Date: July 06, 2022

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 (918) 587-4630

Subject:

Structural Analysis Report

Carrier Designation:

Verizon Wireless Co-Locate

Site Number:

712924

Site Name:

CC Lake City Airport

Crown Castle Designation:

BU Number:

825272

Site Name:

Lake City Airport

JDE Job Number: Work Order Number: 706810 2133059

Order Number:

605523 Rev. 1

Engineering Firm Designation:

B+T Group Project Number:

121641.005.01

Site Data:

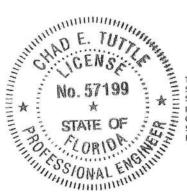
336 SE Newell DR, Lake City, Columbia County, FL

Latitude 30° 10' 13.5", Longitude -82° 35' 9.7"

132 Foot - Monopole Tower

B+T Group is pleased to submit this "Structural Analysis Report" to determine the structural integrity of the above-mentioned tower.

The purpose of the analysis is to determine acceptability of the tower stress level. Based on our analysis we have determined the tower stress level for the structure and foundation, under the following load case, to be:


LC5: Proposed Equipment Configuration

Sufficient Capacity

This analysis utilizes an ultimate 3-second gust wind speed of 118 mph as required by the 2020 Florida Building Code 7th Edition. Applicable Standard references and design criteria are listed in Section 2 - Analysis Criteria.

Structural analysis prepared by: Massood Sattari

Respectfully submitted by: B+T Engineering, Inc.

CHAD TUTTLE, P.E.
B&T ENGINEERING, INC
THIS ITEM HAS BEEN DIGITALLY SIGNED AND
SEALED BY CHAD TUTTLE, P.E. USING A DIGITAL
SIGNATURE.

PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES.

Chad E. Tuttle, P.E.

tnxTower Report - version 8.1.1.0

TABLE OF CONTENTS

1) INTRODUCTION

2) ANALYSIS CRITERIA

Table 1 - Proposed Equipment Configuration
Table 2 - Other Considered Equipment

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided 3.1) Analysis Method 3.2) Assumptions

4) ANALYSIS RESULTS

Table 4 - Section Capacity (Summary)
Table 5 - Tower Component Stresses vs. Capacity - LC5
4.1) Recommendations

5) APPENDIX A

tnxTower Output

6) APPENDIX B

Base Level Drawing

7) APPENDIX C

Additional Calculations

1) INTRODUCTION

This tower is a 132 ft. Monopole tower designed by Sabre Communications.

2) ANALYSIS CRITERIA

TIA-222 Revision:

TIA-222-H

Risk Category:

II

Wind Speed:

118 mph

Exposure Category:

C

Topographic Factor:

1

Service Wind Speed:

60 mph

Table 1 - Proposed Equipment Configuration

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model	Number of Feed Lines	Feed Line Size (in)
		2	Commscope	RCMDC-6627-PF-48		
		6	JMA Wireless	MX06FIT865-02		
		3	Ericsson	4449		
123.0	123.0	3	Ericsson	8843	2	2
32-1-2-2-2	3-21113000	3	Ericsson	AIR 6449 B77	1	
		1	Site Pro 1	HRK12	1	
		1	Site Pro 1	RMQP-NP Low Profile Platform		

Table 2 - Other Considered Equipment

Mounting Level (ft)	Center Line Elevation (ft)	Number of Antennas	Antenna Manufacturer	Antenna Model		Feed Line Size (in)
	133.0	1		Platform Mount [LP 701-1_HR-1]		
		4	Commscope	FFVV-65C-R3-V1_TMO		
133.0	400.0	4	Ericsson	AIR6449 B41_T-MOBILE	3	1-5/8
	129.0	4	Ericsson	RADIO 4460 B2/B25 B66_TMO		
		4	Ericsson	RADIO 4480 B71_TMO		

3) ANALYSIS PROCEDURE

Table 3 - Documents Provided

Document	Reference	Source
Tower Manufacturer Drawing	3553565	CCI Sites
Foundation Drawing	3877066	CCI Sites
Geotech Report	3553564	CCI Sites
Crown CAD Package	Date: 06/30/2022	CCI Sites

3.1) Analysis Method

tnxTower (version 8.1.1.0), a commercially available analysis software package, was used to create a three-dimensional model of the tower and calculate member stresses for various loading cases. Selected output from the analysis is included in Appendix A. When applicable, Crown Castle has calculated and provided the effective area for panel antennas using approved methods following the intent of the TIA-222 standard.

3.2) Assumptions

- 1) The tower and structures were maintained in accordance with the TIA-222 standard.
- The configuration of antennas, transmission cables, mounts and other appurtenances are as specified in Tables 1 and 2 and the referenced drawings.

This analysis may be affected if any assumptions are not valid or have been made in error. B+T Group should be notified to determine the effect on the structural integrity of the tower.

4) ANALYSIS RESULTS

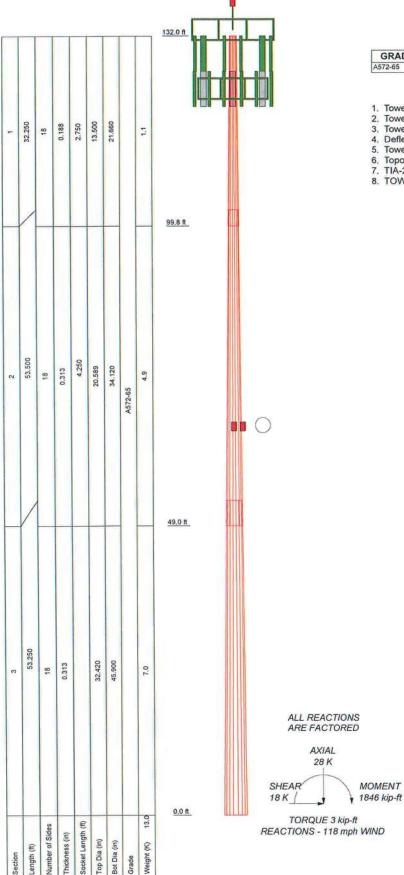
Table 4 - Section Capacity (Summary)

Section No.	Elevation (ft)	Component Type	Size	Critical Element	P (K)	SF*P_allow (K)	% Capacity	Pass / Fail
L1	132 - 99.75	Pole	TP21.66x13.5x0.188	1	-10.303	759.503	76.9	Pass
L2	99.75 - 49	Pole	TP34.12x20.589x0.313	2	-17.127	1994.265	58.5	Pass
L3	49 - 0	Pole	TP45.9x32.42x0.313	3	-27.698	2777.460	65.0	Pass
							Summary	
						Pole (L1)	76.9	Pass
						Rating =	76.9	Pass

Table 5 - Tower Component Stresses vs. Capacity –LC5

Notes	Component	Elevation (ft)	% Capacity	Pass / Fail
1,2	Anchor Rods	Base	54.5	Pass
1,2	Base Plate	Base	47.4	Pass
1,2	Base Foundation (Structure)	Base	57.0	Pass
1,2	Base Foundation (Soil Interaction)	Base	50.7	Pass

	70.00/
Structure Rating (max from all components) =	76.9%

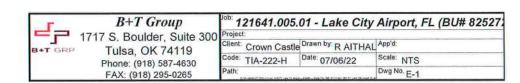

Notes:

- See additional documentation in "Appendix C Additional Calculations" for calculations supporting the % capacity consumed.
- 2) Rating per TIA-222-H Section 15.5.

4.1) Recommendations

The tower and its foundations have sufficient capacity to carry the proposed load configuration. No modifications are required at this time.

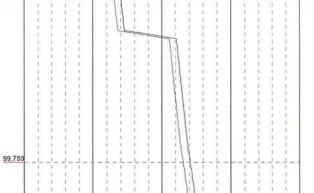
APPENDIX A TNXTOWER OUTPUT

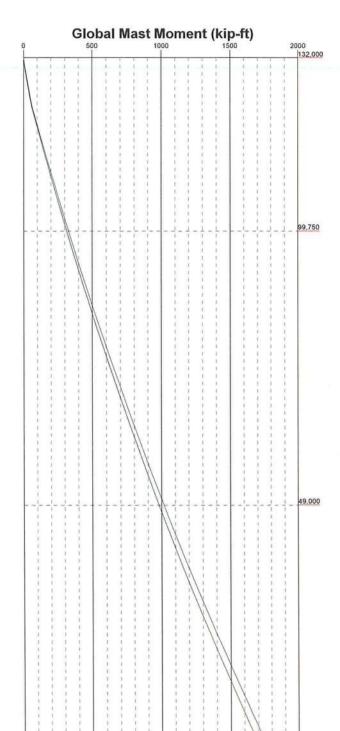


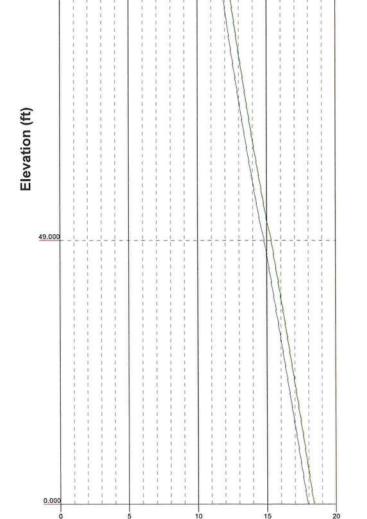
MATERIAL STRENGTH

GRADE	Fy	Fü	GRADE	Fy	Fu
A572-65	65 ksi	80 ksi			

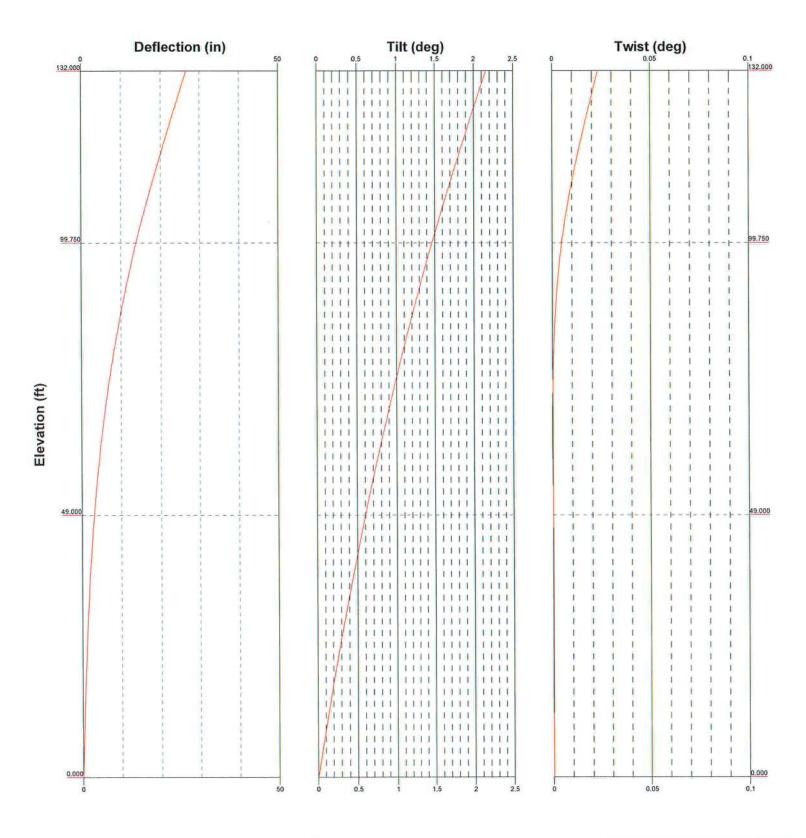
TOWER DESIGN NOTES

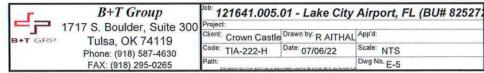

- 1. Tower is located in Columbia County, Florida.
- 2. Tower designed for Exposure C to the TIA-222-H Standard.
- 3. Tower designed for a 118 mph basic wind in accordance with the TIA-222-H Standard.
- 4. Deflections are based upon a 60 mph wind.
- 5. Tower Risk Category II.
- 6. Topographic Category 1 with Crest Height of 0.000 ft 7. TIA-222-H Annex S 8. TOWER RATING: 76.9%



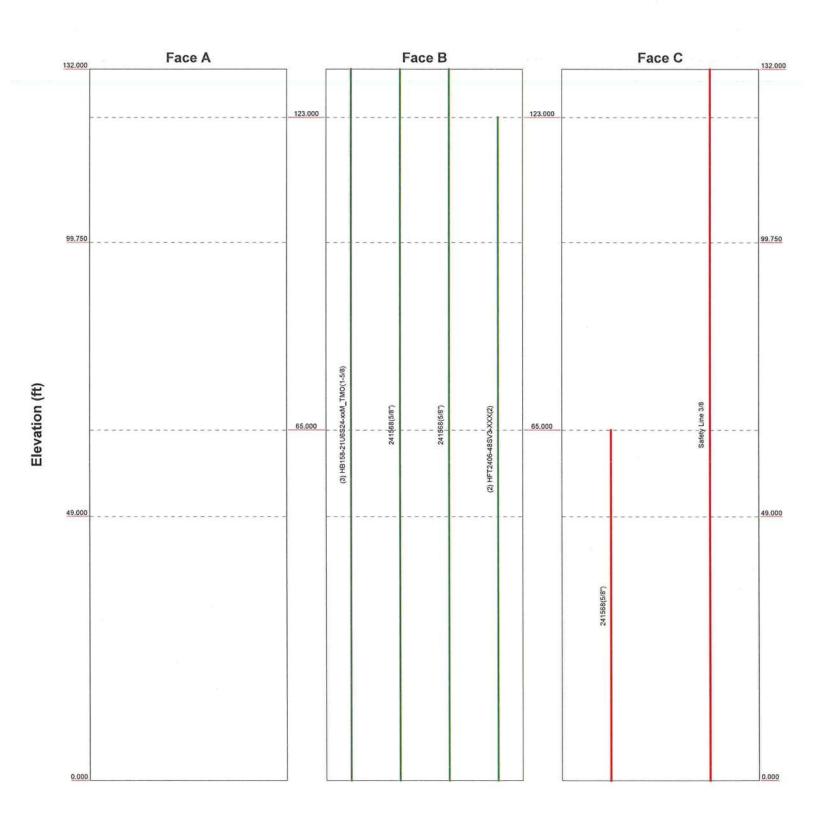

Mx ---- M

— Vx ——— V:




B+T Group
1717 S. Boulder, Suite 300
Project:
Client:
Phone: (918) 587-4630

FAX: (918) 295-0265


| Jobi: 121641.005.01 - Lake City Airport, FL (BU# 82527;
| O | Project: Client: Crown Castle | Drawn by: R AITHAL | App'd: Code: TIA-222-H | Date: 07/06/22 | Scale: NTS | Dwg No. E-4

2000

Round Flat App In Face App Out Face Truss Leg

_ [B+T Group	Job: 12	21641.005.	01 - Lake City	Airport, FL (BU# 82527
	1717 S. Boulder, Suite 300	Project:			
B+T GRP	Tulsa, OK 74119	Client:	Crown Castle	Drawn by: R AITHAL	App'd:
	Phone: (918) 587-4630	Code:	TIA-222-H	Date: 07/06/22	Scale: NTS
		Path:		And the Park of th	Dwg No. E-7

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job 12164	1.005.01 - Lake City Airport, FL (BU# 825272)	Page 1 of 13
Project		Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

Tower Input Data

The tower is a monopole.

This tower is designed using the TIA-222-H standard.

The following design criteria apply:

Tower is located in Columbia County, Florida.

Tower base elevation above sea level: 167.000 ft.

Basic wind speed of 118 mph.

Risk Category II.

Exposure Category C.

Simplified Topographic Factor Procedure for wind speed-up calculations is used.

Topographic Category: 1. Crest Height: 0.000 ft.

Deflections calculated using a wind speed of 60 mph.

TIA-222-H Annex S.

A non-linear (P-delta) analysis was used.

Pressures are calculated at each section.

Stress ratio used in pole design is 1.

Tower analysis based on target reliabilities in accordance with Annex S.

Load Modification Factors used: $K_{es}(F_w) = 0.95$.

Maximum demand-capacity ratio is: 1.05.

Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

✓ Use Code Stress Ratios
 ✓ Use Code Safety Factors - Guys

Escalate Ice Always Use Max Kz Use Special Wind Profile Include Bolts In Member Capacity Leg Bolts Are At Top Of Section Secondary Horizontal Braces Leg Use Diamond Inner Bracing (4 Sided) SR Members Have Cut Ends SR Members Are Concentric Distribute Leg Loads As Uniform Assume Legs Pinned

√ Assume Rigid Index Plate

- √ Use Clear Spans For Wind Area
 Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt. Autocale Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder Ignore KL/ry For 60 Deg. Angle Legs

Use ASCE 10 X-Brace Ly Rules Calculate Redundant Bracing Forces Ignore Redundant Members in FEA SR Leg Bolts Resist Compression All Leg Panels Have Same Allowable Offset Girt At Foundation

√ Consider Feed Line Torque Include Angle Block Shear Check Use TIA-222-H Bracing Resist. Exemption Use TIA-222-H Tension Splice Exemption Poles

√ Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets Pole Without Linear Attachments Pole With Shroud Or No Appurtenances Outside and Inside Corner Radii Are Known

Tapered Pole Section Geometry

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	fi	Sides	in	in	in	in	

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job		Page
121641.0	05.01 - Lake City Airport, FL (BU# 825272)	2 of 13
Project		Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

Section	Elevation	Section Length	Splice Length	Number of	Top Diameter	Bottom Diameter	Wall Thickness	Bend Radius	Pole Grade
	ft	ft	ft	Sides	in	in	in	in	
L1	132.000-99.750	32.250	2.750	18	13.500	21.660	0.188	0.750	A572-65 (65 ksi)
L2	99.750-49.000	53.500	4.250	18	20.589	34.120	0.313	1.250	A572-65 (65 ksi)
L3	49.000-0.000	53.250		18	32.420	45.900	0.313	1.250	A572-65 (65 ksi)

Tapered Pole Properties

Section	Tip Dia.	Area	I	r	C	I/C	J	It/Q	w	w/t
	in	n in² in⁴ in	in	in	in^3	in4	in ²	in		
L1	13.679	7.923	177.388	4.726	6.858	25.866	355.010	3.962	2.046	10.912
	21.965	12.779	744.378	7.623	11.003	67.651	1489.735	6.391	3.482	18.572
L2	21.565	20.112	1044.685	7.198	10.459	99.881	2090.744	10.058	3.074	9.836
	34.598	33.533	4842.098	12.002	17.333	279.358	9690.567	16.770	5.455	17.456
L3	33.965	31.847	4147.810	11.398	16.469	251.849	8301.077	15.926	5.156	16.499
	46.560	45.217	11872.214	16.184	23.317	509.161	23760.050	22.613	7.528	24.091

Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A _f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants
fi	ft²	in					in	in	in
Ll				1	1	1			
132.000-99.75									
0									
L2				. 1	1	1			
99.750-49.000									
L3 49.000-0.000				1	1	1			

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Sector	Exclude From	Component Type	Placement	Total Number	Number Per Row	Start/End Position	Width or Diameter	Perimeter	Weigh
		Torque Calculation		fì				in	in	klf
*										
241568(5/8")	С	No	Surface Ar (CaAa)	65.000 - 0.000	1	1	0.200 0.210	0.630		0.000
*		**	c c .	122 000	*		0.150	0.275		0.000
Safety Line 3/8	С	No	Surface Ar (CaAa)	132.000 - 0.000	1	1	0.150 0.160	0.375		0.000
*										

Feed Line/Linear Appurtenances - Entered As Area

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job 1216	41.005.01 - Lake City Airport, FL (BU# 825272)	Page 3 of 13
Project		Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

Description	Face or	Allow Shield	Exclude From	Component Type	Placement	Total Number		C_AA_A	Weight
	Leg	LONG PROPERTY.	Torque Calculation		fi			ft²/ft	klf
HB158-21U6S24-xx M_TMO(1-5/8)	В	No	No	Inside Pole	132.000 - 0.000	3	No Ice	0.000	0.003
241568(5/8")	B	No	No	Inside Pole	132.000 - 0.000	1	No Ice	0.000	0.000
241568(5/8")	В	No	No	Inside Pole	132.000 - 0.000	1	No Ice	0.000	0.000
HFT2406-48SV3-X XX(2) *	В	No	No	Inside Pole	123.000 - 0.000	2	No Ice	0.000	0.003

Feed Line/Linear Appurtenances Section Areas

Tower Section	Tower Elevation	Face	A_R	A_F	$C_A A_A$ In Face	$C_A A_A$ Out Face	Weight	
	fi		ft²	ft²	ft²	ft ²	K	
L1	132.000-99.750	A	0.000	0.000	0.000	0.000	0.000	
		В	0.000	0.000	0.000	0.000	0.398	
		C	0.000	0.000	1.209	0.000	0.007	
L2	99.750-49.000	A	0.000	0.000	0.000	0.000	0.000	
		В	0.000	0.000	0.000	0.000	0.715	
		C	0.000	0.000	2.911	0.000	0.014	
L3	49.000-0.000	A	0.000	0.000	0.000	0.000	0.000	
		В	0.000	0.000	0.000	0.000	0.690	
		C	0.000	0.000	4.925	0.000	0.020	

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X Ice	CP _z Ice
	ft	in	in	in	in
Ll	132.000-99.750	-0.096	0.284	-0.059	0.175
L2	99.750-49.000	-0.172	0.450	-0.106	0.277
L3	49.000-0.000	-0.301	0.732	-0.186	0.452

Note: For pole sections, center of pressure calculations do not consider feed line shielding.

Shielding Factor Ka

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L1	10	Safety Line 3/8	99.75 - 132.00	1.0000	1.0000
L2		241568(5/8")	49.00 - 65.00	1.0000	1.0000
L2	10	Safety Line 3/8	49.00 - 99.75	1.0000	1.0000

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job		Page
121641.0	05.01 - Lake City Airport, FL (BU# 825272)	4 of 13
Project		Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

Tower Section	Feed Line Record No.	Description	Feed Line Segment Elev.	K _a No Ice	K _a Ice
L3	8	241568(5/8")	0.00 - 49.00	1.0000	1.0000
L3	10	Safety Line 3/8	0.00 - 49.00	1.0000	1.0000

Discrete Tower Loads

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		$C_A A_A$ Front	$C_A A_A$ Side	Weight
			Vert fi fi fi	o	fi		ft²	ft²	K
Lightning Rod 3/4" x 4'	A	From Leg	4.000 0.000 0.000	0.000	136.000	No Ice	0.300	0.300	0.030
Strobe	C	None		0.000	137.000	No Ice	4.500	3.000	0.020
4' x 3" Pipe Mount	C	None		0.000	135.000	No Ice	1.000	1.000	0.029
Side Lighting	A	From Leg	0.500 0.000 0.000	0.000	65.000	No Ice	0.112	0.112	0.005
Side Lighting	В	From Leg	0.500 0.000 0.000	0.000	65.000	No Ice	0.112	0.112	0.005
*									
AIR6449 B41_T-MOBILE w/ Mount Pipe	Α	From Leg	4.000 0.000 -4.000	0.000	133.000	No Ice	5.187	2.705	0.128
AIR6449 B41_T-MOBILE w/ Mount Pipe	В	From Leg	4.000 0.000 -4.000	0.000	133.000	No Ice	5.187	2.705	0.128
AIR6449 B41_T-MOBILE w/ Mount Pipe	С	From Leg	4.000 0.000 -4.000	0.000	133.000	No Ice	5.187	2.705	0.128
AIR6449 B41_T-MOBILE w/ Mount Pipe	С	From Face	4.000 0.000 -4.000	0.000	133.000	No Ice	5.187	2.705	0.128
FFVV-65C-R3-V1_TMO w/ Mount Pipe	A	From Leg	4.000 0.000 -4.000	0.000	133.000	No Ice	12.969	6.196	0.157
FFVV-65C-R3-V1_TMO w/ Mount Pipe	В	From Leg	4.000 0.000 -4.000	0.000	133.000	No Ice	12.969	6.196	0.157
FFVV-65C-R3-V1_TMO w/ Mount Pipe	C	From Leg	4.000 0.000 -4.000	0.000	133.000	No Ice	12.969	6.196	0.157
FFVV-65C-R3-V1_TMO w/ Mount Pipe	С	From Face	4.000 0.000 -4.000	0.000	133.000	No Ice	12.969	6.196	0.157
RADIO 4460 B2/B25 B66_TMO	A	From Leg	4.000 0.000 -4.000	0.000	133.000	No Ice	2.139	1.686	0.109
RADIO 4460 B2/B25 B66_TMO	В	From Leg	4.000 0.000 -4.000	0.000	133.000	No Ice	2.139	1.686	0.109
RADIO 4460 B2/B25	C	From Leg	4.000	0.000	133,000	No Ice	2.139	1.686	0.109

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Јов 121641.0	05.01 - Lake City Airport, FL (BU# 825272)	Page 5 of 13
Project		Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C _A A _A Front	C _A A _A Side	Weight
	8		Vert fi fi	۰	fi		ft²	ft²	K
B66_TMO			0.000						
	11925		-4.000				27222		
RADIO 4460 B2/B25 B66_TMO	С	From Face	4.000 0.000 -4.000	0.000	133.000	No Ice	2.139	1.686	0.109
RADIO 4480 B71_TMO	A	From Leg	4.000 0.000	0.000	133.000	No Ice	2.852	1.383	0.093
RADIO 4480 B71_TMO	В	From Leg	-4.000 4.000 0.000 -4.000	0.000	133.000	No Ice	2.852	1.383	0.093
RADIO 4480 B71_TMO	С	From Leg	4.000 0.000 -4.000	0.000	133.000	No Ice	2.852	1.383	0.093
RADIO 4480 B71_TMO	C	From Face	4.000 0.000 -4.000	0.000	133.000	No Ice	2.852	1.383	0.093
8' x 2" Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	133.000	No Ice	1.900	1.900	0.029
8' x 2" Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	133.000	No Ice	1.900	1.900	0.029
8' x 2" Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	133.000	No Ice	1.900	1.900	0.029
8' x 2" Mount Pipe	C	From Face	4.000 0.000 0.000	0.000	133.000	No Ice	1.900	1.900	0.029
Platform Mount [LP 701-1_HR-1]	C	None	0.000	0.000	133.000	No Ice	55.580	55.580	3.082
AIR 6449 B77 w/ Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	123.000	No Ice	3.650	2.715	0.108
AIR 6449 B77 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	123.000	No Ice	3.650	2.715	0.108
AIR 6449 B77 w/ Mount Pipe	С	From Leg	4.000 0.000 0.000	0.000	123,000	No Ice	3.650	2.715	0.108
(2) MX06FIT865-02 w/ Mount Pipe	A	From Leg	4.000 0.000 0.000	0.000	123.000	No Ice	4.540	4.710	0.104
(2) MX06FIT865-02 w/ Mount Pipe	В	From Leg	4.000 0.000 0.000	0.000	123.000	No Ice	4.540	4.710	0.104
(2) MX06FIT865-02 w/ Mount Pipe	C	From Leg	4.000 0.000 0.000	0.000	123.000	No Ice	4.540	4.710	0.104
RCMDC-6627-PF-48	A	From Leg	4.000 0.000 0.000	0.000	123.000	No Ice	4.056	3.098	0.032
RCMDC-6627-PF-48	В	From Leg	4.000 0.000 0.000	0.000	123.000	No Ice	4.056	3.098	0.032
4449	A	From Leg	4.000	0.000	123.000	No Ice	1.969	1.402	0.071

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job		Page		
121641.0	121641.005.01 - Lake City Airport, FL (BU# 825272)			
Project	* 9	Date 18:58:19 07/06/22		
Client	Crown Castle	Designed by R AITHAL		

Description	Face or Leg	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C ₄ A _A Front	C _A A _A Side	Weigh
			Vert fi fi fi	o.	ft		ft²	ft²	K
			0.000						
			0.000						
(2) 4449	В	From Leg	4.000	0.000	123.000	No Ice	1.969	1.402	0.071
			0.000						
2000			0.000					1. 2.2	
8843	A	From Leg	4.000	0.000	123.000	No Ice	1.650	1.363	0.072
			0.000						
0042		F	0.000	0.000	122 000	N	1.750	1.060	0.072
8843	В	From Leg	4.000	0.000	123.000	No Ice	1.650	1.363	0.072
			0.000						
8843	C	F 1	0.000 4.000	0.000	123.000	No Ice	1.650	1.363	0.072
8843	C	From Leg	0.000	0.000	123.000	No Ice	1.050	1.303	0.072
			0.000						
8' x 2" Mount Pipe	A	From Leg	4.000	0.000	123.000	No Ice	1.900	1.900	0.029
o x z Wount ripe	Α	r tom Leg	0.000	0.000	123.000	No icc	1.900	1,300	0.029
			0.000						
8' x 2" Mount Pipe	В	From Leg	4.000	0.000	123.000	No Ice	1.900	1.900	0.029
o n a Product ipe		110m Deb	0.000	0.000	.20.000				
			0.000						
8' x 2" Mount Pipe	C	From Leg	4.000	0.000	123.000	No Ice	1.900	1.900	0.029
			0.000						
			0.000						
RMQP-NP+HRK12	C	None		0.000	123.000	No Ice	21.170	19.650	1.485

Load Combinations

Comb. No.		Description
1	Dead Only	
	1.2 Dead+1.0 Wind 0 deg - No Ice	
2 3 4 5 6 7	0.9 Dead+1.0 Wind 0 deg - No Ice	
4	1.2 Dead+1.0 Wind 30 deg - No Ice	
5	0.9 Dead+1.0 Wind 30 deg - No Ice	
6	1.2 Dead+1.0 Wind 60 deg - No Ice	
7	0.9 Dead+1.0 Wind 60 deg - No Ice	
8	1.2 Dead+1.0 Wind 90 deg - No Ice	
9	0.9 Dead+1.0 Wind 90 deg - No Ice	
10	1.2 Dead+1.0 Wind 120 deg - No Ice	
11	0.9 Dead+1.0 Wind 120 deg - No Ice	
12	1.2 Dead+1.0 Wind 150 deg - No Ice	
13	0.9 Dead+1.0 Wind 150 deg - No Ice	
14	1.2 Dead+1.0 Wind 180 deg - No Ice	
15	0.9 Dead+1.0 Wind 180 deg - No Ice	
16	1.2 Dead+1.0 Wind 210 deg - No Ice	
17	0.9 Dead+1.0 Wind 210 deg - No Ice	
18	1.2 Dead+1.0 Wind 240 deg - No Ice	
19	0.9 Dead+1.0 Wind 240 deg - No Ice	
20	1.2 Dead+1.0 Wind 270 deg - No Ice	

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Јов 121641.	005.01 - Lake City Airport, FL (BU# 825272)	Page 7 of 13
Project		Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

Comb. No.		Description
21	0.9 Dead+1.0 Wind 270 deg - No Ice	
22	1.2 Dead+1.0 Wind 300 deg - No Ice	
23	0.9 Dead+1.0 Wind 300 deg - No Ice	
24	1.2 Dead+1.0 Wind 330 deg - No Ice	
25	0.9 Dead+1.0 Wind 330 deg - No Ice	
26	Dead+Wind 0 deg - Service	
27	Dead+Wind 30 deg - Service	
28	Dead+Wind 60 deg - Service	
29	Dead+Wind 90 deg - Service	
30	Dead+Wind 120 deg - Service	
31	Dead+Wind 150 deg - Service	
32	Dead+Wind 180 deg - Service	
33	Dead+Wind 210 deg - Service	
34	Dead+Wind 240 deg - Service	
35	Dead+Wind 270 deg - Service	
36	Dead+Wind 300 deg - Service	
37	Dead+Wind 330 deg - Service	

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load Comb.	Axial K	Major Axis Moment kip-ft	Minor Axis Moment kip-ft
L1	132 - 99.75	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	20	-10.407	281.101	-1.874
			Max. Mx	8	-10.403	-282.893	-3.440
			Max. My	14	-10.303	-1.627	-297.447
			Max. Vy	8	11.424	-282.893	-3.440
			Max. Vx	14	11.906	-1.627	-297.447
			Max. Torque	8			-2.682
L2	99.75 - 49	Pole	Max Tension	1	0.000	0.000	0.000
			Max. Compression	20	-17.175	915.494	-0.341
			Max. Mx	8	-17.174	-917.400	-5.502
			Max. My	14	-17.127	-3.518	-955.400
			Max. Vy	8	14.501	-917.400	-5.502
			Max. Vx	14	14.969	-3.518	-955.400
			Max. Torque	6			-2.586
L3	49 - 0	Pole	Max Tension	1	0.000	0.000	0.000
775555			Max. Compression	20	-27.699	1782.113	1.419
			Max. Mx	8	-27.699	-1784.052	-7.461
			Max. My	14	-27.697	-5.396	-1846.313
			Max. Vy	8	17.976	-1784.052	-7.461
			Max. Vx	14	18.415	-5.396	-1846.313
			Max. Torque	6	Caronio Kalando		-2.567

Maximum Reactions

Location	Condition	Gov. Load	Vertical K	Horizontal, X K	Horizontal, Z K
		Comb.			
Pole	Max. Vert	14	27.716	-0.034	-18.387
	Max. H _x	20	27.716	17.949	0.034
	Max. Hz	2	27.716	0.034	18.387
	Max. Mx	2	1840.231	0.034	18.387
	Max. Mz	8	1784.052	-17.949	-0.034

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job		Page
121641.0	05.01 - Lake City Airport, FL (BU# 825272)	8 of 13
Project	-	Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

Location	Condition	Gov. Load Comb.	Vertical K	Horizontal, X K	Horizontal, 2 K
	Max. Torsion	18	2.419	15.528	-9.164
	Min. Vert	11	20.787	-15.561	-9.223
	Min. H _x	8	27.716	-17.949	-0.034
	Min. Hz	14	27.716	-0.034	-18.387
	Min. M _x	14	-1846.313	-0.034	-18.387
	Min. Mz	20	-1782.113	17.949	0.034
	Min. Torsion	6	-2.562	-15.528	9.164

Tower Mast Reaction Summary

Load Combination	Vertical	Shear _x	Shear _z	Overturning Moment, M _x	Overturning Moment, M ₂	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	23.097	0.000	0.000	2.467	-0.793	0.001
1.2 Dead+1.0 Wind 0 deg - No	27.716	-0.034	-18.387	-1840.231	3.482	0.871
Ice						
0.9 Dead+1.0 Wind 0 deg - No	20.787	-0.034	-18.387	-1809.817	3.667	0.871
Ice						
1.2 Dead+1.0 Wind 30 deg - No	27.716	8.945	-15.907	-1591.181	-888.516	2.009
Ice						
0.9 Dead+1.0 Wind 30 deg - No	20.787	8.945	-15.907	-1564.980	-873.268	1.957
Ice						
1.2 Dead+1.0 Wind 60 deg - No	27.716	15.528	-9.164	-914.935	-1542.871	2.562
Ice						
0.9 Dead+1.0 Wind 60 deg - No	20.787	15.528	-9.164	-900.200	-1516.557	2.472
Ice						
1.2 Dead+1.0 Wind 90 deg - No	27.716	17.949	0.034	7.460	-1784.052	2.375
Ice						
0.9 Dead+1.0 Wind 90 deg - No	20.787	17.949	0.034	6.536	-1753.654	2.274
Ice						
1.2 Dead+1.0 Wind 120 deg -	27.716	15.561	9.223	928.652	-1547.295	1.549
No Ice						
0.9 Dead+1.0 Wind 120 deg -	20.787	15.561	9.223	912.090	-1520.896	1.463
No Ice	WASHINGAS	7.00040000	4750000000000	Version (1 contras	2007/2007/2007	
1.2 Dead+1.0 Wind 150 deg -	27.716	9.004	15.940	1601.652	-896.205	0.359
No Ice					AND DESCRIPTIONS.	
0.9 Dead+1.0 Wind 150 deg -	20.787	9.004	15.940	1573.678	-880.812	0.310
No Ice	20200	27223	190 5240		2022	57225
1.2 Dead+1.0 Wind 180 deg -	27.716	0.034	18.387	1846.313	-5.396	-0.873
No Ice	0.000.000	11223231	2002000000		27.2490,0000	2074253
0.9 Dead+1.0 Wind 180 deg -	20.787	0.034	18.387	1814.201	-5.048	-0.874
No Ice	20.016	0.045		1505011		
1.2 Dead+1.0 Wind 210 deg -	27.716	-8.945	15.907	1597.244	886.618	-1.870
No Ice	20 707	0.045	15.005	1500 250	071 000	
0.9 Dead+1.0 Wind 210 deg -	20.787	-8.945	15.907	1569.350	871.898	-1.823
No Ice	27716	15 520	9.164	020 022	1540.961	2.410
1.2 Dead+1.0 Wind 240 deg - No Ice	27.716	-15.528	9.104	920.977	1540.961	-2.419
0.9 Dead+1.0 Wind 240 deg -	20.787	-15.528	9.164	904.555	1515.177	-2,334
No Ice	20.767	-13.326	9.104	904.333	1313.177	-2,334
	27.716	-17.949	-0.034	-1.420	1782.113	-2.371
1.2 Dead+1.0 Wind 270 deg - No Ice	27.710	-17.949	-0.034	-1.420	1704.113	-2.3/1
0.9 Dead+1.0 Wind 270 deg -	20,787	-17.949	-0.034	-2.181	1752.254	-2.270
No Ice	20.707	-17.549	-0.034	-2.101	1752.254	-2.270
1.2 Dead+1.0 Wind 300 deg -	27.716	-15.561	-9.223	-922.593	1545.339	-1.686
No Ice	27.710	-13.301	-9.443	-922 393	1343.339	-1.000
0.9 Dead+1.0 Wind 300 deg -	20.787	-15.561	-9.223	-907.721	1519.485	-1.596
o Locad · 1.0 willed 500 deg *	40.707	-15.501	-7.443	-901.121	1317.403	-1.390

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Јо ь 121641.00	05.01 - Lake City Airport, FL (BU# 825272)	Page 9 of 13
Project		Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

Load Combination	Vertical	Shear _x	$Shear_z$	Overturning Moment, Mx	Overturning Moment, Mz	Torque	
000 00 00 T 00 T 00 T 0 T 0 T 0 T 0 T 0	K	K	K	kip-ft	kip-ft	kip-ft	
No Ice						Table Sales	
1.2 Dead+1.0 Wind 330 deg -	27.716	-9.004	-15.940	-1595.572	894.262	-0.499	
No Ice							
0.9 Dead+1.0 Wind 330 deg -	20.787	-9.004	-15.940	-1569.295	879.411	-0.447	
No Ice							
Dead+Wind 0 deg - Service	23.097	-0.008	-4.477	-442.353	0.266	0.218	
Dead+Wind 30 deg - Service	23.097	2.178	-3.873	-382.229	-215.010	0.481	
Dead+Wind 60 deg - Service	23.097	3.781	-2.232	-219.005	-372.892	0.611	
Dead+Wind 90 deg - Service	23.097	4.371	0.008	3.575	-431.064	0.575	
Dead+Wind 120 deg - Service	23.097	3.789	2.246	225.868	-373.963	0.385	
Dead+Wind 150 deg - Service	23.097	2.193	3.882	388.309	-216.865	0.095	
Dead+Wind 180 deg - Service	23.097	0.008	4.477	447.363	-1.875	-0.217	
Dead+Wind 210 deg - Service	23.097	-2.178	3.873	387.239	213.401	-0.471	
Dead+Wind 240 deg - Service	23.097	-3.781	2.232	224.014	371.283	-0.602	
Dead+Wind 270 deg - Service	23.097	-4.371	-0.008	1.433	429.453	-0.574	
Dead+Wind 300 deg - Service	23.097	-3.789	-2.246	-220.859	372.352	-0.392	
Dead+Wind 330 deg - Service	23.097	-2.193	-3.882	-383.299	215.254	-0.102	

Solution Summary

		of Applied Force:			Sum of Reaction		
Load	PX	PY	PZ	PX	PY	PZ	% Erro
Comb.	K	K	K	K	K	K	
1	0.000	-23.097	0.000	-0.000	23.097	-0.000	0.000%
2	-0.034	-27.716	-18.387	0.034	27.716	18.387	0.000%
3	-0.034	-20.787	-18.387	0.034	20.787	18.387	0.000%
4	8.945	-27.716	-15.907	-8.945	27.716	15.907	0.000%
5	8.945	-20.787	-15.907	-8.945	20.787	15.907	0.000%
6	15.528	-27.716	-9.164	-15.528	27.716	9.164	0.000%
7	15.528	-20.787	-9.164	-15.528	20.787	9.164	0.0009
8	17.949	-27.716	0.034	-17.949	27.716	-0.034	0.000%
9	17.949	-20.787	0.034	-17.949	20.787	-0.034	0.000%
10	15.561	-27.716	9.223	-15.561	27.716	-9.223	0.000%
11	15.561	-20.787	9.223	-15.561	20.787	-9.223	0.000%
12	9.004	-27.716	15.940	-9.004	27.716	-15.940	0.000%
13	9.004	-20.787	15.940	-9.004	20.787	-15.940	0.000%
14	0.034	-27.716	18.387	-0.034	27.716	-18.387	0.0009
15	0.034	-20.787	18.387	-0.034	20.787	-18.387	0.0009
16	-8.945	-27.716	15.907	8.945	27.716	-15.907	0.0009
17	-8.945	-20.787	15.907	8.945	20.787	-15.907	0.000%
18	-15.528	-27.716	9.164	15.528	27.716	-9.164	0.000%
19	-15.528	-20.787	9.164	15.528	20.787	-9.164	0.000%
20	-17.949	-27.716	-0.034	17.949	27.716	0.034	0.000%
21	-17.949	-20.787	-0.034	17.949	20.787	0.034	0.0009
22	-15.561	-27.716	-9.223	15.561	27.716	9.223	0.0009
23	-15.561	-20.787	-9.223	15.561	20.787	9.223	0.0009
24	-9.004	-27.716	-15.940	9.004	27.716	15.940	0.0009
25	-9.004	-20.787	-15.940	9.004	20.787	15.940	0.0009
26	-0.008	-23.097	-4.477	0.008	23.097	4.477	0.0009
27	2.178	-23.097	-3.873	-2.178	23.097	3.873	0.0009
28	3.781	-23.097	-2.232	-3.781	23.097	2.232	0.0009
29	4.371	-23.097	0.008	-4.371	23.097	-0.008	0.0009
30	3.789	-23.097	2.246	-3.789	23.097	-2.246	0.0009
31	2.193	-23.097	3.882	-2.193	23.097	-3.882	0.0009
32	0.008	-23.097	4.477	-0.008	23.097	-4.477	0.0009
33	-2.178	-23.097	3.873	2.178	23.097	-3.873	0.0009
34	-3.781	-23.097	2.232	3.781	23.097	-2.232	0.0009
35	-4.371	-23.097	-0.008	4.371	23.097	0.008	0.0009

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job		Page
121641.005	5.01 - Lake City Airport, FL (BU# 825272)	10 of 13
Project		Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

	Su	n of Applied Forces	5		Sum of Reaction.	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
36	-3.789	-23.097	-2.246	3.789	23.097	2.246	0.000%
37	-2.193	-23.097	-3.882	2.193	23.097	3.882	0.000%

Non-Linear Convergence Results

Load	Converged?	Number	Displacement	Force
Combination		of Cycles	Tolerance	Tolerance
1	Yes	4	0.00000001	0.00000001
2	Yes	5	0.00000001	0.00026565
2 3	Yes	5 5	0.00000001	0.00012369
4	Yes	6	0.00000001	0.00057022
5	Yes	6	0.00000001	0.00017866
6	Yes	6	0.00000001	0.00048687
7	Yes		0.00000001	0.00014948
8	Yes	6 5 5	0.00000001	0.00095393
9	Yes	5	0.00000001	0.00042823
10	Yes	6	0.00000001	0.00056849
11	Yes	6	0.00000001	0.00017637
12	Yes	6	0.00000001	0.00053698
13	Yes		0.00000001	0.00016480
14	Yes	5	0.00000001	0.00035844
15	Yes	5	0.00000001	0.00016486
16	Yes	6 5 5 6	0.00000001	0.00050417
17	Yes	6	0.00000001	0.00015391
18	Yes	6	0.00000001	0.00057829
19	Yes	6	0.00000001	0.00018125
20	Yes	5	0.00000001	0.00086710
21	Yes	5	0.00000001	0.00038954
22	Yes	5 5 6	0.00000001	0.00050105
23	Yes	6	0.00000001	0.00015437
24	Yes	6	0.00000001	0.00054283
25	Yes	6	0.00000001	0.00016827
26	Yes	4	0.00000001	0.00037729
27	Yes		0.00000001	0.00013151
28	Yes	5 5 4	0.00000001	0.00008894
29	Yes	4	0.00000001	0.00075256
30	Yes	5	0.00000001	0.00013335
31	Yes	5 5	0.00000001	0.00011055
32	Yes	4	0.00000001	0.00040958
33	Yes	5	0.00000001	0.00009417
34	Yes	5	0.00000001	0.00014103
35	Yes	4	0.00000001	0.00072719
36	Yes	5	0.00000001	0.00008995
37	Yes	5	0.00000001	0.00010935

Maximum Tower Deflections - Service Wind

Section Elevation No. ft	Horz. Deflection	Gov. Load	Tilt	Twist	
	fi	in	Comb.	0	0
Ll	132 - 99.75	26.494	32	2.155	0.024
L2	102.5 - 49	14.720	32	1.518	0.007

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Јо ь 121641.0	05.01 - Lake City Airport, FL (BU# 825272)	Page 11 of 13
Project		Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
1,00	ft	in	Comb.	0	0
L3	53.25 - 0	3.607	32	0.661	0.002

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	o	ft
137.000	Strobe	32	26.494	2.155	0.024	12706
136.000	Lightning Rod 3/4" x 4'	32	26.494	2.155	0.024	12706
135.000	4' x 3" Pipe Mount	32	26.494	2.155	0.024	12706
133.000	AIR6449 B41_T-MOBILE w/ Mount Pipe	32	26.494	2.155	0.024	12706
123.000	AIR 6449 B77 w/ Mount Pipe	32	22.677	1.956	0.018	7059
65.000	Side Lighting	32	5.326	0.839	0.001	3134

Maximum Tower Deflections - Design Wind

Section No.	Elevation	Horz. Deflection	Gov. Load	Tilt	Twist
110.	ft	in	Comb.	o	٥
Ll	132 - 99.75	108.763	14	8.744	0.102
L2	102.5 - 49	60.689	14	6.254	0.028
L3	53.25 - 0	14.890	14	2.728	0.007

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
137.000	Strobe	14	108.763	8.744	0.102	3261
136,000	Lightning Rod 3/4" x 4'	14	108.763	8.744	0.102	3261
135.000	4' x 3" Pipe Mount	14	108.763	8.744	0.102	3261
133.000	AIR6449 B41_T-MOBILE w/ Mount Pipe	14	108.763	8.744	0.102	3261
123.000	AIR 6449 B77 w/ Mount Pipe	14	93.198	7.971	0.076	1811
65.000	Side Lighting	14	22.014	3.472	0.006	766

Compression Checks

Pole Design Data

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Job		Page
121641.0	005.01 - Lake City Airport, FL (BU# 825272)	12 of 13
Project		Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P.,
	ft		ft	fi		in^2	K	K	ϕP_n
L1	132 - 99.75 (1)	TP21.66x13.5x0.188	32.250	0.000	0.0	12.365	-10.303	723.336	0.014
L2	99.75 - 49 (2)	TP34.12x20.589x0.313	53.500	0.000	0.0	32.467	-17.127	1899.300	0.009
L3	49 - 0 (3)	TP45.9x32.42x0.313	53.250	0.000	0.0	45.217	-27.698	2645.200	0.010

Pole	Ben	aing	Design	Data	
	1/	AM.	Patio	1/	111

Section No.	Elevation	Size	M_{ux}	ϕM_{nx}	Ratio M _{ux}	M_{uy}	ϕM_{ny}	Ratio M_{uy}
	ft		kip-ft	kip-ft	ϕM_{nx}	kip-ft	kip-ft	ϕM_{nv}
L1	132 - 99.75 (1)	TP21.66x13.5x0.188	297.451	376.543	0.790	0.000	376.543	0.000
L2	99.75 - 49 (2)	TP34.12x20.589x0.313	955.408	1581.500	0.604	0.000	1581.500	0.000
L3	49 - 0(3)	TP45.9x32.42x0.313	1846.325	2750.642	0.671	0.000	2750.642	0.000

Pole Shear Design Data

Section No.	Elevation	Size	Actual V	ϕV_n	Ratio V	Actual Tu	ϕT_n	Ratio T.
IVO.	fi		K	K	ϕV_n	kip-ft	kip-ft	$\frac{1}{\phi T_n}$
Ll	132 - 99.75 (1)	TP21.66x13.5x0.188	11.906	217.001	0.055	0.876	394.837	0.002
L2	99.75 - 49 (2)	TP34.12x20.589x0.313	14.969	569.790	0.026	0.875	1633.333	0.001
L3	49 - 0 (3)	TP45.9x32.42x0.313	18.415	793.560	0.023	0.873	3168.150	0.000

Pole Interaction Design Data

Section No.	Elevation	P_u M_{ux} M_{uy} V_u T	Ratio M_{ux}	Ratio M_{uy}	Ratio V_u	Ratio T_u	Comb. Stress	Allow. Stress	Criteria	
	ft		ϕT_n	Ratio	Ratio					
Ll	132 - 99.75 (1)	0.014	0.790	0.000	0.055	0.002	0.807	1.050	4.8.2	
L2	99.75 - 49 (2)	0.009	0.604	0.000	0.026	0.001	0.614	1.050	4.8.2	
L3	49 - 0 (3)	0.010	0.671	0.000	0.023	0.000	0.682	1.050	4.8.2	

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	ϕP_{allow}	%	Pass
No.	fi	Type		Element	K	K	Capacity	Fail

B+T Group 1717 S. Boulder, Suite 300 Tulsa, OK 74119 Phone: (918) 587-4630 FAX: (918) 295-0265

Јо ь 121641.0	005.01 - Lake City Airport, FL (BU# 825272)	Page 13 of 13
Project		Date 18:58:19 07/06/22
Client	Crown Castle	Designed by R AITHAL

Section No.	Elevation ft	Component Type	Size	Critical Element	P K		% Capacity	Pass Fail
Ll	132 - 99.75	Pole	TP21.66x13.5x0.188	1	-10.303	759.503	76.9	Pass
L2	99.75 - 49	Pole	TP34.12x20.589x0.313	2	-17.127	1994.265	58.5	Pass
L3	49 - 0	Pole	TP45.9x32.42x0.313	3	-27.698	2777.460	65.0	Pass
							Summary	
						Pole (L1)	76.9	Pass
						RATING =	76.9	Pass

Program Version 8.1.1.0

APPENDIX B
BASE LEVEL DRAWING

(OTHER CONSIDERED EQUIPMENT)
(1) 5/8" TO 103 FT LEVEL

(OTHER CONSIDERED EQUIPMENT)
(3) 1-5/8" TO 133 FT LEVEL

(OTHER CONSIDERED EQUIPMENT)
(3) 1-5/8" TO 135 FT LEVEL

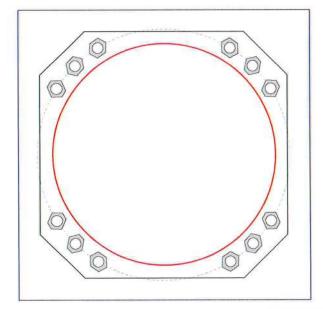
(OTHER CONSIDERED EQUIPMENT)
(3) 1-5/8" TO 65 FT TOWER LIGHTING

(1) 5/8" TO 65 FT TOWER LIGHTING

BUSINESS UNIT: 825272

APPENDIX C ADDITIONAL CALCULATIONS

Monopole Base Plate Connection



Site Info	NEW STATE
BU #	825272
Site Name	Lake City Airport, FL
Order#	605523, Rev# 1

Analysis Considerations					
TIA-222 Revision	Н				
Grout Considered:	No				
l _{ar} (in)	0.625				

Applied Loads					
Moment (kip-ft)	1846.32				
Axial Force (kips)	27.70				
Shear Force (kips)	18.41				

45.9" x 0.3125" 18-sided pole (A572-65; Fy=65 ksi, Fu=80 ksi)

Connection Properties	A	nalysis Results	
Anchor Rod Data	Anchor Rod Summary	(u	nits of kips, kip-in)
(12) 2-1/4" ø bolts (A615-75 N; Fy=75 ksi, Fu=100 ksi) on 52" BC	Pu_t = 139.61	φPn_t = 243.75	Stress Rating
Anchor Spacing: 6 in	Vu = 1.53	$\phi Vn = 149.1$	54.5%
CONTRACTOR OF THE CONTRACTOR O	Mu = n/a	$\phi Mn = n/a$	Pass
Base Plate Data			
51" W x 2.5" Plate (A572-60; Fy=60 ksi, Fu=75 ksi); Clip: 9 in	Base Plate Summary		
	Max Stress (ksi):	26.9	(Flexural)
Stiffener Data	Allowable Stress (ksi):	54	
N/A	Stress Rating:	47.4%	Pass
Pole Data			

CCIplate - Version 4.1.2 Analysis Date: 06-07-2022

^{*}TIA-222-H Section 15.5 Applied

Drilled Pier Foundation

BU#: 825272
Site Name: Lake City Airport, FL
Order Number: 605523, Rev# 1
TIA-222 Revison: H
Tower Type: Monopole

Applie	Applied Loads	
	Comp.	Uplift
Moment (kip-ft)	1846.32	
Axial Force (kips)	27.72	
Shear Force (kips)	18.39	

Input Effective Depths (eise Actual):

Shear Design Options
Check Shear along Depth of Pier:

Utilize Shear-Friction Methodology:

Override Critical Depth:

CASTLE

Check Limitation Apply TIA-222-H Section 15.5.

Additional Longitudinal Rebar

Material	Material Properties	Rebar 2, Fy
Concrete Strength, fc.	3 ksi	(ksi)
Rebar Strength, Fy:	60 ksi	
Tie Yield Strength, Fyt:	40 ksi	
Pier De	Pier Design Data	Rebar & Pier Options
Depth	25 ft	•
Ext. Above Grade	0.5 ft	Embedded Pole Input
Pier S	Pier Section 1	Belled Pier Inputs
From 0.5' above gra	From 0.5' above grade to 25' below grade	
Pier Diameter	6 ft	
Rebar Quantity	32	
Rebar Size	6	
Rebar Cage Diameter	64 in	
Tie Size	4	
Tie Spacing	12 in	

	Soil Lateral Check	Compression	Uplift
	D _{v=0} (ft from TOC)	6.67	ı
	Soil Safety Factor	2.50	i
	Max Moment (kip-ft)	1960.67	4
	Rating*	20.7%	•
	Soil Vertical Check	Compression	Uplift
r 2, Fy	Skin Friction (kips)		
	End Bearing (kips)	95.43	ī
	Weight of Concrete (kips)	100.11	
	Total Capacity (kips)	344.24	¥.
	Axial (kips)	127.83	
ar & Pier Options	Rating*	35.4%	
00 00	Reinforced Concrete Flexure	Compression	Uplift
edded Pole Inputs	Critical Depth (ft from TOC)	6.73	ı
illed Pier Inputs	Critical Moment (kip-ft)	1960.64	*
100000	Critical Moment Capacity	4232.08	ii.
	Rating*	44.1%	7.
	Reinforced Concrete Shear	Compression	Uplift
	Critical Depth (ft from TOC)	15.47	1
	Critical Shear (kip)	244.38	4
	Critical Shear Capacity	408.28	
	Rating*	22.0%	ı

	Doting nor TIA 220 U Continu 16 6
50.7	Soil Interaction Rating*
57.0	structural Foundation Kating*

Address:

No Address at This Location

ASCE 7 Hazards Report

Standard:

ASCE/SEI 7-16

Elevation: 167.28 ft (NAVD 88)

Risk Category: II

Latitude:

30.170417

Soil Class:

D - Default (see Section 11.4.3)

Longitude: -82.586028

Wind

Results:

Wind Speed	118 Vmph
10-year MRI	75 Vmph
25-year MRI	84 Vmph
50-year MRI	90 Vmph
100-year MRI	98 Vmph

Data Source:

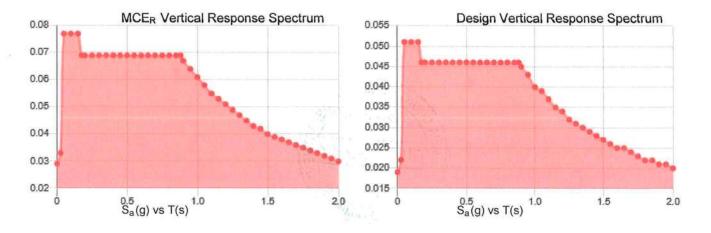
ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2

Date Accessed:

Fri May 20 2022

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2. Glazed openings need not be protected against wind-borne debris.


Seismic

D - Default (s	ee Section 11.4.3)		
0.086	S _{D1} :	0.081	
0.051	T _L :	8	
1.6	PGA:	0.041	
2.4	PGA _M :	0.066	
0.138	F _{PGA} :	1.6	
0.121	l _e :	1	
0.092	C _v :	0.7	
	0.086 0.051 1.6 2.4 0.138 0.121	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Seismic Design Category

В

Data Accessed:

Fri May 20 2022

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Ice

Results:

Ice Thickness:

0.25 in.

Concurrent Temperature:

25 F

Gust Speed

30 mph

Data Source:

Standard ASCE/SEI 7-16, Figs. 10-2 through 10-8

Date Accessed:

Fri May 20 2022

Ice thicknesses on structures in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

Values provided are equivalent radial ice thicknesses due to freezing rain with concurrent 3-second gust speeds, for a 500-year mean recurrence interval, and temperatures concurrent with ice thicknesses due to freezing rain. Thicknesses for ice accretions caused by other sources shall be obtained from local meteorological studies. Ice thicknesses in exposed locations at elevations higher than the surrounding terrain and in valleys and gorges may exceed the mapped values.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

SITE TYPE: **VERIZON WIRELESS SITE NAME:** VERIZON WIRELESS SITE NUMBER: 712924

TOWER HEIGHT:

CC LAKE CITY AIRPORT MONOPOLE

133'-0"

SITE ADDRESS: **BUSINESS UNIT #:825272**

COUNTY:

COLUMI BIA

336 SE NEWELL DR LAKE CITY, FL 32025

8000 AVALON BLVD, SUITE 700 ALPHARETTA, GA 30009

CASTLE CROWN

towersource

A NextEdge Company

verizon

7701 E. TELECOM PARKWAY TEMPLE TERRACE, FL 33637

URISDICTION: COLUMBIA COUNTY

1355 WINDWARD CONCOURSE SUITE 410 ALPHARETTA, GA 30005 TEL: 678-990-2338

VERIZON: NEW SITE BUILD

99

LOCATION MAP

(10)

Gateway Airport

Gateway College

Florida

Lake City

CROWN CASTLE USA INC. SITE NAME: SITE ADDRESS: SITE INFORMATION LAKE CITY AIRPORT LAKE CITY, FL 32025 336 SE NEWELL DR

AREA OF CONSTRUCTION 30° 10′ 13.50″ -82° 35′ 09.70″ 168 FT. EXISTING 02-45-17-07479-104 COLUMBIA

MAP/PARCEL#:

LONGITUDE: LATITUDE:

OCCUPANCY CLASSIFICATION: TYPE OF CONSTRUCTION: COLUMBIA COUNTY U IIB

JURISDICTION:

CURRENT ZONING: GROUND ELEVATION: LAT/LONG TYPE:

HUMAN HABITATION L JOY USA LLC FACILITY IS UNMANNED AND NOT FOR

336 PENNINGTON CT ROYAL PALM BEACH, FL 33411 CROWN CASTLE

TOWER OWNER:

PROPERTY OWNER: A.D.A. COMPLIANCE:

VERIZON WIRELESS 7701 TELECOM PARKWAY TEMPLE TERRACE, FL 33637 6420 CONGRESS AVENUE, STE 2000 BOCA RATON, FL 33487

CARRIER/APPLICANT:

FP&L

AT&T

ELECTRIC PROVIDER TELCO PROVIDER

PROJECT TEAM

A&E FIRM:

EXISTING ELIGIBLE WIRELESS FACILITY. THE PURPOSE OF THIS PROJECT IS TO ENHANCE BROADBAND CONNECTIVITY AND CAPACITY TO THE

PROJECT DESCRIPTION

CALL FLORIDA ONE CALL
(800) 432-4770
CALL 3 WORKING DAYS
BEFORE YOU DIG!

CROWN CASTLE
USA INC. DISTRICT
CONTACTS:

6420 CONGRESS AVE SUITE 2000 BOCA RATON, FL 33487

PETER VERDECCHIA - PROJECT MANAGER
PETER VERDECCHIA@CROWNCASTLE.COM

- CONSTRUCTION MANAGER

SUITE 410 ALPHARETTA, GA 30005

TOWERSOURCE, INC. 1355 WINDWARD CONCOURSE

- TOWER SCOPE OF WORK:

 INSTALL (2) ANTENNAS

 INSTALL (2) OVPs

 INSTALL (3) 2" HYBRID CABLES

 INSTALL (1) PLATFORM ANTENNA MOUNT

APPLICABLE CODES. T WIND SPEED V EXPOSURE CATEGORY: C RISK CATEGORY: I TOPOGRAPHIC CATEGORY: 1 CREST HEIGHT: 0

ES. TIA-222-H / ASCE 7-16
D: V = 118 MPH (ULTIMATE 3 SECOND GUST)
CV: II

SEISMIC RESPONSE:

ANALYSIS CRITERIA:

- GROUND SCOPE OF WORK:

 INSTALL (1) 4*x 10* CONCRETE EQUIPMENT PAD

 INSTALL (1) 4*x 10* CONCRETE GENERATOR PAD

 INSTALL (1) 4*x 10* CONCRETE GENERATOR PAD

 INSTALL (1) EQUIPMENT H-FRAME

NOTE:
PRIOR TO ACCESSING/ENTERING THE SITE YOU MUST CONTACT THE CROWN
NOC AT (800) 788-7011 & CROWN CONSTRUCTION MANAGER.

SHEET # C-1.2 C-1.1 64 G-2 G-1 C-6 0.5 2 C-3 C-2 DRAWING INDEX PROPANE TANK DETAILS PANEL SCHEDULE & ONE-LINE DIAGRAM PROPOSED GROUNDING PLAN GENERATOR SPECS SITE DETAILS SITE DETAILS SITE DETAILS SITE DETAILS FINAL ANTENNA & CABLE CONFIGURATION PROPOSED EQUIPMENT PLAN SITE PLAN GENERAL NOTES ELECTRICAL & GROUNDING DETAILS ELECTRICAL & GROUNDING DETAILS PROPOSED UTILITY ROUTING EQUIPMENT SPECS ANTENNA LAYOUT & TOWER ELEVATION TITLE SHEET SHEET DESCRIPTION e City (±) McDonald's

ALL DRAWINGS CONTAINED HEREIN ARE FORMATTED FOR INXII. CONTRACTOR SHALL VERIFY ALL PLANS AND EXISTING DIMENSIONS AND CONDITIONS ON THE JOB SITE AND SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME.

NO SCALE

Alligator Lake Park

245A

(10)

SE Country Club Rd

Price Creek Rd

DOCUMENTS

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNING AUTHORITIES. NOTHING IN THESE PLANS IS TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.

BUILDING MECHANICAL ELECTRICAL 2020 FLORIDA BUILDING CODE 7TH EDITION/2015 IBC 2020 FLORIDA BUILDING CODE 7TH EDITION/2015 IMC 2020 FLORIDA BUILDING CODE 7TH EDITION/2017 NEC

COLUMBIA ANS EXAMINE Compliance LE COP MA BUILD Received Code WANTHA 930

MOUNT ANALYSIS: DATED: ORDER ID: 005523 PROVIDED WITH APP

REFERENCE DOCUMENTS:
STRUCTURAL ANALYSIS:
DATED:

javad k javad k parsa

parsa SHEET NUMBER: 11:58:14 -04'00' Date: 2022.08.05 IGNED AND SEALED BY
E ADJACENT TO THE SEAL
ENT ARE NOT CONSIDERED
SNATURE MUST BE FOR ANY PERSON, IDER THE DIRECTION ONAL ENGINEER, REVISION:

Conserv Olustee **EXISTING 133'-0" MONOPOLE** LAKE CITY AIRPORT SITE NUMBER: 712924 VERIZON WIRELESS LAKE CITY, FL 32025 336 SE NEWELL DR BU #: 825272

0 08/05/22 FS ISSUED FOR FINALS	FS	FS

No 87002 * No 87002 * ONALENG ONALEN

CROWN CASTLE USA

PRIOR TO THE START OF CONSTRUCTION, ALL REQUIRED JURISDICTIONAL PERMITS SHALL BE OBTAINED. THIS INCLUDES, BUT IS NOT LIMITED TO, BUILDING, ELECTRICAL, MECHANICAL, FRE, FLOOD ZONE, ENVIRONMENTAL, AND ZONNED, AFTER OWSTER ACTIVITIES AND CONSTRUCTION ACE COMPLETED, ALL REQUIRED PERMITS SHALL BE SATISFED AND CLOSED OUT ACCORDING TO LOCAL JURISDICTIONAL REQUIREMENTS.

REQUIREMENTS.

ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREN, AND SHALL MEET

TRUCTION MEANS AND METHODS: INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING LIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL TOR RESPONSIBILITY OF THE GENERAL MEET OR RESPONSIBILITY OF THE WORK CONTINUED HEREIN, AND SHALL MEET E A10.48 (JATEST EDITION); FEDERAL, SHATE, AND LOCAL REQULATIONS: AND ANY APPLICABLE CONSENSUS STANDARDS RELIED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL VANS SHALL ADHERE TO ANSI/ASSE A10.48 (JATEST EDITION) AND GROWN CASTLE USA INC. "UNAUS SHALL ADHERE TO ANSI/ASSE A10.48 (JATEST EDITION) AND GROWN CASTLE USA INC. "CED-STD-102.33, INCLUDING THE REQUIRED INVOLVENTI OF A QUALIFIED ENGINEER FOR CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANSI/TIA-322

ANSI/ASSE A10.48 (LEEST EDITION); FEDERAL, STATE, AND LOCAL RECULATIONS; AND ANY APPLICABLE MINDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND CROWN CASTLE USA INC. CONSTRUCTION OF A QUALIFIED ENGINEER FOR CLASS IN CONSTRUCTION, TO CERTIFY THE SUPPORTING STRUCTURE(S) IN ACCORDANCE WITH ANS/TIA-322 (LATEST EDITION).

5. ALL SITE WORK TO COMPLY WITH QAS—STD—10088 "INSTALLATION STANDARD FOR CONSTRUCTION OF ANOTHER WORK TO CONSTRUCTION OF AND APPURENANCES." AND LATEST VERSION OF ANSTALLATION STANDARD FOR INSTALLATION OF MINISTALLATION, ALTERATOR, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS." IN THE SECCIFED COUNTENANT WITH ALL LAPLACE OF INSTALLATION, APPROVALE BY CROWN CASTLE USA INC. PRIOR TO PROCEEDING WITH ANY SUCH CHANGE OF INSTALLATION.

7. ALL MATERIALS FURNISHED AND INSTALLED SHALL BY SIRGUE ALL APPROPRIATE NOTICES AND COMPLY WITH ALL LAPLACE OF INSTALLATION. AND LAWFUL ORDERS OF ANY PUBBIC COMPLY WITH ALL LAPLACE IN STRUCTURES AND LAWFUL ORDERS OF ANY PUBBIC OUTLING ON THE PERFORMANCES. RULES, RECULATIONS AND LAWFUL ORDERS OF ANY PUBBIC OUTLING AND APPLICABLE MICHDRAL AND UTILITY COMPANY SECRETARIONS AND LAWFUL ORDERS OF MAY PUBBIC OUTLING AND ADMINISHED AND MATERIALS IN ACCORDANCE WITH ALL LAPLACE REGULATIONS.

8. THE CONTRACTOR SHALL INSTALL ALL FOILIBRENS AND LAWFUL ORDERS OF ANY PUBBIC OUTLING AND ADMINISHED AND MATERIALS IN ACCORDANCE WITH ALL LAPLACE IN REPORTANCE. ALL FOILIBRES AND ANTERIALS IN ACCORDANCE WITH ALL MATERIAL PROPERTY BE CANNOTED. AND INTERCENT AND MATERIALS IN ACCORDANCE WITH ALL LAPLACE IN REPORTANCE. AND APPLICABLE REGULATIONS.

B. THE CONTRACTOR SHALL NOTALL ALL EQUIPMENT AND MATERIALS IN ACCORDANCE WITH MANUFACTURER'S PRECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHERWISE.

RECOMMENDATIONS UNLESS SPECIFICALLY STATED OTHER WITH START OF CONSTRUCTION.

10. ALL EXISTING ACTIVE SEXUER, WATER, GAS, ELECTRIC AND OTHER UTILITIES WHERE ENCOUNTERED IN THE WORK, SHALL BE PROTECTED AT ALL TIMES AND WHERE REQUIRED FOR THE PROTECT RESEARCH OF THE WORK, SHALL BE PROTECTED AS PROCEDED ON THE CONTRACTOR WHEN EXCANATING OR DRILLING PIERS AROUND OR NEAR UTILITIES, CONTRACTOR SHALL PROTECTED SPACE C) ELECTRICAL SAFETY D) TRENCHING AND EXCANATION E)

11. ALL SITE WORK SHALL BE AS INDICATED ON THE STAMPED CONSTRUCTION DRAWINGS AND PROJECT SPECIFICATIONS, LAIEST APPROVED REVISION.

12. CONTRACTOR SHALL KEEP THE SITE FREE FROM ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE COMPLETION OF THE WORK, IF NECESSARY, RUBBISH, STUMPS, DEBRIS, STOKS, STOKS, STOKES AND OTHER EXECUTION OF THE WORK, SHALL BE AS INDICATED AND OTHER UTILITIES.

13. ALL EXISTING INACTIVE SEWER, WATER, GAS, ELECTRIC AND OTHER UTILITIES. WHICH WITHERFER WITH THE EXECUTION OF THE WORK, SHALL BE REMOVED BY AND ACCUMULATING WASTE MATERIAL, DEBRIS, AND TRASH AT THE CONTRACTOR, TOWER OWNER, CROWN CASTLE USA NC., AND/OP LUCAL UTILITIES.

14. THE CONTRACTOR, SHALL BE REMOVED FROM THE STAMPED DAILORD OF THE WORK, SUBJECT TO THE APPROVAL OF CONTRACTOR, TOWER OWNER, CROWN CASTLE USA NC., AND/OP LUCAL UTILITIES.

15. THE SIDE SHALL BE GRADED TO CAUSE SURFACE WITH THE EXECUTION OF THE WORK SHALL SPECIFICATION. FOR SITE SIGNAGE REQUIRED ON INDIVIDUAL PRECESS OF TEQUIPMENT OF AREAS.

16. THE SIDE GRADE SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE PRIOR TO FINISHED THE FORMULA WAS SPECIFIED ON THE TOWER, SHALL BE COMPACTED AND BROUGHT TO A MAD STRAIGED BY THE TOWER, SHALL BE COMPACTED AND BROUGHT TO A SMOOTH UNIFORM GRADE BY THE TOWER, SHALL BE COMPACTED AND TRANSFERD TO THE WORK AND STRAIGES TO CONSTRUCTION.

13. 12.

4.

THE AREAS OF THE OWNERS PROPERTY DISTURBED BY THE WORK AND NOT COVERED BY THE TOWER, EQUIPMENT OR DRIVEWLY, SHALL BE GRADED TO A UNIFORM SLOPE, AND STABILIZED TO PROVENT EROSION AS SPECIFIED ON THE CONSTRUCTION DRAWINGS AND/OR PROJECT SPECIFICATIONS. CONTROL STALL MININIZE DISTURBANCE TO EXISTING SITE DURING CONSTRUCTION. EROSION CONTROL MEASURES, IF REQUIRED DURING CONSTRUCTION, SHALL BE IN CONFORMANCE WITH THE LOCAL GUIDELINES FOR EROSION AND SEDIMENT CONTROL.

THE CONTRACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PAWEMENTS, CURBS, LANDSCAPING AND STRUCTURES ANY DAMAGED PART SHALL BE REPAIRED AT CONTRACTOR SHALL BEAUTY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCPAD CONTRACTOR SHALL SCRADED CONTRACTO

CONTRACTOR SHALL LEGALLY AND PROPERLY DISPOSE OF ALL SCRAP MATERIALS SUCH AS COAXIAL CABLES AND OTHER TIEMS REMOVED FROM THE EXISTING FACILITY, ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S DESIGNATED LOCATION.

CONTRACTOR SHALL LEWE PREMISES IN CLEAN CONDITION, TRASH AND DEBRIS SHOULD BE REMOVED FROM SITE ON A DAILY BASIS.

NO FILL OR EMBRANKMENT MATERIAL SHALL BE PLACED ON FROZEN GROUND, FROZEN MATERIALS, SHOUND FILL OR EMBRANKMENT MATERIALS, SHOUND FILL OR EMBRANKMENT MATERIALS.

FROZEN MATERIALS, SNOW

GREENFIELD GROUNDING NOTES:

ALL GROUND ELECTRODE SYSTEMS (INCLUDING TELECOMMUNICATION, RADIO, UIGHTNING PROTECTION AND ACCORDANCE WITH THE RIC.

ACCORDANCE WITH THE STARL SHALL PERFORM LEEF PALL—OF-POTENTAL RESISTANCE TO EARTH TESTING (PER HEEE 1100 AND 81) FOR GROUND ELECTRODE SYSTEMS, THE CONTRACTOR SHALL DURING WITH LECTROLAR AND ROAD WITH LECTROLAR

CONTRACTOR: C CONSTRUCTION DRAWING, THE FOLLOWING DEFINITIONS ENERAL CONTRACTOR RESPONSIBLE FOR CONSTRUCTION ERIZON WIRELESS SHALL APPLY:

į,

1. FOR THE PURPOSE OF CONSTRUCTION DRAWING, THE FOLLOWING DEPHINIONS SHALL APPLY:

CONTRACTOR. CERERAL COMPACTOR USING STANDARDS OF PROFESSIONAL CARE AND COMPLETENESS NORMALLY
2. CARRIER:

CARRIER

7 13.

15. 16. 17. 18. 19. 20. 21. 22. 23.

ECONITACTOR SHALL PROTECT EXISTING IMPROVEMENTS, PANEMENTS, CURBS, LINDSCAPING AND STRUCTURES. ANY MAGED PART SHALL BE REPAIRED AT CONTRACTOR'S EXPENSE TO THE SATISFACTION OF GROWN CASTLE USA INC. NIRACTOR SHALL LECALLY AND PROPERTY DISPOSE OF ALL SCRAP INTERMALS SUCH AS CONVAL CABLES AND HER ITEMS REMOVED FROM THE EXISTING FACILITY, ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S SIGNATED LOCATION. TROM THE EXISTING FACILITY, ANTENNAS REMOVED SHALL BE RETURNED TO THE OWNER'S SIGNATED LOCATION.

CONCRETE, FOUNDATIONS,

IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI SPECIFICATION FOR CAST-IN-PLACE CONCRETE. BEARING PRESSURE USED FOR DESIGN OF SLABS AND FOUNDATIONS 336, ASTM A184, ASTM A185 IS ASSUMED

SHALL HAVE A MINIMUM COMPRESSIVE STRENCTH (1'c) OF 3000 psi at 28 days, Uniless noted of more than 90 minutes shall elapse from batch time to time of placement uniless the engineer of record, temperature of concrete shall not exceed 90'f at time of

EXPOSED TO FREEZE-THAW CYCLES SHALL CONTAIN AIR ENTRAINING ADMIXTURES, AMOUNT OF AIR EXPOSED TO BE BASED ON SIZE OF AGGREGATE AND F3 CLASS EXPOSURE (VERY SEVERE). CEMENT USED TO BE TORTLAND CEMENT WITH A MAXIMUM WATER-TO-CEMENT RATIO (W/C) OF 0.45.

1. REINFORCING SHALL CONFORM TO ASTA MASIS, ALL WELDED WIRE FABRIC (WWF) SHALL CONFORM TO ASTAM LESS NOTED OTHERWISE. ALL HOOKS SHALL BE LISPLICES UNLESS NOTED OTHERWISE. ALL HOOKS SHALL BE OPEGREE HOOKS, UNLESS NOTED OTHERWISE. YELD STRENGTH (Fy) OF STANDARD DEFORMED BARS ARE

UNLESS NOTED

120/2404, 10 SEE NEC 210.5(C)(1) AND POLARITY MARKED AT TER BLACK BLACK RED WHITE BLUE BLUE WHITE BLUE WHITE BROWN RED BLUE WHITE FOR PURPLE

GAS, OIL, STEAM, PETROLEUM, OR GASEOUS MATERIALS TEMPORARY SURVEY MARKINGS CONDUIT, AND LIGHTING CABLES.

RECLAIMED WATER, IRRIGATION, AND SLURRY LINES POTABLE WATER

CABLES, OR CONDUIT AND TRAFFIC LOOPS

UNIFORM COLOR CODE:

PROPOSED EXCAVATION

SEWERS AND DRAIN LINES

ANTENNA
EXISTING
FACILITY INTERFACE FRAME
GENERATOR
GLOBAL POSITIONING SYSTEM
GLOBAL SYSTEM FOR MOBILE
LONG TERM EVOLUTION
MASTER GROUND BAR
MICROWAYE NEW
NATIONAL ELECTRIC CODE
PROPOSED
POWER PLANT
OUGNITY

RECTIFIER
RADIO BASE STATION
REMOTE ELECTRIC TILT
RADIO FREQUENCY DATA SHEET
RADIO HADD
REMOTE RADIO UNIT
SMART INTEGNATED DEVICE
TOWER MOUNTED AMPLIFIER
TOWER MOUNTED AMPLIFIER

YPICAL
JNIVERSAL MOBILE TELECOMN
WORK POINT

verizon

7701 E. TELECOM PARKWAY TEMPLE TERRACE, FL 33637

1. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS, NEC AND ALL APPLICABLE
FEDERAL, STATE, AND LOCAL CODES/ORDINANCES.
2. CONDUIT ROUTHS ARE SCHEMAIC, COMPROVIDE SHALL CONDUITS SO THAT ACCESS TO EQUIPMENT IS NOT BLOCKED
AND TRIP HAZARDS ARE ELMMATED, COMPROVIDE SHALL COMPRY WITH THE REQUIREMENTS OF THE IRC.

ALL CIRCUMS AND SUPPORT METHODS AND AMTERIALS SHALL COMPRY WITH THE REQUIREMENTS OF THE IRC.

ALL CIRCUMS AND SUPPORT METHODS AND AMTERIALS SHALL COMPRY WITH THE REQUIREMENTS OF THE IRC.

ALL CIRCUMS AND SUPPORT METHODS AND AMTERIALS SHALL COMPRY WITH THE REQUIREMENTS OF THE IRC.

ALL CIRCUMS WITH THE MINDHALL ELECTRICAL, COLOR

ALL CORECURRENT OF THE MINDHALL ELECTRICAL COLOR

ALL CORECURRENT OF THE WINDERS AND AMTERIALS SHALL COMPRY ANNUALES SHALL CONFORM TO

ALL CORECURRENT OF THE WINDERS AND AMDITIONS AND AMDITIONS AND THE SHAPE SHAPE SHAPE THE WINDERS AND SHALL SHAPE AND SHALL SHAPE THE COVERNOR WITH A PROPECTION. OR EQUAL), THE DESTRIPCATION METHOD SHALL SHAPE SHAPE SHALL SHAPE SHALL SHAPE SHALL SHAPE SHALL SHAPE SHAPE SHALL SHAPE SHALL SHAPE SHALL SHAPE SHAPE SHALL SHAPE SHALL SHAPE SHAPE SHALL SHAPE SHALL SHAPE SHALL SHAPE SHALL SHAPE SHALL SHAPE SHAPE SHALL SHAP

towersource

A NextEdge Company

1355 WINDWARD CONCOURSE SUITE 410

ALPHARETTA, GA 30005 TEL: 678-990-2338

8000 AVALON BLVD, SUITE 700 ALPHARETTA, GA 30009

CASTLE

CROWN

= 0

SITE NUMBER: 712924

VERIZON WIRELESS

LAKE CITY AIRPORT

BU #: 825272

(WIREMOLD SPECIMITE WIREWAY).

(WIREMOLD SPECIMITE SHALL BE FASTENED SECURELY IN PLACE WITH APPROVED NON-PERFORMED STRAPS AND HANGERS. EXPLOSIVE CONDUITS SHALL BE FASTENED SECURELY IN PLACE WITH CONDUIT OF THE STRUCTURE WILL NOT BE PERMITTED. CORSELY FOLLOW THE DEVICES (I.A. POWDER-ACTUARED) FOR ATTACHNON HANGES TO STRUCTURE AND KEEP CONDUITS WITH THE PROPERTY OF THE STRUCTURE, MAINIAN CLOSE PROXIMITY OF THE STRUCTURE WITH CONDUIT OF THE STRUCTURE WALL AND CELLING THE STRUCTURE. WHICH CONDUIT OF THE STRUCTURE WALL AND CELLING THE STRUCTURE WALL AND THE PLASTER OR DEVELOPED FLUSH TO FINISH GRADE TO AND THE FORMER PROPERTY CANNERS. THE CONTROL OF CONDUITS SHALL BE REPORTED FOR STRUCTURE WALL WELL OF THE STRUCTURE WALL WELL AND CONTROLS. ENDS OF CONDUITS SHALL BE REPORTED TO BOXES BY CALLWANZED ON FERVY-COATED SHEET STRUCTURE WALL AND CONTROLS. SHOULD BOXES AND THE RATED NEMA 1 (OR BETTER) FOR INTERIOR LOCATIONS AND WEATHER PROTECTED WITH THE ANALYSING THE PROPERTY OF THE STRUCTURE WALL AND EXCESSION TO SHALL MEET OR EXCEED NEMA 1 (OR BETTER) FOR WITEROR LOCATIONS.

25. METHAL FOR EXTEROR LOCATIONS.

26. NORMENCING WORK ON THE AC POWER DISTRIBUTION PAWELS AND DISTRIBUTION PAWELS IN ACCORDANCE WITH THE APPLICABLE COSES AND STANDARDS TO SAFEGUARD WITE AND PROPERTY.

27. MITH CONTRACTOR SHALL NOTIFY AND ORDININ NECESSARY AUTHORIZATION FROM THE CARRIER AND/OR CROWN CASTLE USA NIC.

28. THE CONTRACTOR SHALL PROVIDE NECESSARY TAGGING USE AND PROPERTY.

29. NISTALL LAMCOOL DABLE ON THE WETER CRUTER TO SAFEGUARD WEEK AND PROPERTY.

29. NISTALL LAMCOOL DABLE ON THE WETER CRUTER TO SAFEGUARD WEEK AND PROPERTY.

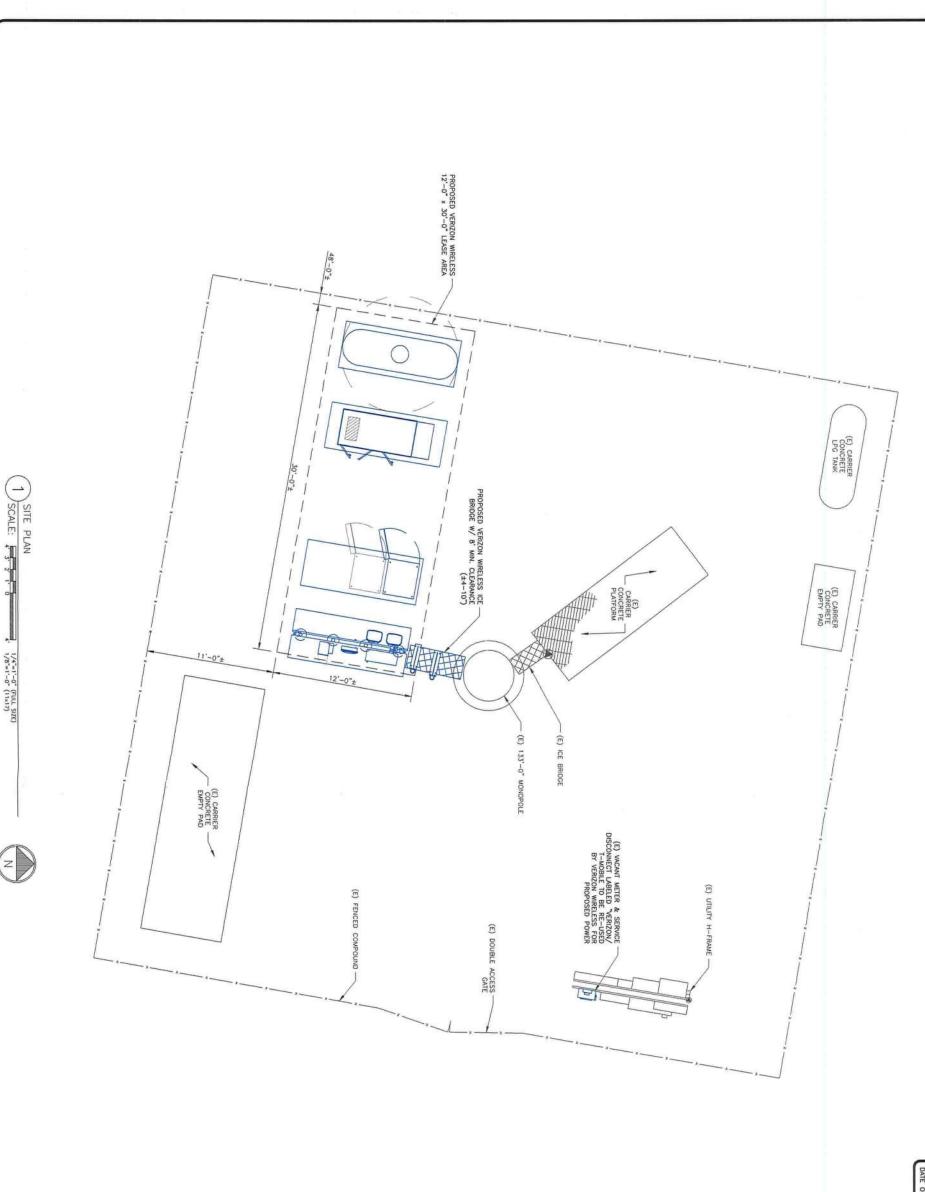
29. NISTALL LAMCOOL DABLE ON THE WETER CRUTER TO SAFEGUARD WEEK AND PROPERTY.

20. NISTALL LAMCOOL DABLE ON THE WETER CRUTER TO SAFEGUARD WEE

EXISTING 133'-0" MONOPOLE

LAKE CITY, FL 32025

336 SE NEWELL DR


0 08	REV I	0
08/05/22	DATE DRWN	
FS	DRWN	ISSU
ISSUED FOR FINALS	DESCRIPTION	ISSUED FOR:

0	REV	
08/65/22	DATE DRWN	
E	DRWN	ISSL
ISSUED FOR FINALS	DESCRIPTION	ISSUED FOR:
MAT	DES/QA	

,ur	1045	*	1111
116	ST.	BZ	C.P.
ORIDA ONAL ENG	STATE OF	87002	JAND K PALL
EZG/A	ER		Milling

S ITAM HAS BEEN DIGITALLY SIGNED AND SEALED BY AD K. PARSA, P.E. OF THE DATE ADJACENT TO THE SEAL. NEID COPIES OF THIS DOCUMENT ARE NOT CONSIDEREI NED AND SEALED AND THE SIGNATURE MUST BE GIFED ON ANY ELECTRONIC COPIES.

SHEET NUMBER: REVISION:

EXISTING 133'-0" MONOPOLE

ISSUED FOR:

ISSUED FOR FINALS

MAT

336 SE NEWELL DR LAKE CITY, FL 32025

BU #: 825272 LAKE CITY AIRPORT

VERIZON WIRELESS SITE NUMBER: 712924

THE SUBJECT PROPERTY APPEARS TO BE WITHIN FLOOD ZONE "X" PER FIRM MAP NUMBER 12023C0315C WITH AN EFFECTIVE DATE OF 02/04/2009.

8000 AVALON BLVD, SUITE 700 ALPHARETTA, GA 30009

N towersource

A NextEdge Company

1355 WINDWARD CONCOURSE SUITE 410 ALPHARETTA, GA 30005 TEL: 678-990-2338

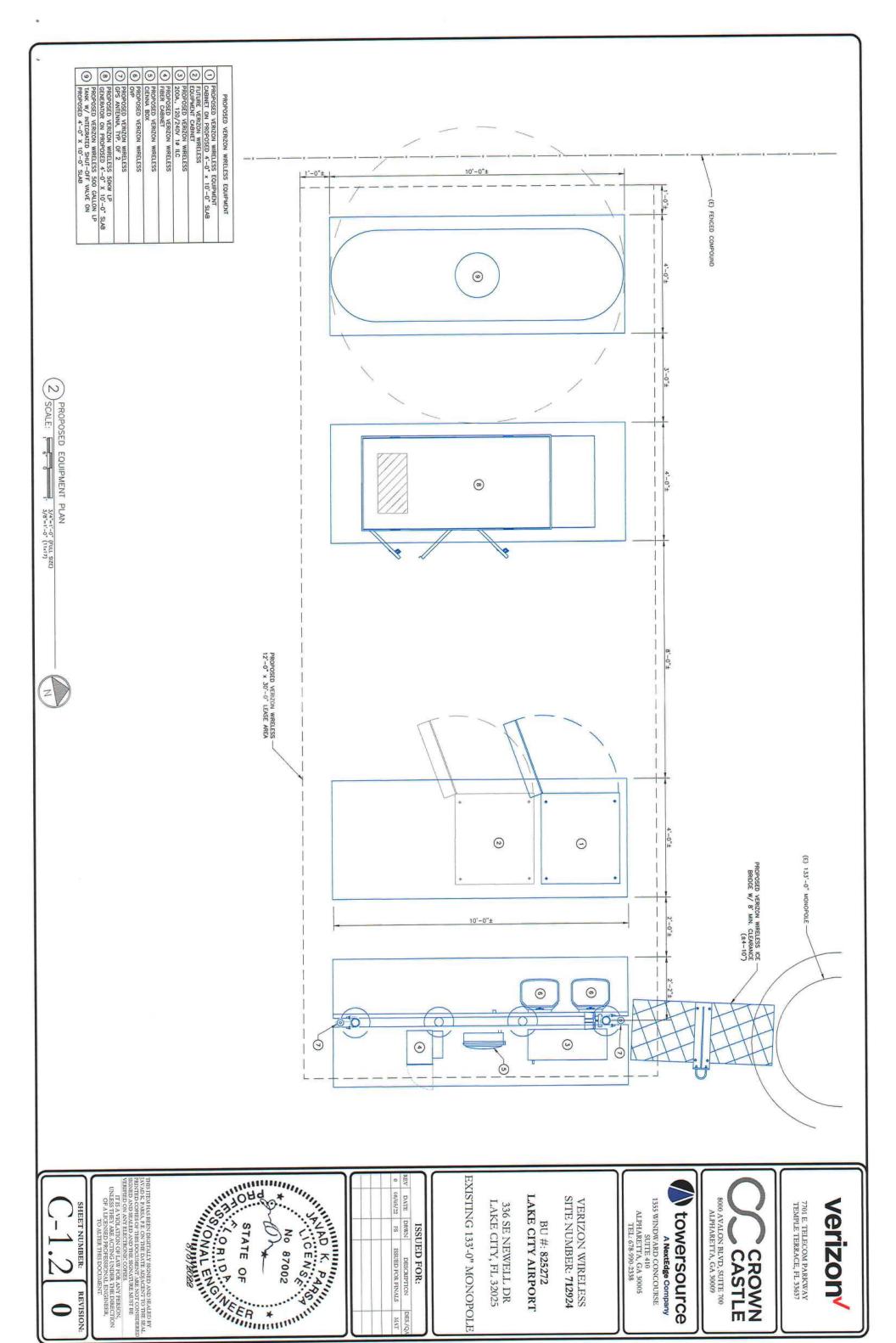
CROWN

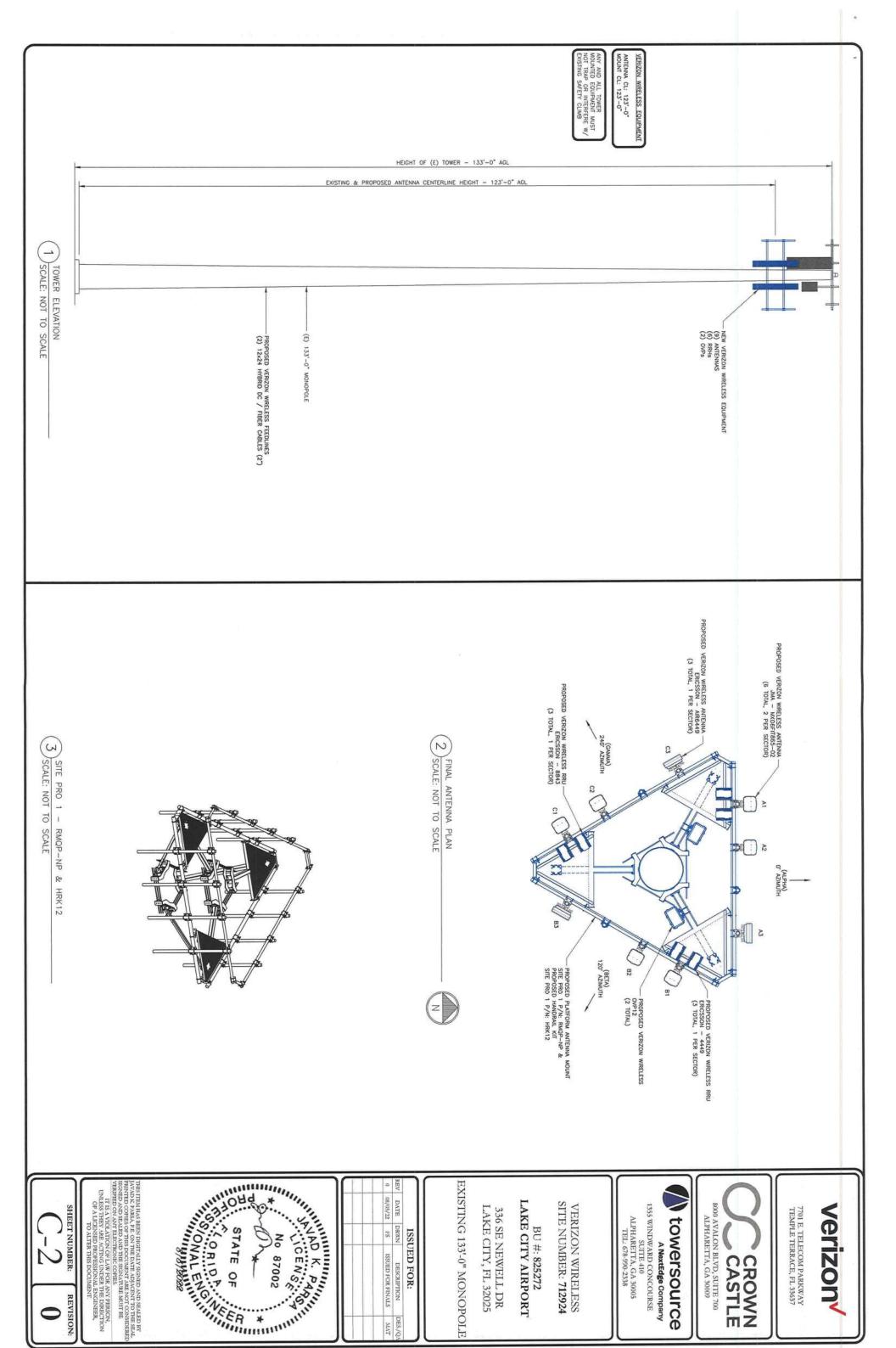
verizon 7701 E. TELECOM PARKWAY TEMPLE TERRACE, FL 33637

SHEET NUMBER:

NO 87002

*
NO 87002


*
NO 87002

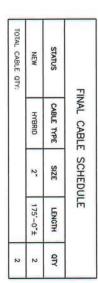

*
NO 87ATE OF ENGLISHINGS ONAL ENGLISHINGS ONAL ENGLISHINGS ON ALL ENGLISH

THIS TIEM HAS BEEN DIGITALLY SIGNED AND SEALED BY JAVON K PARSA, PE ON THE DATE ADJACENT TO THE SEAL PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND THE SEANATURE MUST BE VERHELD ON ANY ELECTRONIC COPIES.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTION UNDER THE DIRECTION OF A LICENSED PROPESSIONAL ENGINEER.

REVISION:

DES/Q


REVISION:

A NextEdge Company

1) SCALE: NOT TO SCALE

SECTOR 83 82 81 2 S A C3 C2 01 NEW NEW NEW WEW NEW WEW NEW NEW NEW ERICSSON ERICSSON JWA JMA AME AMA JMA JMA ANTENNA MODEL MX06FIT865-02 MX06FIT865-02 MX06FIT865-02 MX06FIT865-02 MX06FITB65-02 FINAL EQUIPMENT SCHEDULE 123'-0" 123'-0" 123'-0" 123'-0" 123'-0" 123'-0" 240 120 120 o. o, o, TOWER EQUIPMENT MANUFACTURER ERICSSON RAYCAP TOWER EQUIPMENT QTY/MODEL 4449 & 8843 4449 & 8843 4449 & 8843 OVP12 1

NOTE:
REFER TO RFDS FOR ELECTRICAL
& MECHANICAL DOWNTILTS

towersource

VERIZON WIRELESS SITE NUMBER: 712924

BU #: 825272 LAKE CITY AIRPORT

A NextEdge Company
1355 WINDWARD CONCOURSE
SUITE 410
ALPHARETIA, GA 30005
TEL: 678-990-2338

EXISTING 133'-0" MONOPOLE

ISSUED FOR:

ISSUED FOR FINALS

TAX

336 SE NEWELL DR LAKE CITY, FL 32025

THIS TIEM HAS BEEN DIGITALLY SIGNED AND SEALED BEV INVADE, PARKA, BE ON THE DATE ADJACETATTO THE SEAL BUNTED COMES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERHIED ON ANY ELECTRONIC COPIES.

SHEET NUMBER: REVISION: 3 SCALE: NOT TO SCALE

4 SCALE: NOT TO SCALE

ERICSSON - RADIO 8843 WEIGHT: 71.9 LBS SIZE (HxWxD): 18.0x13.2x11.1 IN.

THIS ITEM HAS BEEN DIGITALLY SIGNED AND SEALED BY JAYAD K PARSA, P.E. ON THE DATE ADJACEN'T TO THE SEAL. FRUNTED CORPES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNATURE MUST BE VERHELD ON ANY ELECTRON COOPES.

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY JAEL ACTING UNDER THE DIRECTION OF ALLEXED PROPESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SHEET NUMBER:

REVISION:

WEIGHT: 62.7 LBS 17.9x13.2x8.3 IN.

ERICSSON - 4449 B12 B71

1) SCALE: NOT TO SCALE

02/22/19 Fage 2

COVID BAM Whelse. A rigist nearwol. The document contints proposital priorization. A product, company name, bands, and byone stratements "or organization between the of their respective holders. All specifications are subject to change without nation. +1 315.431.7 (Countements en Anglement eleisa com.

Description 8F X-Pol HEX FIT 65", 2-12" / 0-6" RET, 4.3-10 & S8T

19.1 in. [486 mm] 8

95.9 in. (2436 mm)

24.0 in. [610 mm]
bracket mounting
bracket mounting
34.2 in. [869 mm]
bracket mounting

Back view	
Bottom view	
11.3	И

120 (54.55) 91000318, 91000319 (middle bracket) 26 (11.52) 2° to 12° 150 (241) 118 (517), 91 (405), 147 (654)

95. Nr 12 21 10.7 (2436/ 310/ 273) 106/ 20/ 15 (2592/ 508/ 381) 8 x 4 3-10 female, bottom 96. th/ in (10.85 N·m or 8 lb/ ft)

JWA MX06FIT865-02
NWAY™ X-Pol Hex-Port Antonna

and,

NO 87002

NO 87002

NO 87002

STATE OF ETGINAL ENGLISHINGS

ONAL ENGLISHINGS

ONAL ENGLISHINGS

DATE DRWN DESCRIPTION 08/05/22 FS ISSUED FOR FINALS ISSUED FOR: DES/Q

EXISTING 133'-0" MONOPOLE

2 RAYCAP - OVP12/6627 SCALE: NOT TO SCALE

RAYCAP OVP12/6627 WEIGHT: 32.0 LBS SIZE (HxWxD): 28.93x15.73x10.31 IN.

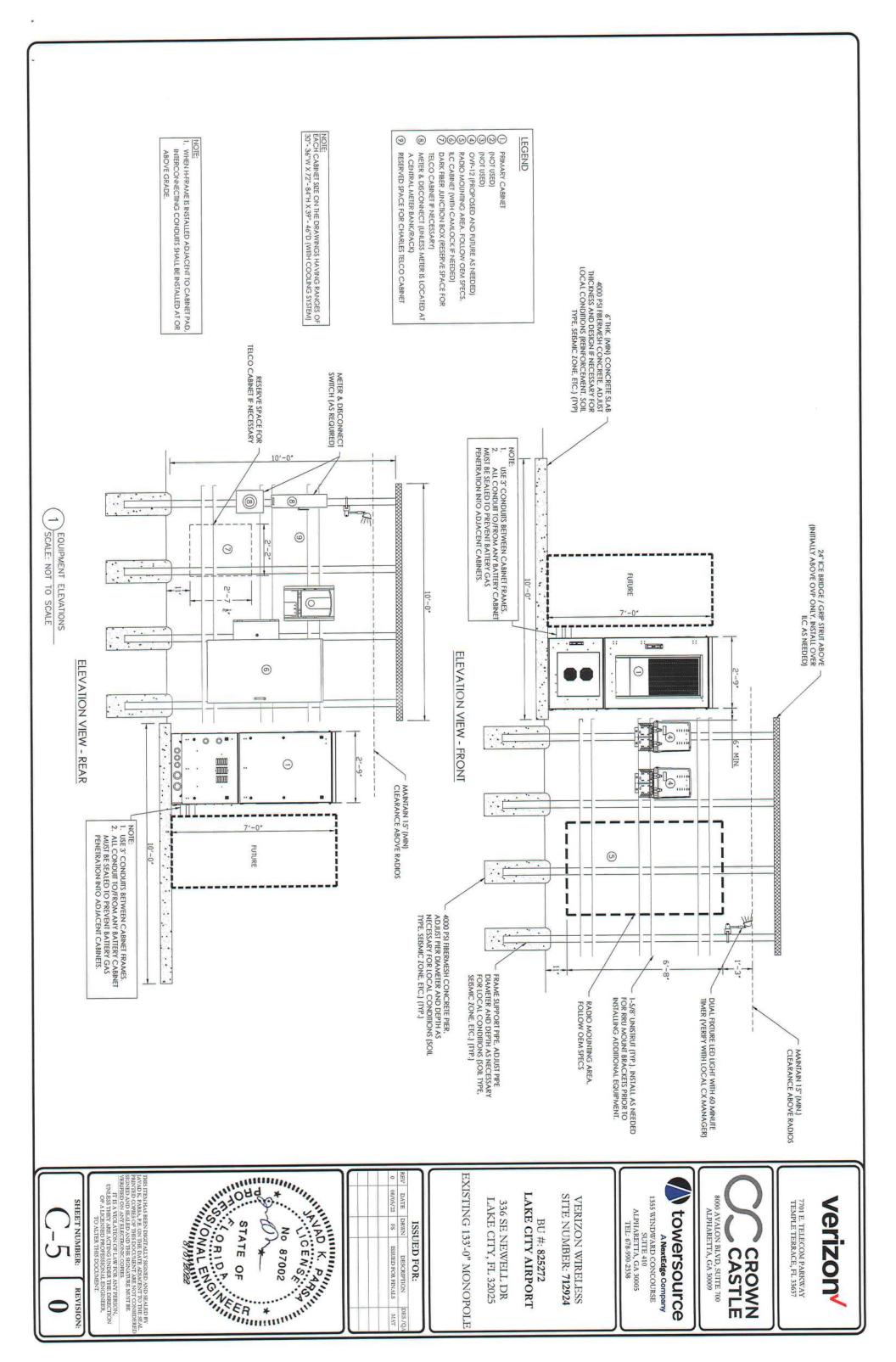
336 SE NEWELL DR LAKE CITY, FL 32025

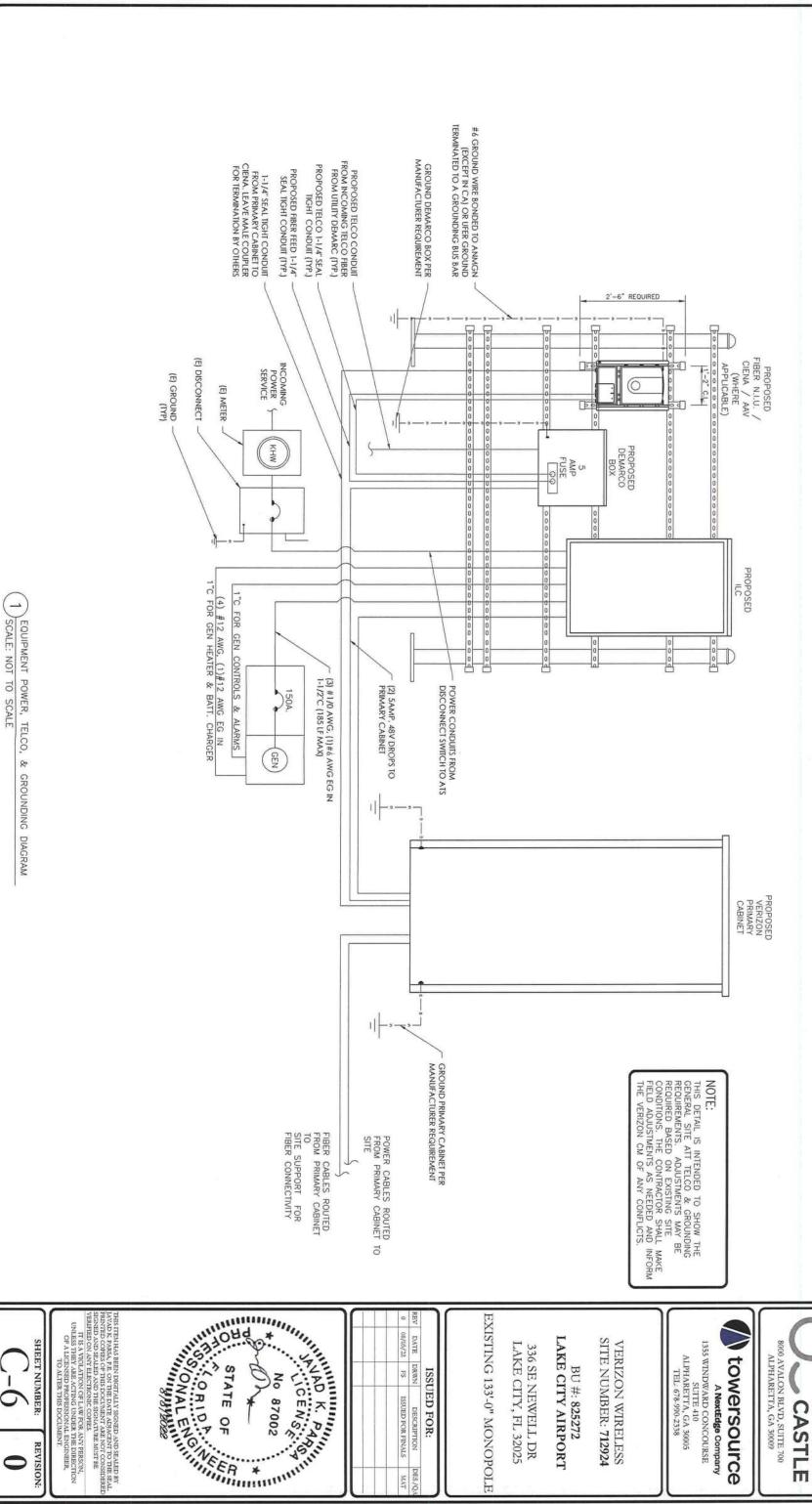
BU #: 825272 LAKE CITY AIRPORT

SITE NUMBER: 712924 VERIZON WIRELESS

1355 WINDWARD CONCOURSE SUITE 410 ALPHARETTA, GA 30005 TEL: 678-990-2338

A NextEdge Company


towersource


8000 AVALON BLVD, SUITE 700 ALPHARETTA, GA 30009

CASTLE

7701 E. TELECOM PARKWAY TEMPLE TERRACE, FL 33637

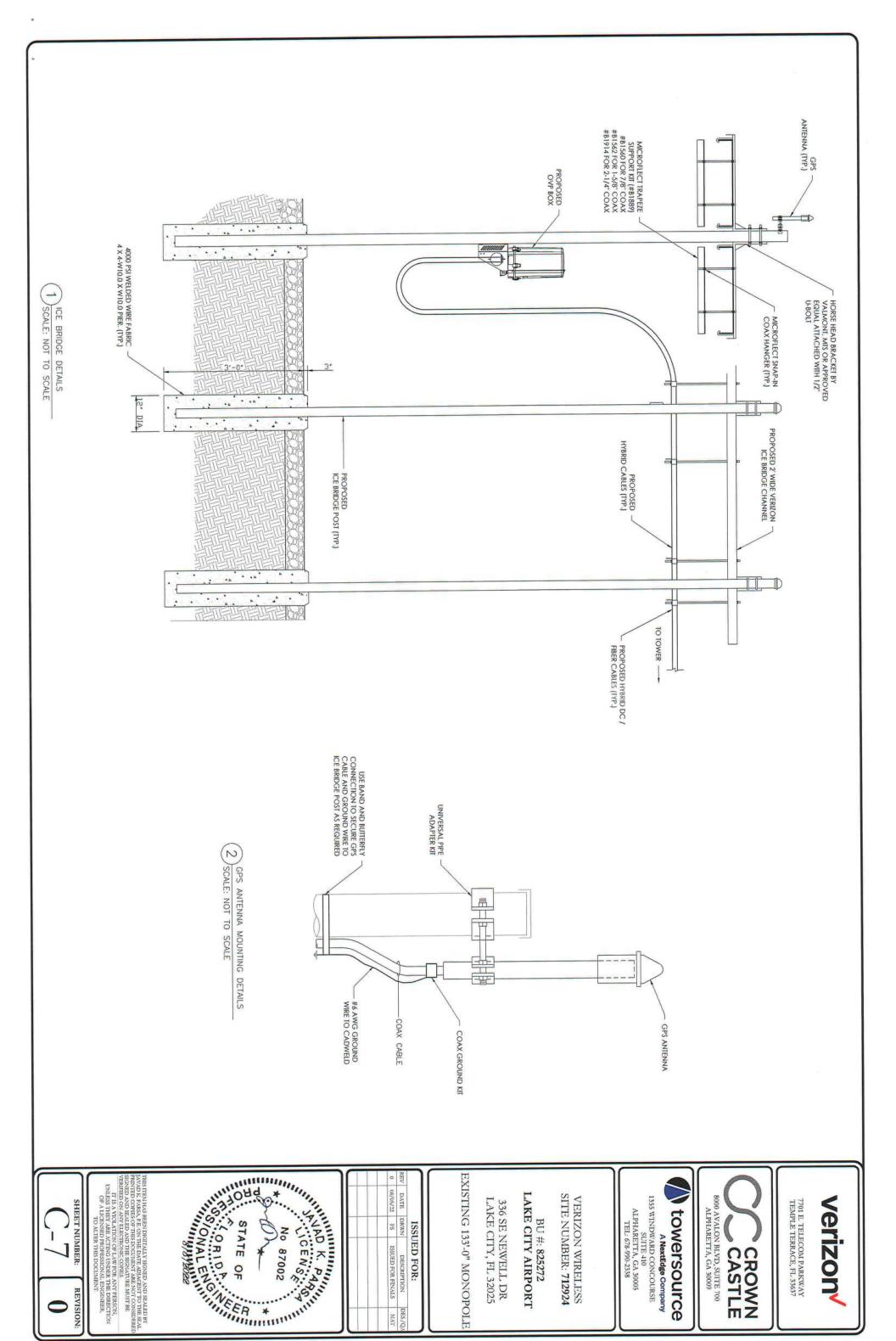
verizon

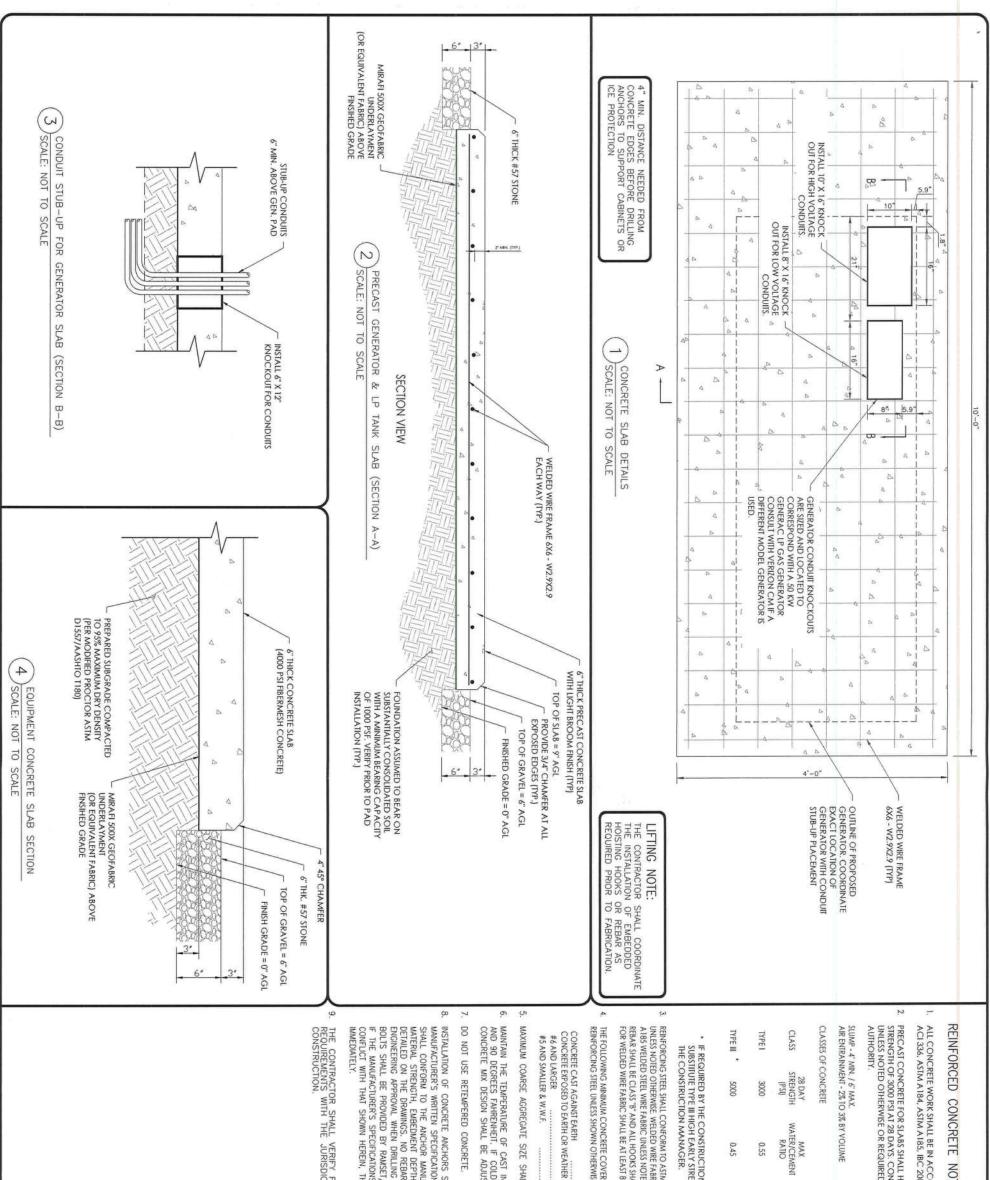
DRWN

DES/Q TAIN

REVISION:

ISSUED FOR:


7701 E. TELECOM PARKWAY TEMPLE TERRACE, FL 33637 CASTLE


towersource

A NextEdge Company

BU #: 825272

verizon

NOTES:

- ALL CONCRETE WORK SHALL BE IN ACCORDANCE WITH THE ACI 301, ACI 318, ACI 336, ASTM A 184, ASTM A 185, IBC 2006.
- PRECAST CONCRETE FOR SLABS SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 3000 PSI AT 28 DAYS. CONCRETE TESTING IS NOT REQUIRED UNLESS NOTED OTHERWISE OR REQUIRED BY THE JURISDICTION HAVING

HIGH EARLY	SITE CAST SLABS	0.45	5000	=	TYPE III
NORMAL WEIGHT	PRECAST SLABS	0.55	3000	-	TYPE
NOTES	PLACEMENT	MAX WATER/CEMENT RATIO	28 DAY STRENGTH (PSI)	8	CLASS

IF REQUIRED BY THE CONSTRUCTION SCHEDULE THE CONTRACTOR MAY SUBSTITUTE TYPE III HIGH EARLY STRENGTH CONCRETE WITH THE APPROVAL O

A 185 WELDED STEEL WIRE FABRIC UNLESS NOTED OTHERWISE, SPLICES FOR REBAR SHALL BE CLASS "B" AND ALL HOOKS SHALL BE STANDARD, UNO. LAPS FOR WELDED WIRE FABRIC SHALL BE AT LEAST 8 INCHES, UNO. ASTM A 615, GRADE 60, DEFORMED FABRIC SHALL CONFORM TO ASTM

THE FOLLOWING MINIMUM CONCRETE COVER SHALL BE PROVIDED FOR REINFORCING STEEL UNLESS SHOWN OTHERWISE ON DRAWINGS:

.1-1/2" N

SHALL BE 3/4".

MAINTAIN THE TEMPERATURE OF CAST IN PLACE CONCRETE AT BETWEEN 50 AND 90 DEGREES FAHRENHEIT. IF COLDER OR HOTTER CONDITIONS EXIST, THE CONCRETE MIX DESIGN SHALL BE ADJUSTED ACCORDINGLY.

INSTALLATION OF CONCRETE ANCHORS SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S WRITTEN SPECIFICATIONS. THE ANCHOR BOLT, DOWEL, OR ROD SHALL CONFORM TO THE ANCHOR MANUFACTURER'S SPECIFICATIONS FOR MATERIAL STRENGTH, EMBEDMENT DEPTH, SPACING, AND EDGE DISTANCE OR AS DETAILED ON THE DRAWNIGS. NO REBAR SHALL BE CUT WITHOUT PRIOR ENGINEERING APPROVAL WHEN DRILLING HOLES IN CONCRETE. EXPANSION BOLTS SHALL BE PROVIDED BY RAMSET/REDHEAD, HILTI, OR APPROVED EQUAL. IF THE MANUFACTURER'S SPECIFICATIONS AND DETAILS ARE FOUND TO CONFLICT WITH THAT SHOWN HEREIN, THE ENGINEER SHALL BE NOTIFIED MANUFACTURER'S SPECIFICATIONS AND DETAILS ARE FOUND TO

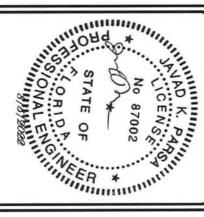
THE CONTRACTOR SHALL VERIFY FROST LINE AND FOOTING DEPTH REQUIREMENTS WITH THE JURISDICTION HAVING AUTHORITY PRIOR TO CONSTRUCTION.

verizon 7701 E. TELECOM PARKWAY TEMPLE TERRACE, FL 33637 CROWN

towersource

1355 WINDWARD CONCOURSE SUITE 410 ALPHARETTA, GA 30005 TEL: 678-990-2338 A NextEdge Company

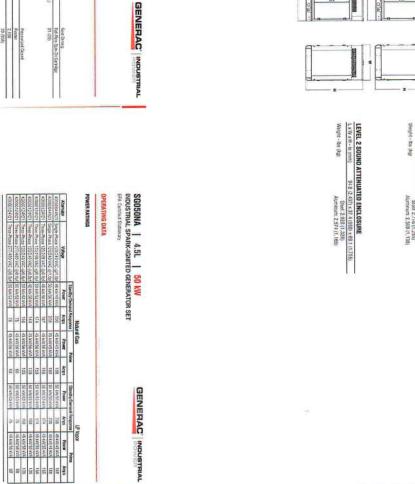
VERIZON WIRELESS


SITE NUMBER: 712924 BU #: 825272

LAKE CITY AIRPORT

LAKE CITY, FL 32025 336 SE NEWELL DR

EXISTING 133'-0" MONOPOLE



IS ITEM HAS BEEN DIGITALLY SIGNED AND SEALED BY MAD K. PARSA, P.E. ON THE DATA BADACENT TO THE SEAL INTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED AND SEALED AND THE SIGNATURE MUST BE RIFED ON ANY ELECTRONIC COPIES.

\$ REVISION:

IPPLICATION AND ENGINEERING DATA IGINE SPECIFICATIONS Petros (200) 2,100 20 (504) SPEC SHEET

SG050NA | 4.5L | 50 kW
INDUSTRIAL SPARK-IGNITED GENERATOR SET

ELETRICAL SYSTEM

- 1 (NAL LIAM BEINEY DARPE

- 2 MANY SIGHTS

ALTERNATION SYSTEM

- A Among Upusop

- And Commention Russ

- Trouble State

- Trouble State

- Data for Commention Russ

- Data for Commention Russ

- Data for Commention

- Data for Comm SG050NA | 4.5L | 50 kW NDUSTRIAL SPARK-IGNITED GENERATOR SET GENERATOR SET

o Special Tenting

o Bellary Box CONTROL SYSTEM

O 1954 in 100 conquant 21 kups formers Annocates

o 1956 in 100 conquant 21 kups formers Annocates

o 1956 in 100 conquant 21 kups for 10

o Remont 1-00p (Stant Cases-Type, Earther Mount)

o Remont 1-00p (Stant Cases-Type, Their Mount)

o Remont 1-00p (Stant Cases-Type, Their Mount)

o Remont 1-00p (Stant Cases-Type, Their Mount)

o Level 1-00p (Stant Cases-Type, Their Mount)

o 10d Anno Resident 1-00p (Stant Cases-Type, Their Mount)

o 10d June 1-00p (Stant Cases-Type, Their Mount)

o 10d June 1-00p WARRANTY (Standby Gensets Only)

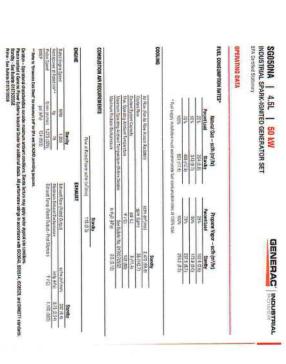
2 Your Estudiat Livabid Warranty

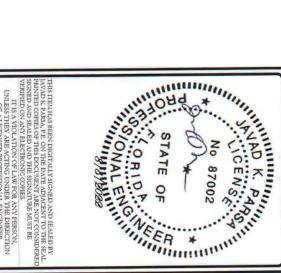
2 Your Estudiat Livabid Warranty

3 Your Estudiat Livabid Warranty

3 Your Estudiat Livabid Warranty

10 Your Estudiat Livabid Warranty


10 Your Estudiat Livabid Warranty GENERAC INDUSTRIAL


 WEATHER PROTECTED ENCLOSURE

 L x W x H - in jmmij
 94.8 (2.407) x 37.4 (950) x 69 (1.275)

 Weight - its (sql)
 Auminum: 1.794 (793)

 Weight - its (sql)
 Auminum: 1.794 (793)

verizon 7701 E. TELECOM PARKWAY TEMPLE TERRACE, FL 33637

1355 WINDWARD CONCOURSE SUITE 410 ALPHARETTA, GA 30005 TEL: 678-990-2338

A NextEdge Company

towersource

8000 AVALON BLVD, SUITE 700 ALPHARETTA, GA 30009

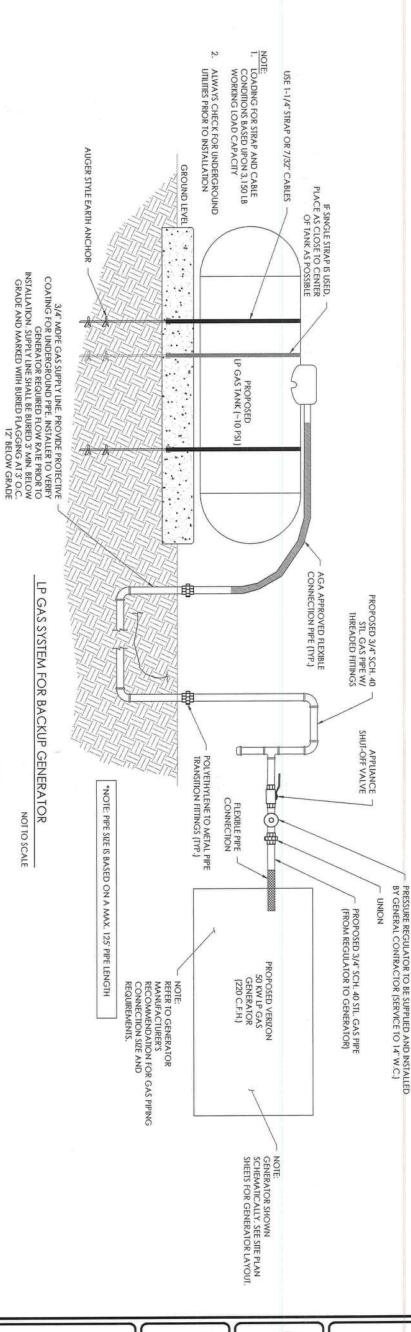
CASTLE

EXISTING 133'-0" MONOPOLE

ISSUED FOR:

DESCRIPTION ISSUED FOR FINALS

LAKE CITY, FL 32025 336 SE NEWELL DR LAKE CITY AIRPORT


BU #: 825272

SITE NUMBER: 712924 VERIZON WIRELESS

E SPEC SHEET

REVISION:

1) SCALE: NOT TO SCALE

GENERAL NOTES:

- MAINTAIN MINIMUM 1:-0" VERTICAL AND 1:-0" HORIZONTAL SEPARATION OF GAS LINE FROM OTHER UTILITIES.
- 2. CONNECTION POINT MAY VARY WITH GENERATOR MANUFACTURER
- 3. MAINTAIN 3" SERVICE CLEARANCE ON ALL SIDES OF GENERATOR.
- GENERAL CONTRACTOR SHALL ANCHOR GENERATOR BASE4 TO SLAB OR PLATFORM WITH HOLES PROVIDED.
- 5. CONTRACTOR SHALL VERIFY LOCATION OF ALL EQUIPMENT PRIOR TO INSTALLATION.
- 6. CONTRACTOR SHALL COORDINATE INSTALLATION WITH GAS COMPANY & OTHER
- 7. CONTRACTOR SHALL ADHERE TO APPLICABLE STATE & LOCAL CODES
- 8. COORDINATE LOCATION OF GAS PIPE WITH OTHER UTILITIES
- 9. FLEXIBLE CONNECTION TO BE SAME SIZE AS PIPING TIE-IN THAT IS PROVIDED BY THE GENERATOR SUPPLIER.
- 10. CONTRACTOR TO VERIFY GAS PRESSURE PER NOTE ON "GAS PIPE SIZING SCHEDULE".
- GENERATOR TO BE LOCATED A SUITABLE DISTANCE FROM ANY ROOF PENETRATIONS IN ACCORDANCE WITH NFPA.
- CONTRACTOR TO PROVIDE LOW POINT DRAINS AND HIGH POINT VENTS PER NFPA AND AGA CODES.

SPECIFICATIONS:

- PIPE (LOW-PRESSURE): STEEL PIPE; ASTM A53, TYPE OR S. ELECTRIC-RESISTANCE WELDED OR SEAMLESS, GRADE A OR B. SCHEDULE 40
 GALVANIZED STEEL, PAINTED YELLOW.
- 2. PIPE FITTINGS (ABOVE GROUND):

- 4. POLYETHYLENE FITTINGS (UNDERGROUND): ASTM D 2683, SOCKET TYPE OR ASTM D 3261, BUTT TYPE WITH DIMENSIONS MATCHING ASTM D 2513, SDR 11, POLYETHYLENE PIPE.
- 5. Transition fittings: manufactured pipe fitting for connection to polyethylene pipe and with one astm a 533 / a 53m. Schedule 40, galvanized steel pipe end for threaded connection to galvanized steel pipe.

- A. GRAY-IRON THREAD FITTINGS: ASME 816.4, CLASS 125, GALVANIZED STANDARD PATTERN.
 B. UNIONS: ASME 816.39, CLASS 150, BLACK MALLEABLE IRON, FEMALE PATTERN, BRASS TO IRON SEAT, GROUND JOINT.
 C. TRANSITION FITTINGS: TYPE, MATERIAL, AND END CONNECTIONS TO MATCH PIPING BEING JOINED.
 D. PROVIDE DI-ELECTRIC UNIONS WHERE REQUIRED BETWEEN DIFFERENT METALLIC PIPE MATERIALS.
- 3. PIPE (UNDERGROUND): POLYETHYLENE PIPE; ASTM D 2513, SDR 11 OR IN ACCORDANCE WITH LOCAL CODES AND REGULATIONS.
- 6. SERVICE-LINE RISER: MANUFACTURED PIPE FITTING WITH POLYETHYLENE PIPE INLET FOR CONNECTION TO UNDERGROUND POLYETHYLENE PIPE RISER SECTION WITH PROTECTIVE-COATED, ANODES, STEEL CASING AND THREADED OUTLET FOR THREADED CONNECTION TO ABOVE GROUND STEEL PIPING.

NOT TO SCALE

GENERATOR INSTALLATION RESPONSIBILITIES:

1. DELIVERY AND SET UP OF GENERATOR

- GENERAL CONTRACTOR:

 1. RUNS STUB-UPS FOR IP GAS TO GENERATOR.

 2. COORDINATE DELIVERY OF IP GAS LINE TO THE SITE.

 3. PULLS ALARM WIRES, START CIRCUIT WIRES, CONTROL CIRCUIT WIRES, AND LINE VOLTAGE WIRES FROM THE PPC TO THE ATS AND TO THE GENERATOR. HOME RUNS WIRES BACK TO THE ATS.

 4. GROUNDS FOR GENERATOR.

GENERATOR MANUFACTURER CERTIFIED ELECTRICIAN: 1. COMPLETES FUEL CONNECTIONS.

- 2. TERMINATES ALARMS AND CONTROL CIRCUITS TO THE GENERATOR.

 3. INSTALL FUEL REGULATORS.

 4. FINAL INSPECTION AND START UP.

 5. NOTIFY OPERATIONS (CELL TECHS) TWO DAYS PRIOR TO START-UP SCHEDULE, PLAN ON CELL TECH ARRIVAL EARLY AFTERNOON, IF START-UP PROBLEMS OCCUR, NOTIFY CELL TECH OF DELAY BEFORE NOON.

 6. RUN LOAD TEST (ADDITIONAL COST TO VERIZON) AS REQUIRED, MOSTLY IN CORE.

 7. EMAIL COPY OF START-UP CHECK OFF LIST TO VERIZON.

- CELL TECH:

 1. CELL TECH TO PUNCH DOWN ALL ALARWS IN CROSS CONNECT AND BTS.

 2. CELL TECH TO YERRY START-UP AND SIGN OFF ACCEPTING GENERATOR.

 3. CELL TECH TO NOTIFY VIA TEXT MESSAGING OF ACCEPTANCE.

GENERATOR MANUFACTURER / VERIZON WIRELESS START-UP PROCEDURES:

NOTE; BEFORE RUNNING GENERATOR OR INTERRUPTING POWER, NOTIFY THE NETWORK OPERATIONS CENTER (NOC) AND APPROPRIATE CELL TECH.

- 1. INSPECT ALL CONNECTING CIRCUITS (GROUND LEADS START LEADS BLOCK HEATER BATTERY CHARGER POWER OUTLET LEADS) AND ANCHORING OF
- THE GENERATOR.

 2. VERIFY ALL CIRCUITS ARE TERMINATED CORRECTLY AND CORRECT WIRE SIZES ARE USED, THE BATTERY IS CONNECTED, THE CHARGER ACTIVATED AND THE BATTERY IS CHARGING.

- 3. CHECK ALL LIQUID LEVELS.
 4. PLACE ATS IN THE MANUAL MODE AND PROGRAMMED TO SET THE EXERCISER CLOCK TO OPERATE EVERY TWO WEEKS FOR ONE HOUR UNDER LOAD.
 4. PLACE ATS IN THE MANUAL MODE AND PROGRAMMED TO SET THE EXERCISER CLOCK TO OPERATE EVERY TWO WEEKS FOR ONE HOUR UNDER LOAD.
 5. FUEL SYSTEM IS INSPECTED AND CHECKED FOR LEAKS. VERIFY CORRECT PRESSURE (4 TO 6 OUNCES) AND VERIFY PIPE SIZE.
 6. DOCUMENT THE MODEL AND SERIAL NUMBER (SEND INFORMATION TO OPS AND BIS ENGINEER).
 7. PREPARE FOR A NO LOAD (MANUAL) START-UP IF REQUIRED.
 8. VERIFY ATS IS IN MANUAL CONTROL POSITION.
 9. START UP GENERATOR MANUALLY AND VERIFY VOLTAGE AND FREQUANCY. SET VOLTAGE FOR 230 VOLTS AND FREQUIANCY FOR 60 HERTZ.
 10. VERIFY ENGINE RUN ALARM IS ACTIVATED AND THERE IS CONTROLING FOR CONTROL POSITION.
 11. INDUCE LOW OIL PRESSURE, HIGH WATER TEMP, OVER/UNDER VOLTAGE/FREQUANCY FAULTS SEPARATELY AND VERIFY THE ALARM IS ACTIVATED AND HAS CONTROLING IN THE ALARM IS ACTIVATED.

- 12. PLACE ATS CONTROLS IN AUTOMATIC.

 13. MANUALLY DISCONNECT COMMERCIAL POWER AND VERIFY GENERATOR TRANSFER.

 14. ALLOW GENERATOR TO RUN UNDER LOAD FOR ONE HOUR IF REQUIRED AND RECORD LOAD, COOLANT TEMPERATURE AND VOLTAGE (SEND INFORMATION TO OPS).

 15. RESTORE COMMERCIAL POWER AND CHECK FOR TRANSFER, GENERATOR WILL REMAIN RUNNING FOR APPROXIMATELY 5 MINUTES FOR COOL DOWN.

 16. COMPLETE ALL REQUIRED START-UP DOCUMENTATION LOCATED IN THE MANUAL, SCAN INTO JOB FILE AND EMAIL COPY TO KATOLIGHT AND OPS.

 17. CONTACT OPS TWO DAYS PRIOR TO TESTING.

7701 E. TELECOM PARKWAY TEMPLE TERRACE, FL 33637

CASTLE CROWN

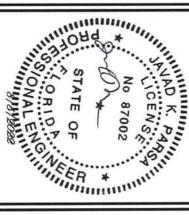
1355 WINDWARD CONCOURSE SUITE 410 ALPHARETTA, GA 30005 TEL: 678-990-2338 A NextEdge Company

VERIZON WIRELESS

SITE NUMBER: 712924

LAKE CITY AIRPORT

BU #: 825272


EXISTING 133'-0" MONOPOLE

LAKE CITY, FL 32025

336 SE NEWELL DR

08/05/22	DATE	
E	DRWN	ISSL
ISSUED FOR FINALS	DESCRIPTION	ISSUED FOR:
MAT	DES/QA	

100	NAZ PO	
6	2	
CEN	7	
6		
		$\ $

NED AND SEALED BY
DIACENT TO THE SEAL
T ARE NOT CONSIDERED
ATURE MUST BE

AND

REVISION

Verizon

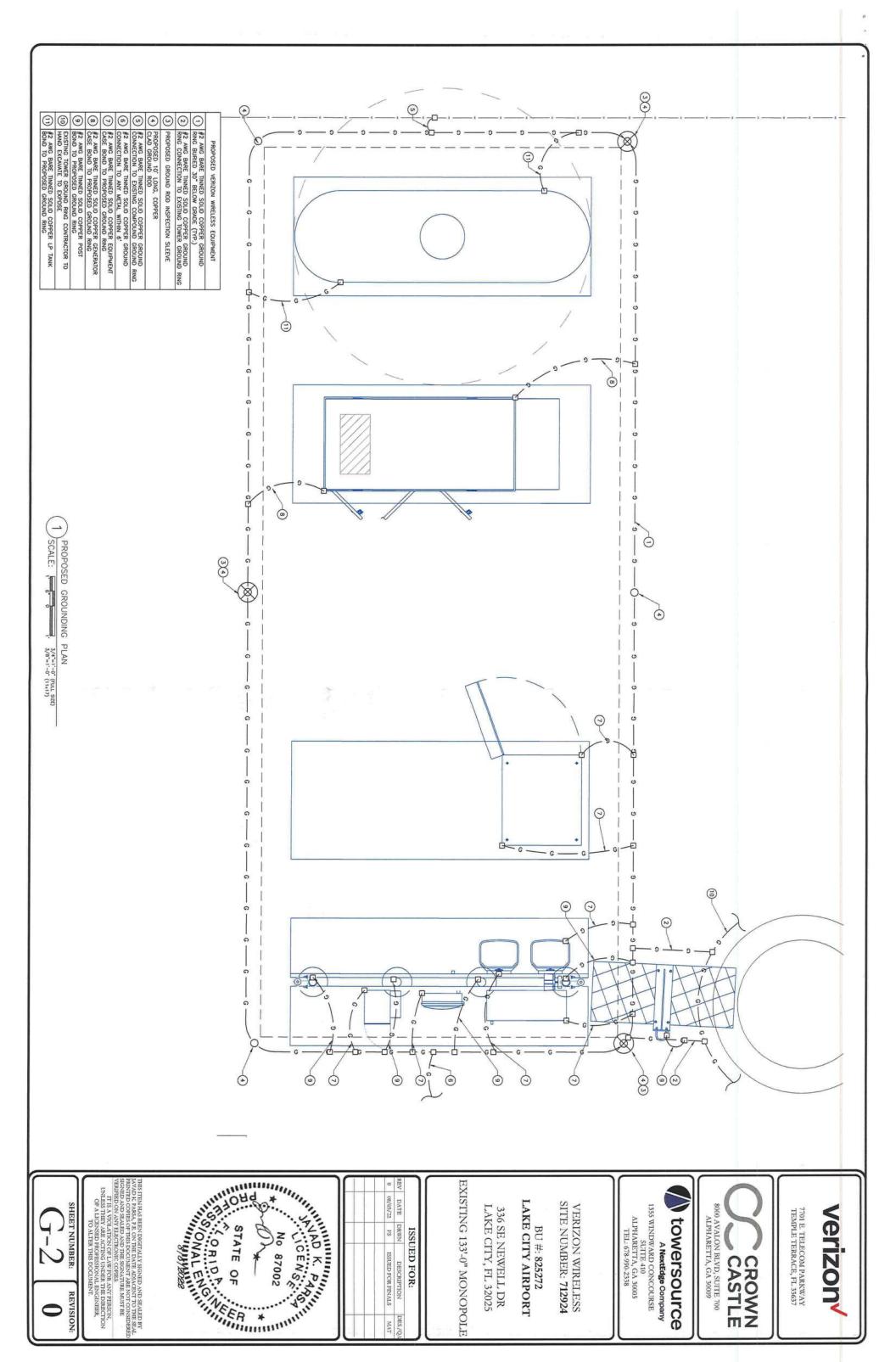
7701 E. TELECOM PARKWAY TEMPLE TERRACE, FL 33637

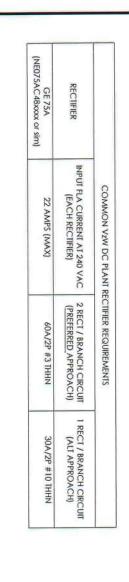
BU #: 825272

ISSUED FOR:

ISSUED FOR FINALS

A Nextedge Company
1355 WINDWARD CONCOURSE
SUITE 410
ALPHARETTA, GA 30005
TEL: 678 990-2338


N towersource


8000 AVALON BLVD, SUITE 700 ALPHARETTA, GA 30009

CROWN

SHEET NUMBER:

REVISION:

VOLTAGE: 120/240V SINGLE	TOTAL DEMAND:	PROPOSED LOAD:	LOAD	LOAD CALCULATION
OV SINGLE	0: 129.0	D: 123.0	AMPS	LATION

							_					
	7	5	3	1	700	2	MOUNT	MAINE	RATED	PANEL		
	1	1		1	FACTOR	USAGE	ENCLOSURE TYPE NEMA 3R		MAIN BREAKER	RATED VOLTAGE	PANEL NAME	
,		18	10000	18	E	BUS	NEMA 3R	SURFACE	200	120	NZW ILC	
	18		18		12	BUS AMPS			AMPS	240		
	RECUIFIER	DECTRETED	NEW THIRE	83131T)38	LUNU	000				VOLTS		
			,	,	70	23100						PROPOS
	Jun.	300		a a	C. Harry	ANADS	b	NEUTR	BUSR	PHASE	MODEL NUMBER	ED VERIZO
							AIC	NEUTRAL BAR	BUSRATING	PHASE / WIRE	NUMBER	NWIREL
	2000	3		35		AMPS	65K	YES	200			PROPOSED VERIZON WIRELESS PANEL SCHEDULE
	,	J		7	1000	3 100	4			w	INTERSECT AA300G-1PH-3R	CHEDULE
	nicom ich	BECORE	The state of the s	RECTIFIER		OAD		HINGED DOOR	KEY DOOR LATCH		1PH-3R	
10		18		18	-	BUS		YES .	B	2.2		
	18		18		12	BUS AMPS						
4	1	1	1	-	FACTOR	USAGE						
-	1	1	1	1	_	_	1	1	1	1	1	

RECTIFIER RECTIFIER

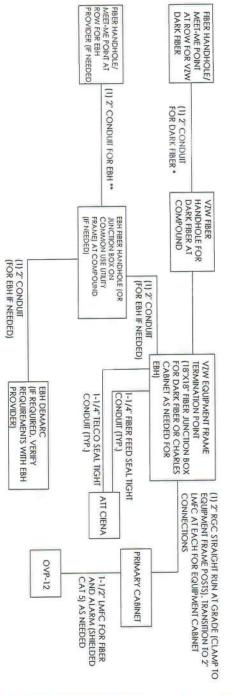
2 2

30A SOA.

AGE JOA.

2

RECTIFIER RECTIFIER


_	-	-	-
L RECTIFIER LOADS ARE CONSIDERED TO BE NON-CONTINUOUS.	3. INTERSECT/GENERAC INTEGRATED LOAD CENTER INCLUDES 2004. MAIN DISCONNECT AND TRANSFER SWITH FOR PORTABLE OR PERMANENT GENERATOR.	2. MAXIMUM LENGTH OF RUN FOR RECTIFIER CIRCUITS IS 50FT.	1. ALL CONDUCTORS ARE TYPE THAWN (75°C) COPPER

FACTORED TOT

AL 165.5

155

, IF ADOITIONAL FUTURE LOADS ARE ADDED WHICH CAUSE TOTAL DENAND TO EXCEED GENERATOR BRIDAXER'S IZE, BACKUP FOW JPGRADED AS NECESSARY PANEL SCHEDULE

FIBER SINGLE LINE DIAGRAM

NOTES:

1. ALL EQUIPMENT SHALL BE NEMA 3R RATED.

2. ALL EQUIPMENT SHALL BE LIGHTNING PROTECTED IN ACCORDANCE WITH TIA-222-G AND VERIZON WIRELESS STANDARDS.

3. CONDUCTOR SIZES AND DISTANCES HAVE BEEN SIZED FOR 3% MAX VOLTAGE DROP (TOTAL SYSTEM VOLTAGE DROP ON BOTH FEEDERS AND BRANCH CIRCUITS TO THE FARTHEST DEMAND SHALL NOT

ELECTRICAL SINGLE LINE DIAGRAM

12-#6 AWG (6 PAIRS) #6 AWG EG 2" LMFC

OVP-12

(INSTALL (1) 1-1/2" CONDUIT WITH PULL STRING FOR FUTURE RECTIFIER CIRCUITS) ROUTE CONDUIT ABOVE GROUND SECURED TO EQUIPMENT FRAME

8-#10 AWG, 1-#10 AWG EG, IN (1) 1-1/2" CONDUIT

1" CONDUIT FOR GEN & ILC ALARMS

PRIMARY

4-#12 AWG,1-#12 AWG EG,
1" CONDUIT (FOR GEN HEATER & BATT, CHARGER)

NOTE: THE GENERATOR USED IN CONJUNCTION WITH A 2-POLE ILC WITH A SOLID NEUTRAL IS NOT A SEPARATELY DERIVED SYSTEM. AS SUCH, DO NOT BOND THE NEUTRAL TO GROUND AT THE GENERATOR

4 0

EXCEED 5%),
WRE SIZING AND MAXIMUM DISTANCE FROM GENERATOR TO ILC ASSUMES POWER FACTOR OF 0.9.
EBLOW GRADE CONDUIT SHALL BE SCHEDULE 80 PVC. ABOVE GRADE CONDUIT SHALL BE GALVANIZED RIGID CONDUIT. BELOW GRADE PVC CONDUIT SHALL TRANSITION TO GRC PRIOR TO RISNING ABOVE GRADE. ALL BRIDS SHALL HAVE A MINIMUM 24" RADIUS. ALL FITINGS SHALL BE SUITABLE FOR USE WITH THREADED RIGID CONDUIT, VERIFY CONDUIT THE WITH LOCAL CONSTRUCTION MANAGER AND ADJUST IF NECESSARY. ALL CONDUIT SHALL MEET NEC. STATE, AND LOCAL CODE REQUIREMENTS AS REQUIRED.

NOTES:

* ADD (1) ADDITIONAL 2" CONDUIT FOR DARK FIBER (2 TOTAL) IF REQUIRED BY LOCAL MARKET FACILITIES, VERIFY PRIOR TO CONSTRUCTION. (ADD 2 PULL STRINGS TO EACH CONDUIT)

** VERIFY EBH REQUIREMENTS WITH TELCO

2 PULL STRINGS TO EACH CONDUIT)

1) SCALE: NOTE TO SCALE

PANEL SCHEDULE & ONE-LINE DIAGRAM

PANEL SCHEDULE

VERIZON
WIRELESS ILC
CABINET
WITH
2P/200A
UTILITY
BREAKER

3-#12 AWG #12 AWG EG 1" CONDUIT

HOH

GFCI RECPT.

INTEGRATED LOAD CENTER

200A

200A

1" CONDUIT FOR GEN CONTROLS & ALARMS

SERVICE DISCONNECT/ CIRCUIT BREAKER

200A

TO UTILITY TRANSFORMER

Z

UTILITY METER 120/240 VAC

NOTE:

NOTE:

PANEL SCHEDULE AND SINGLE LINE DIAGRAM PANEL SCHEDULE AND SINGLE LINE DIAGRAM REPRESENT A SITE WITH A NEW GE POWER PLANT, 50 KW LP GAS GENERATOR, AND TWO SOURCE ILC (THREE SOURCE ILC OPTIONAL AS NECEDED). ADJUST AS NECESSARY PER LOCAL SITE CONDITIONS.

3-#3/0 AWG #6 AWG EG 2" CONDUIT

배

4 AWG MBJ

(130 LF MAX)

3-#1/0 AWG 6 AWG EG 1-1/2" CONDUIT (185 LF MAX)

150A

GEN SOKW

VERIZON WIRELESS 50KW LP GAS GENERATOR

GEN MAIN DISCONNECT/ FUSED SWITCH

200A ILC

Z

m 9

	\parallel
11/1	Ш
Z'	$\parallel \perp$
AND X BALL	
7. 7.	$\parallel \parallel$
D	Ш
DE	$\parallel \parallel$
110	
	JL

S ITEM HAS BEEN DIGITALLY SIGNED AND SEALED BY UNK PASSA, PE ON THE DATE ADJACENT TO THE SEAL THE COPIES OF THIS DOCUMENT ARE NOT CONSIDERED BY AND SEALED AND THE SIGNATURE MIST BE

REVISION:

SHEET NUMBER:

Verizon

7701 E. TELECOM PARKWAY TEMPLE TERRACE, FL 33637

8000 AVALON BLVD, SUITE 700 ALPHARETTA, GA 30009 CASTLE

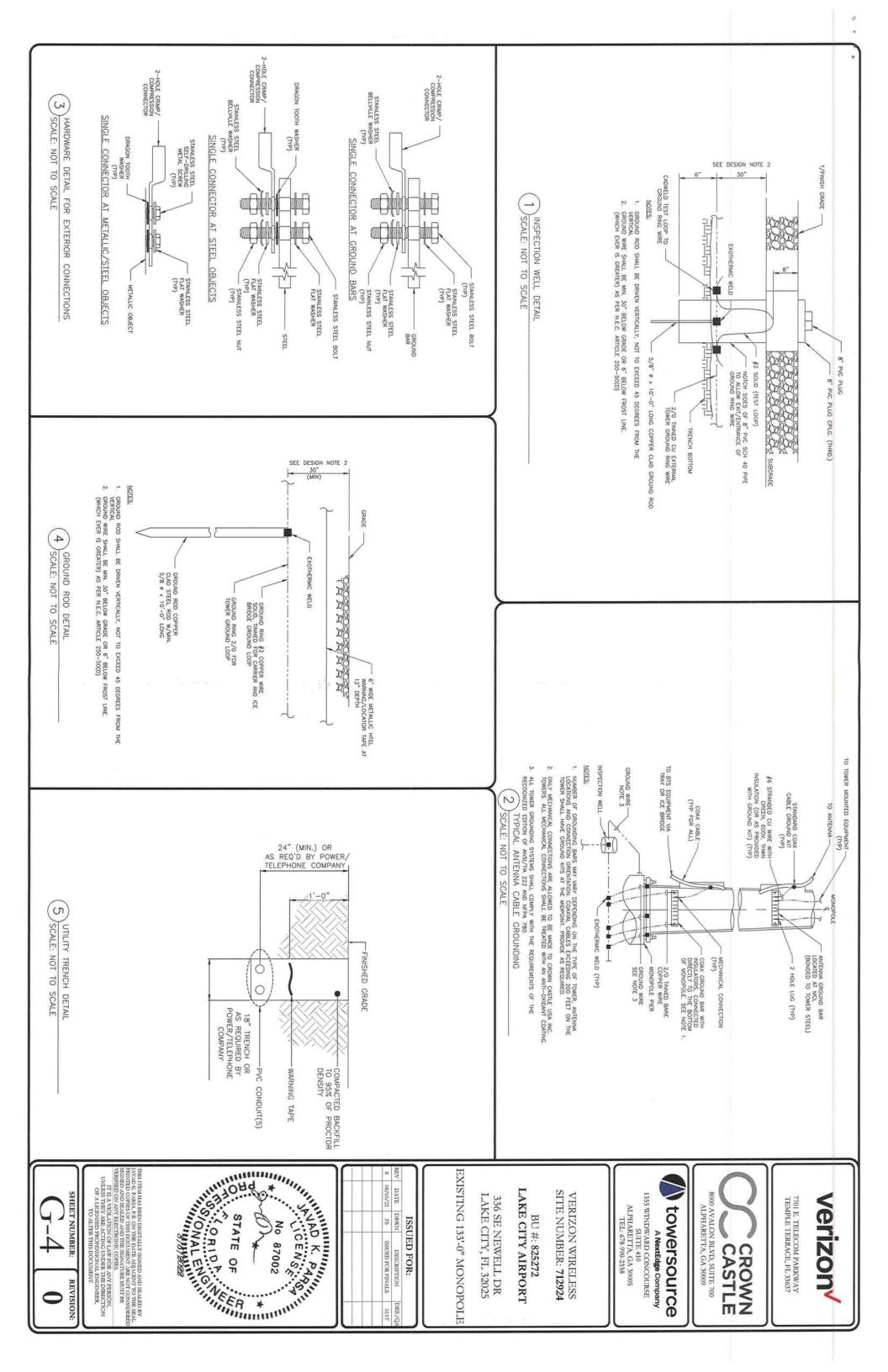
towersource

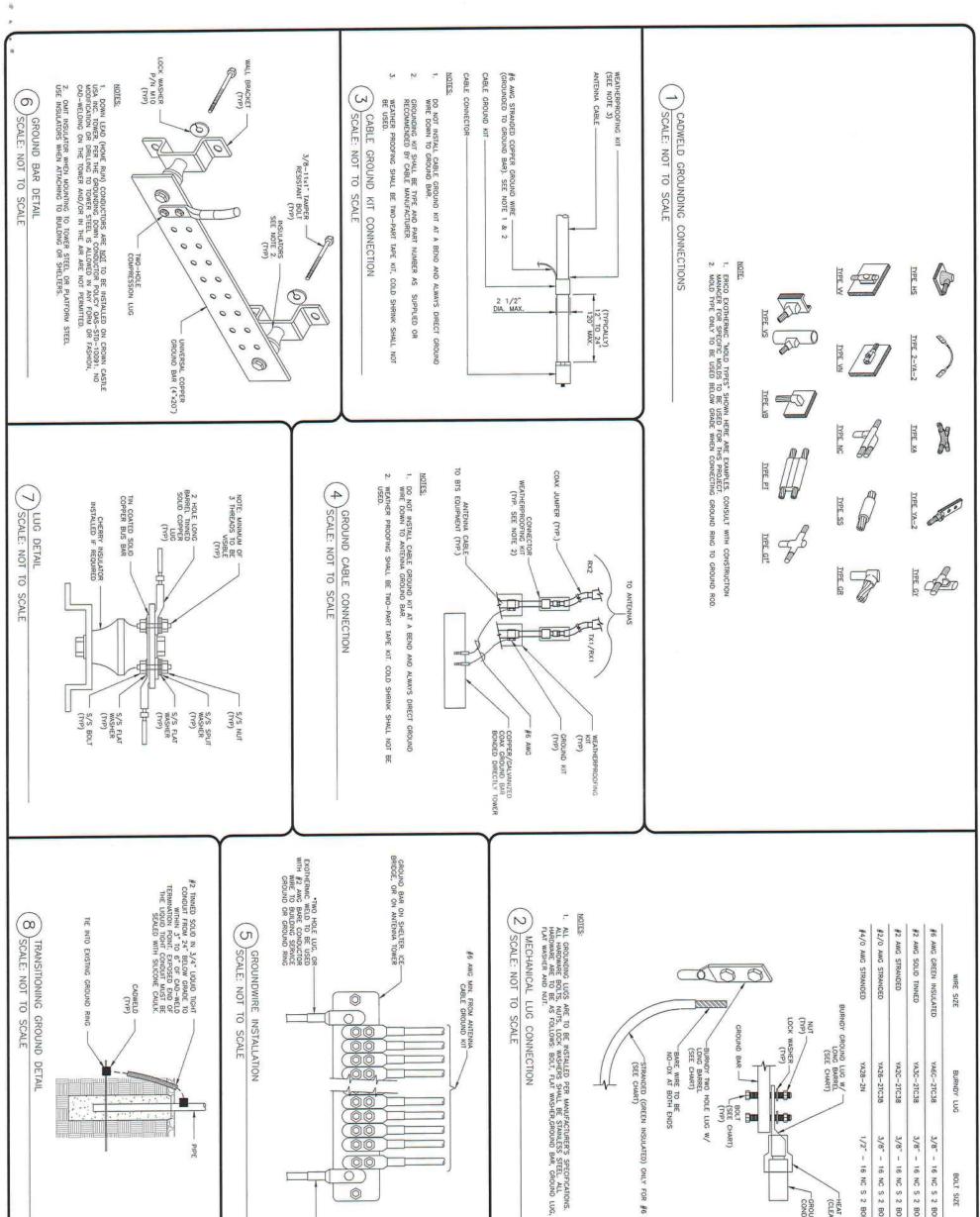
POS

A NextEdge Company

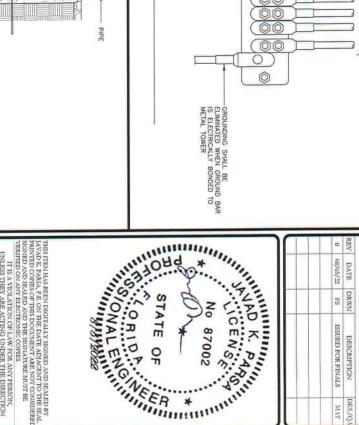
1355 WINDWARD CONCOURSE SUITE 410 ALPHARETTA, GA 30005 TEL: 678 990-2338

SITE NUMBER: 712924 VERIZON WIRELESS


LAKE CITY AIRPORT BU #: 825272


336 SE NEWELL DR

LAKE CITY, FL 32025


EXISTING 133'-0" MONOPOLE

0 US/05/22 FS	EV DATE DRWN	ISSI
ISSUED FOR FINALS	DESCRIPTION	ISSUED FOR:
MAT	DES/Q	

** No 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO 87002

**
NO

SHEET NUMBER: REVISION:

verizon

7701 E. TELECOM PARKWAY TEMPLE TERRACE, FL 33637

8000 AVALON BLVD, SUITE 700 ALPHARETTA, GA 30009 CROWN

A NextEdge Company

towersource

1355 WINDWARD CONCOURSE SUITE 410 ALPHARETTA, GA 30005 TEL: 678-990-2338

EXISTING 133'-0" MONOPOLE LAKE CITY AIRPORT VERIZON WIRELESS SITE NUMBER: 712924 LAKE CITY, FL 32025 336 SE NEWELL DR BU #: 825272 ISSUED FOR: