

Lumber design values are in accordance with ANSI/TPI 1 section 6.3
These truss designs rely on lumber values established by others.

RE: 2975129 - WOODMAN PARK - SOLER RES.

MiTek USA, Inc.

6904 Parke East Blvd.
Tampa, FL 33610-4115

Site Information:
Customer Info: Woodman Park Project Name: Soler Res. Model: Custom
Lot/Block: N/A Subdivision: N/A
Address: TBD, TBD
City: Columbia Cty State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:
Address:
City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014 Design Program: MiTek 20/20 8.4
Wind Code: ASCE 7-16 Wind Speed: 130 mph
Roof Load: 37.0 psf Floor Load: N/A psf

This package includes 38 individual, Truss Design Drawings and 0 Additional Drawings.

With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

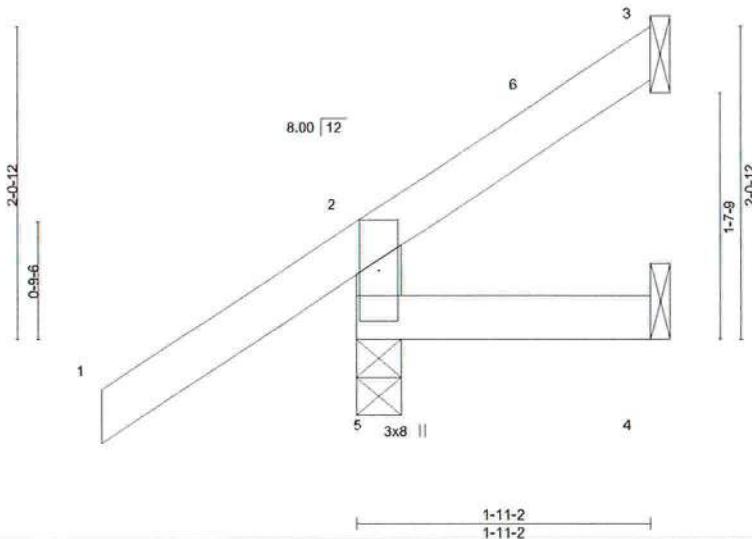
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T25771977	CJ02	10/27/21	23	T25771999	T10G	10/27/21
2	T25771978	CJ03	10/27/21	24	T25772000	T11	10/27/21
3	T25771979	CJ05	10/27/21	25	T25772001	T11G	10/27/21
4	T25771980	EJ01	10/27/21	26	T25772002	T12	10/27/21
5	T25771981	EJ02	10/27/21	27	T25772003	T13	10/27/21
6	T25771982	EJ03	10/27/21	28	T25772004	T13G	10/27/21
7	T25771983	EJ04	10/27/21	29	T25772005	T14	10/27/21
8	T25771984	EJ05	10/27/21	30	T25772006	T15	10/27/21
9	T25771985	EJ06	10/27/21	31	T25772007	T16	10/27/21
10	T25771986	HJ07	10/27/21	32	T25772008	T17	10/27/21
11	T25771987	T01	10/27/21	33	T25772009	T18	10/27/21
12	T25771988	T01G	10/27/21	34	T25772010	T19	10/27/21
13	T25771989	T01GG	10/27/21	35	T25772011	T19G	10/27/21
14	T25771990	T02	10/27/21	36	T25772012	T20	10/27/21
15	T25771991	T03	10/27/21	37	T25772013	T21	10/27/21
16	T25771992	T04	10/27/21	38	T25772014	T21G	10/27/21
17	T25771993	T05	10/27/21				
18	T25771994	T06	10/27/21				
19	T25771995	T07	10/27/21				
20	T25771996	T08	10/27/21				
21	T25771997	T09	10/27/21				
22	T25771998	T10	10/27/21				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Lake City, FL.

Truss Design Engineer's Name: ORegan, Philip
My license renewal date for the state of Florida is February 28, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date: October 27,2021


Job 2975129	Truss CJ02	Truss Type Jack-Open	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771977
----------------	---------------	-------------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:56:29 2021 Page 1

ID:UaeXTPygXi2QdsDR5DulQoyPd77-z11k13CJl3nYx5g2Ts1TlmS2ZgoAZ8h9YNYpavyPyb0

-1-8-0 1-8-0 1-11-2 1-11-2

Scale = 1:14.2

1-11-2
1-11-2

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 2-0-0	TC 0.28	Vert(LL)	0.00	5	>999	MT20	244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.06	Vert(CT)	0.00	5	>999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	-0.00	3	n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MR					Weight: 10 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 1-11-2 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

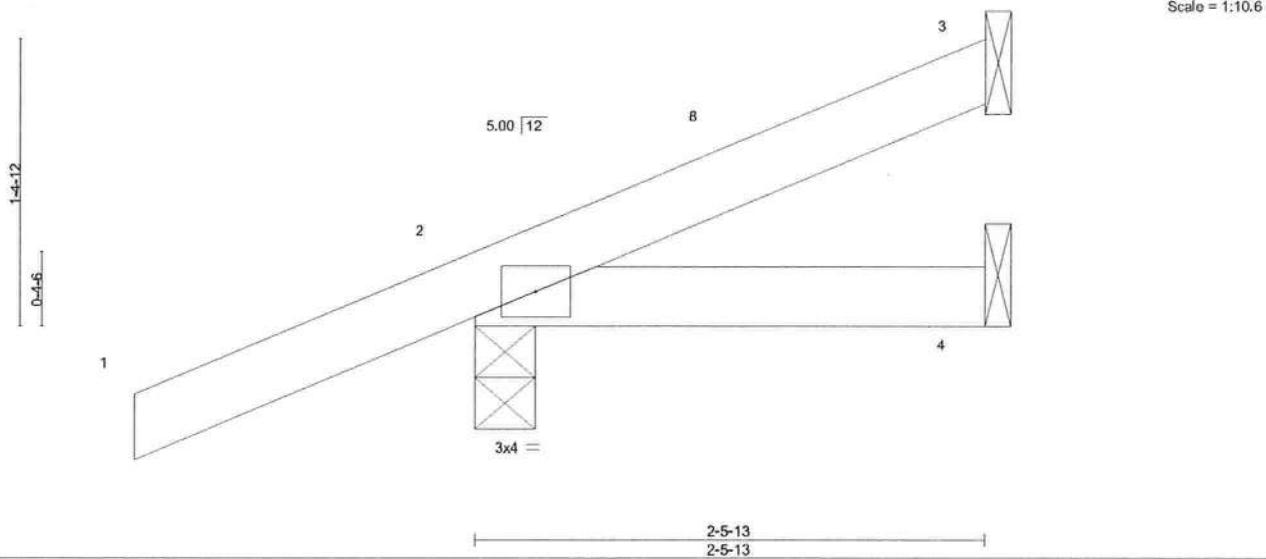
REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical
Max Horz 5=70(LC 12)
Max Uplift 5=51(LC 12), 3=24(LC 12)
Max Grav. 5=213(LC 1), 3=20(LC 19), 4=29(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vull=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-8-0 to 1-4-0, Interior(1) 1-4-0 to 1-10-15 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint 5 and 24 lb uplift at joint 3.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Park East Blvd. Tampa FL 33610
Date:


October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Park East Blvd.
Tampa, FL 33610

Job 2975129	Truss CJ03	Truss Type Jack-Open	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771978
Builders FirstSource (Lake City,FL),	Lake City, FL - 32055,		8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:56:30 2021 Page 1 ID:UaeXTPyqXi2QdsDR5DulQoyPd7?-RVb7WPCxeMvPYFFF1ZZir_F948ZlbxJm1N7LyPYb?	2-5-13 2-5-13 2-5-13	Job Reference (optional)	

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.16	Vert(LL)	-0.00	7 >999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.05	Vert(CT)	-0.00	7 >999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	0.00	3 n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MP					Weight: 11 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-5-13 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical
Max Horz 2=55(LC 12)
Max Uplift 3=-22(LC 12), 2=-72(LC 8)
Max Grav 3=41(LC 1), 2=211(LC 1), 4=38(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 1-4-0, Interior(1) 1-4-0 to 2-5-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 3 and 72 lb uplift at joint 2.

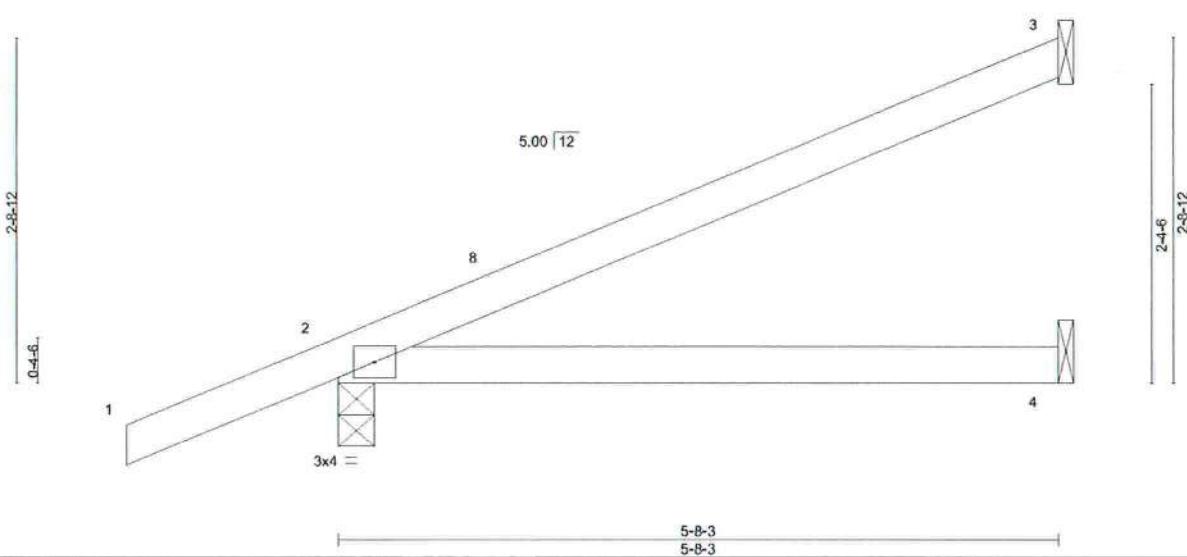
Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - SOLER RES.
2975129	CJ05	Jack-Open	1	1	


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

T25771979

-1-8-0
1-8-0

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:56:32 2021 Page 1
ID:UaeXTPyqX2QdsDR5DulQoyPd77-Nlx4ECA_96oY0d8_bAwP4YLlumVRbELnTAEyPYaz

5-8-3
5-8-3

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 2-0-0	TC 0.37	Vert(LL) 0.05 in (loc) 4-7 l/defl >999	MT20	244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.31	Vert(CT) -0.09 4-7 >764		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 2 n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MP		Weight: 20 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-8-3 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical
Max Horz 2=101(LC 12)
Max Uplift 3=-70(LC 12), 2=-80(LC 12)
Max Grav 3=129(LC 1), 2=311(LC 1), 4=100(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

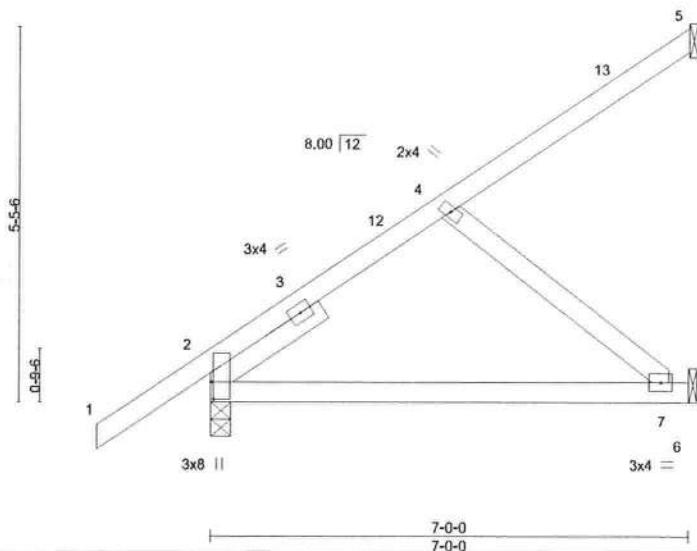
- 1) Wind: ASCE 7-16; Vull=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B: End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-8-0 to 1-4-0, Interior(1) 1-4-0 to 5-7-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 3 and 80 lb uplift at joint 2.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5-19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610


Job 2975129	Truss EJ01	Truss Type Jack-Partial	Qty 11	Ply 1	WOODMAN PARK - SOLER RES.	T25771980
----------------	---------------	----------------------------	-----------	----------	---------------------------	-----------

Builders FirstSource (Lake City, FL), Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:56:37 2021 Page 1

ID:UaeXTPyqXi2QdsDR5DulQoyPd72-krWm_oIK_WoPuJhbxBBLdSnQRuRSRIRLNdUErRyPyau

-1-8-0 3-6-0 7-0-0
1-8-0 3-6-0 3-6-0

Scale: 3/8"=1'

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

Plate Offsets (X,Y) - [2:0-3-0,0-0-7]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.22	Vert(LL)	-0.07	7-10	>999	240	
TCDL 7.0	Lumber DOL	1.25	BC 0.41	Vert(CT)	-0.14	7-10	>590	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.08	Horz(CT)	0.01	2	n/a	n/a	
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS						Weight: 35 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=Mechanical, 2=0-3-8, 6=Mechanical
Max Horz 2=185(LC 12)

Max Uplift 5=47(LC 12), 2=-49(LC 12), 6=-67(LC 12)
Max Grav 5=80(LC 19), 2=357(LC 1), 6=182(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-4=501/0

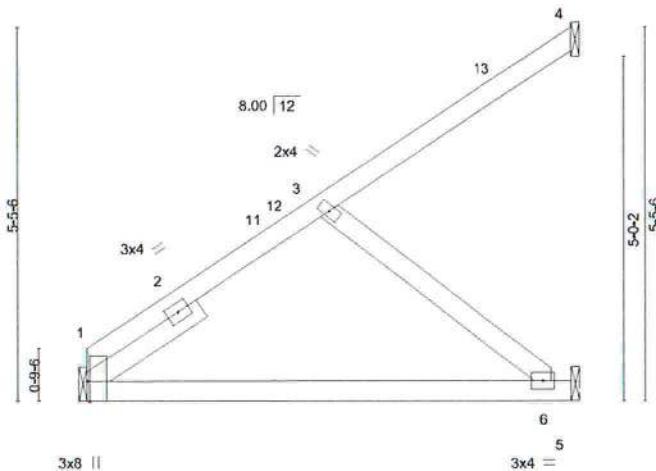
NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Endl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-8-0 to 1-4-0, Interior(1) 1-4-0 to 6-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 5, 49 lb uplift at joint 2 and 67 lb uplift at joint 6.

October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610


Job 2975129	Truss EJ02	Truss Type Jack-Partial	Qty 4	Ply 1	WOODMAN PARK - SOLER RES.	T25771981
----------------	---------------	----------------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.430 s Jul 16 2021 MiTek Industries, Inc. Wed Oct 27 11:11:19 2021 Page 1

ID:UaeXTPyqXi2QdsDR5DulQoyPd7?x3DGNm0NHTwYvB0?uDloQW_RlRUsxCqmNi2yPDm

3-6-0 3-6-0 7-0-0 3-6-0

Scale = 1:31.5

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

Plate Offsets (X,Y) - [1:0-3-8,Edge]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.24	Vert(LL)	-0.07	6-9	>999	240		
TCDL 7.0	Lumber DOL	1.25	BC 0.42	Vert(CT)	-0.14	6-9	>579	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.09	Horz(CT)	0.01	1	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS						Weight: 32 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=Mechanical, 4=Mechanical, 5=Mechanical

Max Horz: 1=153(LC 12)
Max Uplift 1=10(LC 12), 4=46(LC 12), 5=74(LC 12)
Max Grav 1=257(LC 1), 4=76(LC 19), 5=195(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-542/48

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCp=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 6-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1, 46 lb uplift at joint 4 and 74 lb uplift at joint 5.

October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5-19-2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Walcoff, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss EJ03	Truss Type Half Hip	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771982
Builders FirstSource (Lake City,FL),	Lake City, FL - 32055,		8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:56:50 2021 Page 1 ID:UaeXTPyqXi2QdsDR5DulQoyPd7?rLohiESUwWRZyJm5CmwOfCpeb8u3_dYFN98QpByPYah	5-9-0 5-9-0	7-0-0 7-0-0	1-3-0 1-3-0

Scale = 1:30.2

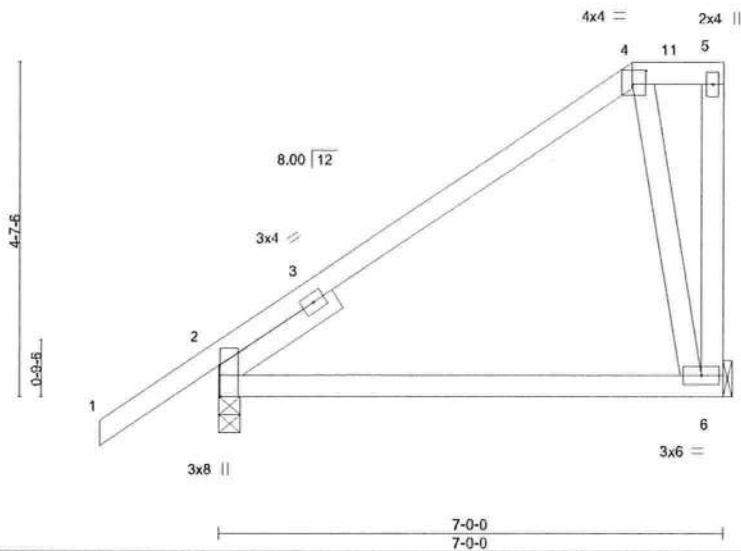


Plate Offsets (X,Y) - [2:0-5-2,Edge], [4:0-2-4,0-2-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.32	Vert(LL)	-0.06	6-9	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.38	Vert(CT)	-0.14	6-9	>598	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.09	Horz(CT)	0.02	2	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS						Weight: 41 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
 BOT CHORD 2x4 SP No.2
 WEBS 2x4 SP No.3
 SLIDER Left 2x4 SP No.3 1-11-8

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 6=Mechanical, 2=0-3-8

Max Horz 2=166(LC 12)
 Max Uplift 6=102(LC 12), 2=62(LC 12)
 Max Grav 6=243(LC 1), 2=355(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-348/11

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 1-8-0 to 1-4-0, Interior(1) 1-4-0 to 5-9-0, Exterior(2E) 5-9-0 to 6-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 6=102.

Philip J. O'Regan PE No.58126
 MiTek USA, Inc. FL Cert 6634
 6904 Parke East Blvd. Tampa FL 33610
 Date:

October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
 Tampa, FL 33610

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - SOLER RES.
2975129	EJ04	Half Hip	1	1	

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:01 2021 Page 1

T25771983

ID:UaeXTPyqX2QdsDR5DulQoyPd7?1Syr0?aOKup?m?6CLaczbWnVbZe63clvMIWl2yPYaW

-1-8-0 4-6-0 7-0-0
1-8-0 4-6-0 2-6-0

Scale = 1:24.6

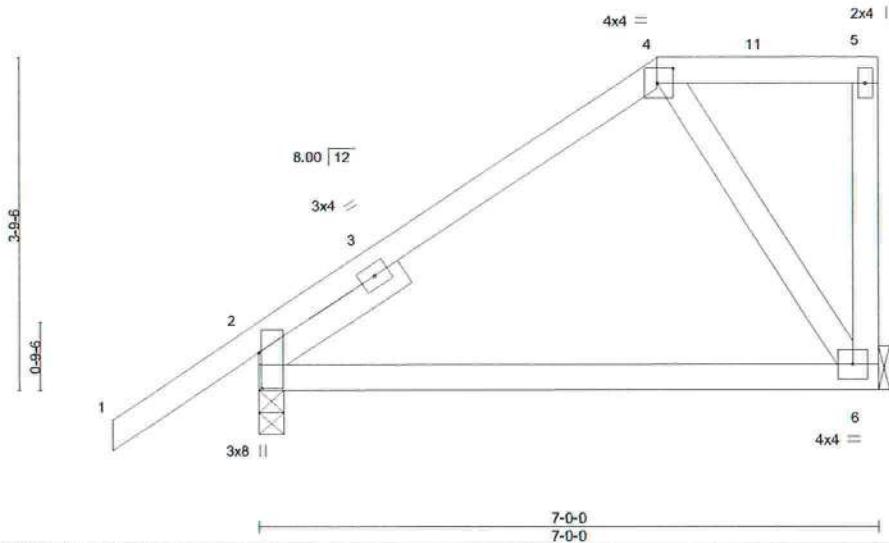


Plate Offsets (X,Y) - [2:0-4-14,0-0-7], [4:0-2-4,0-2-0]

LOADING (psf)	SPACING-Plate Grip DOL	2-0-0	CSI.	DEFL.	in	(loc)	l/delf	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.27	Vert(LL)	-0.06	6-9	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.35	Vert(CT)	-0.12	6-9	>691	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.06	Horz(CT)	0.01	2	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS						Weight: 39 lb	FT = 20%

LUMBER-
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 1-11-8

BRACING-
TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 6=Mechanical
Max Horz 2=137(LC 12)
Max Uplift 2=-77(LC 12), 6=-78(LC 12)
Max Grav 2=355(LC 1), 6=243(LC 1)

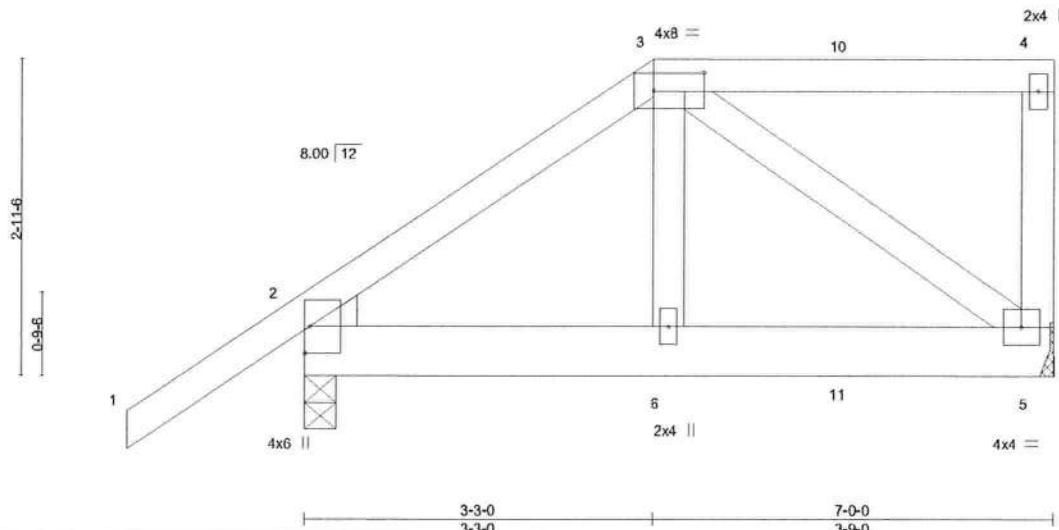
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-4=-397/35

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 1-8-0 to 1-4-0, Interior(1) 1-4-0 to 4-6-0, Exterior(2E) 4-6-0 to 6-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5-19-2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss EJ05	Truss Type Half Hip Girder	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771984
Builders FirstSource (Lake City, FL),	Lake City, FL - 32055,		8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:05 2021 Page 1 ID:UaeXTPyqXi2QdsDR5DulQoyPd7?eC1sMdvO7JRFdQzaQhvmMxBoB2C?PoSp_GjrpyPYaS			
			-1-8-0 1-8-0	3-3-0 3-3-0	7-0-0 3-9-0	

Scale = 1:20.3

Plate Offsets (X,Y) - [3:0-5-12,0-2-0]									
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.32	Vert(LL)	-0.00	5-6 >999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.14	Vert(CT)	-0.01	5-6 >999	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.12	Horz(CT)	0.00	5 n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS					Weight: 44 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3
WEDGE

Left: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 5=Mechanical

Max Horz 2=108(LC 8)
Max Uplift 2=-111(LC 8), 5=-102(LC 5)
Max Grav 2=446(LC 1), 5=400(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-380/74
BOT CHORD 2-6=-88/281, 5-6=-88/290
WEBS 3-6=0/289, 3-5=-324/97

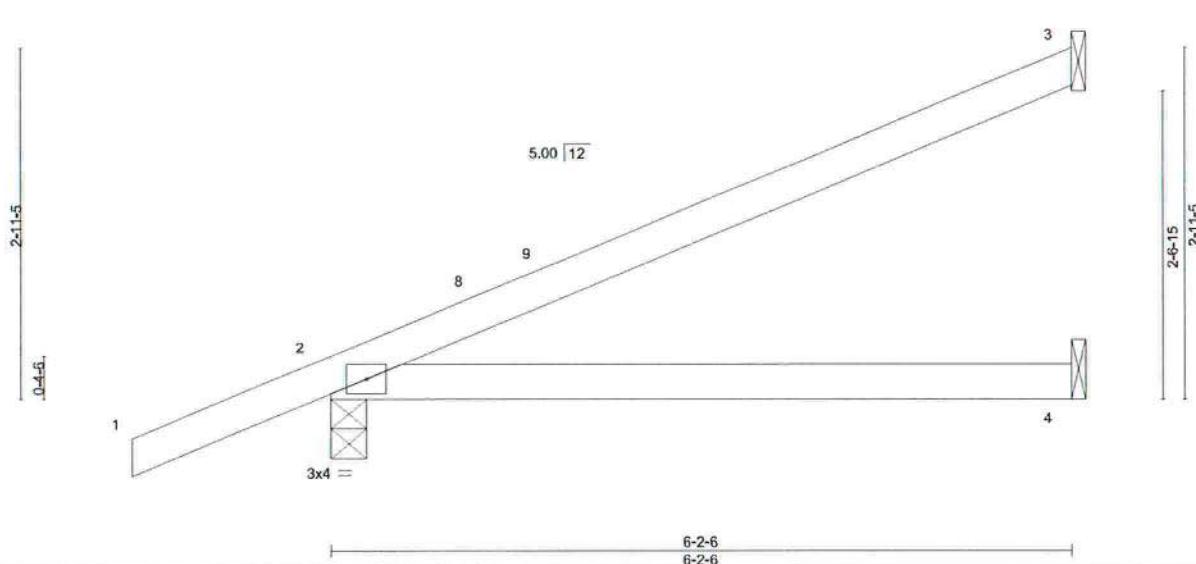
NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B: End., GCpI=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=111, 5=102.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 88 lb down and 74 lb up at 5-0-12 on top chord, and 130 lb down and 35 lb up at 3-3-0, and 70 lb down at 5-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-3=-54, 3-4=-54, 5-7=-20
Concentrated Loads (lb)
Vert: 6=-107(B) 10=-88(B) 11=-53(B)

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:


October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss EJ06	Truss Type Jack-Open	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771985
Builders FirstSource (Lake City, FL),	Lake City, FL - 32055.				Job Reference (optional)	
					8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:06 2021 Page 1 ID:UaeXTPyqXzQdsDR5DuloyPd7?NQmk3ieX9Sln?A87C8laUKoalIkrc2e0HNFyPYar	

Scale = 1:18.1

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 2-0-0	TC 0.46	Vert(LL) -0.06	MT20	244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.38	Vert(CT) -0.13		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MP			Weight: 22 lb FT = 20%

LUMBER-
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2

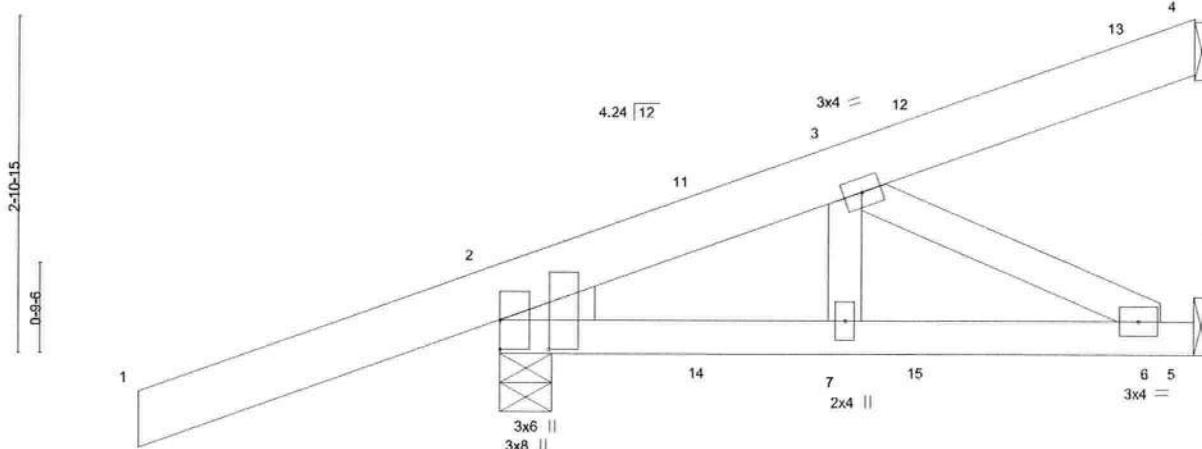
BRACING-
TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical
Max Horz 2=108(LC 12)
Max Uplift 3=-77(LC 12), 2=-83(LC 12)
Max Grav 3=142(LC 1), 2=329(LC 1), 4=110(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-8-0 to 1-4-0, Interior(1) 1-4-0 to 6-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.


Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date: October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5-19-2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek
6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss HJ07	Truss Type Diagonal Hip Girder	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771986
Builders FirstSource (Lake City, FL),	Lake City, FL - 32055,				8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:08 2021 Page 1 ID:UaeXTPyqXi2QdsDR5DulQoyPd7?JplUUOgnh2?648YFYEcN?ZiVO4gCnZvWyVNR8yPYaP	
			-3-1-12 3-1-12	3-0-0 3-0-0	0-0-6 3-0-6	

Scale = 1:18.8

3-0-0	5-11-10	6-0-6
3-0-0	2-11-10	0-0-12

Plate Offsets (X,Y) - [2:0-3-0,0-5-1]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.29	Vert(LL)	-0.01	6-7 >999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.16	Vert(CT)	-0.01	6-7 >999	180		
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.05	Horz(CT)	-0.00	4 n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MP					Weight: 39 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
WEDGE
Left: 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.


REACTIONS. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5 except (jI=jB) 2=196.
- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 15 lb down and 19 lb up at 1-9-11, and 64 lb down and 20 lb up at 3-8-8, and 67 lb down and 80 lb up at 5-6-15 on top chord, and 16 lb down and 1 lb up at 1-9-11, and 13 lb down and 8 lb up at 3-8-8, and 54 lb down at 5-6-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-4=-54, 5-8=-20
Concentrated Loads (lb)
Vert: 6=-43(B) 13=-67(B) 14=1(B) 15=8(F)

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T01	Truss Type Common	Qty 2	Ply 1	WOODMAN PARK - SOLER RES.	T25771987
Builders FirstSource (Lake City,FL),	Lake City, FL - 32055,				8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:10 2021 Page 1 ID:UaeXTPyqXi2QdsDR5DulQoyPd72-GB?Ev4h1D1yMOlxNzH4TQe1aCf6geOBzG_UW1yPyAn	
			11-0-8 5-8-4	16-8-12 5-8-4	22-1-0 5-4-4	

4x6 //

Scale: 1/4"=1'

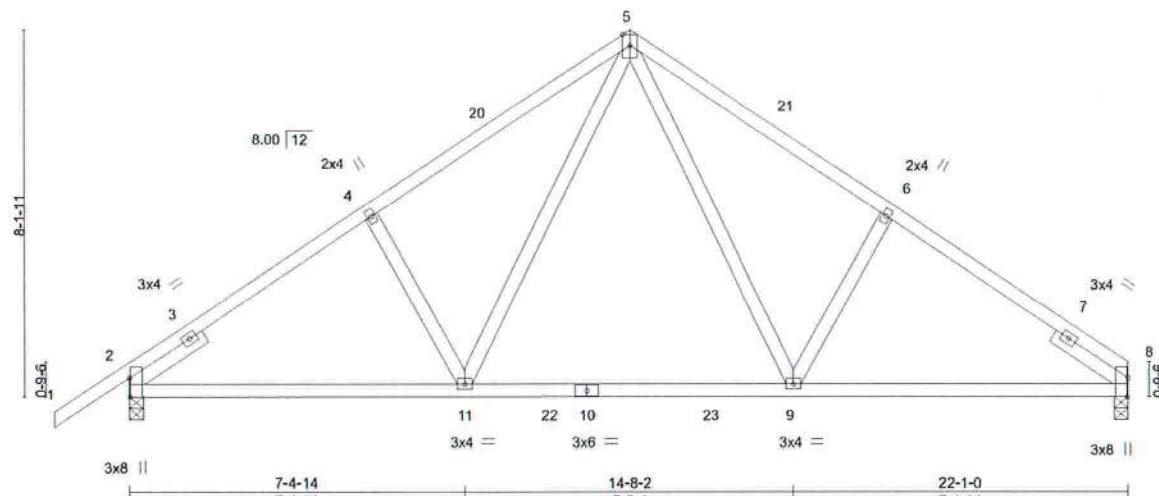


Plate Offsets (X,Y)- [2:0-5-2,Edge], [8:0-5-2,Edge]

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.38	Vert(LL)	-0.13	9-11	>999	240	
TCDL 7.0	Lumber DOL 1.25	BC 0.54	Vert(CT)	-0.20	9-11	>999	180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.22	Horz(CT)	0.03	8	n/a	n/a	
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS					Weight: 119 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
 BOT CHORD 2x4 SP No.2
 WEBS 2x4 SP No.3
 SLIDER Left 2x4 SP No.3 1-11-8, Right 2x4 SP No.3 1-11-8

REACTIONS. (size) 8=0-3-8, 2=0-3-8

Max Horz 2=178(LC 11)
 Max Uplift 8=-159(LC 13), 2=-196(LC 12)
 Max Grav 8=931(LC 20), 2=1019(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1182/221, 4-5=-1111/266, 5-6=-1122/272, 6-8=-1165/230
 BOT CHORD 2-11=-222/1049, 9-11=-65/704, 8-9=-132/941
 WEBS 5-9=-155/560, 6-9=-254/205, 5-11=-147/544

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., Gcp=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 1-4-0, Interior(1) 1-4-0 to 11-0-8, Exterior(2R) 11-0-8 to 14-0-8, Interior(1) 14-0-8 to 22-1-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=159, 2=196.

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-0-1 oc purlins.
 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Philip J. O'Regan PE No.58126
 MiTek USA, Inc. FL Cert 6634
 6904 Park East Blvd. Tampa FL 33610
 Date: October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Walcoff, MD 20601

MiTek
 6904 Park East Blvd.
 Tampa, FL 33610

Job 2975129	Truss T01G	Truss Type GABLE	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771988
----------------	---------------	---------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City, FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:12 2021 Page 1
ID:UaeXTPyqXi2QdsDR5DulQoyPd7?Ca7?KmjIIGRbiSJKUOJYYrkNm?Nz8YxUQaTbbyvPYA
-1-8-0 5-4-4 11-0-8 16-8-12 22-1-0 23-9-0
1-8-0 5-4-4 5-8-4 5-8-4 5-4-4 1-8-0

4x6 //

Scale = 1:52.8

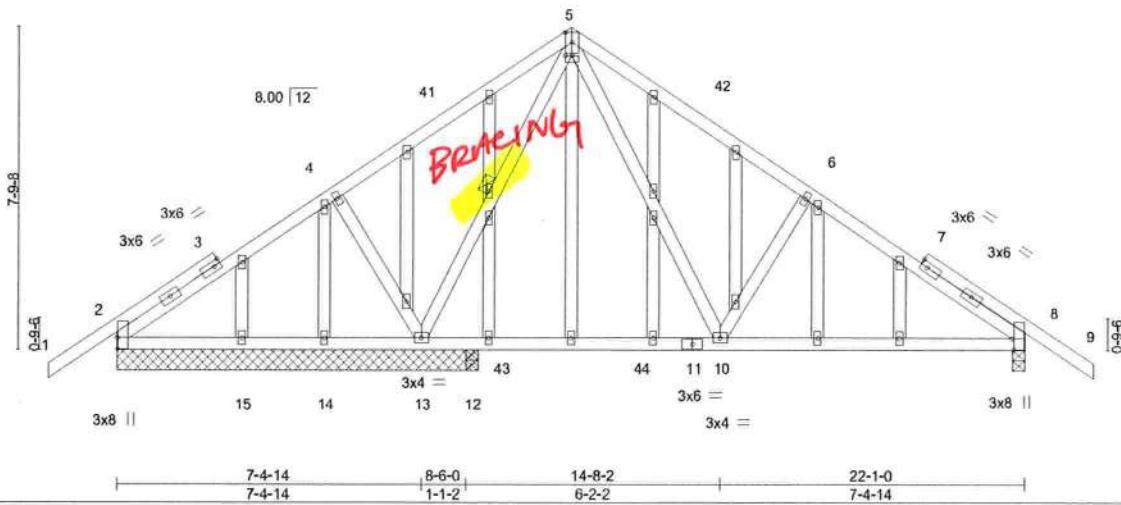


Plate Offsets (X,Y) - [2:0-3-4,0-0-2], [5:0-2-0,0-0-0], [8:0-3-4,0-0-10]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.34	Vert(LL)	-0.05	10-39	>999	240	
TCDL 7.0	Lumber DOL	1.25	BC 0.42	Vert(CT)	-0.10	10-39	>999	180	
BCLL 0.0 *	Rep Stress Incr YES		WB 0.22	Horz(CT)	0.00	8	n/a	n/a	
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS					Weight: 178 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS 1 Row at midpt 5-13

REACTIONS.

All bearings 8-9-8 except (jt=length) 8=0-3-8, 12=0-3-8.
(lb) - Max Horz 2=179(LC 10)
Max Uplift All uplift 100 lb or less at joint(s) 2, 15 except 8=-153(LC 13), 13=-248(LC 12)
Max Grav All reactions 250 lb or less at joint(s) 14, 15 except 2=292(LC 23), 8=677(LC 20), 13=733(LC 1), 12=305(LC 18), 2=260(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 5-6=-585/193, 6-8=677/154
BOT CHORD 8-10=-40/525
WEBS 5-10=-153/586, 6-10=-315/208, 5-13=-580/114, 4-13=-296/211

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 1-4-0, Interior(1) 1-4-0 to 11-0-8, Exterior(2R) 11-0-8 to 14-0-8, Interior(1) 14-0-8 to 23-9-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 15, 2 except (jt=lb) 8=153, 13=248.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T01GG	Truss Type Common Supported Gable	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771989
Builders FirstSource (Lake City, FL), Lake City, FL - 32055,					8,430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:14 2021 Page 1 ID:UaeXTPyqX12QdsDR5DulQoyPd7?8yFlRkYHuS9q?cipl.0dGpm4p9mcUEnuuyifoyPYaJ	

-1-8-0 1-8-0 6-9-8 13-7-0 6-9-8 15-3-0 1-8-0

Scale = 1:31.4

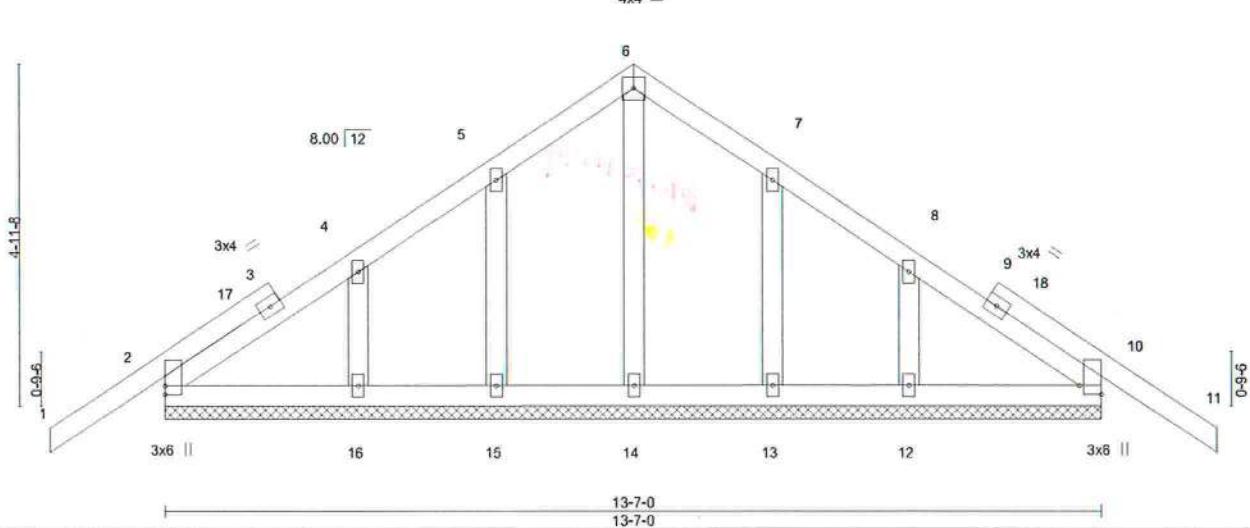


Plate Offsets (X,Y) - [10:Edge,0-3-12]

LOADING (psf)	SPACING-Plate Grip DOL	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.16	Vert(LL)	-0.01	11	n/r	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.05	Vert(CT)	-0.01	11	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.04	Horz(CT)	0.00	10	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-S					Weight: 77 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

All bearings 13-7-0.
(lb) - Max Horz 2=116(LC 10)
Max Uplift All uplift 100 lb or less at joint(s) 2, 10, 15, 16, 13, 12
Max Grav All reactions 250 lb or less at joint(s) 2, 10, 14, 15, 16, 13, 12

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B: End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-8-0 to 1-4-0, Exterior(2N) 1-4-0 to 6-9-8, Corner(3R) 6-9-8 to 9-9-8, Exterior(2N) 9-9-8 to 15-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 15, 16, 13, 12.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 3-19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T02	Truss Type Common Girder	Qty 1	Ply 2	WOODMAN PARK - SOLER RES.	T25771990
----------------	--------------	-----------------------------	----------	-----------------	---------------------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:19 2021 Page 2

ID:UaeXTPyqXi2QdsDR5DulQoyPd77-Vw2eo9oh5Q4SxmUfOMxBKJWcoqjHaMW19fTK?yPYaE

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

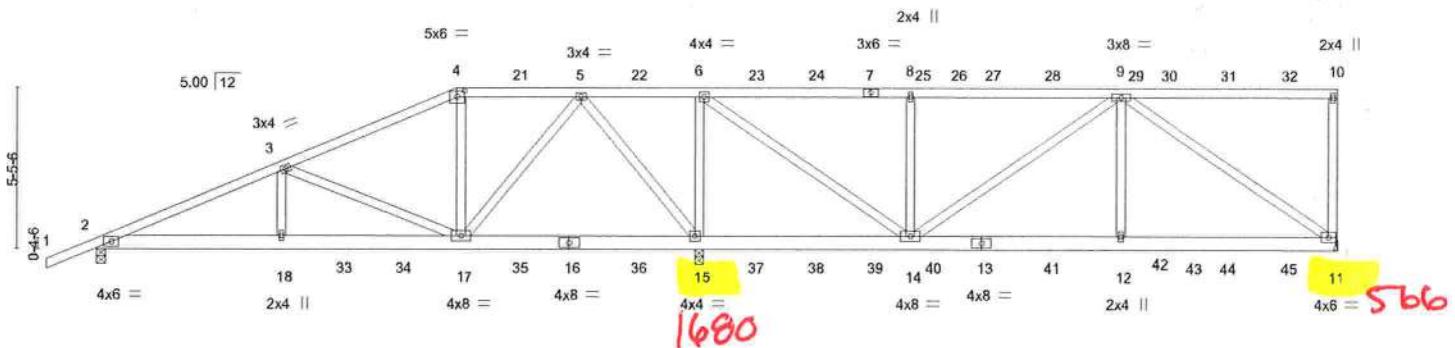
Uniform Loads (plf)

Vert: 1-4=-54, 4-7=-54, 13-16=-20

Concentrated Loads (lb)

Vert: 10=-616(B) 9=-596(B) 11=-1306(B) 19=-634(B) 20=-638(B) 21=-596(B) 22=-596(B) 23=-1091(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5-19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information](#) available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T03	Truss Type Half Hip Girder	Qty 1	Ply 2	WOODMAN PARK - SOLER RES.	T25771991
Builders FirstSource (Lake City, FL),	Lake City, FL - 32055,					
-1-8-0 1-8-0	6-3-2 6-3-2	12-2-6 5-11-4	16-4-11 4-2-5	20-5-4 4-0-9	27-6-15 7-1-11	34-8-9 7-1-10

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:30 2021 Page 1
ID:UaeXTPyqXi2QdsDR5DlQoyPd7?g1D6wxVaVoTuTqnXAemGeTRkFXMLdx8ZNqYDsyPYa3

42-0-0
7-3-7

Scale = 1:73.6

6-3-2 12-2-6 20-5-4 27-6-15 34-8-9 42-0-0
6-3-2 5-11-4 8-2-14 7-1-11 7-1-10 7-3-7

Plate Offsets (X,Y) - [4:0-3-0,0-2-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.43	Vert(LL)	-0.05	17-18	>999	240	
TCDL 7.0	Lumber DOL	1.25	BC 0.38	Vert(CT)	-0.08	17-18	>999	180	
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.50	Horz(CT)	0.01	11	n/a	n/a	
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS						Weight: 535 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 11=Mechanical, 2=0-3-8, 15=0-3-8

Max Horz 2=196(LC 27)

Max Uplift 11=-566(LC 9), 2=-338(LC 8), 15=-1680(LC 8)

Max Grav 11=1326(LC 20), 2=1103(LC 1), 15=4247(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=2190/677, 3-4=-840/303, 4-5=-713/309, 5-6=-573/1575, 6-8=-701/332,

8-9=-701/332

BOT CHORD 2-18=-744/1978, 17-18=-744/1978, 15-17=-343/100, 14-15=-1575/573, 12-14=-553/1267,

11-12=-553/1267

WEBS 3-18=-166/727, 3-17=-1375/472, 5-17=-629/1693, 5-15=-1976/786, 6-15=-1934/845,

6-14=-1071/2645, 8-14=-463/262, 9-14=-769/272, 9-12=-258/856, 9-11=-1510/658

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60

5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Refer to girder(s) for truss to truss connections.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)

11=566, 2=338, 15=1680.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T03	Truss Type Half Hip Girder	Qty 1	Ply 2	WOODMAN PARK - SOLER RES.	T25771991
----------------	--------------	-------------------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:30 2021 Page 2

ID:UaeXTPyqX12QdsDR5DulQoyPd7?-g1Do6wxaVoTuITqnXAemGeTRkFXMLdx8ZNqYDsyPYa3

NOTES-

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 67 lb down and 49 lb up at 12-2-6, 67 lb down and 49 lb up at 14-3-2, 67 lb down and 49 lb up at 16-3-2, 67 lb down and 49 lb up at 18-3-2, 67 lb down and 49 lb up at 20-3-2, 67 lb down and 49 lb up at 22-3-2, 67 lb down and 49 lb up at 24-3-2, 67 lb down and 47 lb up at 26-3-2, 67 lb down and 49 lb up at 28-3-2, 67 lb down and 49 lb up at 30-3-2, 67 lb down and 49 lb up at 32-3-2, 65 lb down and 47 lb up at 34-3-2, 65 lb down and 47 lb up at 36-3-2, and 65 lb down and 47 lb up at 38-3-2, and 65 lb down and 47 lb up at 40-3-2 on top chord, and 380 lb down and 122 lb up at 6-3-2, 223 lb down and 98 lb up at 8-3-2, 223 lb down and 122 lb up at 10-3-2, 152 lb down and 87 lb up at 12-3-2, 152 lb down and 87 lb up at 14-3-2, 152 lb down and 87 lb up at 16-3-2, 152 lb down and 87 lb up at 18-3-2, 152 lb down and 87 lb up at 20-3-2, 152 lb down and 87 lb up at 22-3-2, 152 lb down and 87 lb up at 24-3-2, 152 lb down and 87 lb up at 26-3-2, 152 lb down and 87 lb up at 28-3-2, 152 lb down and 87 lb up at 30-3-2, 152 lb down and 87 lb up at 32-3-2, 164 lb down and 94 lb up at 34-3-2, 164 lb down and 94 lb up at 36-3-2, and 164 lb down and 94 lb up at 38-3-2, and 164 lb down and 94 lb up at 40-3-2 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

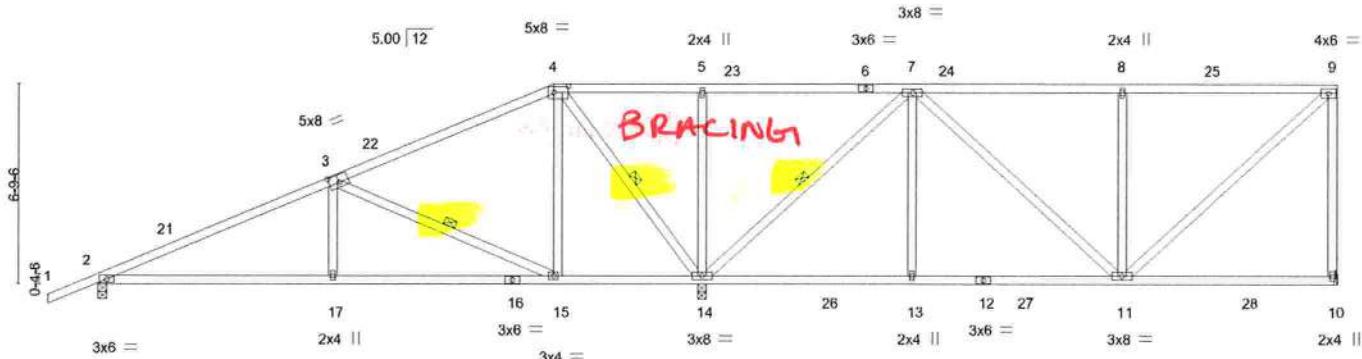
1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-54, 4-10=-54, 2-11=-20

Concentrated Loads (lb)

Vert: 4=-22(F) 7=-22(F) 16=-150(F) 18=-380(F) 17=-150(F) 5=-22(F) 15=-150(F) 6=-22(F) 13=-150(F) 21=-22(F) 22=-22(F) 23=-22(F) 24=-22(F) 26=-22(F) 27=-22(F) 28=-22(F) 29=-18(F) 30=-18(F) 31=-18(F) 32=-18(F) 33=-223(F) 34=-223(F) 35=-150(F) 36=-150(F) 37=-150(F) 38=-150(F) 39=-150(F) 40=-150(F) 41=-150(F) 42=-164(F) 43=-164(F) 44=-164(F) 45=-164(F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 36610

Job 2975129	Truss T04	Truss Type Half Hip	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771992
Builders FirstSource (Lake City, FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:34 2021 Page 1 ID:UaeXTPyqXi2QdsDR5DuQoyPd77-ZpSJxH_5Z1zJE48Ym?iRUE3TrGHOjkU?olMeyPYa?						
-1-8-0 1-8-0	7-11-0 7-11-0	15-4-13 7-5-13	20-5-4 5-0-7	27-6-15 7-1-11	34-8-10 7-1-11	42-0-0 7-3-6

Scale = 1:73.6

7-11-0 7-11-0	15-4-13 7-5-13	20-5-4 5-0-7	27-6-15 7-1-11	34-8-10 7-1-11	42-0-0 7-3-6
------------------	-------------------	-----------------	-------------------	-------------------	-----------------

Plate Offsets (X,Y) - [3:0-4-0-0-3-0], [4:0-5-12,0-2-8]

LOADING (psf)	SPACING- Plate Grip DOL	2-0-0 1.25	CSI. TC 0.64	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.12 17-20 -0.23 17-20 0.02 10	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
TCLL 20.0	Lumber DOL 1.25	BC 0.64							
TCDL 7.0	Rep Stress Incr YES	WB 0.61							
BCLL 0.0 *	Code FBC2020/TPI2014	Matrix-MS							
BCDL 10.0								Weight: 245 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-7-12 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 6-0-0 oc bracing: 14-15.
WEBS 1 Row at midpt 3-15, 4-14, 7-14

REACTIONS. (size) 10=Mechanical, 2=0-3-8, 14=0-3-8

Max Horz 2=242(LC 12)
Max Uplift 10=-177(LC 9), 2=-156(LC 12), 14=-489(LC 12)
Max Grav 10=694(LC 2), 2=651(LC 2), 14=2166(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-848/158, 4-5=-144/686, 5-7=-144/686, 7-8=-477/131, 8-9=-477/131,
9-10=-552/194

BOT CHORD 2-17=-299/749, 15-17=-300/734

WEBS 3-17=0/345, 3-15=-882/298, 4-15=-82/562, 4-14=-1030/285, 5-14=-347/169,
7-14=-1259/273, 7-13=0/386, 7-11=-79/313, 8-11=-419/209, 9-11=-172/620

NOTES-

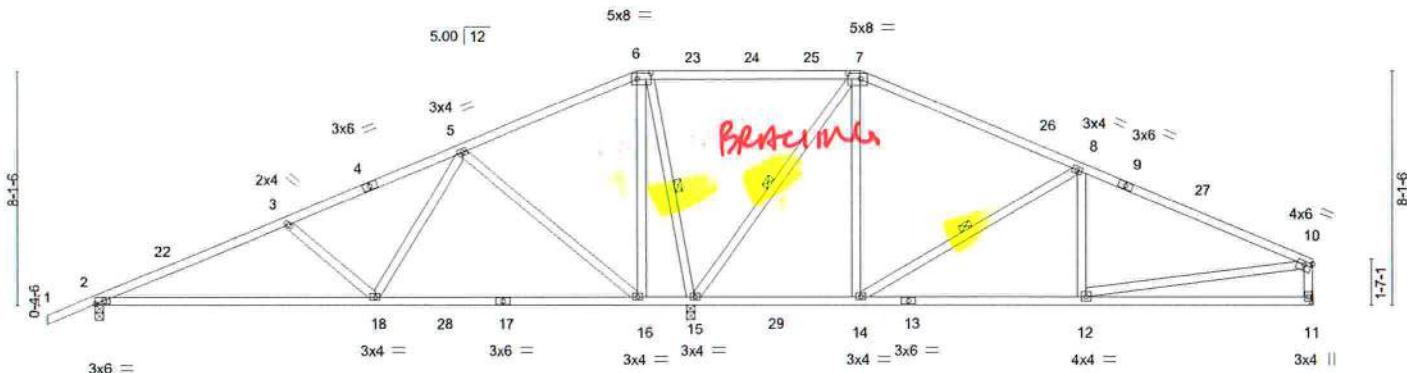
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 2-6-6, Interior(1) 2-6-6 to 15-4-13, Exterior(2R) 15-4-13 to 21-4-1, Interior(1) 21-4-1 to 41-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=177, 2=156, 14=489.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date: October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek
6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T05	Truss Type Hip	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771993
----------------	--------------	-------------------	----------	----------	---------------------------	-----------


Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:36 2021 Page 1

ID:UaeXTPyqXi2QdsDR5DulQoyPd7?VBa4Mz?L5eD1TOhxuQkbWvjNf9Sc1Db0yJhsQWjPYZZ

-1-8-0 6-7-2 12-7-2 18-7-3 26-4-3 34-0-0 42-0-0
1-8-0 6-7-2 6-0-1 6-0-1 7-9-0 7-7-13 8-0-0

Scale = 1:74.8

9-7-2 18-7-3 20-5-4 26-4-3 34-0-0 42-0-0
9-7-2 9-0-1 1-10-1 5-10-15 7-7-13 8-0-0

Plate Offsets (X,Y) - [2:Edge,0-1-8], [6:0-5-12,0-2-8], [7:0-5-4,0-2-4], [10:0-3-0,0-1-8]

LOADING (psf)	SPACING-Plate Grip DOL	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	2-0-0	TC 0.81	Vert(LL)	-0.17	16-18	>999	240	
TCDL 7.0	Plate Grip DOL 1.25	BC 0.84	Vert(CT)	-0.32	18-21	>776	180	
BCLL 0.0 *	Lumber DOL 1.25	WB 0.94	Horz(CT)	0.02	11	n/a	n/a	
BCDL 10.0	Rep Stress Incr YES	Matrix-MS					Weight: 239 lb	FT = 20%
	Code FBC2020/TPI2014							

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 15=0-3-8, 11=Mechanical

Max Horz 2=161(LC 12)
Max Uplift 2=161(LC 12), 15=422(LC 12), 11=168(LC 13)
Max Grav 2=654(LC 25), 15=2245(LC 2), 11=656(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-864/199, 3-5=-629/129, 5-6=-68/538, 6-7=-83/724, 8-10=-811/228,
10-11=-565/188

BOT CHORD 2-18=-267/778, 15-16=-435/196, 12-14=-148/688
WEBS 3-18=-381/203, 5-18=-95/692, 5-16=-738/273, 6-16=-120/723, 6-15=-1244/311,
7-15=-1193/263, 7-14=-81/623, 8-14=-691/244, 8-12=0/290, 10-12=-104/552

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-8-0 to 2-6-6, Interior(1) 2-6-6 to 18-7-3, Exterior(2R) 18-7-3 to 24-6-8, Interior(1) 24-6-8 to 26-4-3, Exterior(2R) 26-4-3 to 32-3-7, Interior(1) 32-3-7 to 41-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) The Fabrication Tolerance at joint 6 = 12%
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=161, 15=422, 11=168.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information](#) available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T06	Truss Type Hip	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771994
Job Reference (optional)						

Builders FirstSource (Lake City,FL), Lake City, FL - 32055.

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:39 2021 Page 1

1-8-0	7-10-0	15-2-0	21-9-10	23-1-12	28-10-0	35-4-0	42-0-0
1-8-0	7-10-0	7-4-0	6-7-10	1-4-3	5-8-4	6-6-0	6-8-0

Scale = 1:74.6

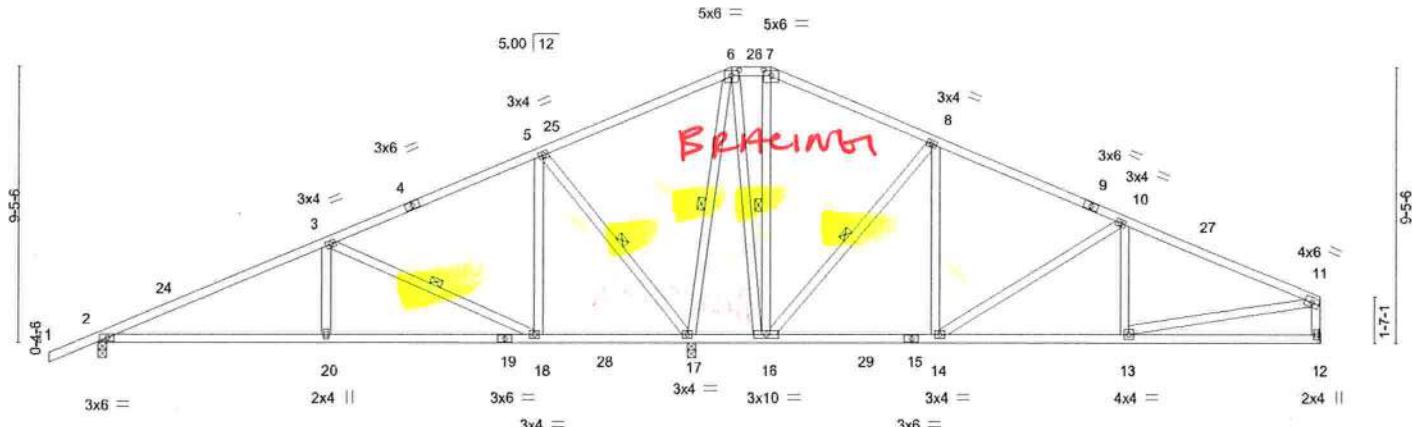


Plate Offsets (X,Y)– [6:0-3-0,0-2-4], [7:0-3-0,0-2-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.56	Vert(LL)	-0.12 20-23	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.62	Vert(CT)	-0.23 20-23	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.62	Horz(CT)	0.03 12	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS					Weight: 260 lb	FT = 20%

LUMBER-
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 17=0-3-8, 12=Mechanical
 Max Horz 2=181(LC 12)
 Max Uplift 2=-159(LC 12), 17=-418(LC 12), 12=-174(LC 13)
 Max Grav 2=661(LC 25), 17=2159(C 2), 12=686(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
 TOP CHORD 2-3=-874/165, 5-6=-93/686, 6-7=0/312, 7-8=-27/346, 8-10=-477/187, 10-11=-874/238,
 11-12=-597/190
 BOT CHORD 2-20=-245/772, 18-20=-245/772, 16-17=-381/171, 14-16=-52/377, 13-14=-167/760
 WEBS 3-20=0/332, 3-18=-839/271, 5-18=-66/558, 5-17=-844/291, 6-17=-1382/246,
 6-16=-208/933, 8-16=-778/253, 8-14=-55/515, 10-14=-481/171, 11-13=-136/667

BRACING-	
TOP CHORD	Structural wood sheathing directly applied or 5-6-4 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
WERS	1 Row at midnt 3-18, 5-17, 6-17, 7-16, 8-16

NOTES-

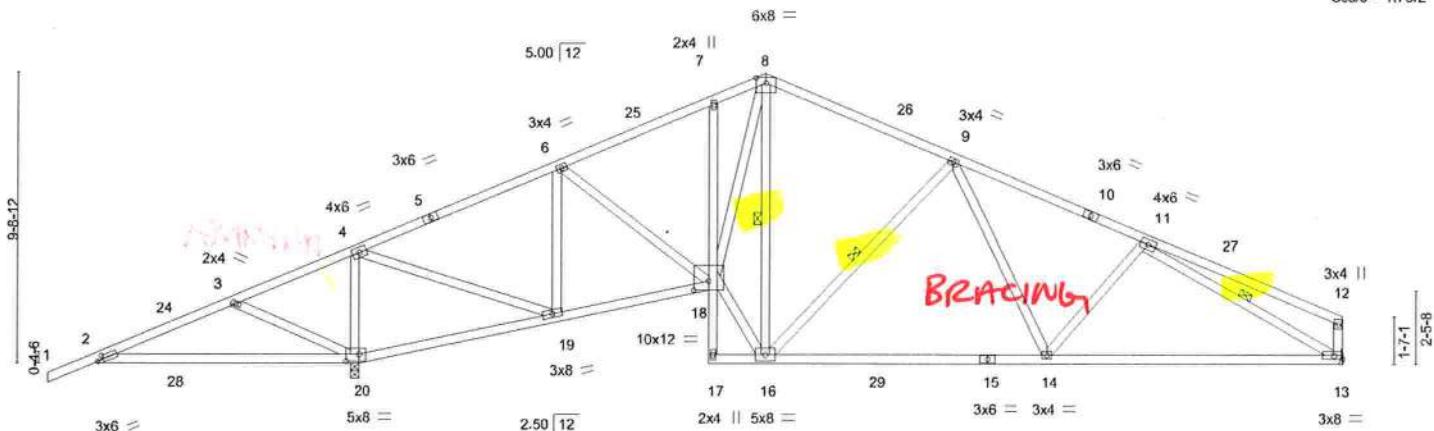
NOTE:

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-8-0 to 2-6-6, Interior(1) 2-6-6 to 21-9-10, Exterior(2E) 21-9-10 to 23-1-12, Exterior(2R) 23-1-12 to 28-10-0, Interior(1) 28-10-0 to 41-10-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except ($Jl=lb$) $2=159, 17=418, 12=174$.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7475 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information**, available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Walcoff, MD 20601.



6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T08	Truss Type Roof Special	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771996
----------------	--------------	----------------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:45 2021 Page 1
ID:UaeXTPyqX12QdsDR5DulQoyPd7?kwDFT26_zPMI2mTwPInobxaIXMLq0CyrEVyPYZq
-1-8-0 4-7-13 8-9-6 15-5-5 20-7-0 22-5-11 28-10-0 35-3-9 42-0-0
1-8-0 4-7-13 4-1-9 6-7-15 5-1-11 1-10-11 6-4-5 6-5-9 6-8-7
Scale = 1:73.2

8-5-14 8-9-6 15-5-5 20-7-0 22-5-11 32-0-0 42-0-0
8-5-14 0-3-8 6-7-15 5-1-11 1-10-11 9-6-5 10-0-0

Plate Offsets (X,Y) - [2:0-2-6,0-1-8], [18:0-6-0,0-3-9], [20:0-5-4,0-2-12]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	TC 0.65	Vert(LL) -0.26 14-16 >999 240	MT20	244/190
TCDL 7.0	Lumber DOL	BC 0.84	Vert(CT) -0.42 14-16 >936 180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.75	Horz(CT) 0.11 13 n/a n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS		Weight: 257 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*
WEBS 7-17: 2x4 SP No.3, 13-15: 2x4 SP M 31
2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-3-0 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 5-5-15 oc bracing.
WEBS 1 Row at midpt 8-16, 9-16, 11-13

REACTIONS. (size) 20=0-3-8, 13=Mechanical
Max Horz 20=185(LC 12)
Max Uplift 20=-484(LC 8), 13=-261(LC 13)
Max Grav 20=2211(LC 2), 13=1226(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-730/750, 3-4=-907/1056, 4-6=-988/201, 6-7=-1427/299, 7-8=-1358/313,
8-9=-1089/288, 9-11=-1750/399
BOT CHORD 2-20=-631/703, 19-20=-1047/945, 18-19=-127/893, 14-16=-195/1375, 13-14=-318/1566
WEBS 3-20=-336/277, 4-20=-1608/518, 4-19=-592/1963, 6-19=-805/375, 6-18=-233/513,
16-18=-96/1627, 8-18=-214/1258, 8-16=-543/68, 9-16=-629/256, 9-14=-57/459,
11-13=-1649/343

NOTES-

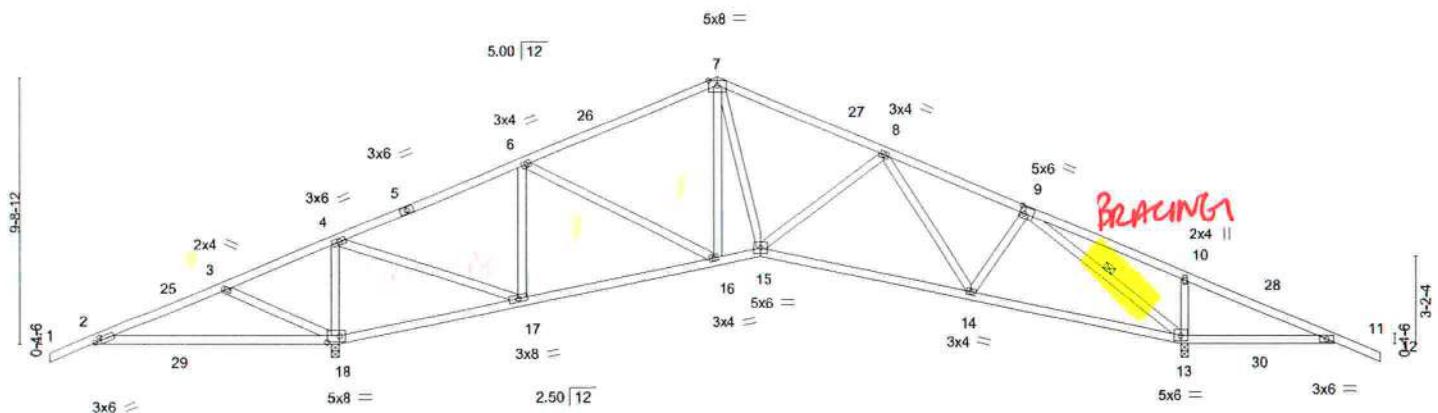
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCp=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 2-6-6, Interior(1) 2-6-6 to 22-5-11, Exterior(2R) 22-5-11 to 26-8-1, Interior(1) 26-8-1 to 41-10-4 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 20=484, 13=261.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek
6904 Parke East Blvd.
Tampa, FL 33610


Job 2975129	Truss T09	Truss Type Roof Special	Qty 3	Ply 1	WOODMAN PARK - SOLER RES.	T25771997
----------------	--------------	----------------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:49 2021 Page 1

1-8-0 4-7-13 8-9-6 15-5-5 22-5-11 28-6-10 33-6-13 39-4-6 44-11-6 40-7-6
1-8-0 4-7-13 4-1-9 6-8-0 7-0-6 6-0-15 5-2-3 5-7-9 5-7-0 1-8-0

Scale = 1:78.6

8-5-14 8-9-6 15-5-5 22-5-11 24-0-14 31-8-12 39-4-6 39-7-14 44-11-6
8-5-14 0-3-8 6-8-0 7-0-6 1-7-3 7-7-15 7-7-10 0-3-8 5-3-8

Plate Offsets (X,Y)- [2:0-2-6,0-1-8], [9:0-2-0,0-3-0], [18:0-5-4,0-2-12]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.65	Vert(LL)	-0.12	14-15	>999	240	
TCDL 7.0	Lumber DOL	1.25	BC 0.68	Vert(CT)	-0.26	14-15	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.63	Horz(CT)	0.09	13	n/a	n/a	
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS					Weight: 241 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 5-0-2 oc purlins.
BOT CHORD Rigid ceiling directly applied or 5-8-12 oc bracing.
WEBS 1 Row at midpt 9-13

REACTIONS. (size) 18=0-3-8, 13=0-3-8

Max Horz 18=150(LC 17)
Max Uplift 18=469(LC 8), 13=394(LC 13)
Max Grav 18=1936(LC 1), 13=1570(LC 1)

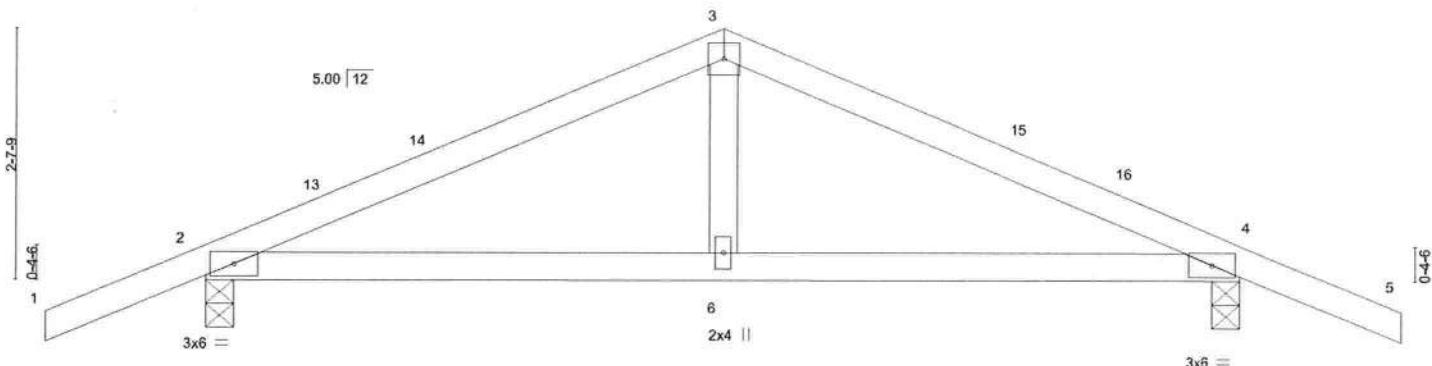
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-732/737, 3-4=-914/1061, 4-6=-689/132, 6-7=-1055/204, 7-8=-1212/221,
8-9=-1226/259, 9-10=-605/733, 10-11=-676/723
BOT CHORD 2-18=-622/705, 17-18=-1028/1003, 16-17=-72/603, 15-16=-21/916, 14-15=-74/1241,
13-14=-58/930, 11-13=-606/681
WEBS 3-18=-345/283, 4-18=-1441/464, 4-17=-525/1655, 6-17=-711/340, 6-16=-194/363,
7-15=-80/636, 9-14=-35/367, 9-13=-1988/453, 10-13=-337/184

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-8-0 to 2-9-15, Interior(1) 2-9-15 to 22-5-11, Exterior(2R) 22-5-11 to 26-11-10, Interior(1) 26-11-10 to 46-7-6 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 18=469, 13=394.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date: October 27, 2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIH-7473 rev. 5-19-2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek
6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T10	Truss Type Common	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771998
Job Reference (optional)						
Builders FirstSource (Lake City, FL),	Lake City, FL - 32055,		8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:51 2021 Page 1 ID:UaeXTPyqXi2QdsDR5DulQoyPd7-Z4_kw5B1ZF6vmhxpG4Wid3r3?jNmCZEO8P9S8yPYZk			
-1-8-0 1-8-0	5-5-4 5-5-4		10-10-8 5-5-4		12-6-8 1-8-0	

Scale = 1:22.8

4x4 =

5-5-4	10-10-8
5-5-4	5-5-4

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	2-0-0	TC 0.27	-0.02	6-12	>999	240	
TCDL 7.0	Lumber DOL	1.25	BC 0.31	-0.05	6-12	>999	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.09	0.01	4	n/a	n/a	
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS				Weight: 42 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 4=0-3-8

Max Horz 2=44(LC 13)
Max Uplift 2=122(LC 12), 4=122(LC 13)
Max Grav 2=492(LC 1), 4=492(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

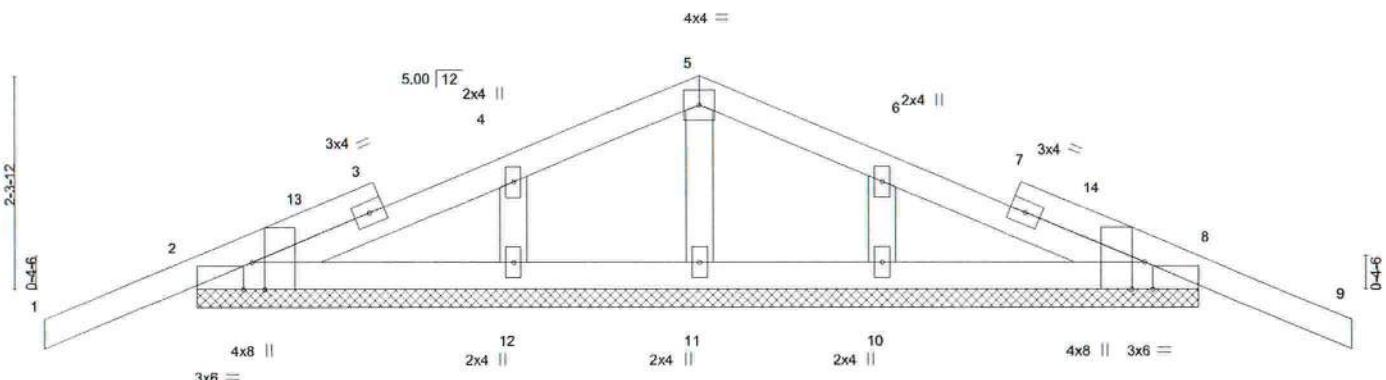
TOP CHORD 2-3=596/250, 3-4=596/250
BOT CHORD 2-6=127/506, 4-6=127/506

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Endc., GCpl=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-8-0 to 1-4-0, Interior(1) 1-4-0 to 5-5-4, Exterior(2R) 5-5-4 to 8-5-4, Interior(1) 8-5-4 to 12-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (j1=lb) 2=122, 4=122.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27, 2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T10G	Truss Type Common Supported Gable	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25771999
Builders FirstSource (Lake City, FL),	Lake City, FL - 32055,				8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:57:56 2021 Page 1 ID:UaeXTPyqXi2QdsDR5DulQoyPd7-w2ndZpFuNolCISpn3d5IK7YxTkTBRUXzYQ7w7MyPYZf	
-1-8-0 1-8-0	5-5-4 5-5-4			10-10-8 5-5-4	12-6-8 1-8-0	

Scale = 1:23.5

10-10-8
10-10-8

Plate Offsets (X,Y)-- [2:0-3-8,Edge], [2:0-1-1,Edge], [8:0-3-8,Edge], [8:0-1-1,Edge]

LOADING (psf)	SPACING-	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 2-0-0	TC 0.16	Vert(LL)	-0.01	9	n/r	120	MT20	244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.08	Vert(CT)	-0.01	9	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.05	Horz(CT)	0.00	8	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-S						Weight: 49 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS.

All bearings 10-10-8.

(lb) - Max Horz 2=39(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 11, 12, 10

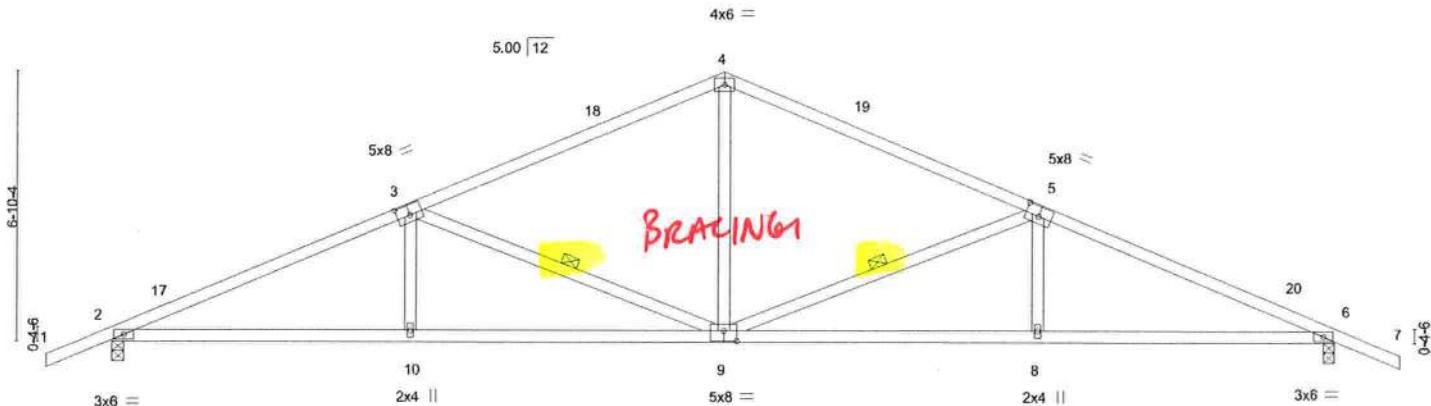
Max Grav All reactions 250 lb or less at joint(s) 2, 8, 11, 12, 10

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) 1-8-0 to 1-4-0, Exterior(2N) 1-4-0 to 5-5-4, Corner(3R) 5-5-4 to 8-5-4, Exterior(2N) 8-5-4 to 12-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 11, 12, 10.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8.



Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:
October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek
6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T11	Truss Type Common	Qty 5	Ply 1	WOODMAN PARK - SOLER RES.	T25772000
Builders FirstSource (Lake City,FL),	Lake City, FL - 32055,		8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:58:05 2021 Page 1 ID:UaeXTPyqXi2QdsDR5DuQoyPd7?9mq1SuMXGZlwSr?V50m_B0QKKMOY2UBlcJouxLyPYZW			
-1-8-0 1-8-0	7-7-0 7-7-0	15-7-0 8-0-0	23-7-0 8-0-0	31-2-0 7-7-0	32-10-0 1-8-0	Scale = 1:55.3

7-7-0 7-7-0	15-7-0 8-0-0	23-7-0 8-0-0	31-2-0 7-7-0
Plate Offsets (X,Y) - [3:0-4-0,0-3-0], [5:0-4-0,0-3-0], [9:0-4-0,0-3-0]			

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/deff	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.79	Vert(LL)	-0.14	9 >999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.76	Vert(CT)	-0.31	9-10 >999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.34	Horz(CT)	0.10	6 n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS					Weight: 145 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 6=0-3-8
Max Horz 2=107(LC 17)
Max Uplift 2=280(LC 12), 6=280(LC 13)
Max Grav 2=1243(LC 1), 6=1243(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2400/486, 3-4=-1609/362, 4-5=-1609/361, 5-6=2400/487
BOT CHORD 2-10=-473/2161, 9-10=-472/2164, 8-9=-366/2164, 6-8=-367/2161
WEBS 4-9=-97/766, 5-9=-843/308, 5-8=0/317, 3-9=-843/307, 3-10=0/317

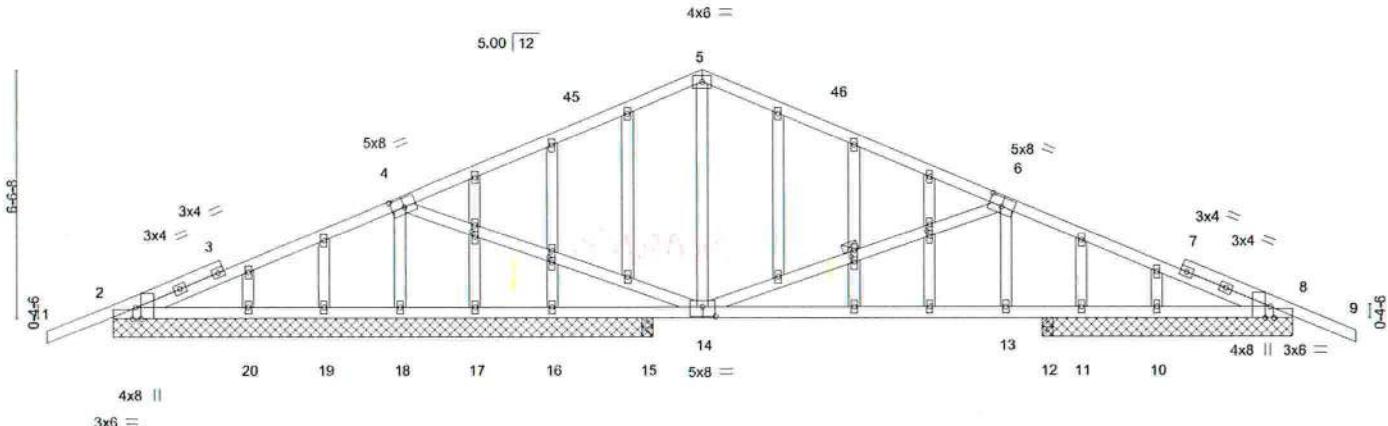
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 1-5-6, Interior(1) 1-5-6 to 15-7-0, Exterior(2R) 15-7-0 to 18-8-6, Interior(1) 18-8-6 to 32-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=280, 6=280.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T11G	Truss Type GABLE	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25772001
Builders FirstSource (Lake City,FL),	Lake City, FL - 32055,				Job Reference (optional)	
-1-8-0 1-8-0	7-7-0 7-7-0	15-7-0 8-0-0		23-7-0 8-0-0	31-2-0 7-7-0	32-10-0 1-8-0

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:58:24 2021 Page 1
ID:UaeXTPyqXi2QdsDR5DulQoyPd7?-5QTDRNbSnOGDEmy9iWcRS0jcc1qd?6L5_nvP6kyPYZD

Scale = 1:57.1

7-7-0 7-7-0	13-11-8 6-4-8	15-7-0 1-7-8	23-7-0 8-0-0	24-10-0 1-3-0	31-2-0 6-4-0
Plate Offsets (X,Y) - [2:0-3-8,Edge], [2:0-1-1,Edge], [4:0-4-0,0-3-0], [6:0-4-0,0-3-0], [8:0-1-1,Edge], [8:0-3-8,Edge], [14:0-4-0,0-3-0], [23:0-1-11,0-1-0], [25:0-1-11,0-1-0], [33:0-1-11,0-1-0], [36:0-1-11,0-1-0]					

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.66	Vert(LL)	-0.12	13-14	>999	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.92	Vert(CT)	-0.26	13-14	>490		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.24	Horz(CT)	0.01	42	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS					Weight: 194 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing.
WEBS 1 Row at midpt 6-14

REACTIONS. All bearings 14-3-0 except (jt=length) 8=6-7-8, 11=6-7-8, 10=6-7-8, 15=0-3-8, 12=0-3-8, 8=6-7-8.

(lb) - Max Horz 2=-102(LC 17)
Max Uplift All uplift 100 lb or less at joint(s) 2, 16, 19, 20, 10, 15 except 18=-284(LC 12), 8=-117(LC 13), 11=-633(LC 1), 12=-273(LC 13)
Max Grav All reactions 250 lb or less at joint(s) 2, 16, 17, 19, 20, 11, 15, 2 except 18=964(LC 1), 8=450(LC 1), 10=297(LC 1), 12=937(LC 1), 8=450(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

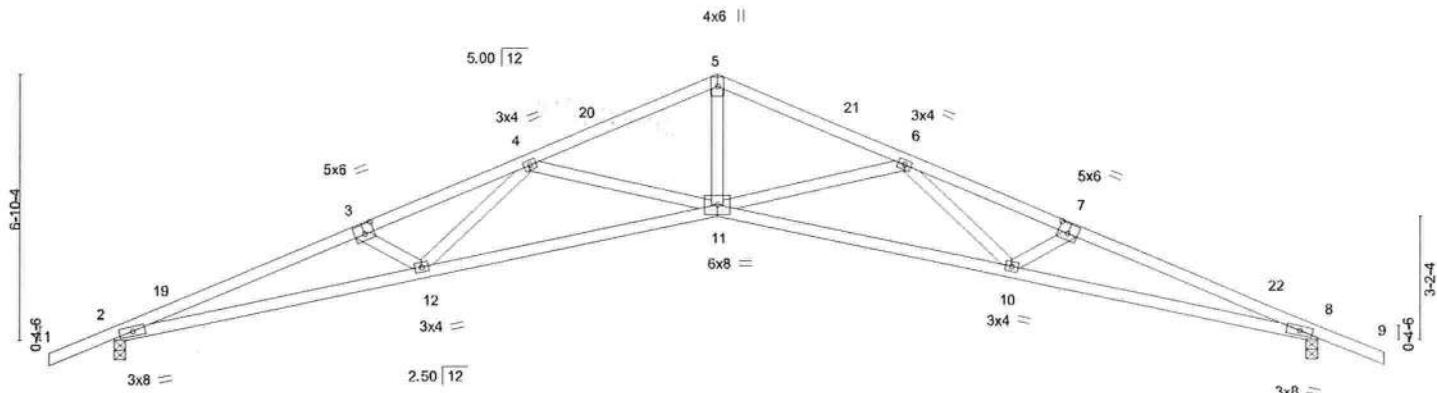
TOP CHORD 2-4=-98/304, 4-5=-534/156, 5-6=-534/157, 6-8=-694/138
BOT CHORD 13-14=-55/612, 12-13=-52/606, 11-12=-52/606, 10-11=-52/606, 8-10=-52/606
WEBS 6-14=-269/133, 6-13=-286/167, 4-14=-67641, 4-18=-916/291

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-8-0 to 1-4-2, Interior(1) 1-4-2 to 15-7-0, Exterior(2R) 15-7-0 to 18-8-6, Interior(1) 18-8-6 to 32-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16, 19, 20, 10, 15, 2 except (jt=lb) 18=284, 8=117, 11=633, 12=273, 8=117.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:
October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 3/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information](#) available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

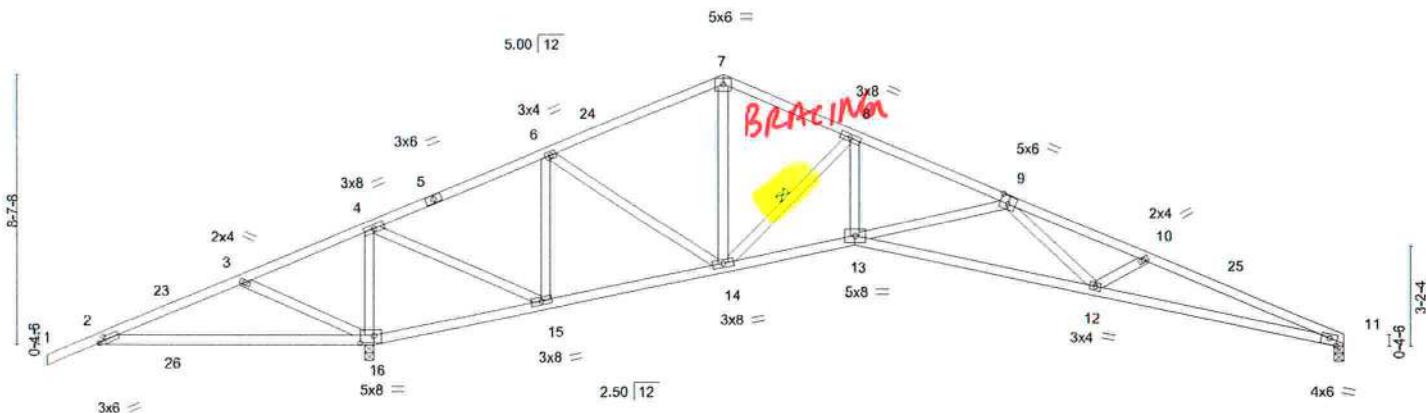

Job 2975129	Truss T12	Truss Type Scissor	Qty 2	Ply 1	WOODMAN PARK - SOLER RES.	T25772002
----------------	--------------	-----------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:58:36 2021 Page 1
ID:UaeXTPyqXi2QdsDR5DulQoyPd7IkClyUk_z4nWgctTP1pFyYCh3s22pPlslep1Y2yPYZ1

-1-8-0 6-5-0 10-8-10 15-7-0 4-10-6 20-5-6 24-9-0 31-2-0 32-10-0
1-8-0 6-5-0 4-3-10 4-10-6 4-10-6 4-3-10 6-5-0 1-8-0

Scale = 1:56.2



Job 2975129	Truss T13	Truss Type Roof Special	Qty 1	Ply 1	WOODMAN PARK - SOLER RES. Job Reference (optional)
					T25772003

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:58:47 2021 Page 1

ID:UaeXTPyqX1QdsDR5DulQoyPd77-wsMvGFstNSAyUIDaYrWqul9XolgnuPDTHzs7PvyPYyS
24.11.1
24.11.1
24.11.1
24.11.1

24-6-14	28-11-14	33-2-14	39-7-14
4-2-15	4-10-6	4-3-10	6-5-0

8-5-14	8-9-6	14-3-0	19-9-15	24-0-14	31-8-13	39-7-14
8-5-14	0-3-8	5-5-10	5-6-15	4-2-15	7-7-15	7-11-1

Plate Offsets (X,Y) -		2:0-2-6-0-1-8, [9:0-3-0-0-3-0], [11:0-3-0,Edge], [16:0-5-4-0-2-12]						LOADING (psf)		SPACING- 2-0-0		CSI.		DEFL.		in (loc)		I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.66	Vert(LL)	-0.32	12-13	>999	240	MT20	244/190									
TCDL	7.0	Lumber DOL	1.25	BC	0.93	Vert(CT)	-0.67	12-13	>551	180											
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.29	11	n/a	n/a											
BCDL	10.0	Code FBC2020/TPI2014		Matrix-MS												Weight: 201 lb	FT = 20%				

LUMBER-
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WERS 2x4 SP No.3

REACTIONS. (size) 16=0-3-8, 11=0-3-8
 Max Horz 16=143(LC 16)
 Max Uplift 16=-475(LC 8), 11=-.253(LC 13)
 Max Gray 16=2003(LC 1), 11=1022(LC 1)

FORCES.	(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD	2-3=-722/733, 3-4=-905/1069, 4-6=-589/167, 6-7=-1113/280, 7-8=-1095/272, 8-9=-2325/481, 9-10=-3570/830, 10-11=-3828/914
BOT CHORD	2-16=-617/695, 15-16=-1042/980, 14-15=-20/552, 13-14=-258/2152, 12-13=-567/2939, 11-12=-805/3566
WEBS	3-16=-363/288, 4-16=-1504/491, 4-15=-530/1620, 6-15=-865/385, 6-14=-265/596, 7-14=-131/640, 8-14=-1599/372, 8-13=-214/1350, 9-13=-790/310, 9-12=-130/613, 10-12=-262/173

NOTES.

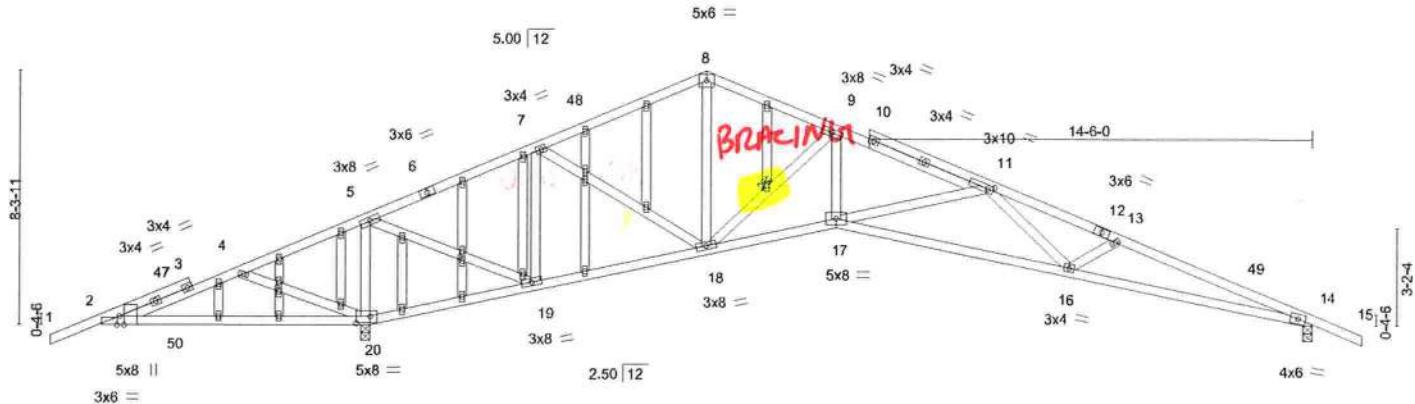
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 1-8-0 to 2-3-9, Interior(1) 2-3-9 to 19-9-15, Exterior(2R) 19-9-15 to 24-0-14, Interior(1) 24-0-14 to 39-7-14 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DCL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16-175, 11-252

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 ver. 5-19/2020 BEFORE USE.
Design valid for use only with MITEK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see [ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information](#), available from Truss Plate Institute, 2670 Craig Highway, Suite 203, Warrenton, MD 20748.



6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T13G	Truss Type GABLE	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25772004
----------------	---------------	---------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:59:04 2021 Page 1
ID:UaeXTPyqXi2QdsDR5DulQoyPd7-w7uLq34YNHJY1v0r2vJp4SNUE9UDN4qzB?bWWQyPYb
-1-8-0 4-7-13 8-9-6 14-3-0 19-9-15 24-0-14 28-11-4 33-2-14 39-7-14
1-8-0 4-7-13 4-1-9 5-5-10 5-6-15 4-2-15 4-10-6 4-3-10 6-5-0

Scale = 1:71.2

8-5-14 8-9-6 14-3-0 19-9-15 24-0-14 31-8-13 39-7-14
8-5-14 0-3-8 5-5-10 5-6-15 4-2-15 7-7-15 7-11-1

Plate Offsets (X,Y) - [2:0-1-1,Edge], [2:0-3-8,Edge], [11:0-2-8,0-1-8], [20:0-5-4,0-2-12], [27:0-1-12,0-1-0], [34:0-1-12,0-1-0]

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	TC 0.48	Vert(LL)	-0.32	16-17	>999	240	
TCDL 7.0	Lumber DOL	BC 0.90	Vert(CT)	-0.67	16-17	>550	180	
BCLL 0.0 *	Rep Stress Incr	WB 0.66	Horz(CT)	0.29	14	n/a	n/a	
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS					Weight: 249 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-8-9 oc purlins.
BOT CHORD Rigid ceiling directly applied or 5-5-15 oc bracing.
WEBS 1 Row at midpt 9-18

REACTIONS. (size) 20=0-3-8, 14=0-3-8

Max Horz 20=128(LC 13)
Max Uplift 20=-475(LC 8), 14=-291(LC 13)
Max Grav 20=2000(LC 1), 14=1114(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

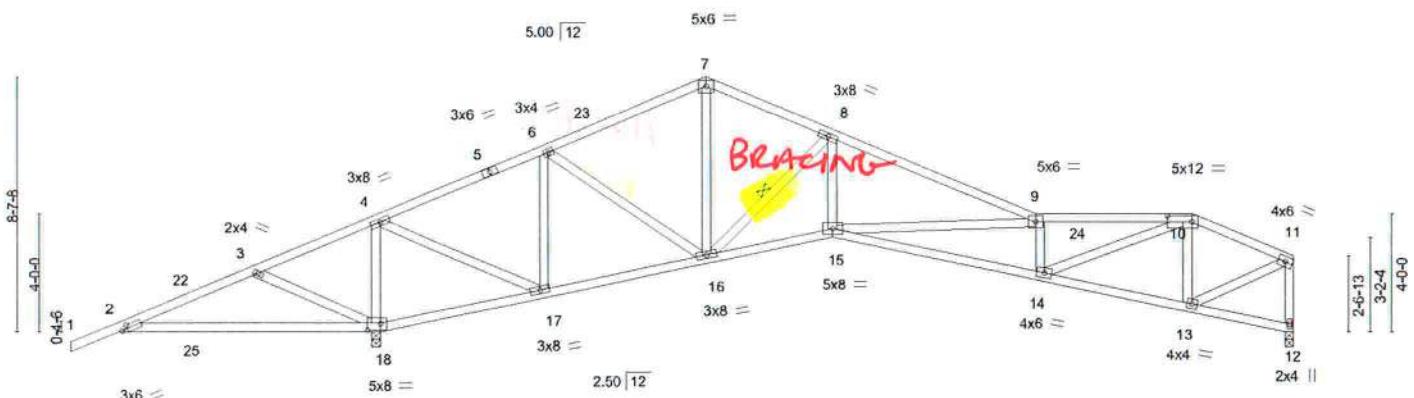
TOP CHORD 2-4=-828/850, 4-5=-1008/1170, 5-7=626/166, 7-8=-1166/277, 8-9=-1148/269,
9-11=-2489/487, 11-13=-3518/796, 13-14=-3777/878
BOT CHORD 2-20=-739/798, 19-20=-1138/1080, 18-19=-8/587, 17-18=-263/2364, 16-17=-525/2933,
14-16=-748/3513
WEBS 4-20=-317/280, 5-20=-1536/530, 5-19=-583/1722, 7-19=-853/385, 7-18=-277/603,
8-18=-127/681, 9-18=-1757/382, 9-17=-191/1328, 11-17=-569/261, 11-16=-117/594

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Endl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 2-3-9, Interior(1) 2-3-9 to 19-9-15, Exterior(2R) 19-9-15 to 24-0-14, Interior(1) 24-0-14 to 41-3-14 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 20=475, 14=291.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:59:19 2021 Page 1 ID:UaeXTPyqXj2QdsDR5DulQoyPd77-_0l0_BFyqICQKQDjQZ5KBDUxScbgQZBdqkqY2yPYYM

Scale = 1:73.1

8-5-14 8-9-6 14-3-10 19-9-15 24-0-14 30-11-1 36-2-9 39-7-14
 8-5-14 0-3-8 5-6-5 5-6-5 4-2-15 6-10-3 5-3-8 3-5-5
 Plate Offsets (X, Y) 12-0-2-6 0-1-8 [10-0-0-9 12-0-2-8] [18-0-5-4 0-2-12]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.90	Vert(LL)	-0.24	14-15	>999	240	
TCDL 7.0	Lumber DOL	1.25	BC 0.90	Vert(CT)	-0.51	14-15	>722	180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.97	Horz(CT)	0.22	12	n/a	n/a	
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS					Weight: 217 lb	FT = 20%

LUMBER-
TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING-	
TOP CHORD	Structural wood sheathing directly applied, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 5-8-5 oc bracing.
WEBS	1 Row at midpt 8-16

REACTIONS. (size) 18=0-3-8, 12=0-3-8
Max Horz 18=188(LC 12)
Max Uplift 18=-469(LC 8), 12=-255(LC 13)
Max Gray 18=1998(LC 1), 12=1016(LC 1)

FORCES.	(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD	2-3=-722/733, 3-4=-905/1068, 4-6=-590/184, 6-7=-1102/303, 7-8=-1093/300, 8-9=-2345/545, 9-10=-3046/758, 10-11=-1147/296, 11-12=-992/265
BOT CHORD	2-18=-617/695, 17-18=-1041/926, 16-17=-74/554, 15-16=-411/2159, 14-15=-756/3209, 13-14=-244/1034
WEBS	3-18=-362/288, 4-18=-1499/502, 4-17=-546/1619, 6-17=-858/392, 6-16=-270/581, 7-16=-166/662, 8-16=-1626/444, 8-15=-232/1277, 9-15=-1025/336, 9-14=-1114/334, 10-14=-507/190, 10-13=-596/183, 11-13=-267/1127

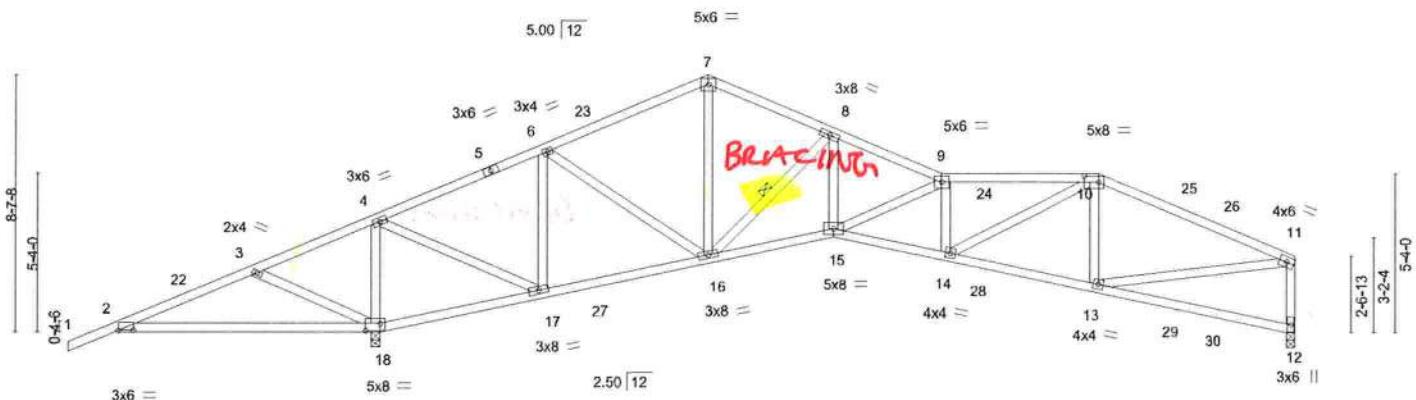
NOTES.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Endl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-8-0 to 2-3-9, Interior(1) 2-3-9 to 19-9-15, Exterior(2R) 19-9-15 to 24-0-14, Interior(1) 24-0-14 to 36-2-9, Exterior(2E) 36-2-9 to 39-6-2 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 18=469, 12=255

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27, 2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5-19-2020 BEFORE USE.
Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information**, available from Truss Plate Institute, 2670 Craig Highway, Suite 203, Walkersville, MD 20061.

6904 Parke East Blvd.
Tampa, FL 36610

Job 2975129	Truss T15	Truss Type Roof Special	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25772006		
Builders FirstSource (Lake City,FL),	Lake City, FL - 32055,				8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:59:35 2021 Page 1			
-1-8-0 1-8-0	4-7-13 4-7-13	8-9-6 4-1-9	14-3-0 5-5-10	19-9-15 5-6-15	24-0-14 4-2-15	27-8-11 3-7-13	33-0-3 5-3-8	39-7-14 6-7-11

Scale = 1:73.1

8-5-14 8-9-6 14-3-0 19-9-15 24-0-14 27-8-11 33-0-3 39-7-14
8-5-14 0-3-8 5-5-10 5-6-15 4-2-15 3-7-13 5-3-8 6-7-11

Plate Offsets (X,Y) - [2:0-6-4,0-0-4], [10:0-5-12,0-2-8], [18:0-5-12,0-3-0]

LOADING (psf)	SPACING-	CSI.	DEFL.	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	TC 0.66	Vert(LL) 0.21 14-15 >999 240	MT20	244/190
TCDL 7.0	Lumber DOL	BC 0.64	Vert(CT) -0.34 14-15 >999 180		
BCLL 0.0 *	Rep Stress Incr	WB 0.81	Horz(CT) 0.18 12 n/a n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS		Weight: 219 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-1-7 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 4-4-13 oc bracing.
WEBS 1 Row at midpt 8-16

REACTIONS. (size) 18=0-3-8, 12=0-3-8

Max Horz 18=188(LC 12)
Max Uplift 18=-555(LC 8), 12=-349(LC 8)
Max Grav 18=1998(LC 1), 12=1016(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-298/733, 3-4=-352/1069, 4-6=-582/664, 6-7=-1105/909, 7-8=-1084/923, 8-9=-2262/1647, 9-10=-2583/1889, 10-11=-1607/1119, 11-12=-966/640
BOT CHORD 2-18=-617/344, 17-18=-1041/423, 16-17=-509/547, 15-16=-1357/2107, 14-15=-1787/2688, 13-14=-934/1442
WEBS 3-18=-363/156, 4-18=-1499/771, 4-17=-839/1613, 6-17=-863/364, 6-16=-254/595, 7-16=-580/627, 8-16=-1552/1010, 8-15=-921/1331, 9-15=-637/471, 9-14=-784/505, 10-14=-937/1323, 10-13=-345/152, 11-13=-946/1371

NOTES-

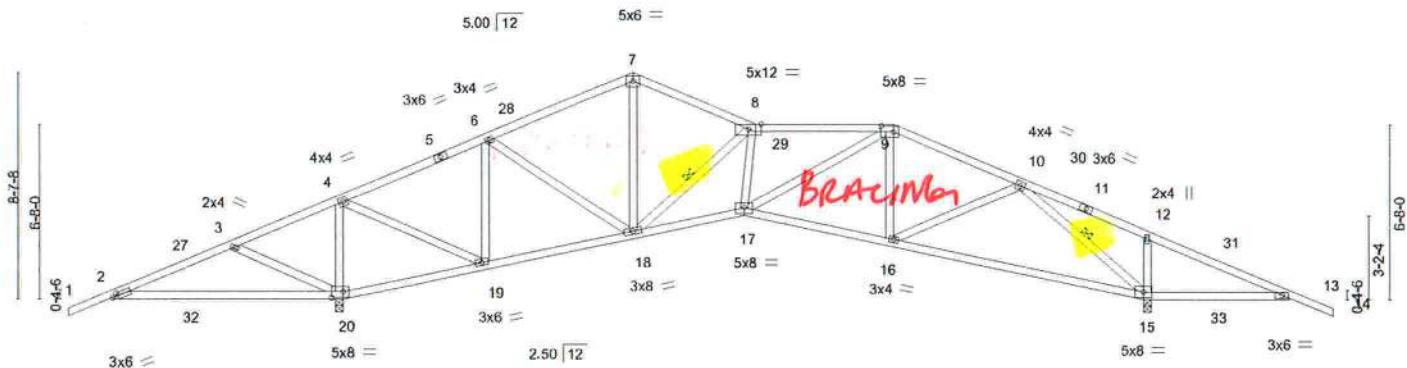
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCPi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 2-3-9, Interior(1) 2-3-9 to 19-9-15, Exterior(2R) 19-9-15 to 24-0-14, Interior(1) 24-0-14 to 33-0-3, Exterior(2R) 33-0-3 to 36-11-12, Interior(1) 36-11-12 to 39-6-2 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 18=555, 12=349.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek
6904 Parke East Blvd.
Tampa, FL 33610


Job 2975129	Truss T16	Truss Type Roof Special	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25772007
----------------	--------------	----------------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City, FL), Lake City, FL - 32055.

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:59:46 2021 Page 1

ID:UaeXTPyqXi2QdsDR5DulQoyPd7?-hCQDeQauUbc3MDwVlk4gnJ6dv4q5D5K9rXmk_yPYXx
1-8-0 4-7-13 8-9-6 14-3-0 19-9-15 24-6-4 29-9-12 34-8-0 39-4-6 44-11-6 46-7-6
1-8-0 4-7-13 4-1-9 5-5-10 5-6-15 4-8-5 5-3-8 4-10-4 4-8-6 5-7-0 1-8-0

Scale = 1:82.6

8-5-14 8-9-6 14-3-0 19-9-15 24-0-14 29-9-12 39-4-6 39-7-14 44-11-6
8-5-14 0-3-8 5-5-10 5-6-15 4-2-15 5-8-14 9-6-10 0-3-8 5-3-8

Plate Offsets (X,Y)- [2:0-2-6,0-1-8], [9:0-5-12,0-2-8], [20:0-5-4,0-2-12]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.25	TC 0.66	Vert(LL)	-0.26 15-16	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL 1.25	BC 0.83	Vert(CT)	-0.53 15-16	>699	180		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.58	Horz(CT)	0.13 15	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS					Weight: 239 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-8-12 oc purlins.
BOT CHORD Rigid ceiling directly applied or 5-8-6 oc bracing.
WEBS 1 Row at midpt 8-18, 10-15

REACTIONS. (size) 20=0-3-8, 15=0-3-8

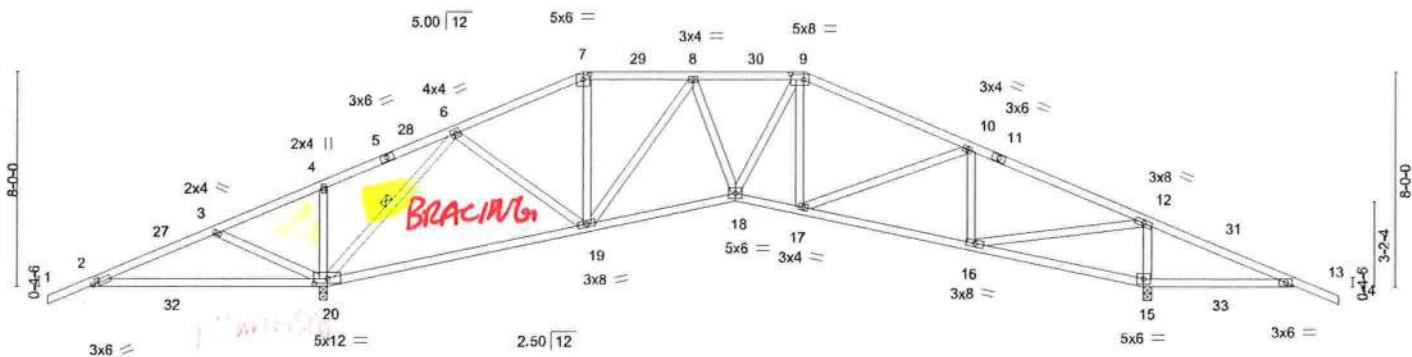
Max Horz 20=-133(LC 17)
Max Uplift 20=-460(LC 8), 15=-414(LC 13)
Max Grav 20=1936(LC 1), 15=1570(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-729/733, 3-4=-915/1069, 4-6=-507/137, 5-7=-984/231, 7-8=-967/218,
8-9=-1896/382, 9-10=-1371/298, 10-12=-617/726, 12-13=-685/724
BOT CHORD 2-20=-617/701, 19-20=-1039/1016, 18-19=-0/561, 17-18=-147/1989, 16-17=-67/1242,
15-16=-63/759, 13-15=-611/691
WEBS 3-20=-363/290, 4-20=-1438/452, 4-19=-481/1535, 6-19=-816/355, 6-18=-232/545,
7-18=-77/515, 8-18=-1448/289, 8-17=0/385, 9-17=-97/783, 10-16=-113/545,
10-15=-1841/501, 12-15=-302/165

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 2-9-15, Interior(1) 2-9-15 to 19-9-15, Exterior(2E) 19-9-15 to 24-6-4, Interior(1) 24-6-4 to 29-9-12, Exterior(2R) 29-9-12 to 34-3-11, Interior(1) 34-3-11 to 46-7-6 zone; cantilever left and right exposed :C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 20=460, 15=414.


Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date: October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 3/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek
6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T17	Truss Type Hip	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25772008
Builders FirstSource (Lake City, FL),	Lake City, FL - 32055,					
8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:59:53 2021 Page 1 ID:UaeXTPyqXi2QdsDR5DulQoyPd7?-YMs6pgHqkUbPRGGQiuZouqwwEZMFgBS7zck4yPYXq						
1-8-0 4-7-13 8-9-6 13-6-11 18-4-0 22-5-11 26-7-6 32-11-0 39-4-6 44-11-6 46-7-6 1-8-0 4-7-13 4-1-9 4-9-5 4-9-5 4-1-11 4-1-11 6-3-10 6-5-6 5-7-0 1-8-0						

Scale = 1:8.13

8-5-14	8-9-6	18-4-0	24-0-14	26-7-6	32-11-0	39-4-6	39-7-14	44-11-6
8-5-14	0-3-8	9-6-10	5-8-14	2-6-8	6-3-10	6-5-6	0-3-8	5-3-8

Plate Offsets (X,Y) - [2:0-2-6,0-1-8], [7:0-3-0,0-2-4], [9:0-5-12,0-2-8], [20:0-6-0,0-2-4]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.61	Vert(LL)	-0.23 19-20	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.78	Vert(CT)	-0.48 19-20	>770	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.67	Horz(CT)	0.09 15	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS					Weight: 242 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-5-1 oc purlins.
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.
WEBS 1 Row at midpt 6-20

REACTIONS. (size) 20=0-3-8, 15=0-3-8
Max Horz 20=124(LC 13)

Max Uplift 20=-518(LC 8), 15=-401(LC 13)

Max Lift 20=1936(LC 1), 15=1581(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-733/729, 3-4=-927/1062, 4-6=-889/1084, 6-7=-926/192, 7-8=-846/191,
8-9=-1342/243, 9-10=-1389/258, 10-12=-1217/237, 12-13=-672/724
BOT CHORD 2-20=-615/704, 19-20=-9/565, 18-19=-70/1261, 17-18=-33/1240, 16-17=-70/1095,
15-16=-717/724, 13-15=-607/678
WEBS 3-20=-359/299, 6-20=-1863/656, 6-19=-215/700, 8-19=-670/145, 8-18=-27/335,
9-18=-47/274, 10-16=-492/192, 12-16=-389/1768, 12-15=-1308/388

NOTES-

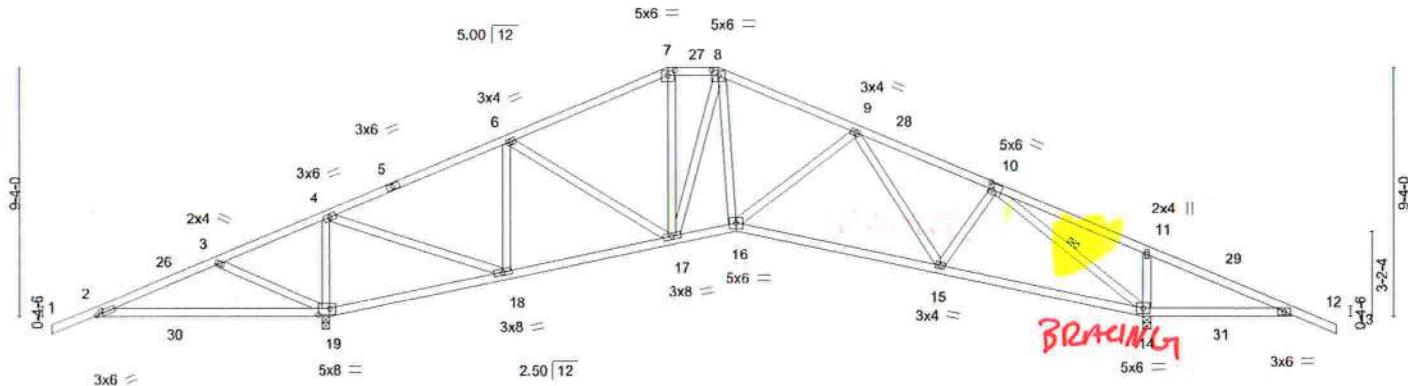
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Endl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 2-9-15, Interior(1) 2-9-15 to 18-4-0, Exterior(2R) 18-4-0 to 24-8-4, Interior(1) 24-8-4 to 26-7-6, Exterior(2R) 26-7-6 to 32-11-0, Interior(1) 32-11-0 to 46-7-6 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 20=518, 15=401.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610


Job 2975129	Truss T18	Truss Type Hip	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25772009
----------------	--------------	-------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City, FL), Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 11:59:59 2021 Page 1

ID:UaeXTPyqX2QdsDR5DulQoyPd7? -pij7Nsk2QaFI7MjPmypyj38rkJJamzu3q2QwxkyPYXk
1-8-0 4-7-13 8-9-6 15-5-5 21-6-6 23-5-0 28-6-10 33-8-13 39-4-6 44-11-6 46-7-6
1-8-0 4-7-13 4-1-9 6-7-15 6-1-1 1-10-9 5-1-10 5-2-3 5-7-9 5-7-0 1-8-0

Scale = 1:81.3

8-5-14	8-0-6	15-5-5	21-6-6	24-0-14	31-8-12	39-4-6	39-7-14	44-11-6
8-5-14	0-3-8	6-7-15	6-1-1	2-6-8	7-7-14	7-7-10	0-3-8	5-3-8

Plate Offsets (X,Y)-- [2:0-2-6,0-1-8], [7:0-3-0,0-2-4], [8:0-3-0,0-2-4], [10:0-2-0,0-3-0], [19:0-5-4,0-2-12]

LOADING (psf)	SPACING-	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20.0	Plate Grip DOL	1.25	TC 0.65	Vert(LL)	-0.12 15-16	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.68	Vert(CT)	-0.26 15-16	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.63	Horz(CT)	0.09 14	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014	Matrix-MS					Weight: 248 lb	FT = 20%	

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

REACTIONS. (size) 19=0-3-8, 14=0-3-8

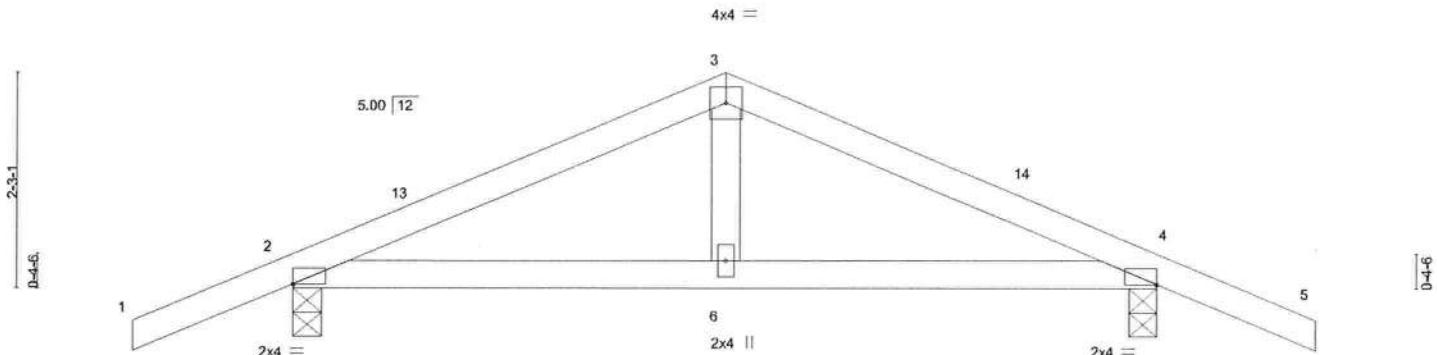
Max Horz 19=144(LC 13)
Max Uplift 19=480(LC 8), 14=395(LC 13)
Max Grav 19=1936(LC 1), 14=1570(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-733/739, 3-4=-914/1058, 4-6=-683/131, 6-7=-1035/200, 7-8=-891/213,
8-9=-1214/215, 9-10=-1227/263, 10-11=-605/735, 11-12=-676/724
BOT CHORD 2-19=-624/705, 18-19=-1025/995, 17-18=-63/592, 16-17=-21/1015, 15-16=-70/1236,
14-15=-55/932, 12-14=-607/682
WEBS 3-19=-339/281, 4-19=-1443/461, 4-18=-517/1643, 6-18=-712/334, 6-17=-187/374,
7-17=-37/253, 8-17=-420/74, 8-16=-67/654, 10-15=-30/366, 10-14=-1991/442,
11-14=-335/183

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-8-0 to 2-9-15, Interior(1) 2-9-15 to 21-6-6, Exterior(2E) 21-6-6 to 23-5-0, Exterior(2R) 23-5-0 to 29-9-4, Interior(1) 29-9-4 to 46-7-6 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 19=480, 14=395.


Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date: October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek
6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T19	Truss Type Common	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25772010
Builders FirstSource (Lake City,FL),	Lake City, FL - 32055,				Job Reference (optional)	
-1-8-0 1-8-0	4-6-8 4-6-8				8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 12:00:03 2021 Page 1 ID:UaeXTPyqXi2QdsDR5DulQoyPd77-iTyeDEnYTpIAcz1B7olfvJeGnkivWlg084VvPYXg	9-1-0 4-6-8 10-9-0 1-8-0

Scale = 1:22.8

Plate Offsets (X,Y) - [2:Edge,0-0-1], [4:Edge,0-0-1]		4-6-8	4-6-8	9-1-0	4-6-8
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	PLATES
TCLL 20.0	Plate Grip DOL	1.25	TC 0.17	Vert(LL) -0.01 6-12 >999 240	MT20 GRIP 244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.22	Vert(CT) -0.02 6-12 >999 180	
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.07	Horz(CT) 0.00 4 n/a n/a	Weight: 36 lb FT = 20%
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS		

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 4=0-3-8

Max Horz 2=38(LC 12)
Max Uplift 2=109(LC 12), 4=109(LC 13)
Max Grav 2=426(LC 1), 4=426(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

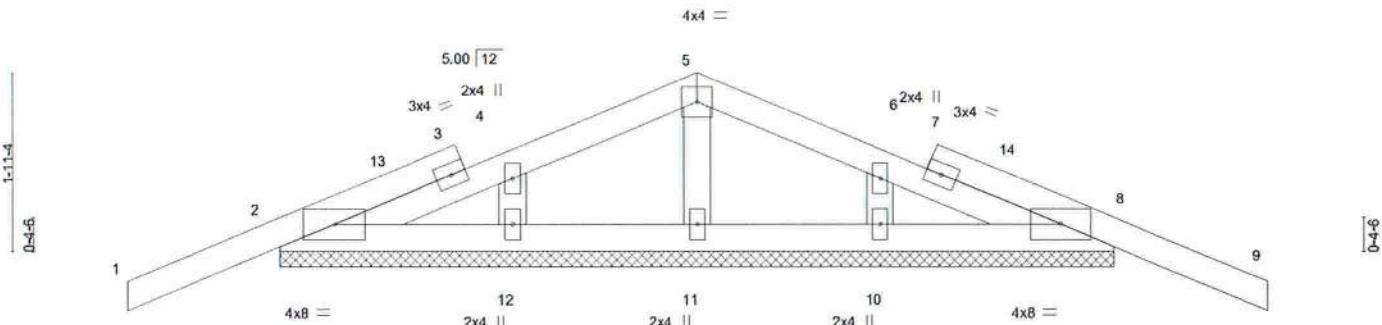
TOP CHORD 2-3=476/222, 3-4=476/225
BOT CHORD 2-6=-105/402, 4-6=-105/402

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Endl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 1-4-0, Interior(1) 1-4-0 to 4-6-8, Exterior(2R) 4-6-8 to 7-6-8, Interior(1) 7-6-8 to 10-9-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6 tall by 2-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=109, 4=109.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T19G	Truss Type Common Supported Gable	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25772011
Builders FirstSource (Lake City, FL),	Lake City, FL - 32055,				8.430 8 Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 12:00:07 2021 Page 1 ID:UaaXTPyqX12QdsDR5DulQoyPd77-aFC92bq3X2Fc5bKyEayb8lUK3YCMek5FglMMDGyPYXc	
	-1-8-0 1-8-0	4-6-8 4-6-8			9-1-0 4-6-8	10-9-0 1-8-0

Scale = 1:23.5

LOADING (psf)	SPACING-Plate Grip DOL	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Lumber DOL	1.25	TC 0.18	Vert(LL)	-0.01	9	n/r	MT20	244/190
TCDL 7.0		1.25	BC 0.04	Vert(CT)	-0.01	9	n/r		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.04	Horz(CT)	0.00	8	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-S					Weight: 42 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
OTHERS 2x4 SP No.3

REACTIONS.

All bearings 9-1-0.
(lb) - Max Horz 2=34(LC 12)
Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 11, 12, 10
Max Grav All reactions 250 lb or less at joint(s) 2, 8, 11, 12, 10

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Endl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E)-1-8-0 to 1-4-0, Exterior(2N) 1-4-0 to 4-6-8, Corner(3R) 4-6-8 to 7-6-8, Exterior(2N) 7-6-8 to 10-9-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 11, 12, 10.

BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Park East Blvd. Tampa FL 33610
Date: October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5-19-2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek
6904 Park East Blvd.
Tampa, FL 33610

Job 2975129	Truss T20	Truss Type Common Girder	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25772012
----------------	--------------	-----------------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City, FL), Lake City, FL - 32055.

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 12:00:15 2021 Page 1
ID:UaeXTPyqXi2QdsDR5DulQoyPd7?LnhAkx4eVGT2qxUiJ5TSRph?moVWI_QWYInVoyPYXU

4-6-8
4-6-8

9-1-0
4-6-8

4x4 =

Scale = 1:16.7

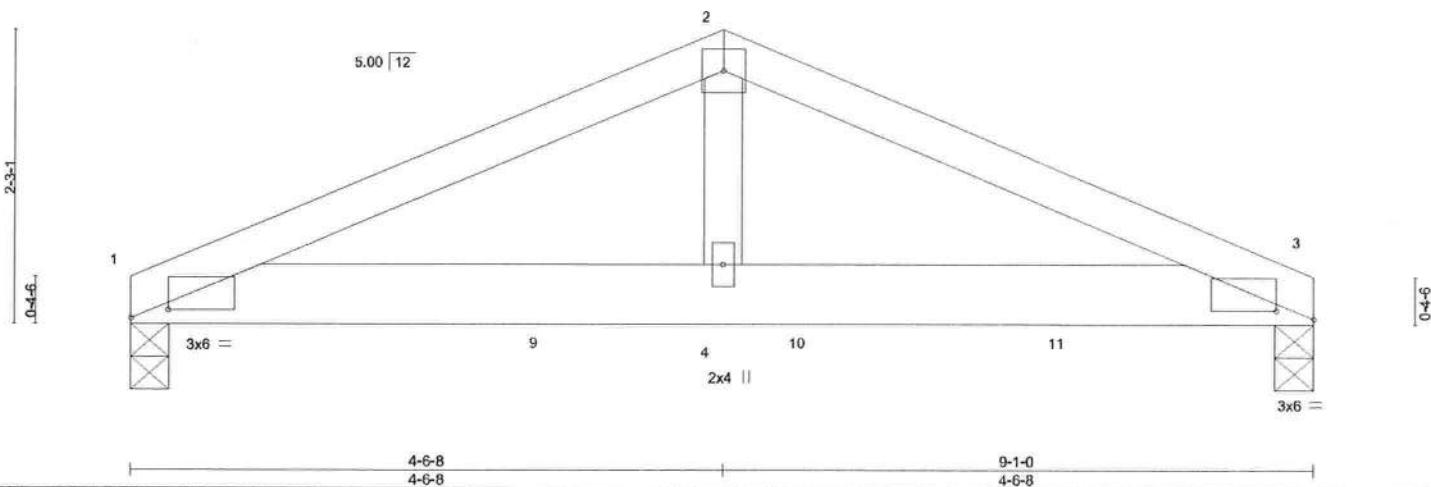


Plate Offsets (X,Y) - [1:0-3-7,0-0-12], [3:0-3-7,0-0-12]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.25	Vert(LL)	-0.03	4-8	>999	240	
TCDL 7.0	Lumber DOL	1.25	BC 0.54	Vert(CT)	-0.05	4-8	>999	180	
BCLL 0.0 *	Rep Stress Incr	NO	WB 0.30	Horz(CT)	0.01	3	n/a	n/a	
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS					Weight: 38 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3

BRACING-

TOP CHORD Structural wood sheathing directly applied or 4-9-15 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=0-3-8, 3=0-3-8
Max Horz 1=-28(LC 9)
Max Uplift 1=-105(LC 8), 3=-100(LC 9)
Max Grav 1=849(LC 1), 3=770(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 1-2=-1346/161, 2-3=-1346/161
BOT CHORD 1-4=-122/1223, 3-4=-122/1223
WEBS 2-4=-48/784

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCp=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 1=105.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 237 lb down and 30 lb up at 1-2-10, 237 lb down and 30 lb up at 3-2-10, and 237 lb down and 30 lb up at 5-2-10, and 237 lb down and 30 lb up at 7-2-10 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-2=-54, 2-3=-54, 1-3=-20
Concentrated Loads (lb)
Vert: 6=-237(B) 9=-237(B) 10=-237(B) 11=-237(B)

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27, 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 (rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek
6904 Parke East Blvd.
Tampa, FL 33610

Job 2975129	Truss T21	Truss Type Common	Qty 3	Ply 1	WOODMAN PARK - SOLER RES.	T25772013
----------------	--------------	----------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City,FL), Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 12:00:19 2021 Page 1

ID:UaeXTPyqXi2QdsDR5DulQoyPd7-EYwhai_bikmvXRFFx9APdHzN_NGaS9i0QAG_eZyPYXQ

-1-8-0 3-11-8 7-11-0
1-8-0 3-11-8 3-11-8

4x4 =

Scale = 1:23.2

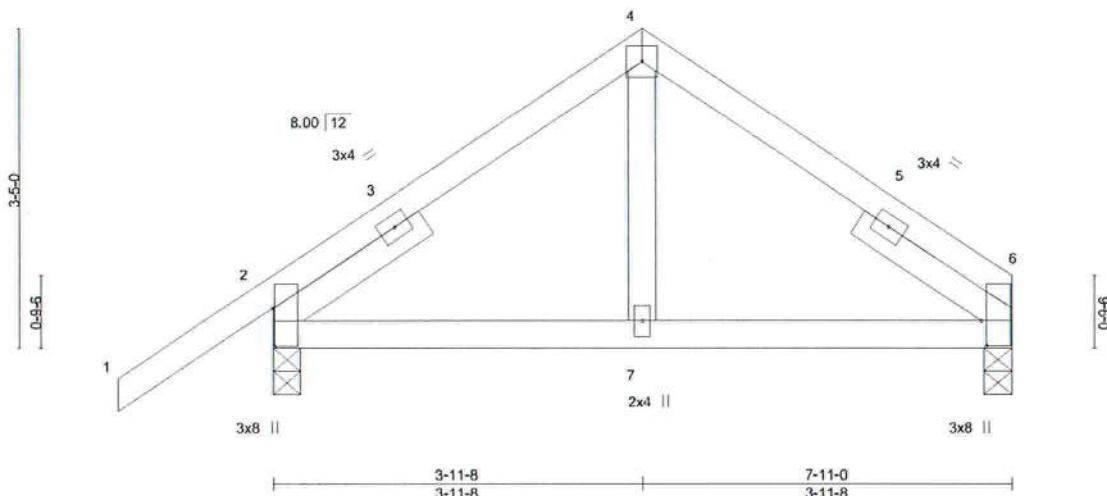


Plate Offsets (X,Y)-- [2:0-4-14,0-0-3], [6:0-3-4,0-0-11]

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.18	Vert(LL)	-0.01	7-10	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.14	Vert(CT)	-0.01	7-10	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.06	Horz(CT)	0.00	6	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS						Weight: 39 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2
WEBS 2x4 SP No.3
SLIDER Left 2x4 SP No.3 1-11-8, Right 2x4 SP No.3 1-11-8

REACTIONS.

(size) 6=0-3-8, 2=0-3-8
Max Horz 2=74(LC 9)
Max Uplift 6=-54(LC 13), 2=-95(LC 12)
Max Grav 6=283(LC 1), 2=392(LC 1)

FORCES.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-4=-235/358, 4-6=-235/354
WEBS 4-7=-254/157

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; End., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E)-1-8-0 to 1-4-0, Interior(1) 1-4-0 to 3-11-8, Exterior(2R) 3-11-8 to 6-11-8, Interior(1) 6-11-8 to 7-11-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

BRACING-

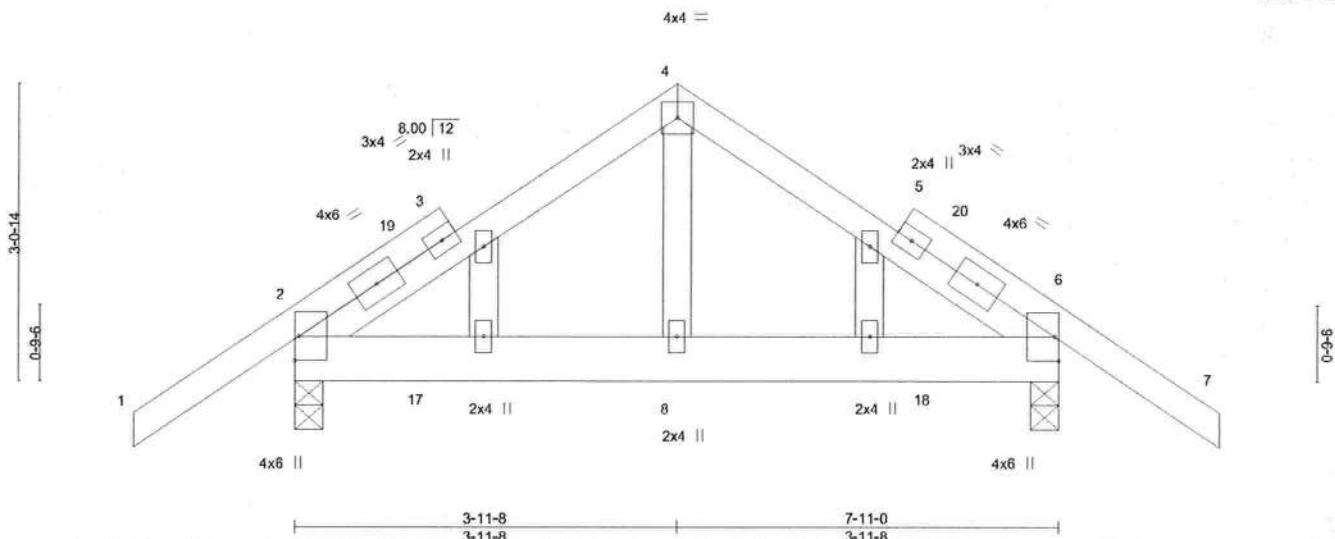
TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIH-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek
6904 Parke East Blvd.
Tampa, FL 33610


Job 2975129	Truss T21G	Truss Type GABLE	Qty 1	Ply 1	WOODMAN PARK - SOLER RES.	T25772014
----------------	---------------	---------------------	----------	----------	---------------------------	-----------

Builders FirstSource (Lake City, FL), Lake City, FL - 32055.

8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Oct 26 12:00:22 2021 Page 1
ID:UaeXTPyqXz2QdsDR5DulQoyPd7?e7cqCk0T?f8UOu_qclj6FvbsVbIXWTS77UeFuyPYXN

-1-8-0 3-11-8 7-11-0 9-7-0
1-8-0 3-11-8 3-11-8 3-11-8 1-8-0

Scale = 1:22.5

LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.25	TC 0.29	Vert(LL)	0.01	8-16	>999	240	MT20	244/190
TCDL 7.0	Lumber DOL	1.25	BC 0.06	Vert(CT)	0.01	8-16	>999	180		
BCLL 0.0 *	Rep Stress Incr	YES	WB 0.06	Horz(CT)	-0.00	2	n/a	n/a		
BCDL 10.0	Code FBC2020/TPI2014		Matrix-MS						Weight: 51 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2
BOT CHORD 2x6 SP No.2
WEBS 2x4 SP No.3
OTHERS 2x4 SP No.3

BRACING-

TOP CHORD
BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.
Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 2=0-3-8, 6=0-3-8
Max Horz 2=75(LC 10)
Max Uplift 2=97(LC 12), 6=97(LC 13)
Max Grav 2=380(LC 1), 6=380(LC 1)

FORCES.

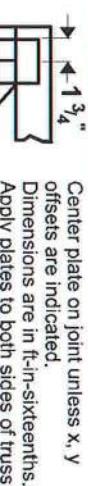
(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
TOP CHORD 2-4=264/387, 4-6=264/388
WEBS 4-8=-268/153

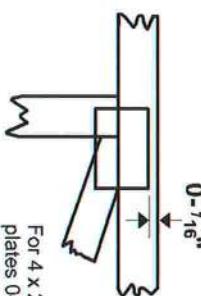
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Endl., GCp=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-8-0 to 1-4-0, Exterior(2N) 1-4-0 to 3-11-8, Corner(3R) 3-11-8 to 6-11-8, Exterior(2N) 6-11-8 to 9-7-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

Philip J. O'Regan PE No.58126
MiTek USA, Inc. FL Cert 6634
6904 Parke East Blvd. Tampa FL 33610
Date:

October 27, 2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5-19-2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


6904 Parke East Blvd.
Tampa, FL 33610

Symbols

PLATE LOCATION AND ORIENTATION

0.16"

For 4 x 2 orientation, locate plates 0-1 1/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

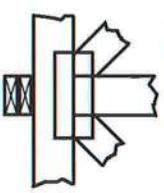
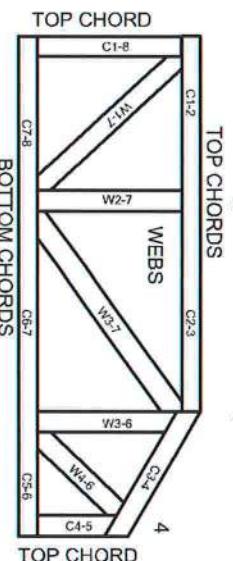

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

4 X 4
The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or text in the bracing section of the output. Use T or I bracing if indicated.


BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only.

Industry Standards:
ANSI/TP1: National Design Specification for Metal Plate Connected Wood Truss Construction.
DSB-89: Design Standard for Bracing.
BCSI: Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR-1988
ER-3907, ESR-2362, ESR-1397, ESR-3282

Failure to Follow Could Cause Property Damage or Personal Injury

1. Additional stability bracing for truss system, e.g., diagonal or X-bracing, is always required. See BCSI.

2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor-I bracing should be considered.

3. Never exceed the design loading shown and never slack materials on inadequately braced trusses.

4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

5. Cut members to bear tightly against each other.

6. Place plates on each face of truss at each joint and embed fully. Knots and waney at joint locations are regulated by ANSI/TP1.

7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TP1.

8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.

11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.

12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.

13. Top chords must be sheathed or purlins provided at spacing indicated on design.

14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.

15. Connections not shown are the responsibility of others.

16. Do not cut or alter truss member or plate without prior approval of an engineer.

17. Install and load vertically unless indicated otherwise.

18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.

19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.

20. Design assumes manufacture in accordance with ANSI/TP1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

General Safety Notes

