEBS 4-8=0/621, 5-8=-294/176, 4-9=0/631, 3-9=-295/178

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (directional) and C-C Zone3 1-4-0 to 1-8-0, Zone1 1-8-0 to 10-0-0, Zone2 10-0-0 to 14-2-15, Zone1 14-2-15 to 21-4-0 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 has/have been modified.
Building designer must review loads to verify that they are correct for the intended use of this truss.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-60, 4-7=-60, 2-9=-20, 8-9=-60, 6-8=-20
- 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-50, 4-7=-50, 2-9=-20, 8-9=-60, 6-8=-20
- 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-20, 4-7=-20, 2-9=-40, 8-9=-80, 6-8=-40

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

Continued on page 2

⚠ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from the Truss Plate Institute (www.tpiinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 6252401	Truss G03	Truss Type COMMON	Qty 3	Ply 1	2240-B 2Car	T38769208
----------------	--------------	----------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:56 2025 Page 2
ID:y6bLPA9E28LflkUn2vm8QUz1P?1-Qv?Q9RZHH_RaxkQ_Wy_yfN?bf?VSDIBcdviB9zyVuHb

LOAD CASE(S) Standard

4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=47, 2-10=32, 4-10=19, 4-12=26, 6-12=19, 6-7=14, 2-9=-12, 8-9=-52, 6-8=-12
Horz: 1-2=-56, 2-10=-40, 4-10=-27, 4-12=35, 6-12=27, 6-7=23

5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=14, 2-11=19, 4-11=26, 4-13=19, 6-13=32, 6-7=47, 2-9=-12, 8-9=-52, 6-8=-12
Horz: 1-2=-23, 2-11=-27, 4-11=-35, 4-13=27, 6-13=40, 6-7=56

6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=8, 2-4=-33, 4-6=-33, 6-7=-29, 2-9=-20, 8-9=-60, 6-8=-20
Horz: 1-2=-12, 2-4=13, 4-6=-13, 6-7=-9

7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-29, 2-4=-33, 4-6=-33, 6-7=-8, 2-9=-20, 8-9=-60, 6-8=-20
Horz: 1-2=9, 2-4=13, 4-6=13, 6-7=12

8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=15, 2-4=3, 4-6=9, 6-7=4, 2-9=-12, 8-9=-52, 6-8=-12
Horz: 1-2=-24, 2-4=-11, 4-6=17, 6-7=13

9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=4, 2-4=9, 4-6=3, 6-7=15, 2-9=-12, 8-9=-52, 6-8=-12
Horz: 1-2=-13, 2-4=-17, 4-6=11, 6-7=24

10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-24, 2-4=-28, 4-6=-12, 6-7=-7, 2-9=-20, 8-9=-60, 6-8=-20
Horz: 1-2=4, 2-4=8, 4-6=8, 6-7=13

11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-7, 2-4=-12, 4-6=-28, 6-7=-24, 2-9=-20, 8-9=-60, 6-8=-20
Horz: 1-2=13, 2-4=-8, 4-6=-8, 6-7=-4

12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=28, 2-4=15, 4-6=15, 6-7=28, 2-9=-12, 8-9=-52, 6-8=-12
Horz: 1-2=-37, 2-4=-24, 4-6=24, 6-7=37

13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=15, 2-4=3, 4-6=3, 6-7=15, 2-9=-12, 8-9=-52, 6-8=-12
Horz: 1-2=-24, 2-4=-11, 4-6=11, 6-7=24

14) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-16, 2-4=-21, 4-6=-21, 6-7=-16, 2-9=-20, 8-9=-60, 6-8=-20
Horz: 1-2=-4, 2-4=1, 4-6=1, 6-7=4

15) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-16, 2-4=-21, 4-6=-21, 6-7=-16, 2-9=-20, 8-9=-60, 6-8=-20
Horz: 1-2=-4, 2-4=1, 4-6=-1, 6-7=4

16) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90

Uniform Loads (plf)

Vert: 1-4=-20, 2-9=-20, 8-9=-60, 6-8=-20

17) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-53, 2-4=-56, 4-6=-44, 6-7=-40, 2-9=-20, 8-9=-60, 6-8=-20
Horz: 1-2=3, 2-4=6, 4-6=6, 6-7=10

18) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-40, 2-4=-44, 4-6=-56, 6-7=-53, 2-9=-20, 8-9=-60, 6-8=-20
Horz: 1-2=-10, 2-4=-6, 4-6=-6, 6-7=3

19) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-47, 2-4=-51, 4-6=-51, 6-7=-47, 2-9=-20, 8-9=-60, 6-8=-20
Horz: 1-2=3, 2-4=1, 4-6=-1, 6-7=3

20) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-47, 2-4=-51, 4-6=-51, 6-7=-47, 2-9=-20, 8-9=-60, 6-8=-20
Horz: 1-2=3, 2-4=1, 4-6=-1, 6-7=3

21) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=8, 2-4=-25, 4-7=-25, 2-9=-12, 8-9=-52, 6-8=-12
Horz: 1-2=16, 2-4=16, 4-7=16

22) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-4=8, 4-7=8, 2-9=-12, 8-9=-52, 6-8=-12
Horz: 1-4=-16, 4-7=16

Continued on page 3

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 6252401	Truss G03	Truss Type COMMON	Qty 3	Ply 1	2240-B 2Car	T38769208
----------------	--------------	----------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:56 2025 Page 3
ID:y6bLPA9E28LflkUn2vm8QUz1P?1-Qv?Q9RZHH_RaxkQ_Wy_yfN?bf?VSDIBcdviB9zyVuHb

LOAD CASE(S) Standard

- 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-60, 4-7=-20, 2-9=-20, 8-9=-60, 6-8=-20
- 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-60, 4-7=-20, 2-9=-20, 8-9=-60, 6-8=-20
- 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-50, 4-7=-20, 2-9=-20, 8-9=-60, 6-8=-20
- 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-20, 4-7=-50, 2-9=-20, 8-9=-60, 6-8=-20

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbccomponents.com)

Job 6252401	Truss G04	Truss Type COMMON	Qty 2	Ply 1	2240-B 2Car	T38769209
----------------	--------------	----------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:56 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-Qv?Q9RZHH_RaxkQ_Wy_yfN?bf?VLDIBcdviB9zyVuHb

-1-4-0 3-11-1 10-0-0
1-4-0 3-11-1 6-0-15

16-0-15 20-0-0
6-0-15 3-11-1

Scale = 1:35.1

4x4 =

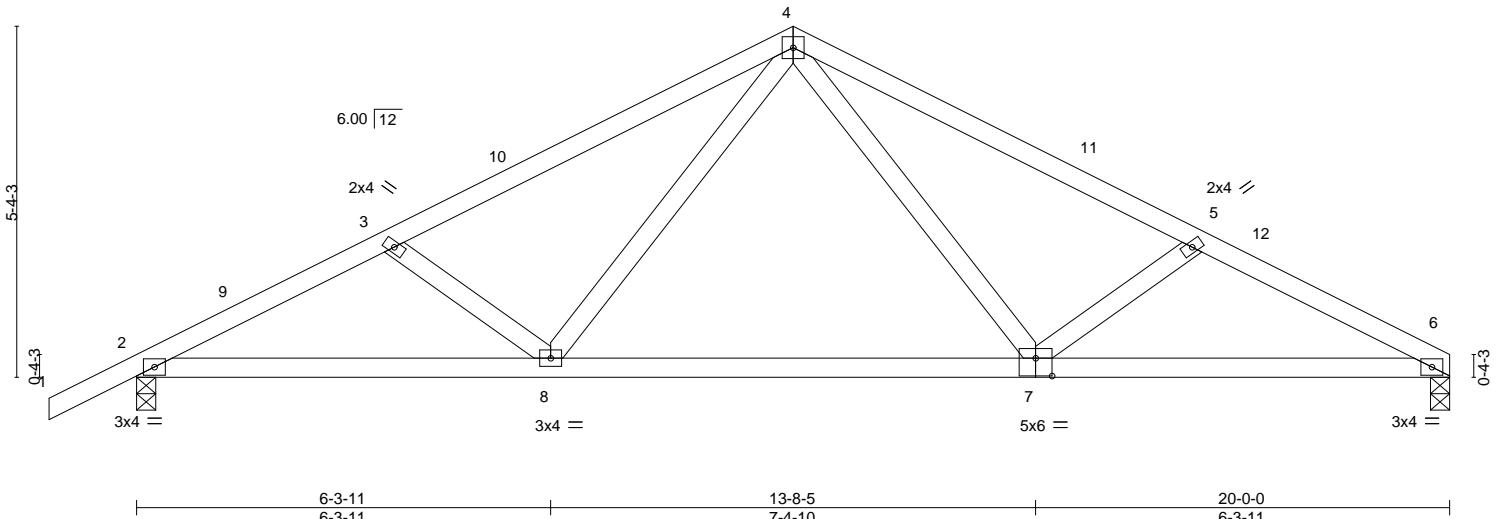


Plate Offsets (X,Y)-- [7:0-3-0,0-3-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.67	Vert(LL)	-0.05	7-8 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.87	Vert(CT)	-0.29	7-8 >803	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.14	Horz(CT)	0.04	6 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-S	Wind(LL)	0.03	7-8 >999	240	Weight: 92 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
2-7: 2x4 SP M 31 or 2x4 SP SS
WEBS 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-9-8 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 6=0-3-8, 2=0-3-8
Max Horz 2=91(LC 11)
Max Grav 6=933(LC 1), 2=1028(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-3=-1797/0, 3-4=-1576/0, 4-5=-1583/0, 5-6=-1800/0
BOT CHORD 2-8=0/1553, 7-8=0/980, 6-7=0/1571
WEBS 4-7=0/627, 5-7=-311/181, 4-8=0/630, 3-8=-295/178

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (directional) and C-C Zone3 1-4-0 to 1-8-0, Zone1 1-8-0 to 10-0-0, Zone2 10-0-0 to 14-2-15, Zone1 14-2-15 to 19-10-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 has/have been modified.
Building designer must review loads to verify that they are correct for the intended use of this truss.

LOAD CASE(S)

Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-60, 4-6=-60, 2-8=-20, 7-8=-60, 6-7=-20
- 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-50, 4-6=-50, 2-8=-20, 7-8=-60, 6-7=-20
- 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-20, 4-6=-20, 2-8=-40, 7-8=-80, 6-7=-40

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute (www.tpiinst.org) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association (www.sbcsccomponents.com)

Job 6252401	Truss G04	Truss Type COMMON	Qty 2	Ply 1	2240-B 2Car	T38769209
----------------	--------------	----------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:56 2025 Page 2
ID:y6bLPA9E28LflkUn2vm8QUz1P?1-Qv?Q9RZHH_RaxkQ_Wy_yfN?bf?VLDBcdviB9zyVuHb

LOAD CASE(S) Standard

4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=47, 2-9=32, 4-9=19, 4-11=26, 6-11=19, 2-8=-12, 7-8=-52, 6-7=-12

Horz: 1-2=-56, 2-9=-40, 4-9=-27, 4-11=35, 6-11=27

5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=14, 2-10=19, 4-10=26, 4-12=19, 6-12=32, 2-8=-12, 7-8=-52, 6-7=-12

Horz: 1-2=-23, 2-10=-27, 4-10=-35, 4-12=27, 6-12=40

6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-8, 2-4=-33, 4-6=-33, 2-8=-20, 7-8=-60, 6-7=-20

Horz: 1-2=-12, 2-4=13, 4-6=-13

7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-29, 2-4=-33, 4-6=-33, 2-8=-20, 7-8=-60, 6-7=-20

Horz: 1-2=9, 2-4=13, 4-6=13

8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=15, 2-4=3, 4-6=9, 2-8=-12, 7-8=-52, 6-7=-12

Horz: 1-2=-24, 2-4=-11, 4-6=17

9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=4, 2-4=9, 4-6=3, 2-8=-12, 7-8=-52, 6-7=-12

Horz: 1-2=-13, 2-4=-17, 4-6=11

10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-24, 2-4=-28, 4-6=-12, 2-8=-20, 7-8=-60, 6-7=-20

Horz: 1-2=4, 2-4=8, 4-6=8

11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-7, 2-4=-12, 4-6=-28, 2-8=-20, 7-8=-60, 6-7=-20

Horz: 1-2=13, 2-4=-8, 4-6=8

12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=28, 2-4=15, 4-6=15, 2-8=-12, 7-8=-52, 6-7=-12

Horz: 1-2=-37, 2-4=-24, 4-6=24

13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=15, 2-4=3, 4-6=3, 2-8=-12, 7-8=-52, 6-7=-12

Horz: 1-2=24, 2-4=-11, 4-6=11

14) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-16, 2-4=-21, 4-6=-21, 2-8=-20, 7-8=-60, 6-7=-20

Horz: 1-2=-4, 2-4=1, 4-6=1

15) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-16, 2-4=-21, 4-6=-21, 2-8=-20, 7-8=-60, 6-7=-20

Horz: 1-2=-4, 2-4=1, 4-6=1

16) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90

Uniform Loads (plf)

Vert: 1-4=-20, 4-6=-20, 2-8=-20, 7-8=-60, 6-7=-20

17) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-53, 2-4=-56, 4-6=-44, 2-8=-20, 7-8=-60, 6-7=-20

Horz: 1-2=3, 2-4=6, 4-6=6

18) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-40, 2-4=-44, 4-6=-56, 2-8=-20, 7-8=-60, 6-7=-20

Horz: 1-2=-10, 2-4=-6, 4-6=6

19) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-47, 2-4=-51, 4-6=-51, 2-8=-20, 7-8=-60, 6-7=-20

Horz: 1-2=3, 2-4=1, 4-6=1

20) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-47, 2-4=-51, 4-6=-51, 2-8=-20, 7-8=-60, 6-7=-20

Horz: 1-2=3, 2-4=1, 4-6=1

21) Dead + 0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=8, 2-4=-25, 4-6=-25, 2-8=-12, 7-8=-52, 6-7=-12

Horz: 1-2=16, 2-4=16, 4-6=16

22) Dead + 0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-4=8, 4-6=8, 2-8=-12, 7-8=-52, 6-7=-12

Horz: 1-4=-16, 4-6=16

Continued on page 3

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcsccomponents.com)

MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / MiTek-Us.com

Job 6252401	Truss G04	Truss Type COMMON	Qty 2	Ply 1	2240-B 2Car	T38769209
----------------	--------------	----------------------	----------	----------	-------------	-----------

Tibbetts Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:56 2025 Page 3
ID:y6bLPA9E28LflkUn2vm8QUz1P?1-Qv?Q9RZHH_RaxkQ_Wy_yfN?bf?VLDBcdviB9zyVuHb

LOAD CASE(S) Standard

23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-60, 4-6=-20, 2-8=-20, 7-8=-60, 6-7=-20

24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-20, 4-6=-60, 2-8=-20, 7-8=-60, 6-7=-20

25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-50, 4-6=-20, 2-8=-20, 7-8=-60, 6-7=-20

26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-20, 4-6=-50, 2-8=-20, 7-8=-60, 6-7=-20

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbccomponents.com)

Job 6252401	Truss H3E	Truss Type DIAGONAL HIP GIRDER	Qty 2	Ply 1	2240-B 2Car	T38769210
----------------	--------------	-----------------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472,

8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:57 2025 Page 1

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-v6ZoNnav2lZRYu?A4fVBCaXrqPuiymflsZSkhPyVuHa

-1-10-10
1-10-10

2-3-10
2-3-10

4-2-3
1-10-9

Scale = 1:12.6

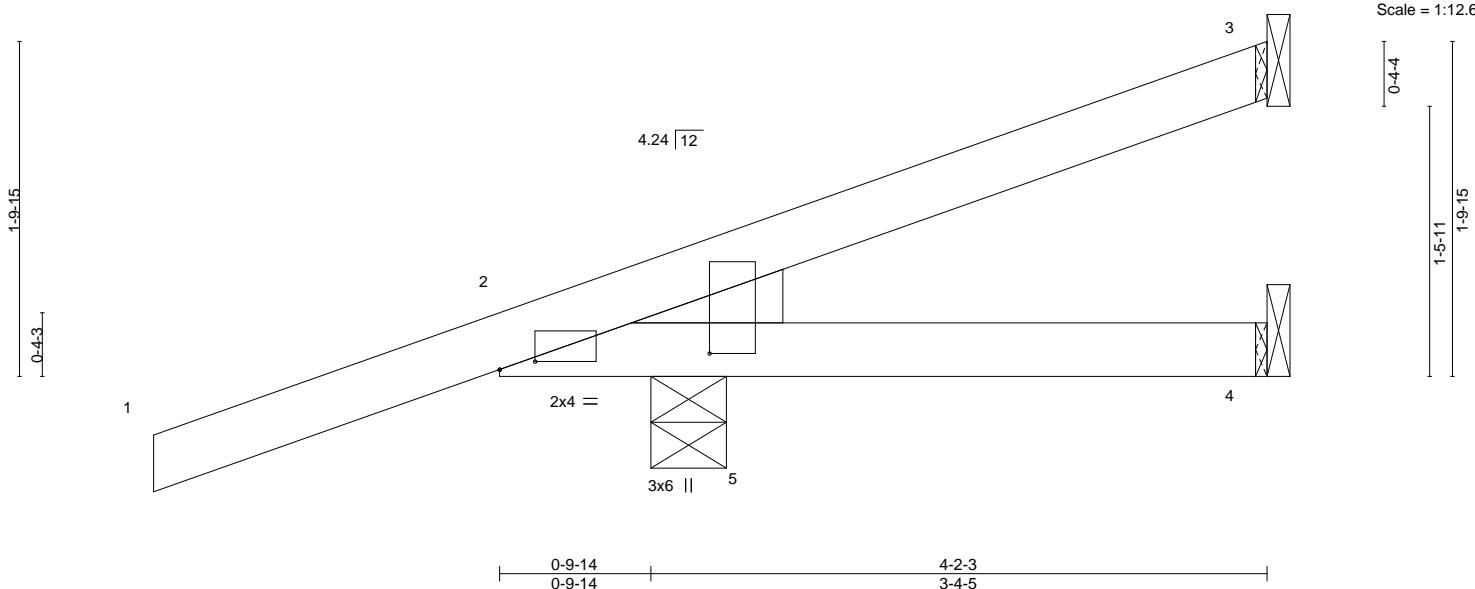


Plate Offsets (X,Y)-- [2:0-2-5,0-0-8], [2:0-1-1,1-1-12]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.32	Vert(LL)	-0.04	2-4 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.67	Vert(CT)	-0.08	2-4 >615	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.00	Horz(CT)	-0.00	3 n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-P	Wind(LL)	0.04	2-4 >999	240	Weight: 17 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-2-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 2=0-4-15

Max Horz 2=59(LC 8)

Max Uplift 3=31(LC 5), 4=-45(LC 4), 2=-181(LC 8)

Max Grav 3=104(LC 1), 4=135(LC 1), 2=499(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=181.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 44 lb down and 28 lb up at 4-1-7 on top chord, and 133 lb down and 69 lb up at 1-4-15, and 133 lb down and 69 lb up at 1-4-15, and 29 lb down and 15 lb up at 4-1-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-60, 2-4=-20

Concentrated Loads (lb)

Vert: 3=-20(F) 4=-14(F) 5=-266(F=-133, B=-133)

Julius Lee PE No. 34869

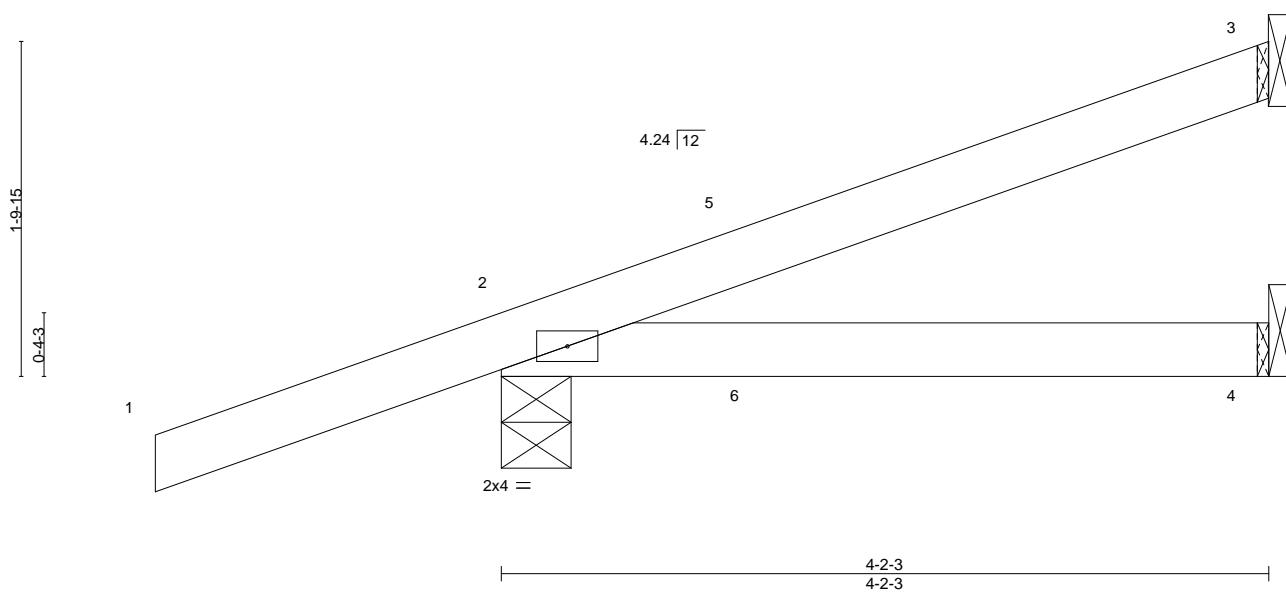
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017

Date:

October 7, 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from the Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))


MiTek®
16023 Swingley Ridge Rd.
Chesterfield, MO 63017
314.434.1200 / [MiTek-US.com](#)

Job 6252401	Truss HJ3	Truss Type DIAGONAL HIP GIRDER	Qty 2	Ply 1	2240-B 2Car	T38769211
----------------	--------------	-----------------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:57 2025 Page 1
-1-10-10 2-3-10 4-2-3
1-10-10 2-3-10 1-10-9

ID:y6bLPA9E28LfkUn2vm8QUz1P?1-v6ZoNnav2lZRYu?A4fVBCaXpAP?_ymflsZSkhPyVuHa

Scale = 1:12.6

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.49	Vert(LL) -0.01 2-4 >999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.20	Vert(CT) -0.03 2-4 >999 240		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) -0.00 3 n/a n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 16 lb	FT = 20%

LUMBER-
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-
TOP CHORD Structural wood sheathing directly applied or 4-2-3 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-4-9, 4=Mechanical
Max Horz 2=59(LC 8)
Max Uplift 3=40(LC 5), 2=94(LC 8)
Max Grav 3=89(LC 31), 2=262(LC 1), 4=79(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCp=0.18; MWFRS (directional); cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 53 lb down and 114 lb up at 1-4-15, and 53 lb down and 114 lb up at 1-4-15, and 44 lb down and 28 lb up at 4-1-7 on top chord, and at 1-4-15, and at 1-4-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

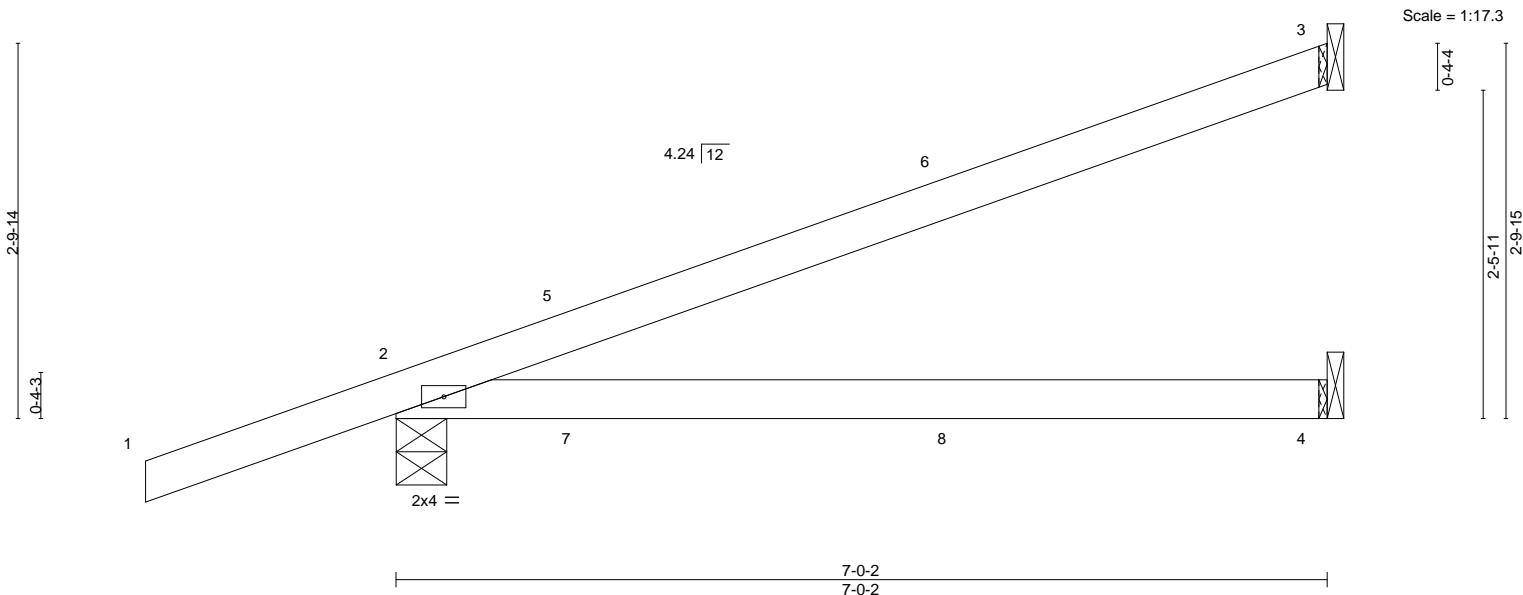
LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-3=60, 2-4=-20
Concentrated Loads (lb)
Vert: 3=-20(B) 5=76(F=38, B=38)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcscscomponents.com](#))

Job 6252401	Truss HJ5	Truss Type DIAGONAL HIP GIRDER	Qty 1	Ply 1	2240-B 2Car	T38769212
----------------	--------------	-----------------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:58 2025 Page 1
-1-10-10 7-0-2
1-10-10 7-0-2

ID:y6bLPA9E28LflkUn2vm8QUz1P?1-NI7Aa7aXpchlA2aMeN0Qko4xgpE7hDvu4DBHDryVuHZ

Scale = 1:17.3

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.70	Vert(LL)	-0.13	2-4	>648	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.25	BC 0.66	Vert(CT)	-0.25	2-4	>324	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL 10.0	Code FBC2023/TPI2014		Matrix-P	Wind(LL)	0.00	2	****	240	Weight: 25 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-4-9, 4=Mechanical

Max Horz 2=82(LC 8)
Max Uplift 3=95(LC 8), 2=93(LC 8)
Max Grav 3=259(LC 1), 2=353(LC 31), 4=135(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCp=0.18; MWFRS (directional); cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 53 lb down and 114 lb up at 1-4-15, 53 lb down and 114 lb up at 1-4-15, 55 lb down and 31 lb up at 4-2-15, and 55 lb down and 31 lb up at 4-2-15, and 89 lb down and 61 lb up at 6-11-6 on top chord, and at 1-4-15, at 1-4-15, and 11 lb down at 4-2-15, and 11 lb down at 4-2-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

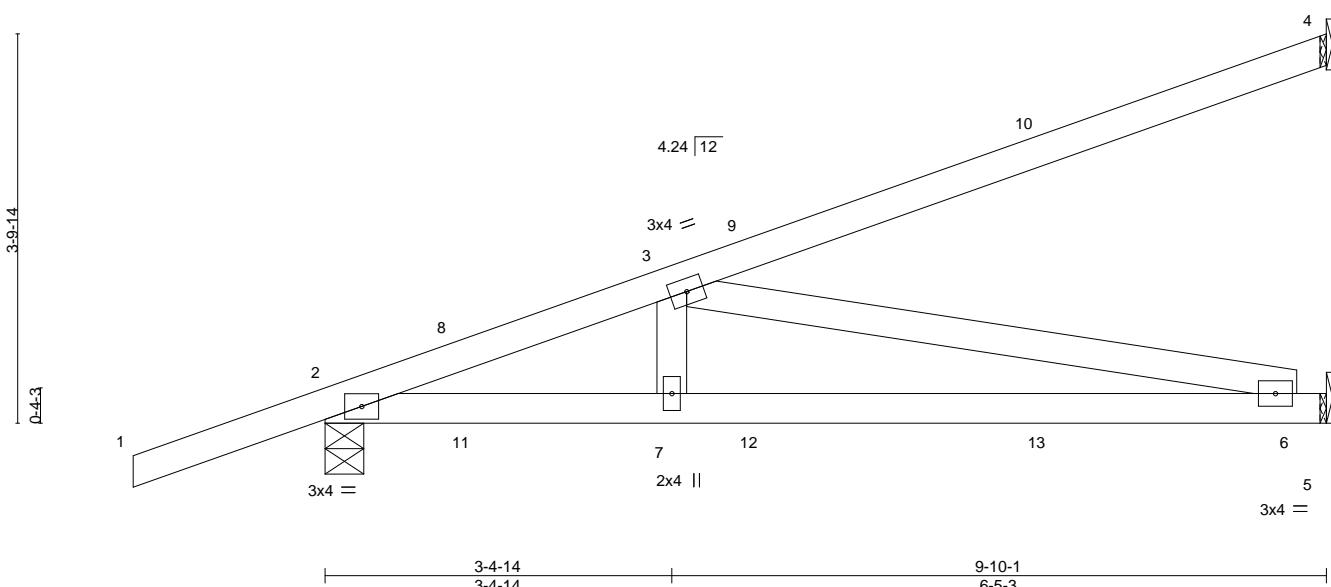
LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-3=-60, 2-4=-20
Concentrated Loads (lb)
Vert: 3=-89(B) 5=76(F=38, B=38)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Job 6252401	Truss HJ7	Truss Type DIAGONAL HIP GIRDER	Qty 5	Ply 1	2240-B 2Car	T38769213
----------------	--------------	-----------------------------------	----------	----------	-------------	-----------

Tibbets Lumber Co., LLC (Ocala, FL), Ocala, FL - 34472, 8.830 s Sep 3 2025 MiTek Industries, Inc. Tue Oct 7 06:20:58 2025 Page 1 ID:y6bLPA9E28LflkUn2vm8QUz1P?1-Ni7Aa7aXpchlA2aMeN0Qko4sGpBTh4au4DBHDryVuHZ

-1-10-10 3-4-14 9-10-1
1-10-10 3-4-14 6-5-3

Scale = 1:22.6

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.98	Vert(LL) -0.11 in (loc) 6-7 l/defl >999 L/d 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.25	BC 0.89	Vert(CT) -0.23 in (loc) 6-7 l/defl >509 L/d 240		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.60	Horz(CT) 0.01 in (loc) 5 n/a L/d n/a		
BCDL 10.0	Code FBC2023/TPI2014	Matrix-S	Wind(LL) 0.03 in (loc) 6-7 l/defl >999 L/d 240	Weight: 44 lb	FT = 20%

LUMBER-
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.2

BRACING-
TOP CHORD Structural wood sheathing directly applied or 3-9-12 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-4-9, 5=Mechanical
Max Horz 2=106(LC 27)
Max Uplift 4=128(LC 8), 2=-99(LC 8)
Max Grav 4=359(LC 1), 2=492(LC 1), 5=279(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-953/16
BOT CHORD 2-7=-89/880, 6-7=-89/880
WEBS 3-7=0/311, 3-6=-898/91

NOTES-

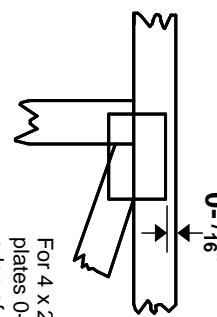
- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=15ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (directional); cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 4=128.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 53 lb down and 114 lb up at 1-4-15, 53 lb down and 114 lb up at 1-4-15, 55 lb down and 31 lb up at 4-2-15, 55 lb down and 31 lb up at 4-2-15, 89 lb down and 68 lb up at 7-0-14, and 89 lb down and 68 lb up at 7-0-14, and 153 lb down and 84 lb up at 9-9-5 on top chord, and at 1-4-15, at 1-4-15, 11 lb down at 4-2-15, 11 lb down at 4-2-15, and 39 lb down at 7-0-14, and 39 lb down at 7-0-14 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=60, 2-5=20
Concentrated Loads (lb)
Vert: 4=-153(B) 8=76(F=38, B=38) 10=-90(F=-45, B=-45) 13=-39(F=-20, B=-20)

Julius Lee PE No. 34869
MiTek Inc. DBA MiTek USA FL Cert 6634
16023 Swingley Ridge Rd. Chesterfield, MO 63017
Date:

October 7, 2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria and DSB-22](#) available from Truss Plate Institute ([www.tpiinst.org](#)) and [BCSI Building Component Safety Information](#) available from the Structural Building Component Association ([www.sbcsccomponents.com](#))

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless X, Y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

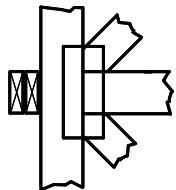
For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ " from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.


* Plate location details available in MiTek software or upon request.

PLATE SIZE

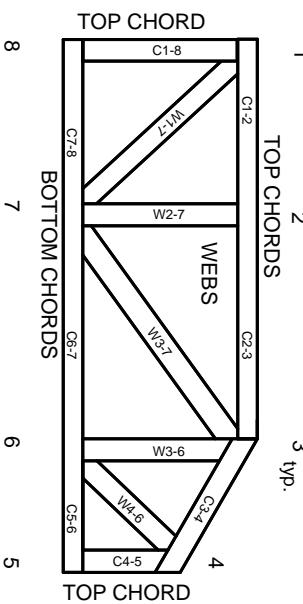
4 x 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.



Industry Standards:

- ANSI/TP1: National Design Specification for Metal Plate Connected Wood Truss Construction.
- DSB-22: Design Standard for Bracing.
- BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

6-4-8
dimensions shown in ft-in-sixteenths
(Drawings not to scale)

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282
ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.
Lumber design values are in accordance with ANSI/TP1 section 6.3. These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

Failure to Follow Could Cause Property Damage or Personal Injury

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury