

Dragmal Net # 1810974

Smith Res.
Disco D.T.KLH 11
10-30-20 LT-KLH 11
prof 15.64

Smith O.B

, x								
ob	Truss	Truss Type	1		Ply			
810974	T01G	FLOOR	3		1	Job Reference (option	al)	Ed Oct 20 14:16:39 2020 Page 1
Builders FirstSource, Lake City,	FL 32055, Kim Holloway		ID:A	x3glX8X0	SleJcii6i	8.240 s Feb 11 2019 Mi RQVoz8jRM-i9g1ziD7	pRF0iUaKFoxu?v	Fri Oct 30 14:16:39 2020 Page 1 NgN3DKDcOSCI1HacyOD1s
			23-11-8 23-11-8					24-3-0 0-3-8
1			20 11 0					Scale = 1:39.6
3x4 =				3x6		000		3x4 =
1 2	3 4	5 6	7	8 9	10	11	12 T2 =	13 14
	[9]			10 10		9		
W W8 ST	STI STI	STI STI	\$TI	\$TI	\$T	\$1	\$T	STI W2 W
				la la		_B2 - - - - - - - - - - - -		
0, 000000000000000000000000000000000000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	***************************************	******	8888888	8888888	222222222222222	**********	2888888888888
28 27	26 25	24 23 22	21	20	19	18	17	16 15
3x4 =		3x6 =						3x4 =
								24-3-0
-			23-11-8 23-11-8					24-3-0 0-3-8
		001	DEFL.	ir	(loc)	I/defl L/d	PLATES	GRIP
LOADING (psf) TCLL 50.0	SPACING- 2-0- Plate Grip DOL 1.0		Vert(LL			n/a 999	MT20	244/190
TCDL 10.0	Lumber DOL 1.0	00 BC 0.02	Vert(C)		17 6 7 6 6	n/a 999 n/a n/a		
BCLL 0.0 BCDL 10.0	Rep Stress Incr YE Code FBC2017/TPI201		Horz(C	7 -0.00		100 100	Weight: 1	106 lb FT = 20%
	00001.20001.11		BRACIN	G-				
LUMBER- TOP CHORD 2x4 SP N	0.2		TOP CH		Structu	ral wood sheathing o	directly applied of	r 10-0-0 oc purlins, except
BOT CHORD 2x4 SP N	0.2		BOT CH	ORD	end ver Rigid co	ticals. eiling directly applied	d or 6-0-0 oc bra	cing, Except:
WEBS 2x4 SP N OTHERS 2x4 SP N			50.0		10-0-0	oc bracing: 27-28,15	5-16.	
01110110					MiTel	recommends that S	Stabilizers and re	equired cross bracing dance with Stabilizer
						lation guide.		
REACTIONS. All bear	ings 24-3-0.	1-1-Way OR 15 avecant 0	14 200/I C 1\ 22-	280/I C 1	1 24-28	0(I C 1)		
(lb) - Max Gra	25=281(LC 1), 26=275(LC	ss at joint(s) 28, 15 except 2 C 1), 27=313(LC 1), 20=280	LC 1), 19=280(LC	1), 18=2	81(LC 1), 17=275(LC 1), 16=	=313(LC	
	1)							
FORCES. (lb) - Max. C	omp./Max. Ten All forces	250 (lb) or less except whe	n shown.					
WEBS 2-27=-2	260/0, 13-16=-260/0							
NOTES- (6)								
1) All plates are 2x4 MT	20 unless otherwise indica rance at joint $9 = 20\%$, joint	ted.						
2) Cable requires contin	nuous bottom chord bearing	1.						
		ng capacity of 565 psi.	to each truss with	3-10d (0.	131" X 3	") nails. Strongback	s to	
6) This manufactured p	roduct is designed as an in	dividual building component gner per ANSI TPI 1 as refer	enced by the build	ing code	triis con	iponent for any part	Culai	
The second secon								
LOAD CASE(S) Standa	ard							
I.								

Job	Truss	Truss Type	9		Oty	Ply			
1810974	T02G	FLOOR			4	1	Job Reference (option	nal)	
Builders FirstSource, Lake City	, FL 32055, Kim Holloway			ır)·Ax3qIX8XG	SleJcii6iR0	8.240 s Feb 11 2019 M QVoz8jRM-6kMAckF05	Tek Industries, Inc. MdbZyJvwwVbd	Fri Oct 30 14:16:42 2020 Page 1 Y?BpHF3QzBuuGGxAxyOD1
				23-6-8	a doginore				23 ₇ 10-0 0!3!8
				23-6-8					Scale = 1:38.
									50aic - 1.50.
3x4 =						3x6 =			3x4 =
1 2	3 4	. 5	6	7	8	9 10		12 —T2	13 14
				- 18	- 10	1	9 9		P 7
W WE ST	STI STI	ST	\$T1	\$TI	\$TI	\$1	rh \$τή	\$TI	STI W2 WI
1 7		G	G				B2 0		
50000000000000000000000000000000000000		XXXXXXXXXX	*************	888888888888888888888888888888888888888	30000000	50000000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	888888888888888888888888888888888888888	
28 27	26 25	24	23 22	21	20	1	9 18	17	16 15
3x4 =			3x6 =						3x4 =
				23-6-8					23 ₇ 10-0 0-3-8
				23-6-8	100				0-3-8
	ODACINO	200	CSI.	DE	FL.	in (loc)	I/defl L/d	PLATES	
LOADING (psf) TCLL 50.0	SPACING- Plate Grip DOL	1.00	TC 0.10	Ve	ert(LL)	n/a -	n/a 999	MT20	244/190
TCDL 10.0	Lumber DOL Rep Stress Incr	1.00 YES	BC 0.02 WB 0.06			n/a - .00 16	n/a 999 n/a n/a		
BCLL 0.0 BCDL 10.0	Code FBC2017/TP		Matrix-S					Weight:	104 lb FT = 20%
LUMBER-	1,777,741,947,942				ACING-	122000000000000000000000000000000000000		e u	++ 10 0 0 as purling excer
TOP CHORD 2x4 SP				TO	PCHORD	end ve	erticals.		or 10-0-0 oc purlins, excep
BOT CHORD 2x4 SP WEBS 2x4 SP				BO	T CHORD	Rigid o	ceiling directly applie	d or 6-0-0 oc br	acing, Except:
OTHERS 2x4 SP	No.3					MiTo	oc bracing: 27-28,1	Stabilizers and	required cross bracing
						be in	stalled during truss	erection, in acco	ordance with Stabilizer
						Insta	llation guide.		
REACTIONS. All be	arings 23-10-0. rav All reactions 250 lb o	r less at joint	(s) 28, 15 except 21	=280(LC 1),	22=280(LC	1), 24=2	80(LC 1),	004/1.0	
(2)	25=280(LC 1), 26=280	(LC 1), 27=2	94(LC 1), 20=280(L	C 1), 19=28	0(LC 1), 18	=280(LC	1), 17=280(LG 1), 16	=294(LG	
	1)								
FORCES. (lb) - Max.	Comp./Max. Ten All for	ces 250 (lb) o	or less except when	shown.					
NOTES- (6)		greene corre							
1) All plates are 2x4 N	TT20 unless otherwise inc erance at joint $9 = 20\%$, j	icated. pint 23 = 20%							
Gable requires con	tinuous bottom chord bea	ring.	of ECE poi						
E) Decommand 2v6 c	sumed to be SP No.2 crustrongbacks, on edge, spa	ced at 10-0-0	oc and tastened to	each truss	with 3-10d	(0.131" X	3") nails. Strongbac	ks to	
be attached to wall	s at their outer ends or re	strained by of	ner means.	The suitabi	lity and use	of this co			
building is the resp	onsibility of the building d	esigner per A	NSI TPI 1 as refere	nced by the	building co	de.			
LOAD CASE(S) Stan									
LUAD CASE(S) Stan	uard								
1									
1									
The second secon									

- be attached to walls at their outer ends or restrained by other means.
- 6) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

	Truss	Truss Type		Qty	Ply				
Job		FLOOR		7	1				
1810974	T06	PLOOR				Job Reference 8,240 s Feb 11	(optional) 2019 MiTek In	dustries, Inc. Fri Oct	130 14:16:47 2020 Page 1 OlnU52Yd1Yzis8yOD1k
Builders FirstSource, Lake City,			13-3-15	ID:Ax3gl	IX8XGSleJc 16-6-9	ii6iRQVoz8jRM	I-Th93fRJ9w 19-9-2	1 22-10	0 20 10
3-4-6	6-6-15 3-2-10	9-9-9	3-6-7		3-2-10		3-2-10	3-0-1	4 0-3-8
3-4-0	02.10								Scale = 1:38.2
3x10 = 1	2 W W2 B1 17 5x8 =	2x 3	4 11	2x4 II 5 W	3x6 = 6	7 W1 2	WZ	11 5x8 =	3x10 = 9 W 10 2x4
	, 6-6-15	9-9-9	13-3-1	5	16-6-9		19-9-2	22-1	
3-4-6	3-2-10 :0-3-8,0-1-8], [3:0-3-8,0-1-8				3-2-10	31 (13:0-3-8.0	3-2-10 -1-8], [14:0	3-0-3-8,0-1-8], [16:0)-3-8,0-1-8], [17:0-3-8
Plate Offsets (X,Y) [2	:0-3-8,0-1-8], [3:0-3-8,0-1-8 -2-8]], [7:0-3-8,0-1-8], [8:0-3	-8,0-1-0], [11.0-	3-0,0-2-0], [12.	.0 0 0,0 1 1	-,, [-,,,		
LOADING (psf) TCLL 50.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1	00 BC 0 ES WB 0		Vert(CT) -0.	in (loc) .43 13-14 .60 13-14 .08 10	l/defl L/d >639 360 >456 240 n/a n/d)	PLATES MT20 MT20HS Weight: 115 I	GRIP 244/190 187/143 b FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2			BRACING- TOP CHORD BOT CHORD	Rigid c MiTel be ins	end verticals eiling directly	applied or	10-0-0 oc bracin	10-15 oc purlins, g. red cross bracing ce with Stabilizer
REACTIONS. (lb/size)	18=1598/0-3-8, 10=1598	/0-3-8							
FORCES. (lb) - Max. TOP CHORD 1-18=6-7=-5 BOT CHORD 16-17:WEBS 1-17=5-13= NOTES- (7) 1) Unbalanced floor liv 2) All plates are MT20 3) All plates are 3x8 M	Comp./Max. Ten All force -1545/0, 1-2=-2621/0, 2-3=- :227/0, 7-8=-4340/0, 8-9=-; =0/2621, 15-16=0/4340, 14 0/2897, 2-17=-1315/0, 2-16 -408/0, 7-13=0/1440, 7-12- re loads have been consider plates unless otherwise in plates unless otherwise indicators at init 6 = 20%, in	s 250 (lb) or less excep 4340/0, 3-4=-5227/0, 4- 621/0, 9-10=-1545/0 -15=0/4340, 13-14=0/52 =0/1947, 3-16=-845/0, 3- 845/0, 8-12=0/1947, 8- red for this design. dicated.	227, 12-13=0/43 3-14=0/1440, 4-	40, 11-12=0/2 14=-408/0,	621				

4) The Fabrication Tolerance at joint 6 = 20%, joint 15 = 20%
5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type			Oty	Ply				
1810974	T07	FLOOR			6	1	Job Referenc			
Builders FirstSource, Lake C	City, FL 32055, Kim Holloway				ID:Av3alX	axGSle.lcii	8.240 s Feb 1	1 2019 MiTek Industries, -xtiRsnKnhCOIHtm3H	Inc. Fri Oct 30 14	4:16:48 2020 Page 1 UamGBiFOavOD1i
4-5-9	. 7-8-3	, 10-10-13 ,	14-1-7		17-7-14	1	20-10-8	24-1-2	27-2-0	27,-5-8
4-5-9		3-2-10	3-2-10	199	3-6-7		3-2-10	3-2-10	3-0-14	07378

Scale = 1:45.5

4-5			0-10-13 3-2-10	14-1-7 3-2-10	17-7		20-10-8 3-2-10		24-1-2 3-2-10	27-2-0 27-5-8 3-0-14 0-3-8
Plate Offsets (X,Y)	[2:0-3-8,0-2-8], [3:0-3-8,	0-1-8], [4:0-3	1-8,0-1-8], [9:0	-3-8,0-1-8],	[13:0-3-8,0-1-8],	[15:0-3-8,0-1		3-8,0-1-8],		9:0-3-8,0-1-8]
LOADING (psf) TCLL 50.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00	CSI. TC BC	0.55 0.69	DEFL. Vert(LL) Vert(CT)	in (loc) -0.32 13-14 -0.45 13-14	>607	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 10.0	Rep Stress Incr Code FBC2017/T	YES PI2014	WB Matrix	0.90 c-MS	Horz(CT)	0.04 11	n/a	n/a	Weight: 13	6 lb FT = 20%

LUMBER-TOP CHORD 2x4 SP M 31

BOT CHORD 2x4 SP M 31 2x4 SP No.3 *Except* WEBS

W3: 2x4 SP No.2

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-7-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 19-20 4-10-7 oc bracing: 18-19.

WEBS

1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

(lb/size) 20=-713/0-3-8, 11=1408/0-3-8, 19=3109/0-3-8 (req. 0-3-11) REACTIONS.

Max Uplift20=-919(LC 4)

Max Grav 20=2(LC 3), 11=1409(LC 4), 19=3109(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

1-20=0/921, 1-2=0/2355, 2-3=-449/0, 3-4=-2497/0, 4-5=-3980/0, 5-6=-3980/0, 6-7=-3980/0, 7-8=-3980/0, 8-9=-3682/0, 9-10=-2260/0, 10-11=-1356/0

18-19=-2355/0, 17-18=0/449, 16-17=0/2497, 15-16=0/2497, 14-15=0/3980, 13-14=0/3682, **BOT CHORD**

12-13=0/2260

WEBS

1-19=-2490/0, 2-19=-2032/0, 2-18=0/3175, 3-18=-1464/0, 3-17=0/2345, 4-17=-1106/0, 7-14=-285/0, 8-14=-95/822, 8-13=-610/0, 9-13=0/1611, 9-12=-1139/0, 10-12=0/2491,

5-15=-565/0, 4-15=0/1806

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
 2) The Fabrication Tolerance at joint 6 = 20%, joint 16 = 20%
 3) WARNING: Required bearing size at joint(s) 19 greater than input bearing size.

4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 919 lb uplift at joint 20.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job		Truss		Truss Ty	/pe		Qt	Ply							
1810974		тов		FLOOR			7		1	Job Reference	(optio	nal)			
Builders FirstS	Source, Lake City	, FL 32055, Kim Hollov	way				ID:Ax3o	IX8XGSleJ	Icii6iR0	8.240 s Feb 11 QVoz8jRM-tGr0	2019 N CHTM	ITek Industrie 1DpeTXAw	s, Inc.	Fri Oct 30 14 kEKQ8VrfII	:16:50 2020 Page 1 NL3jVCMSTyOD1h
	3-1-7	. 6-1-2	9-0-1	2 .	12-0-7	 15-5-1		18-4-12		21-4-6	1	24-4-1	1	27-2-0	27-5-8
-	3-1-7	2-11-11	2-11-		2-11-11	3-4-10		2-11-11		2-11-11	-1	2-11-11	311	2-9-15	07378
															Scale = 1:45.5

3-1-7	6-1-2	9-0-12	12-0-7	15-5-1	18-4-12	21-4-6	24-4-1	27-2-0 27-5-8 2-9-15 0-3-8
3-1-7 Plate Offsets (X,Y) [2-11-11 [5:0-3-8,0-1-8], [6:0-4-8,	2-11-11 ,0-3-4], [12:0-4	2-11-11 -0,0-2-4], [20:0-4-8,0	3-4-10 ' -2-4]	2-11-11	2-11-11	2-11-11	2-9-15 0-5-0
LOADING (psf) TCLL 50.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/7	2-0-0 1.00 1.00 YES TPI2014	CSI. TC 0.59 BC 0.61 WB 0.94 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.59 15-16 -0.82 15-16 0.10 11	I/defl L/d >557 360 >398 240 n/a n/a	PLATES MT20 MT20HS Weight: 15	GRIP 244/190 187/143 9 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP M 31 BOT CHORD 2x6 SP M 26

WEBS 2x4 SP No.3 *Except*

W2: 2x4 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 2-2-12 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing. **BOT CHORD**

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 21=1902/0-3-8, 11=1902/0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-21=-1784/0, 1-2=-3017/0, 2-3=-3017/0, 3-4=-6833/0, 4-5=-6833/0, 5-6=-7730/0, 6-7=-6819/0, 7-8=-6819/0, 8-9=-3017/0, 9-10=-3017/0, 10-11=-1784/0

19-20=0/5419, 18-19=0/5419, 17-18=0/7730, 16-17=0/7730, 15-16=0/7730, 14-15=0/7712, **BOT CHORD**

13-14=0/5422, 12-13=0/5422

1-20=0/3336, 2-20=-352/0, 3-20=-2738/0, 3-18=0/1611, 4-18=-354/29, 5-18=-1599/0, 5-16=-282/419, 6-15=-260/459, 6-14=-1585/0, 7-14=-332/44, 8-14=0/1593, 8-12=-2741/0,

9-12=-351/0, 10-12=0/3335

NOTES-

WEBS

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 2x4 MT20 unless otherwise indicated.

4) The Fabrication Tolerance at joint 17 = 20%

5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

6) Required 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Ply Qty Truss Truss Type Job T09 FLOOR 30 1810974 Job Reference (optional)
8.240 s Feb 11 2019 MiTek Industries, Inc. Fri Oct 30 14:16:52 2020 Page 1
1D:Ax3gIX8XGSleJcii6iRQVoz8jRM-qfzyi9NHlQuAmU4qW1gx1ePrRJZSmMuMBphTXMyOD1 Builders FirstSource, Lake City, FL 32055, Kirn Holloway 20-11-14 23-11-9 26-9-8 18-0-2 2-11-10 2-9-15 2-11-15

Scale = 1:44.9

3-1-7	6-1-2	9-0-14	12-0-9	15-0-8	18-0-2	20-11-14	23-11-9	2-9-15 0-3-8
3-1-7	2-11-11	2-11-11	2-11-11	2-11-15	2-11-10	2-11-11	2-11-11	2-3-10 0-3-0
Plate Offsets (X,Y)- [[11:0-2-0,0-2-0]							
LOADING (psf) TCLL 50.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2017/T	1-4-0 1.00 1.00 YES PI2014	CSI. TC 0.28 BC 0.40 WB 0.62 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.37 16-17 -0.52 16-17 0.06 12	l/defl L/d >868 360 >619 240 n/a n/a	PLATES MT20 Weight: 157	GRIP 244/190

LUMBER-

TOP CHORD 2x4 SP M 31

BOT CHORD 2x6 SP M 26

2x4 SP No.3 *Except* WEBS

W2: 2x4 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 3-3-7 oc purlins, except

end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing. **BOT CHORD**

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 22=1250/0-5-8, 12=1250/0-3-8

FORCES. (lb) Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-22=-1173/0, 1-2=-1982/0, 2-3=-1982/0, 3-4=-4464/0, 4-5=-4464/0, 5-6=-5029/0,

6-7=-4464/0, 7-8=-4464/0, 8-9=-4464/0, 9-10=-1982/0, 10-11=-1982/0, 11-12=-1173/0

20-21=0/3551, 19-20=0/3551, 18-19=0/5029, 17-18=0/5029, 16-17=0/5029, 15-16=0/5029, **BOT CHORD**

14-15=0/3551, 13-14=0/3551 WEBS

1-21=0/2191, 3-21=-1788/0, 3-19=0/1040, 5-19=-1008/0, 5-17=-175/281, 6-16=-175/281,

6-15=-1008/0, 9-15=0/1040, 9-13=-1788/0, 11-13=0/2191

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 2x4 MT20 unless otherwise indicated.
- 3) The Fabrication Tolerance at joint 7 = 20%, joint 18 = 20%
- 4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
 5) Required 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss T	russ Type	Qty	Ply	
1810974		LOOR	3	1	15
Builders FirstSource, Lake Cit			1D:Ax3gIX8X0 23-11-8 23-11-8	Job Reference (option 8.240 s Feb 11 2019 N GSIeJcii6iRQVoz8jRM-i9g1ziD	Firek Industries, Inc. Fri Oct 30 14:16:39 2020 Page 1 PRF0iUaKFoxu?vNgN3DKDcOSCIHacyOD1s 24-3-0 0 ¹ 3 ¹ 8
3x4 = 1 2 W1 W2 ST1 28 27 3x4 =	3 4 ST1 ST1 ST2 B1 ST2 SXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	5 6 \$T1 \$T1 \$T1 \$T1 \$XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	3x6 7 8 9 5T1 ST1 5T2 21 20	10 11	Scale = 1:39.6 3x4 = 12 13 14 T2 ST ST ST ST ST ST ST ST ST
I			23-11-8 23-11-8		24-3-0 0 ¹ 3 ¹ 8
LOADING (psf) TCLL 50.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.11 BC 0.02 WB 0.06 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	- n/a 999 - n/a 999	PLATES GRIP MT20 244/190 Weight: 106 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPI BOT CHORD 2x4 SPI WEBS 2x4 SPI OTHERS 2x4 SPI	No.2 No.3	WattiA-G	BRACING- TOP CHORD BOT CHORD	end verticals. Rigid ceiling directly applied 10-0-0 oc bracing: 27-28,15 MiTek recommends that S	directly applied or 10-0-0 oc purlins, except
REACTIONS. All bea (lb) - Max Gra	arings 24-3-0. av All reactions 250 lb or less 25=281(LC 1), 26=275(LC 1 1)	at joint(s) 28, 15 except 21=), 27=313(LC 1), 20=280(LC	=280(LC 1), 22=280(LC 1) C 1), 19=280(LC 1), 18=20	, 24=280(LC 1), B1(LC 1), 17=275(LC 1), 16=	=313(LC
	Comp./Max. Ten All forces 25 260/0, 13-16=-260/0	50 (lb) or less except when s	shown.		
2) The Fabrication Told 3) Gable requires conti 4) All bearings are ass 5) Recommend 2x6 str be attached to walls 6) This manufactured to	T20 unless otherwise indicated erance at joint 9 = 20%, joint 23 inuous bottom chord bearing. umed to be SP No.2 crushing orongbacks, on edge, spaced at at their outer ends or restrained oroduct is designed as an indivensibility of the building designed.	a = 20% capacity of 565 psi. 10-0-0 oc and lastened to be other means. idual building component.	The suitability and use of	this component for any partic	
LOAD CASE(S) Stand	lard				

lob	Truss	Truss Type		Qty	Ply			
810974	T02G	FLOOR		4	1 Job	Reference (options	al)	
Builders FirstSource	, Lake City, FL 32055, Kim Hollor	way		D-Av3alY8Y	GSIe IciisiROVoza	0 s Feb 11 2019 Mil	ek Industries, Inc. Fri ArthZv.lvwwVhdY?E	Oct 30 14:16:42 2020 Page 3pHF3QzBuuGGxAxyOD
2			23-6-8	D.ANJGINON	CONSCIONING VOZO	ili ili olamoa oon	noozyovivii voo i is	23-10-0 0-3-8
-			23-6-8					0,3,8
								Scale = 1:38
							•	

-	23-6-8 23-6-8										
LOADING (psf) TCLL 50.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00	CSI. TC 0.10 BC 0.02	DEFL. ir Vert(LL) n/a Vert(CT) n/a	i -	I/defl n/a n/a	L/d 999 999	PLATES GRIP MT20 244/190				
BCLL 0.0 BCDL 10.0	Rep Stress Incr YES Code FBC2017/TPI2014	WB 0.06 Matrix-S	Horz(CT) -0.00) 16	n/a	n/a	Weight: 104 lb FT = 20%				

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.3 WEBS 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 27-28,15-16.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 23-10-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 28, 15 except 21=280(LC 1), 22=280(LC 1), 24=280(LC 1), 25=280(LC 1), 26=280(LC 1), 27=294(LC 1), 20=280(LC 1), 19=280(LC 1), 18=280(LC 1), 17=280(LC 1), 16=294(LC

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 2x4 MT20 unless otherwise indicated.

2) The Fabrication Tolerance at joint 9 = 20%, joint 23 = 20% 3) Gable requires continuous bottom chord bearing.

4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type		Qty	Ply	3 may 1 mg 1 m			
1810974	T06	FLOOR		7	1	Job Reference (optional)			
Builders FirstSource, Lake Cit	y, FL 32055, Kim Holloway			ID:Ax3al)	(8XGSleJ	8.240 s Feb 11 2019 MiTel cii6iRQVoz8jRM-Th93fRJ	k Industries, Inc. 9wuGualCtiT4	Fri Oct 30 4mKbisOln	14:16:47 2020 Page 1 U52Yd1Yzis8yOD1I
3-4-6	, 6-6-15	9-9-9	13-3-15		16-6-9	19-9-2		22-10-0	23-1-8
3-4-6	3-2-10	3-2-10	3-6-7		3-2-10	3-2-10		3-0-14	0-3-8
									The second secon

Scale = 1:38.

3-0-14 [2:0-3-8,0-1-8], [3:0-3-8,0-1-8], [7:0-3-8,0-1-8], [8:0-3-8,0-1-8], [8:0-3-8,0-1-8], [11:0-3-8,0-2-8], [12:0-3-8,0-1-8], [13:0-3-8,0-1-8], [14:0-3-8,0-1-8], [16:0-3-8,0-1-8], [17:0-3-8,0-1-Plate Offsets (X,Y)--[0-2-8]

LOADING (psf) TCLL 50.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.81 BC 0.71 WB 0.82	DEFL. in (loc) I/defl L/d Vert(LL) -0.43 13-14 >639 360 Vert(CT) -0.60 13-14 >456 240 Horz(CT) 0.08 10 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143
BCDL 10.0	Code FBC2017/TPI2014	Matrix-MS	11012(01)	Weight: 115 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP M 31

WEBS

2x4 SP No.3 *Except* W2: 2x4 SP No.2

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-10-15 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 18=1598/0-3-8, 10=1598/0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-18=-1545/0, 1-2=-2621/0, 2-3=-4340/0, 3-4=-5227/0, 4-5=-5227/0, 5-6=-5227/0,

1-10=134370, 1-Z=-Z02170, Z-3=-434070, 3-9=-322170, 4-9=-322170, 5-6=-522170, 6-7=-522170, 7-8=-434070, 8-9=-262170, 9-10=-154570
16-17=0/2621, 15-16=0/4340, 14-15=0/4340, 13-14=0/5227, 12-13=0/4340, 11-12=0/2621
1-17=0/2897, 2-17=-131570, 2-16=0/1947, 3-16=-84570, 3-14=0/1440, 4-14=-40870, 5-13=-40870, 7-13=0/1440, 7-12=-84570, 8-12=0/1947, 8-11=-131570, 9-11=0/2897 **BOT CHORD** WEBS

- NOTES- (7)
 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
 3) All plates are 3x8 MT20 unless otherwise indicated.
 4) The Fabrication Tolerance at joint 6 = 20%, joint 15 = 20%

5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

1	Job	Truss	Truss Type		Qty	Ply				
	1810974	Т07	FLOOR		6	1	Job Reference	e (optional)		
	Builders FirstSource, Lake City,	FL 32055, Kim Holloway			ID-Av3alX8	XGSIe Iciif	8.240 s Feb 11 SiROVoz8iRM-	1 2019 MiTek Industries, xtjRsnKnhCOlHtm3H	Inc. Fri Oct 30 14 Bb?spF5Bi8xql	1:16:48 2020 Page 1 JamGBjFOayOD1
1	4-5-9	, 7-8-3	10-10-13	14-1-7	17-7-14		20-10-8	24-1-2	27-2-0	27-5-8
	4-5-9	3-2-10	3-2-10	3-2-10	3-6-7		3-2-10	3-2-10	3-0-14	0;3;8

Scale = 1:45.5

4-5-9	3-2-10	3	10-13	14-1-7 3-2-10	1 17-7	-7	-	20-10-8 3-2-10		3-2-10	27-2-0 27-5-8 3-0-14 0-3-8
Plate Offsets (X,Y)	[2:0-3-8,0-2-8], [3:0-3-8,	0-1-8], [4:0-3-	3,0-1-8], [9:0	-3-8,0-1-8],	[13:0-3-8,0-1-8],	[15:0-3-8	,0-1-8]	, [17:0-3	3-8,0-1-8],	[18:0-3-8,0-2-8], [19:	:0-3-8,0-1-8]
LOADING (psf) TCLL 50.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00	CSI. TC BC	0.55 0.69	DEFL. Vert(LL) Vert(CT)		loc) I-14	l/defl >848 >607	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 10.0	Rep Stress Incr Code FBC2017/7	YES	WB Matri:	0.90	Horz(CT)	0.04	11	n/a	n/a	Weight: 136	lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP M 31

BOT CHORD 2x4 SP M 31

2x4 SP No.3 *Except* WEBS

W3: 2x4 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 3-7-2 oc purlins, except

end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except: **BOT CHORD**

6-0-0 oc bracing: 19-20

4-10-7 oc bracing: 18-19.

WEBS

1 Row at midpt

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 20=-713/0-3-8, 11=1408/0-3-8, 19=3109/0-3-8 (req. 0-3-11)

Max Uplift20=919(LC 4) Max Grav 20=2(LC 3), 11=1409(LC 4), 19=3109(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

1-20=0/921, 1-2=0/2355, 2-3=-449/0, 3-4=-2497/0, 4-5=-3980/0, 5-6=-3980/0, 6-7=-3980/0, 7-8=-3980/0, 8-9=-3682/0, 9-10=-2260/0, 10-11=-1356/0

18-19=-2355/0, 17-18=0/449, 16-17=0/2497, 15-16=0/2497, 14-15=0/3980, 13-14=0/3682,

BOT CHORD

1-19=-2490/0, 2-19=-2032/0, 2-18=0/3175, 3-18=-1464/0, 3-17=0/2345, 4-17=-1106/0, 7-14=-285/0, 8-14=-95/822, 8-13=-610/0, 9-13=0/1611, 9-12=-1139/0, 10-12=0/2491, WEBS

5-15=-565/0, 4-15=0/1806

1) Unbalanced floor live loads have been considered for this design.

2) The Fabrication Tolerance at joint 6 = 20%, joint 16 = 20%

3) WARNING: Required bearing size at joint(s) 19 greater than input bearing size.

All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 919 lb uplift at joint 20.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss T	ype		Qty	Ply				
1810974	тов	FLOOR			7		Job Reference (o	ntional)		
Builders FirstSource, Lake Ci	ty, FL 32055, Kim Hollow	ay			ID:Ax3qIX	8XGSleJcii6	8.240 s Feb 11 20 SiRQVoz8jRM-tGrCh	19 MiTek Industries, I	nc. Fri Oct 30 14 ceTxEKQ8VrfII	:16:50 2020 Page 1 NL3jVCMSTyOD1h
3-1-7	. 6-1-2	9-0-12	12-0-7	15-5-1		18-4-12	21-4-6	24-4-1	27-2-0	27,-5-8
3-1-7	2-11-11	2-11-11	2-11-11	3-4-10	1	2-11-11	2-11-11	2-11-11	2-9-15	07378

Scale = 1:45.5

3-1-7	6-1-2 9-0-12 2-11-11 2-11-11	12-0-7	15-5-1 3-4-10	18-4-12 2-11-11	21-4-6	24-4-1 27-2-0 27-5-8 2-11-11 2-9-15 0-3-8
Plate Offsets (X,Y) [5:0-3-8,0-1-8], [6:0-4-8,0-3-4], [12:0-	4-0,0-2-4], [20:0-4-8,0-2	2-4]			
LOADING (psf) TCLL 50.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code FBC2017/TPI2014	CSI. TC 0.59 BC 0.61 WB 0.94 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.59 15-16 -0.82 15-16 0.10 11	l/defl L/d >557 360 >398 240 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 159 lb FT = 20%

LUMBER-

WEBS

TOP CHORD 2x4 SP M 31 BOT CHORD 2x6 SP M 26

WEBS 2x4 SP No.3 *Except*

W2: 2x4 SP No.2

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 2-2-12 oc purlins, except

end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 21=1902/0-3-8, 11=1902/0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-21=-1784/0, 1-2=-3017/0, 2-3=-3017/0, 3-4=-6833/0, 4-5=-6833/0, 5-6=-7730/0, 6-7=-6819/0, 7-8=-6819/0, 8-9=-3017/0, 9-10=-3017/0, 10-11=-1784/0 TOP CHORD

19-20=0/5419, 18-19=0/5419, 17-18=0/7730, 16-17=0/7730, 15-16=0/7730, 14-15=0/7712, **BOT CHORD**

13-14=0/5422, 12-13=0/5422

1-20=0/3336, 2-20=-352/0, 3-20=-2738/0, 3-18=0/1611, 4-18=-354/29, 5-18=-1599/0, 5-16=-282/419, 6-15=-260/459, 6-14=-1585/0, 7-14=-332/44, 8-14=0/1593, 8-12=-2741/0,

9-12=-351/0, 10-12=0/3335

NOTES- (7)

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated. 3) All plates are 2x4 MT20 unless otherwise indicated.

4) The Fabrication Tolerance at joint 17 = 20%

5) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

6) Required 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job		Truss	Truss Typ	98		Qty	Ply				
1810974		Т09	FLOOR			30		Job Reference (op	tional)		
Capture of the Control of the Contro		, FL 32055, Kim Holloway		12-0-9	. 15-0-8	ID:Ax3gIX	(8XGSleJcii6	8.240 s Feb 11 201 iRQVoz8jRM-qfzyi9N 20-11-14	9 MiTek Industries, Ind HIQuAmU4qW1gx 23-11-9	 Fri Oct 30 14:1 IePrRJZSmMu 26-9-8 	16:52 2020 Page 1 1MBphTXMyOD1 27-1-0
	3-1-7 3-1-7	6-1-2 2-11-11	9-0-14 2-11-11	2-11-11	2-11-15		2-11-10	2-11-11	2-11-11	2-9-15	01318

Scale = 1:44.9

3-1-7 3-1-7 Plate Offsets (X,Y) [6-1-2 9-0-14 2-11-11 2-11-11 11:0-2-0,0-2-0]	12-0-9 2-11-11	15-0-8 2-11-15	18-0-2 2-11-10	20-11-14	23-11-9 2-11-11	26-9-8 27-1-0 2-9-15 0-3-8
LOADING (psf) TCLL 50.0 TCDL 10.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00	CSI. TC 0.28 BC 0.40	DEFL. Vert(LL) Vert(CT)	in (loc) -0.37 16-17 -0.52 16-17	I/defl L/d >868 360 >619 240	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 10.0	Rep Stress Incr YES Code FBC2017/TPI2014	WB 0.62 Matrix-MS	Horz(CT)	0.06 12	n/a n/a	Weight: 157	7 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP M 31

BOT CHORD 2x6 SP M 26

2x4 SP No.3 *Except* WEBS

W2: 2x4 SP No.2

BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 3-3-7 oc purlins, except

end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 22=1250/0-5-8, 12=1250/0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

1-22=-1173/0, 1-2=-1982/0, 2-3=-1982/0, 3-4=-4464/0, 4-5=-4464/0, 5-6=-5029/0,

6-7=-4464/0, 7-8=-4464/0, 8-9=-4464/0, 9-10=-1982/0, 10-11=-1982/0, 11-12=-1173/0

20-21=0/3551, 19-20=0/3551, 18-19=0/5029, 17-18=0/5029, 16-17=0/5029, 15-16=0/5029, **BOT CHORD**

14-15=0/3551, 13-14=0/3551

1-21=0/2191, 3-21=-1788/0, 3-19=0/1040, 5-19=-1008/0, 5-17=-175/281, 6-16=-175/281, 6-15=-1008/0, 9-15=0/1040, 9-13=-1788/0, 11-13=0/2191

NOTES-

WEBS

Unbalanced floor live loads have been considered for this design.

All plates are 2x4 MT20 unless otherwise indicated. 3) The Fabrication Tolerance at joint 7 = 20%, joint 18 = 20%

All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

5) Required 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) This manufactured product is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.