APPLICABLE CODES 1. 2023 FLORIDA BUILDING CODE, BUILDING 2. 2023 FLORIDA BUILDING CODE, RESIDENTIAL

APPLICABLE STANDARDS

STRUCTURES

1. ASCE 7-22: MINIMUM DESIGN LOADS ON BUILDINGS AND OTHER **STRUCTURES**

2. AISC STEEL CONSTRUCTION MANUAL (8TH EDITION)

3. ACI 318-19: BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE 4. TMS 402-16: BUILDING CODE REQUIREMENTS FOR MASONRY

5. AWS D1.1: STRUCTURAL WELDING

DESIGN LOADS 1.DEAD LOAD = 1.5 PSF 2.ROOF LIVE LOAD = 12 PSF 3. GROUND SNOW LOAD = 4 PSF 4.WIND LOAD A.RISK CATEGORY = II B.WIND EXPOSURE CATEGORY = C C.ULTIMATE WIND SPEED = 120 MPH NOMINAL WIND SPEED = 94 MPH

D. THE PROPOSED STRUCTURE SHALL BE CONSTRUCTED BASED ON THE DESIGN FOR A WIND SPEED OF 170 MPH, PER THE CONTRACTOR'S REQUEST.

INSTALLATION NOTES AND SPECIFICATIONS

1. THESE PLANS BELONG EXCLUSIVELY TO THE STRUCTURE, INCLUDING MAIN WIND FORCE RESISTING SYSTEM (MWFRS), COMPONENTS AND CLADDING (C&C), AND BASE RAIL ANCHORAGE. OTHER DESIGN ISSUES, INCLUDING BUT NOT LIMITED TO PROPERTY SET-BACKS, ELECTRICAL, PLUMBING, INGRESS/EGRESS, FINISH FLOOR SLOPES AND ELEVATIONS, OR OTHER LOCAL ZONING REQUIREMENTS ARE THE LIABILITY OF OTHERS.

2. THESE STRUCTURES ARE ENGINEERED AS CAPABLE OF SUPPORTING DEAD LOAD OF THE STRUCTURE AND LIVE AND WIND LOADS. UPGRADES NOT SPECIFICALLY ADDRESSED HEREIN, SUCH AS WINDOWS, DOORS, OR ANOTHER COMPONENT NOT LISTED IN THE BUILDING CODE APROVED PRODUCT LIST, AND NOT PROVIDED AND INSTALLED BY THE CONTRACTOR, WHICH CAUSE ADDITIONAL LOADS ON THE STRUCTURE SHALL BE AT THE OWNER'S RISK, THE ENGINEER SHALL NOT BE RESPONSIBLE FOR FAILURE OR STRUCTURAL DAMAGE DUE TO THE EXTRA LOAD.

3. ALL STEEL TUBING SHALL BE 50 KSI GALVANIZED STEEL WITH MINIMUM YIELD STRENGTH OF 54 KSI. ALL FASTENERS SHALL BE ZINC COATED HARDWARE. 4.END WALL COLUMNS (POST) AND SIDE WALL COLUMNS ARE EQUIVALENT IN SIZE AND SPACING U.N.O.

5.SPECIFICATIONS APPLICABLE TO 29 GA DUTCH LAP METAL PANELS FASTENED DIRECTLY TO 2.5"X2.5"X14 GA/2.5"X2.5"X12GA TUBE STEEL (TS) FRAMING MEMBERS FOR VERTICAL PANELS. 29 GA METAL PANELS SHALL BE FASTENED DIRECTLY TO 18 GA HAT CHANNELS U.N.O.

6.AVERAGE FASTENER SPACING ON-CENTERS ALONG RAFTERS OR PURLINS, AND POSTS, INTERIOR = 9" AND END = 6" MAX. 7.FASTENERS CONSIST OF #12-14X3/4" SELF-DRILLING SCREWS (SDS), USE

CONTROL SEAL WASHER WITH EXTERIOR FASTENERS. SPECIFICATIONS APPLICABLE ONLY FOR MEAN ROOF HEIGHT OF 20'-0" OR LESS, AND ROOF SLOPES OF 14° (3:12 PITCH) OR LESS. SPACING REQUIREMENTS FOR OTHER ROOF HEIGHTS AND/OR SLOPES MAY VARY

8.ANCHORS SHALL BE INSTALLED THROUGH THE BASE RAIL WITHIN 6" OF EACH RAFTER COLUMN ALONG SIDES AND ENDS.

9.STANDARD GROUND ANCHORS (SOIL NAILS) CONSIST OF #4 REBARS WITH WELDED NUT X 36" LONG AND MAY BE USED IN SUITABLE SOILS. OPTIONAL ANCHORAGE MAY BE USED IN SUITABLE SOILS AND MUST BE USED IN UNSUITABLE SOILS AS NOTED. SOIL NAILS MAY BE USED FOR WIND SPEEDS LESS THAN OR EQUAL TO 145 MPH.

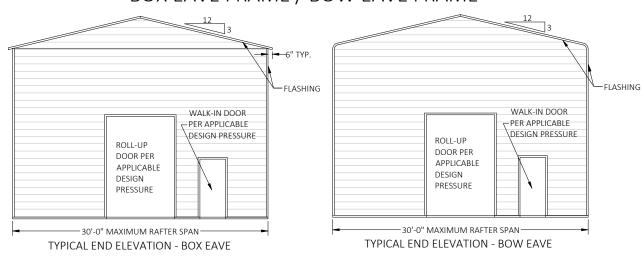
10.RAFTER SPACING IS 5'-0" FOR WIND SPEEDS BETWEEN 110 MPH AND 140 MPH AND 4'-0" FOR WIND SPEEDS BETWEEN 140 MPH AND 170 MPH.

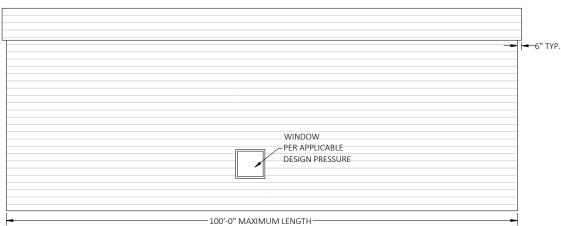
11. WIND FORCES GOVERN OVER SEISMIC FORCES.

12. CONSTRUCTION IN SPECIAL FLOOD HAZARD AREAS: CONTRACTOR TO VERIFY THAT THE FINISHED FLOOR ELEVATION FOR THE

PROPOSED STRUCTURE IS AT OR ABOVE THE GREATER OF THE FOLLOWING **ELEVATIONS:**

I) BFE (BASE FLOOD ELEVATION) + 2'-0"


II) DFE (DESIGN FLOOD ELEVATION)


III) THE MINIMUM ELEVATION MANDATED BY THE BUILDING CODES ADOPTED BY THE AUTHORITY HAVING JURISDICTION

DRAWING INDEX

PAGE NO.	DESCRIPTION
1	TITLE PAGE WITH INDEX
2	TRUSS DESIGN FOR RAFTER SPAN
3	CONNECTION DETAILS (1-3)
4	BASE RAIL AND FOUNDATION ANCHORAGE
5	RAFTER END WALL, SIDE WALL AND OPENING FRAMING
6	CONNECTION DETAILS (5-17)
7	BOX EAVE RAFTER LEAN-TO OPTIONS
8	CONNECTION DETAILS (19-21)
9	BOX EAVE RAFTER VERTICAL ROOF/SIDING OPTION
10	OPTIONAL HELICAL ANCHORING ON GRADE DETAIL

ENCLOSED METAL BUILDING DESIGN MAXIMUM 30'-0" WIDE X 100'-0" LONG X 20'-0" HIGH (EAVE) BOX EAVE FRAME / BOW EAVE FRAME

THE ENGINEERING ON THESE PLANS IS SITE

PROVIDED ADDRESS(ES)

SPECIFIC FOR (1) STRUCTURE ONLY AT THE

is item has be a sealed by R E. on the date inted copies of considered to the signaturiants electronians in the signaturians.

TYPICAL SIDE ELEVATION - HORIZONTAL ROOF

ADJUSTED C & (C WIND P	RESSURES (ROOF, ASD, I	PSF)	ADJUSTED C & C WIND PRESSURES (WALL, ASD, PSF)		
EFFECTIVE WIND AREA (SQ. FT) :	10.00	EFFECTIVE WIND AREA (SQ. FT) :	200.00	EFFECTIVE WIND AREA (SQ. FT) :	10.00	
ALL ZONES (POSITIVE) =	NA.	ALL ZONES (POSITIVE) =	NA	ALL ZONES (POSITIVE) =	26.9	
ZONE 1' (NEGATIVE) =	NA	ZONE 1' (NEGATIVE) =	NA	ZONE 4 (NEGATIVE) =	-28.6	
ZONE 1' (OVERHANG) =	NA	ZONE 1' (OVERHANG) =	NA.	ZONE 5 (NEGATIVE) =	-33.8	
ZONE 1 (NEGATIVE) =	-44.1	ZONE 1 (NEGATIVE) =	-21.3			
ZONE 1 (OVERHANG) =	-61.4	ZONE 1 (OVERHANG) =	-34.6	EFFECTIVE WIND AREA (SQ. FT) :	20.00	
ZONE 2 (NEGATIVE) =	-56.3	ZONE 2 (NEGATIVE) =	-26.9	ALL ZONES (POSITIVE) =	26.0	
ZONE 2 (OVERHANG) =	-73.5	ZONE 2 (OVERHANG) =	-40.2	ZONE 4 (NEGATIVE) =	-27.7	
ZONE 3 (NEGATIVE) = -71.8		ZONE 3 (NEGATIVE) =	-40.7	ZONE 5 (NEGATIVE) =	-32.0	
ZONE 3 (OVERHANG) =	-89.1	ZONE 3 (OVERHANG) =	-54.0			
		, , ,		EFFECTIVE WIND AREA (SQ. FT) :	50.00	
FFECTIVE WIND AREA (SQ. FT) :	20.00	EFFECTIVE WIND AREA (SQ. FT) :	300.00	ALL ZONES (POSITIVE) =	24.8	
ALL ZONES (POSITIVE) =	NA	ALL ZONES (POSITIVE) =	NA	ZONE 4 (NEGATIVE) =	-26.4	
ZONE 1' (NEGATIVE) =			ZONE 5 (NEGATIVE) =	-29.5		
ZONE 1' (OVERHANG) =	NA	ZONE 1' (OVERHANG) =	NA	, ,		
ZONE 1 (NEGATIVE) =	-38.9	ZONE 1 (NEGATIVE) =	-18.2	EFFECTIVE WIND AREA (SQ. FT) :	100.00	
ZONE 1 (OVERHANG) =	-55.2	ZONE 1 (OVERHANG) =	-31	ALL ZONES (POSITIVE) =	23.8	
ZONE 2 (NEGATIVE) =	-49.5	ZONE 2 (NEGATIVE) =	-26.9	ZONE 4 (NEGATIVE) =	-25.5	
ZONE 2 (OVERHANG) =	-65.8	ZONE 2 (OVERHANG) =	-39.6	ZONE 5 (NEGATIVE) =	-27.7	
ZONE 3 (NEGATIVE) =	-62.4	ZONE 3 (NEGATIVE) =	-40.7			
ZONE 3 (OVERHANG) =	-78.8	ZONE 3 (OVERHANG) =	-53.5	EFFECTIVE WIND AREA (SQ. FT) :	200.00	
				ALL ZONES (POSITIVE) =	22.9	
EFFECTIVE WIND AREA (SQ. FT) :	50.00	EFFECTIVE WIND AREA (SQ. FT) :	500.00	ZONE 4 (NEGATIVE) =	-24.6	
ALL ZONES (POSITIVE) =	NA	ALL ZONES (POSITIVE) =	NA	ZONE 5 (NEGATIVE) =	-25.8	
ZONE 1' (NEGATIVE) =	NA	ZONE 1' (NEGATIVE) =	NA			
ZONE 1' (OVERHANG) =	NA	ZONE 1' (OVERHANG) =	NA	EFFECTIVE WIND AREA (SQ. FT) :	300.00	
ZONE 1 (NEGATIVE) =	-31.9	ZONE 1 (NEGATIVE) =	-18.2	ALL ZONES (POSITIVE) =	22.4	
ZONE 1 (OVERHANG) =	-47	ZONE 1 (OVERHANG) =	-30.3	ZONE 4 (NEGATIVE) =	-24.1	
ZONE 2 (NEGATIVE) =	-40.5	ZONE 2 (NEGATIVE) =	-26.9	ZONE 5 (NEGATIVE) =	-24.8	
ZONE 2 (OVERHANG) =	-55.6	ZONE 2 (OVERHANG) =	-39			
ZONE 3 (NEGATIVE) =	-50.1	ZONE 3 (NEGATIVE) =	-40.7	EFFECTIVE WIND AREA (SQ. FT) :	500.00	
ZONE 3 (OVERHANG) =	-65.2	ZONE 3 (OVERHANG) =	-52.8	ALL ZONES (POSITIVE) =	21.7	
				ZONE 4 (NEGATIVE) =	-23.4	
FFECTIVE WIND AREA (SQ. FT) :	100.00	EFFECTIVE WIND AREA (SQ. FT) :	1000.00	ZONE 5 (NEGATIVE) =	-23.4	
ALL ZONES (POSITIVE) =	NA	ALL ZONES (POSITIVE) =	NA			
ZONE 1' (NEGATIVE) =	NA	ZONE 1' (NEGATIVE) =	NA	EFFECTIVE WIND AREA (SQ. FT):	1000.00	
ZONE 1' (OVERHANG) =	NA	ZONE 1' (OVERHANG) =	NA	ALL ZONES (POSITIVE) =	21.7	
ZONE 1 (NEGATIVE) =	-26.6	ZONE 1 (NEGATIVE) =	-18.2	ZONE 4 (NEGATIVE) =	-23.4	
ZONE 1 (OVERHANG) =	-40.8	ZONE 1 (OVERHANG) =	-30.3	ZONE 5 (NEGATIVE) =	-23.4	
ZONE 2 (NEGATIVE) =	-33.6	ZONE 2 (NEGATIVE) =	-26.9			
ZONE 2 (OVERHANG) =	-47.9	ZONE 2 (OVERHANG) =	-39			

CONTRACTOR TO PROVIDE BUILDING CODE APPROVED PRODUCTS TO MEET OR EXCEED THE DESIGN PRESSURES AS TABULATED.

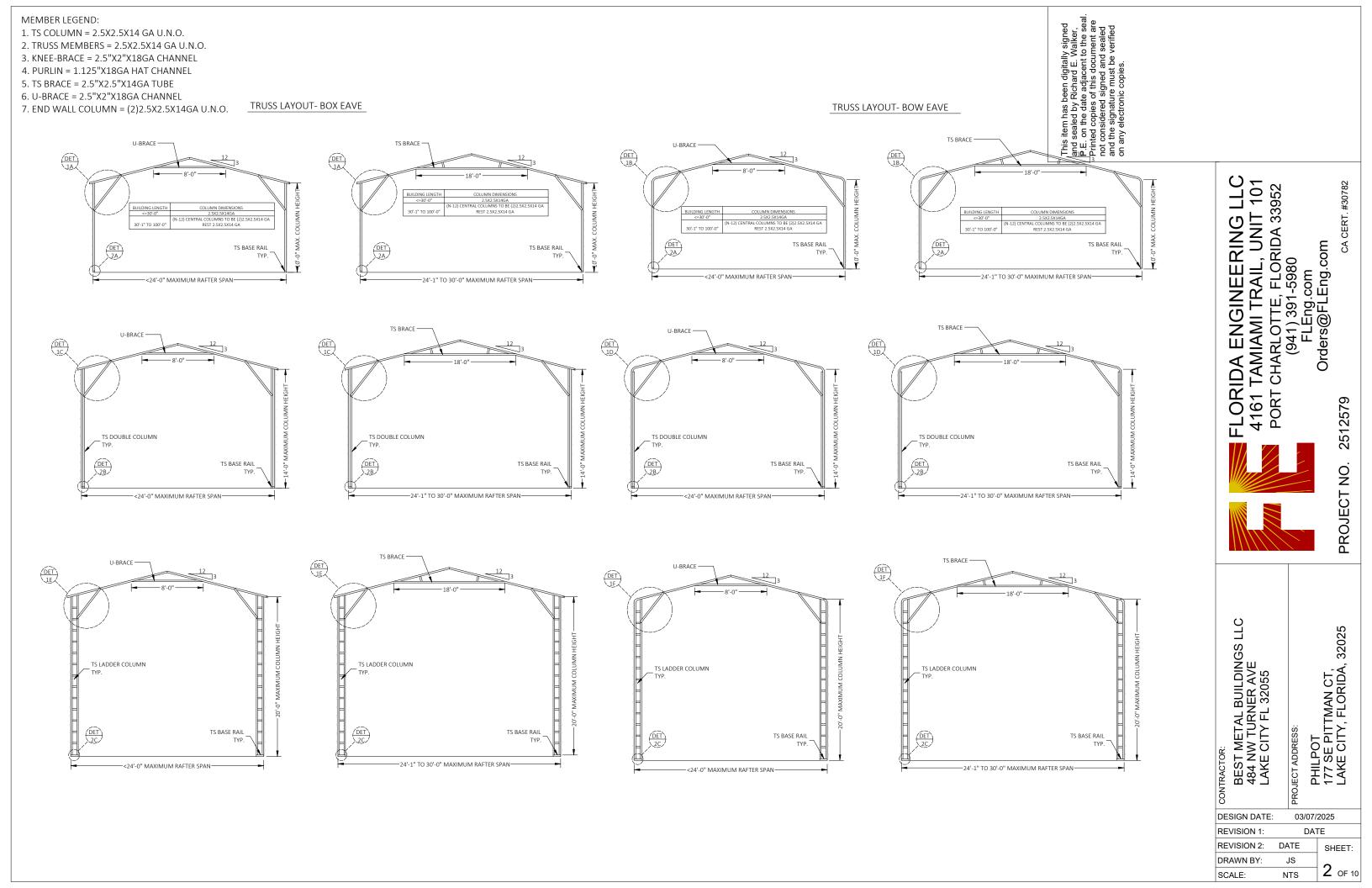
ZONE 3 (NEGATIVE) :

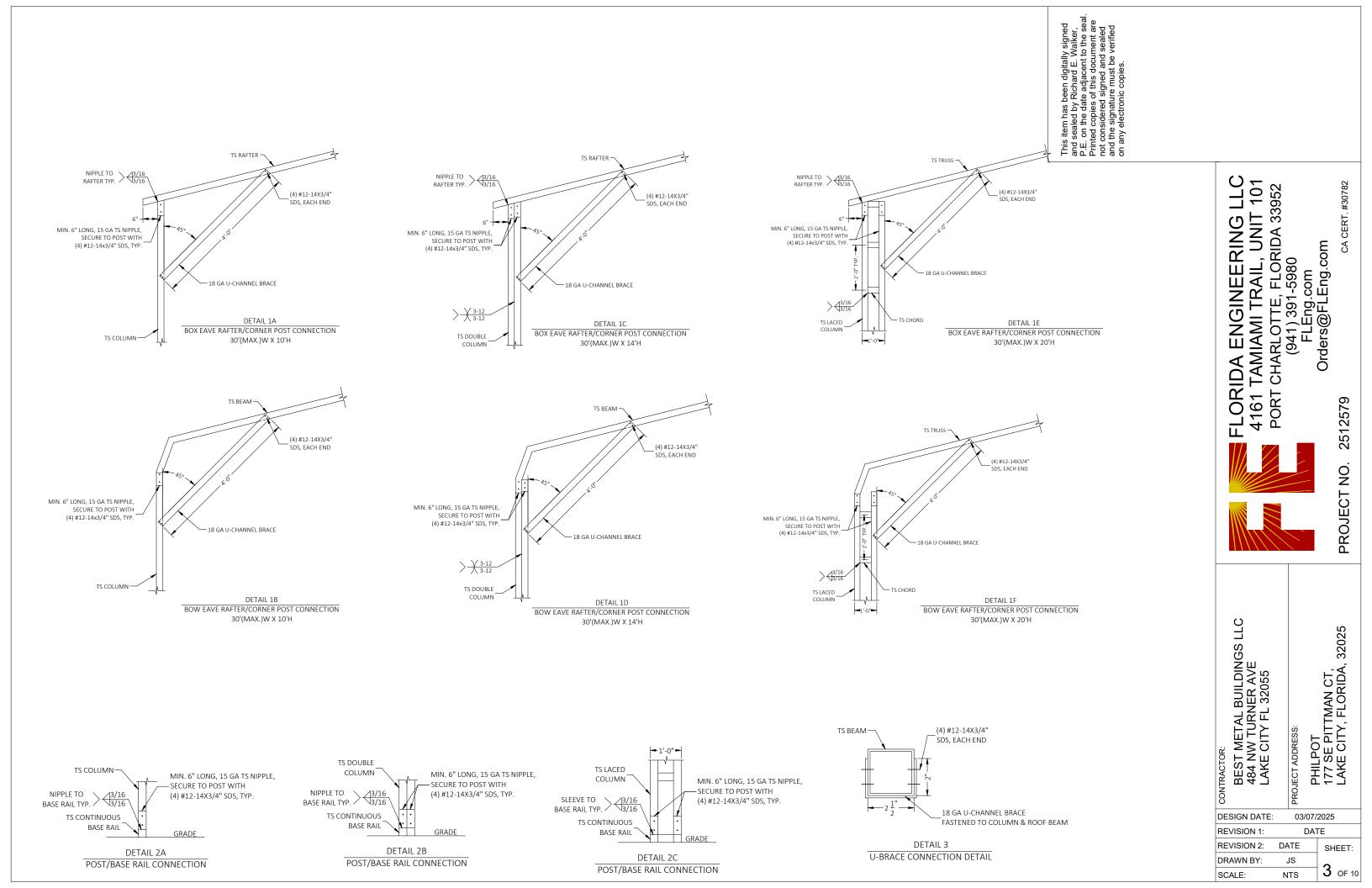
ZONE 3 (OVERHANG)

UNIT 101 TAMIAMI TRAIL, UNIT T CHARLOTTE, FLORIDA 3 (941) 391-5980 FLEng.com Orders@FLEng.com ORIDA **PORT** 161 4

33952

LLC


32025 BEST METAL BUILDINGS 484 NW TURNER AVE LAKE CITY FL 32055 PHILPOT 177 SE PITTMAN CT, LAKE CITY, FLORIDA, 3 PROJECT ADDRESS


251257

9

PROJECT

DESIGN DATE 03/07/2025 DATE REVISION 1: REVISION 2: DATE SHEET: DRAWN BY: JS SCALE: NTS OF 10

GENERAL NOTES
CONCRETE MONOLITHIC SLAB DESIGN IS BASED ON A MINIMUM SOIL BEARING CAPACITY OF 2500 PSF.

- 1. CONCRETE SHALL HAVE A MINIMUM SPECIFIED COMPRESSIVE STRENGTH OF 3000 PSI AT
- 2. ALL OPEN AREAS OF CONCRETE OUTSIDE OF THE PROPOSED STRUCTURE SHALL BE DESIGNED TO SLOPE AWAY FROM THE STRUCTURE.
- 3. WHERE CONCRETE SPECIFICATIONS ARE REQUIRED, BY ONE OR MORE REGULATORY AGENCY, THE FOLLOWING SPECIFICATIONS ARE APPLICABLE:
 a. CONCRETE SHALL CONFORM TO ASTM C94 FOR THE FOLLOWING COMPONENTS:
- i. PORTLAND CEMENT TYPE 1 ASTM C 150 ii AGGREGATES LARGE AGGREGATE 3/4 MAX. ASTM C 33
- iii. AIR ENTRAINING +/- 1 % ASTM C 260 iv. WATER REDUCING AGENT ASTM C 494
- v. CLEAN POTABLE WATER vi. OTHER ADMIXTURES NOT PERMITTED
- b. CONCRETE SLUMP AT DISCHARGE CHUTE NOT LESS THAN 3" OR MORE THAN 5". WATER ADDED AFTER BATCHING IS NOT PERMITTED.
- .. PREPARE & PLACE CONCRETE PER AMERICAN CONCRETE INSTITUTE MANUAL OF STANDARD
- PRACTICE, PART 1, 2, & 3 INCLUDING HOT WEATHER RECOMMENDATIONS.
- d. MOIST CURE OR POLYETHYLENE CURING PERMITTED.
- 1. CONTROL JOINTS SHALL BE PROVIDED AT EVERY 12' O.C. OR 18' O.C. FOR 4" THICK OR 6' THICK CONCRETE SLAB RESPECTIVELY.
- PRIOR TO PLACING CONCRETE, TREAT THE ENTIRE SUBSURFACE AREA FOR TERMITES IN COMPLIANCE WITH THE BUILDING CODE:

 a. TERMITE PROTECTION SHALL BE PROVIDED BY REGISTERED TERMITICIDES, INCLUDING SOI
- APPLIED PESTICIDES, BAITING SYSTEMS OR ANY OTHER APPROVED METHODS OF TERMITE
- b. CERTIFICATE OF COMPLIANCE SHALL BE ISSUED TO THE BUILDING DEPARTMENT UPON THE COMPLETION OF THE APPLICATION OF TERMITE PROTECTIVE TREATMENT BY A REGISTERED
- . INITIAL CHEMICAL SOIL TREATMENT INSIDE THE FOUNDATION PERIMETER SHALL BE DONE
- AFTER THE COMPLETION OF EXCAVATION, BACKFILLING AND COMPACTION.

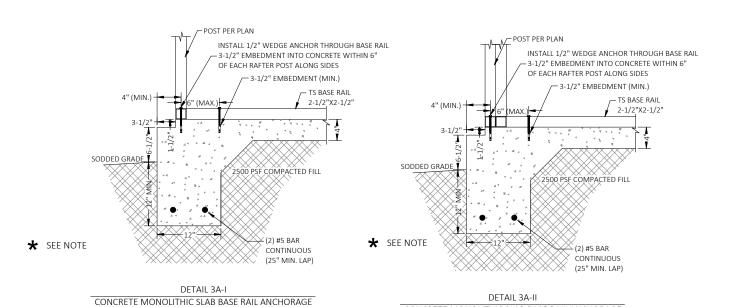
 d. IF SOIL TREATMENT IS USED FOR SUBTERRANEAN TERMITE PREVENTION, CHEMICALLY
 TREATED SOIL SHALL BE PROTECTED WITH A MINIMUM 6 MIL VAPOR RETARDER TO PROTECT AGAINST RAINFALL DILUTION. RETREATMENT IS REQUIRED IF RAINFALL OCCURS DURING VAPOR RETARDER PLACEMENT.
- e. PLACEMENT OF REINFORCING STEEL SHALL BE DONE AVOIDING THE PENETRATION AND DISTURBANCE OF TREATED SOIL.
- f. CONCRETE OVERPOUR OR MORTAR ACCUMULATED ALONG THE EXTERIOR FOUNDATION PERIMETER SHALL BE REMOVED PRIOR TO CHEMICAL SOIL TREATMENT.
- g. SOIL TREATMENT SHALL ALSO BE APPLIED TO ALL EXTERIOR CONCRETE OR GRADE WITHIN I FOOT OF PRIMARY STRUCTURE SIDE WALLS ALONG WITH A VERTICAL CHEMICAL BARRIER.
- . Protective sleeves around the Piping Penetrating the concrete slab-on-grade LOORS SHALL NOT BE OF CELLULOSE-CONTAINING MATERIALS.
- . A SIGNED CONTRACT ASSURING THE INSTALLATION, MAINTENANCE AND MONITORING SHALL BE PROVIDED TO THE BUILDING OFFICIAL PRIOR TO POURING OF SLAB IF A BAITING SYSTEM IS TO BE USED BY THE REGISTERED TERMITICIDE.

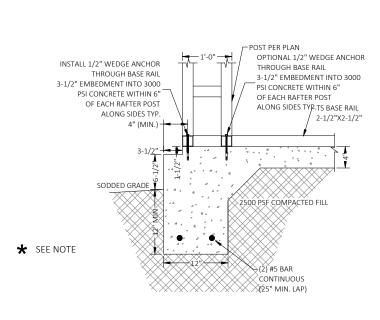
- 1. THE REINFORCING STEEL SHALL BE ASTM A615 GRADE 60. THE SLAB REINFORCEMENT SHALL BE WELDED WIRE FABRIC MEETING ASTM A185 OR FIBERGLASS FIBER
- 2. REINFORCEMENT MAY BE BENT IN THE FIELD OR SHOP AS LONG AS:
- a. IT IS BENT COLD; b. REINFRCEMENT PARTIALLY EMBEDDED IN CONCRETE SHALL NOT BE FIELD BENT
- c. THE DIAMETER OF THE BEND, MEASURED ON THE INSIDE OF THE BAR, IS NOT LESS THAN SIX-BAR DIAMETERS.
- 3. FOR FOUNDATIONS, MINIMUM CONCRETE COVER OVER REINFORCING BARS SHALL BE PER ACI-318: 3 INCHES WHERE THE CONCRETE IS POURED AGAINST AND TEMPORARY IN CONTACT WITH THE EARTH OR UNPROTECTED FROM THE EARTH OR WEATHER, OTHERWISE 1-1/2

1. FOUNDATION SHALL BE PROTECTED AGAINST FROST USING RIGID FOAM INSULATION (EPS OR EQUIVALENT). FOR NO FROST PROTECTION OPTION, COORDINATE WITH LOCAL BUILDING CODE AND/OR BUILDING OFFICIAL REGARDING REQUIRED FOOTING DEPTH BASED ON FROST

- HELIX ANCHOR NOTES:

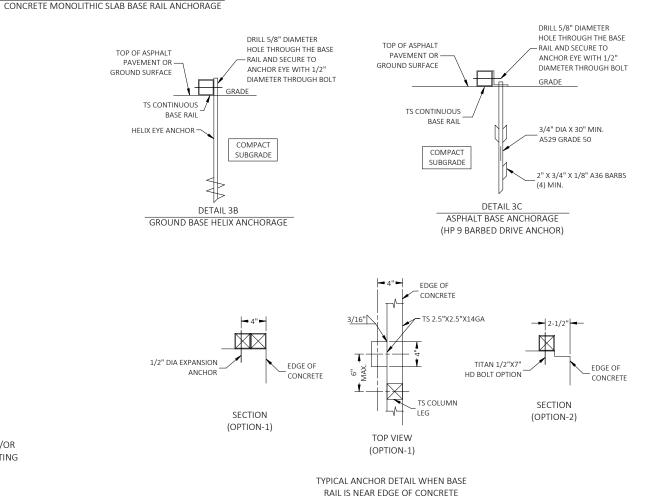
 1. FOR VERY DENSE AND/OR CEMENTED SANDS, COARSE GRAVEL AND COBBLES, CALICHE, PRELOADED SILTS AND CLAYS, CORALS, MEDIUM DENSE COARSE SANDS, SANDY GRAVELS, VERY STIFF SILTS AND CLAYS, MEDIUM TO VERY LOOSE DENSE SANDS, FIRM TO STIFF CLAYS AND SILTS, ALLUVIAL FILL, USE MINIMUM (2) $4^{\prime\prime}$ HELICES WITH MINIMUM 30 $^{\prime\prime}$ EMBEDMENT INSTALLED AT EVERY POST (LEG) / MAX. RAFTER SPACING.
- 2. THE UPLIFT/BEARING CAPACITY OF HELICAL ANCHOR MUST BE EQUAL TO OR GREATER THAN 8.5 KIPS FOR ANCHORS INSTALLED AT EVERY POST (LEG) / MAX. RAFTER SPACING.


 3. THE UPLIFT/BEARING CAPACITY OF HELICAL ANCHORS MUST BE AS SHOWN IN TABLE 4A
- FOR ANCHORS PROVIDED AT THE JAMBS OF DOOR OPENINGS. THE INCREASE IN HELICAL ANCHOR CAPACITY MAY BE ACHIEVED BY INCREASING THE DIAMETER AND/OR THE EMBEDMENT OF THE ANCHORS, OR BY USING DIFFERENT ANCHORS DEPENDING ON THE MANUFACTURER'S SPECIFICATIONS.


HP 9 BARBED DRIVE ANCHOR NOTES:

- 1. ANCHOR TO BE 3/4" DIA (A529 GRADE 50) WITH 30" MIN. EMBEDMENT & (4) MIN. BARBS AS SHOWN IN DETAIL 3C.
- 2. FOR VERY DENSE AND/OR CEMENTED SANDS, COARSE GRAVEL AND COBBLES, CALICHE PRELOADED SILTS AND CLAYS, CORALS, MEDIUM DENSE COARSE SANDS, SANDY GRAVELS, VERY STIFF SILTS AND CLAYS, MEDIUM TO VERY LOOSE DENSE SANDS, FIRM TO STIFF CLAYS AND SILTS, ALLUVIAL FILL, ANCHOR SHALL BE INSTALLED AT EVERY POST (LEG) / MAX. RAFTER
- 3. THE UPLIFT/BEARING CAPACITY OF EACH ANCHOR MUST BE EQUAL TO OR GREATER THAN 8.5 KIPS FOR ANCHORS INSTALLED AT EVERY POST (LEG) / MAX. RAFTER SPACING.
- 4. THE UPLIFT/BEARING CAPACITY OF THE ANCHORS MUST BE AS SHOWN IN TABLE 4A FOR ANCHORS PROVIDED AT THE JAMBS OF DOOR OPENINGS. THE INCREASE IN ANCHOR CAPACITY MAY BE ACHIEVED BY INCREASING THE DIAMETER AND/OR THE EMBEDMENT OF THE ANCHORS, OR BY USING DIFFERENT ANCHORS DEPENDING ON THE MANUFACTURER'S SPECIFICATIONS.

TABLE 4A


REQUIRED UPLIFT / BEARING CAPACITY			
OF HELICAL ANCHORS			
6	11.0	9.5	
8	13.0	11.5	
10	15.0	13.0	
12	17.0	14.5	
14	19.5	16.5	
16	21.5	18.0	
18	23.5	20.0	
20	25.5	21.5	
	6 8 10 12 14 16 18	ANCHORS 4 6 11.0 8 13.0 10 15.0 12 17.0 14 19.5 16 21.5 18 23.5	

DETAIL 3A-III CONCRETE MONOLITHIC SLAB BASE RAIL ANCHORAGE

> = COORDINATE WITH LOCAL BUILDING CODE AND/OR BUILDING OFFICIAL REGARDING REQUIRED FOOTING DEPTH BASED ON FROST LINE DEPTH

4161 TAMIAMI TRAIL, UNIT 101
PORT CHARLOTTE, FLORIDA 33952
(941) 391-5980
FLEng.com
Orders@FLEng.com **UNIT 101** ORIDA

251257

9 N

PROJECT

BUILDINGS I NER AVE L 32055 BEST METAL B 484 NW TURNE LAKE CITY FL 3

32025 PHILPOT 177 SE PITTMAN CT, LAKE CITY, FLORIDA, 3 JECT ADDRESS

DESIGN DATE 03/07/2025 REVISION 1: DATE REVISION 2: DATE SHEET:

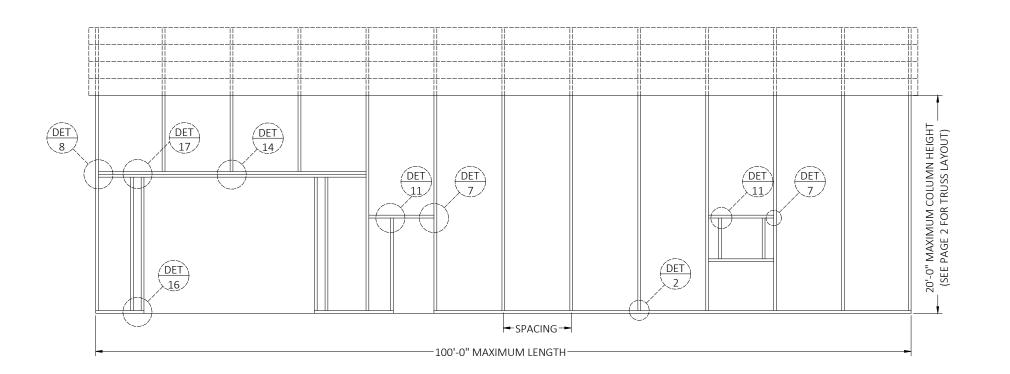
JS

NTS

DRAWN BY:

SCALE:

item has sealed b on the c ited copi conside d the sign


BASE RAIL ANCHORAGE OPTION

TYPICAL BOX EAVE RAFTER END WALL FRAMING SECTION

-30'-0" MAXIMUM RAFTER SPAN

SPACING = 5'-0" FOR WIND SPEEDS BETWEEN 110 MPH AND 150 MPH SPACING = 4'-0" FOR WIND SPEEDS BETWEEN 151 MPH AND 170 MPH

(SEE PG-09 FOR HEADER DETAILS)

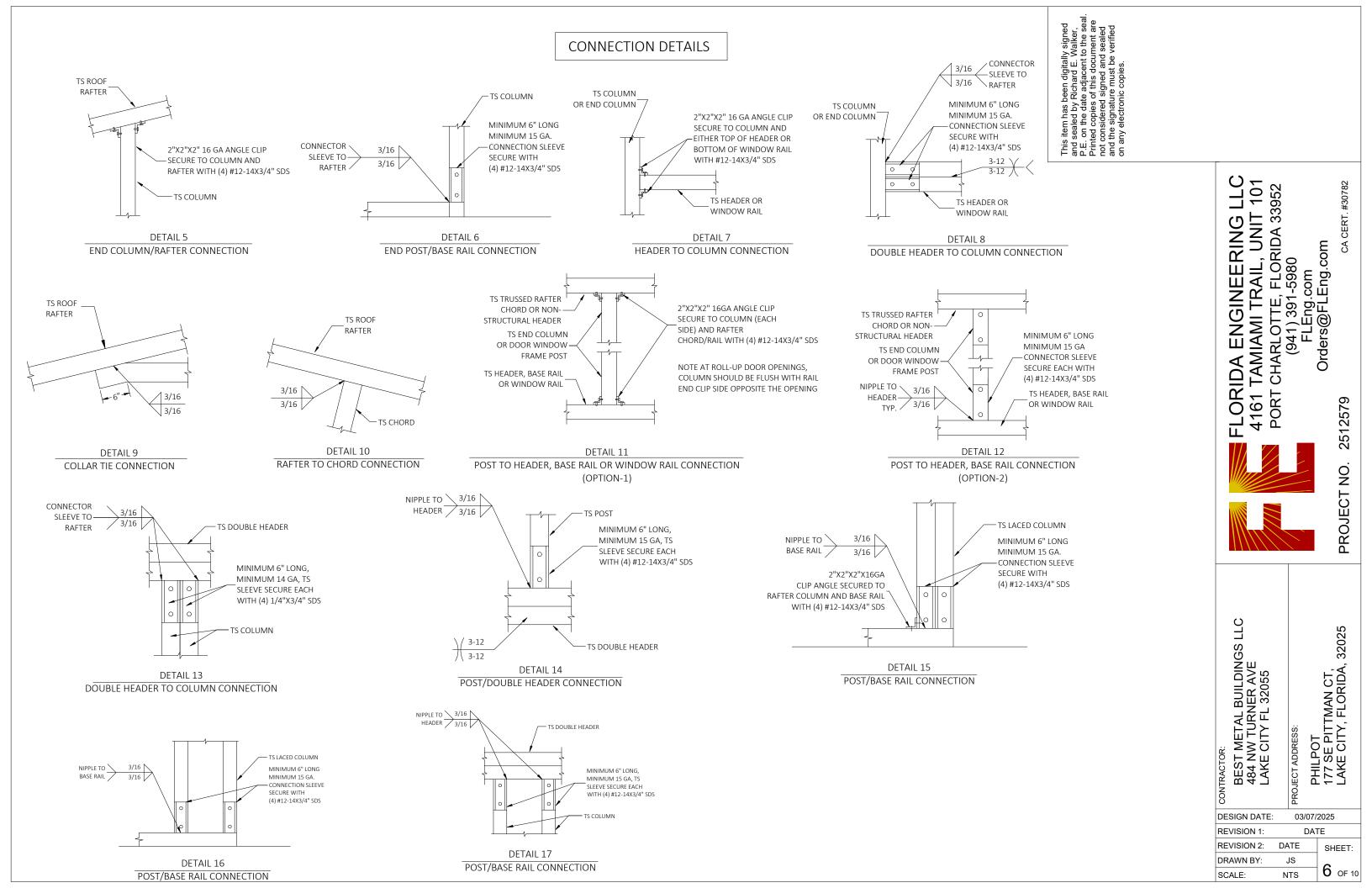
TYPICAL BOX EAVE RAFTER SIDE WALL FRAMING SECTION

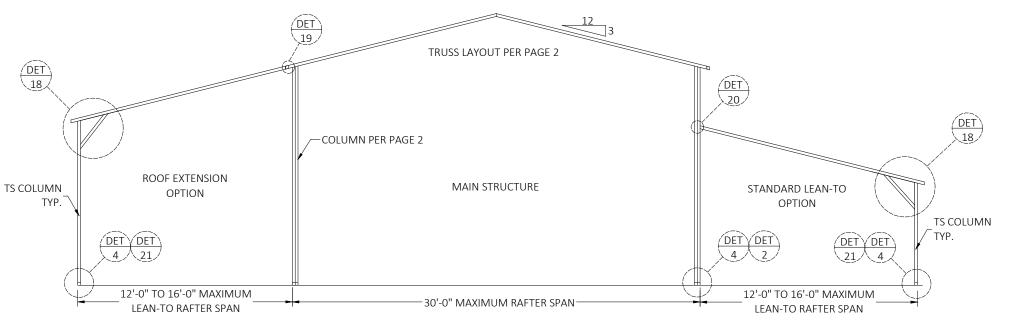
SPACING = 5'-0" FOR WIND SPEEDS BETWEEN 110 MPH AND 150 MPH SPACING = 4'-0" FOR WIND SPEEDS BETWEEN 151 MPH AND 170 MPH FLORIDA ENGINEERING LLC
4161 TAMIAMI TRAIL, UNIT 101
PORT CHARLOTTE, FLORIDA 33952
(941) 391-5980
FLEng.com
Orders@FLEng.com

CA CERT. #30782

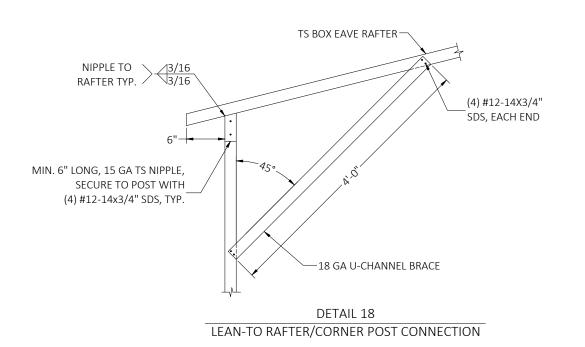
2512579

PROJECT NO.



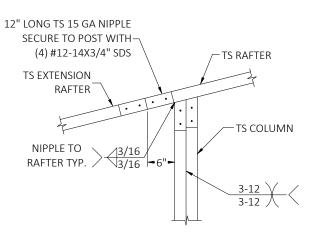


BEST METAL BUILDINGS LLC 484 NW TURNER AVE LAKE CITY FL 32055 PHILPOT 177 SE PITTMAN CT, LAKE CITY, FLORIDA, 32025

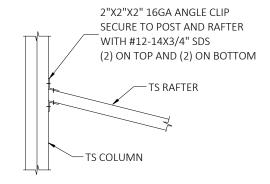

PROJECT ADDRESS: 03/07/2025

DESIGN DATE: REVISION 1: REVISION 2: SHEET: DRAWN BY: **5** OF 10 SCALE: NTS

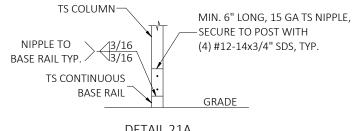
TYPICAL BOX EAVE RAFTER LEAN-TO OPTIONS FRAMING SECTION

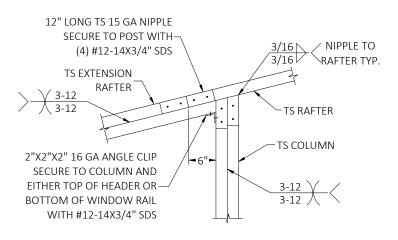

FLORIDA ENGINEERING LLC
4161 TAMIAMI TRAIL, UNIT 101
PORT CHARLOTTE, FLORIDA 33952
(941) 391-5980
FLEng.com
Orders@FLEng.com

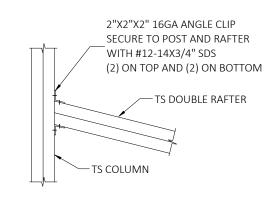
BEST METAL BUILDINGS LLC 484 NW TURNER AVE LAKE CITY FL 32055 PHILPOT 177 SE PITTMAN CT, LAKE CITY, FLORIDA, 32025

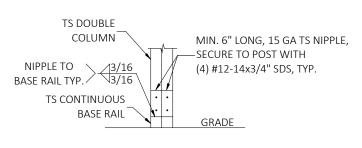

2512579

PROJECT NO.


PROJECT ADDRESS: 03/07/2025 DESIGN DATE: REVISION 1: DATE REVISION 2: DATE SHEET: DRAWN BY: SCALE:


DETAIL 19A SIDE EXTENSION RAFTER/COLUMN CONNECTION FOR RAFTER SPANS LESS THAN 12'-0"


DETAIL 20A LEAN TO RAFTER/COLUMN CONNECTION FOR RAFTER SPANS LESS THAN 12'-0"


DETAIL 21A LEAN-TO POST CONNECTION

DETAIL 19B SIDE EXTENSION RAFTER/COLUMN CONNECTION FOR RAFTER SPANS BETWEEN 12'-0" AND 16'-0"

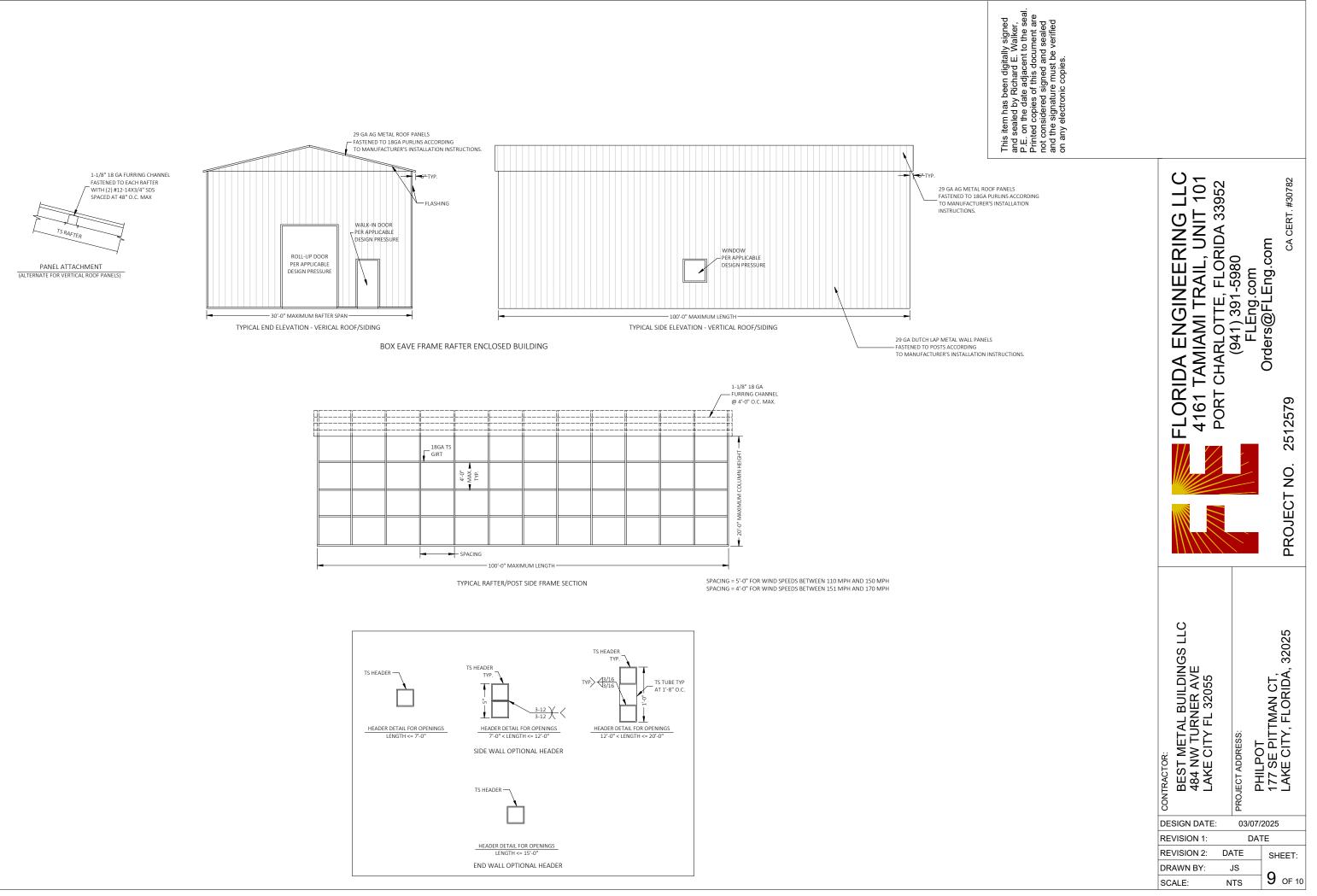
DETAIL 20B LEAN TO RAFTER/COLUMN CONNECTION FOR RAFTER SPANS BETWEEN 12'-0" AND 16'-0"

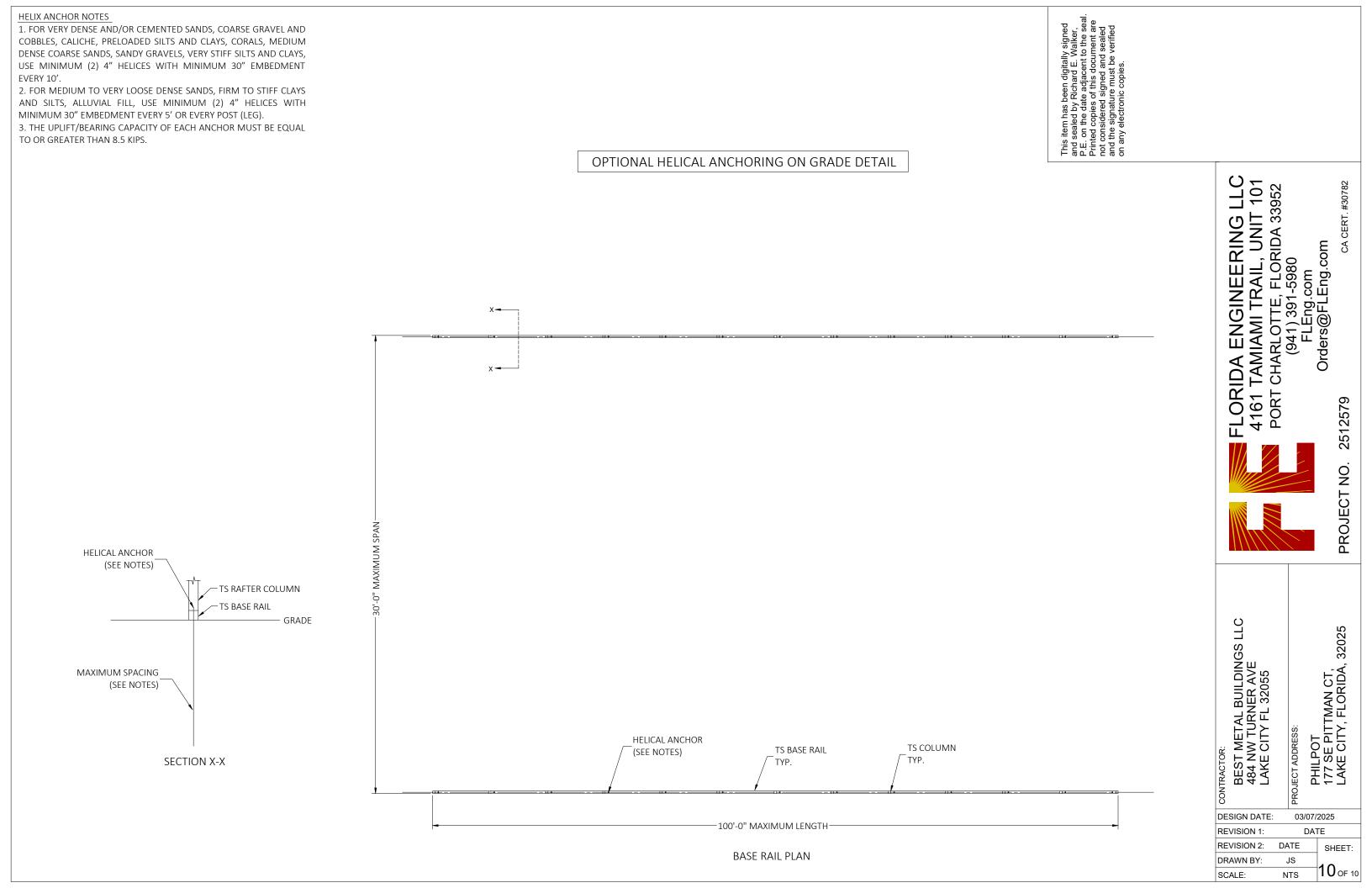
DETAIL 21B LEAN-TO DOUBLE POST CONNECTION

FLORIDA ENGINEERING LLC 4161 TAMIAMI TRAIL, UNIT 101 PORT CHARLOTTE, FLORIDA 33952 (941) 391-5980 FLEng.com Orders@FLEng.com FLORIDA

2512579

PROJECT NO.





BEST METAL BUILDINGS LLC 484 NW TURNER AVE LAKE CITY FL 32055 PHILPOT 177 SE PITTMAN CT, LAKE CITY, FLORIDA, 32025 PROJECT ADDRESS

DESIGN DATE: 03/07/2025 REVISION 1: DATE REVISION 2: DATE SHEET: DRAWN BY: 8 OF 10

