

26492

Project Information for: L260956 Builder: **GIEBEIG HOMES** Lot : 10 Subdivision: MAY-FAIR County: COLUMBIA Truss Count: 32 Design Program: MiTek 20/20 6.3 Building Code: FBC2004/TPI2002 **Truss Design Load Information:** Wind:

Gravity:

Roof (psf): 42.0

Wind Standard: ASCE 7-02

Floor (psf): N/A Wind Speed (mph): 110

Note: See the individual truss drawings for special loading conditions.

Contractor of Record, responsible for structural engineering: Brian T. Giebeig Florida Registered Residential Contractor License No. RR282811523 Address: Trent Giebeig Construction, Inc. 462 Southwest Fairlington Court Lake City, Florida 32025

Truss Design Engineer: Julius Lee, PE Florida P.E. License No. 34869

Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435

Notes:

1. Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1-2002 Section 2.2

2. The seal date shown on the individual truss component drawings must match the seal date on this index sheet. 3. The Truss Design Engineer's responsibility relative to this structure consists solely of the design of the individual truss components and does not include the design of any additional structural elements including but not limited to continuous lateral bracing elelments in the web and chord planes. See Florida Administrative Code 61G15-31.003 sections 3 c) & 5 and Chapter 2 of the National Design Standard for Metal Plate Connected Wood Truss Construction ANSI/TPI 1-2002 for additional information on the responsibilities of the delegated "Truss Design Engineer". Builders FirstSource and Julius Lee, PE do not accept any additional delegations beyond the scope of work described in the referenced documents above.

No.	Drwg. #	Truss ID	Date	No.	Drwg. #	Truss ID	Date
1	J1910577	CJ1	11/16/07	29	J1910605	T18	11/16/07
2	J1910578	CJ3	11/16/07	30	J1910606	T19	11/16/07
3	J1910579	CJ3A	11/16/07	31	J1910607	T20	11/16/07
4	J1910580	CJ5	11/16/07	32	J1910608	T21	11/16/07
5	J1910581	CJ5A	11/16/07				
6	J1910582	EJ3	11/16/07				
7	J1910583	EJ7	11/16/07				
8	J1910584	EJ7A	11/16/07				
9	J1910585	HJ4	11/16/07				
10	J1910586	HJ9	11/16/07				
11	J1910587	HJ9A	11/16/07				
12	J1910588	T01	11/16/07				
13	J1910589	T02	11/16/07				
14	J1910590	T03	11/16/07				
15	J1910591	T04	11/16/07				
16	J1910592	T05	11/16/07				
17	J1910593	T06	11/16/07				
18	J1910594	T07	11/16/07				
19	J1910595	T08	11/16/07				
20	J1910596	T09	11/16/07	_			
21	J1910597	T10	11/16/07				
22	J1910598	T11	11/16/07				
23	J1910599	T12	11/16/07				
24	J1910600	T13	11/16/07				
25	J1910601	T14	11/16/07				
26	J1910602	T15	11/16/07				
27	J1910603	T16	11/16/07				
28	J1910604	T17	11/16/07				

Innin ULIUS / M

Wind Exposure: B

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910577
L269956	CJ1	ROOF TRUSS	18	1	
					Job Reference (optional)
Builders FirstSo	urce, Lake City, Fl	32055 6	300 s Feb 15 2006 l	MiTek In	dustries, Inc. Thu Nov 15 16:48:55 2007 Page 2

iue Lee Se Coston Choinser Nice Pie No. 34888 Se Chementel Rey Alva Viton Geson, FL 85495 111

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-9H Handing installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

6

BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.13

NOTES

1) Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

2) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3 and 203 lb uplift at joint 2. Continued on page 2

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
			7		J1910578
L260956	CJ3	ROOF TRUSS	10	1	
					Job Reference (optional)
Builders FirstSo	urce, Lake City, Fl	32055 6	.300 s Feb 15 2006 N	/iTek In	dustries, Inc. Thu Nov 15 16:48:56 2007 Page 2

6.300 s Feb 15 2006 MiTek Industries, Inc. Thu Nov 15 16:48:56 2007 Page 2

LOAD CASE(S) Standard

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of building design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building design parameters and proper incorporation of component into the overall building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of Amenca, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

bracing.

3-0-0												
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	тс	0.29	Vert(LL)	0.01	2-4	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.08	Vert(TL)	-0.01	2-4	>999	240		
BCLL	10.0	* Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
		Code FBC2004/TF	FBC2004/TPI2002 (Matrix)								Weight: 13 II	b
LUMBE	R			1		BRACING					<u> </u>	
TOP CH	TOP CHORD 2 X 4 SYP No.2					TOP CHO	RD	Structu	iral wood	od sheathing directly applied or		
BOT CH	BOT CHORD 2 X 4 SYP No.2						3-0-0 0	oc purlins	5.			
						BOT CHO	RD	Rigid c	eiling dir	ectly app	lied or 10-0-0 o	с

REACTIONS (lb/size) 3=31/Mechanical, 2=250/0-3-8, 4=14/Mechanical Max Horz 2=132(load case 6) Max Uplift 3=-28(load case 7), 2=-238(load case 6), 4=-27(load case 4) Max Grav 3=31(load case 1), 2=250(load case 1), 4=42(load case 2)

FORCES (Ib) - Maximum Compression/Maximum Tension

- TOP CHORD 1-2=0/47, 2-3=-57/7
- BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.13

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 238 lb uplift at joint 2 and 27 lb uplift at joint 4. Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Julius Law Truss (Josign Engineer Flohda Mil No. 3-1865 1466 Grastal Bay Slovi Scotton Wasch: FL 99496

Job	Truss	Truss Type	Qt	ty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
						J1910579
L260956	CJ3A	ROOF TRUSS	4		1	
						Job Reference (optional)
Builders FirstSource	, Lake City, FI 32055		6.300 s Feb 15 200	06 M	iTek Ind	dustries, Inc. Thu Nov 15 16:48:56 2007 Page 2

Juints Leve Truce (Design (Provinser Plands PE No Integr 1400 Crests Rey Rive Boynton Beach, NL 35435

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-9H Handling Installing and Bracing Recommendation available from the Wood Truss Council of Amenca, 1 WTCA Center, 8300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

5-0-0												
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	ТС	0.29	Vert(LL)	-0.03	2-4	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.16	Vert(TL)	-0.05	2-4	>999	240		
BCLL	10.0	* Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL 5.0		Code FBC2004/T	PI2002 (Matrix)							Weight: 19 lb		
LUMBER				BRACING								
TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2					TOP CHO	RD	Structu	iral wood	l sheathir	ng directly applie	ed or	
							5-0-0 oc purlins.					
					BOT CHO	RD			ectly app	lied or 10-0-0 o	C	
								bracing	g.			

 REACTIONS
 (lb/size)
 3=103/Mechanical, 2=295/0-3-8, 4=24/Mechanical

 Max Horz
 2=178(load case 6)
 Max Uplift 3=-87(load case 6), 2=-199(load case 6)

 Max Grav
 3=103(load case 1), 2=295(load case 1), 4=72(load case 2)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-88/36

BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.14

NOTES

 Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 3 and 199 lb uplift at joint 2.

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Truss Leston Endineer Florida Fig No. 3-1986 1996 Crastal Bay Blon Boynion Geach, 1-6 39496

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910580
L260956	CJ5	ROOF TRUSS	10	1	
					Job Reference (optional)
Builders FirstSour	rce, Lake City, FI 32	2055 6	.300 s Feb 15 2006 N	/iTek In	dustries, Inc. Thu Nov 15 16:48:57 2007 Page 2

Julium Leer Truge Content Engineer Floride Fill No. 34 Det 94336 Constal Rey Alve Coynton Geach, PL 00496

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MIT ek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handing installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3, 238 lb uplift at joint 2 and 27 lb uplift at joint 4. Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type		Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
						J1910582
L260956	EJ3	ROOF TRUSS		3	1	
						Job Reference (optional)
Builders FirstSource,	Lake City, FI 32055		6.300 s Feb 15 2	2006 M	liTek Ind	dustries, Inc. Thu Nov 15 16:48:58 2007 Page 2

Julius Law Truss Coston Choinson Honda ME No Billon 1000 Censial Rey River Woyncin Weach, NL 20495

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

FORCES (Ib) - Maximum Compression/Maximum Tension

- TOP CHORD 1-2=0/47, 2-3=-119/54
- BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.77

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 2) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb Complified birts again 139 lb uplift at joint 2.

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of building designer and / or contractor per ANSI / TPI 1 as referenced by the building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Truss Coston Engineer Florida Fis No. 34888 1100 Crastal Bay Alvet Boynton Basen, FL 35435

	Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
						J1910583
1	L260956	EJ7	ROOF TRUSS	25	1	
						Job Reference (optional)
	Builders FirstSource,	Lake City, FI 32055	6.300 s Feb 15	2006 N	/iTek In	dustries, Inc. Thu Nov 15 16:48:59 2007 Page 2

Julium Lee Truss Coston (Indinger Florida Pie No. 34068 1476 Crastal Ray Riva Geynich Gegen, 41 55435

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handing Installing and Bracing Recommendation available from the Wood Truss Council of Amenca, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 7.0 10.0 5.0	SPACING Plates Increase Lumber Increase * Rep Stress Incr Code FBC2004/TB	2-0-0 1.25 1.25 YES PI2002	CSI TC BC WB (Mate	0.50 0.45 0.00 rix)	DEFL Vert(LL) Vert(TL) Horz(TL)	in 0.33 -0.16 -0.00	(loc) 2-4 2-4 3	l/defl >250 >501 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190
LUMBER TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2						BRACING TOP CHO BOT CHO	RD	oc purl	ins.		g directly applied ied or 10-0-0 oc t	

REACTIONS (lb/size) 3=154/Mechanical, 2=352/0-3-8, 4=45/Mechanical Max Horz 2=161(load case 6) Max Uplift 3=-94(load case 6), 2=-224(load case 6), 4=-65(load case 5) Max Grav 3=154(load case 1), 2=352(load case 1), 4=94(load case 2)

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=0/47, 2-3=-131/54

 BOT CHORD
 2-4=0/0

JOINT STRESS INDEX

2 = 0.58

NOTES

 Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

Continued on page 2 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors Applicability of building designer and / or contractor per ANSI / TPI 1 as referenced by the building structure, including all temporary and permanent bracing, is the and bracing, consult BCS-1 or HII-B-11 Handing Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Froe Dovien Cheineer Ploide Paris. Staat 1986 Chestal Ray Rive Scynton Weach. 41 90495

Job		Truss	Truss Type		Qty	Ply	ROBINSON - BROWN ADDITION	
							J19105	584
L2609	56	EJ7A	ROOF TRUSS		2	1		
· ·							Job Reference (optional)	
Builde	ers FirstSource.	Lake City, FI 32055		6.300 s Apr 19	2006 N	liTek In	dustries, Inc. Fri Nov 16 11:09:35 2007 Page 2	

2) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 3, 224 lb uplift at joint 2 and 65 lb uplift at joint 4.

LOAD CASE(S) Standard

an Engineer Ng Shoge Ng Blyd Tank Mgy Blyd 20

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-SH Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

 REACTIONS
 (lb/size)
 3=15/Mechanical, 2=275/0-4-15, 4=14/Mechanical

 Max Horz
 2=98(load case 3)
 Max Uplift 3=-6(load case 6), 2=-302(load case 3), 4=-41(load case 3)

 Max Grav
 3=32(load case 7), 2=275(load case 1), 4=54(load case 2)
 Max Grav 3=32(load case 7), 2=275(load case 1), 4=54(load case 2)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/50, 2-3=-37/10

BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.11

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60.
- 2) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 3, 302 lb uplift at joint 2 and 41 lb uplift at joint 4.

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors Applicability of building designer and / or contractor per ANSI / TPI 1 as referenced by the building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 DOnofno Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10	7
				_	J1910585	
L260956	HJ4	ROOF TRUSS	2	1		
					Job Reference (optional)	
Builders FirstSource,	Lake City, FI 32055	6.300 s Feb 15	2006 N	/iTek In	dustries, Inc. Thu Nov 15 16:49:00 2007 Page 2	

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=-54

Trapezoidal Loads (plf)

Vert: 2=-3(F=26, B=26)-to-3=-57(F=-2, B=-2), 2=-0(F=5, B=5)-to-4=-11(F=-0, B=-0)

Numa Lar Trige Coelan Engineer Flands PE No Bianau 1436 Shaatal Ray Alvi Ucynton Wegen, *E Schoo

November 16,2007

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Max Uplift 4=-231(load case 3), 2=-278(load case 3), 5=-63(load case 3)

FORCES (Ib) - Maximum Compression/Maximum Tension

- TOP CHORD 1-2=0/50, 2-3=-650/121, 3-4=-105/65
- BOT CHORD 2-7=-309/603, 6-7=-309/603, 5-6=0/0
- WEBS 3-7=0/186, 3-6=-627/322

JOINT STRESS INDEX

2 = 0.76, 3 = 0.16, 6 = 0.17 and 7 = 0.13

NOTES

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone; Lumber DOL=1.60 plate grip DOL=1.60.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 231 lb uplift at joint 4, 278 lb uplift at joint 2 and 63 lb uplift at joint 5.
- 5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back

(B). Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI/ TPI 1 as referenced by the building come. For general guidance regarding storage, delivery, erction and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Juints Law Truce Coelan Engineer Plands Mis No. 341005 1426 Crastal May Alvri Bovien Secon FL 22425

Job	Truss	Truss Type	Qty	y	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
				1		J1910586
L260956	HJ9	ROOF TRUSS	5		1	
						Job Reference (optional)
Builders FirstSource, Lake City, FI 32055			6.300 s Feb 15 200	06 M	iTek In	dustries, Inc. Thu Nov 15 16:49:00 2007 Page 2

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=-54

Trapezoidal Loads (plf)

Vert: 2=-3(F=26, B=26)-to-4=-134(F=-40, B=-40), 2=-0(F=5, B=5)-to-5=-25(F=-7, B=-7)

ann Deigh (Incinear Plithe 3-Incin Inait May Alvri N Weach, 1 L Cortor

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

REACTIONS (lb/size) 4=267/Mechanical, 2=453/0-4-15, 5=220/Mechanical Max Horz 2=269(load case 3) Max Uplift 4=-233(load case 3), 2=-399(load case 3), 5=-183(load case 3)

FORCES (Ib) - Maximum Compression/Maximum Tension

- TOP CHORD 1-2=0/50, 2-3=-650/365, 3-4=-105/65
- BOT CHORD 2-7=-538/603, 6-7=-538/603, 5-6=0/0
- WEBS 3-7=-89/186, 3-6=-627/559

JOINT STRESS INDEX

2 = 0.76, 3 = 0.22, 6 = 0.17 and 7 = 0.13

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 233 Ib uplift at joint 4, 399 lb uplift at joint 2 and 183 lb uplift at joint 5.

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910587
L260956	HJ9A	ROOF TRUSS	2	1	
					Job Reference (optional)
Builders FirstSource, Lake City, FI 32055			6.300 s Feb 15 2006 M	/iTek In	dustries, Inc. Thu Nov 15 16:49:01 2007 Page 2

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-2=-54 Trapezoidal Loads (plf)

Vert: 2=-3(F=26, B=26)-to-4=-134(F=-40, B=-40), 2=-0(F=5, B=5)-to-5=-25(F=-7, B=-7)

Julium Lenn Trues (Derign (Ingeneer Floride Fiel No. Ingene 1176 (Ingele Bey Rive Govince Urgeon, 'L. Borid

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910588
L260956	T01	ROOF TRUSS	1	1	
					Job Reference (optional)
Builders FirstSc	ource Lake City EL3	2055 6.30	0 s Feb 15 2006 M	/iTek In	dustries Inc. Thu Nov 15 16:49:02 2007 Page 2

Builders FirstSource, Lake City, FI 32055 6.300 s Feb 15 2006 Millek Industries, Inc. Thu Nov 15 16:49:02 2007 Page 2

NOTES

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 474 lb uplift at joint 2 and 474 lb uplift at joint 5.

7) Girder carries hip end with 7-0-0 end setback.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-54, 3-4=-118(F=-64), 4-6=-54, 2-9=-10, 7-9=-22(F=-12), 5-7=-10 Concentrated Loads (lb) Vert: 9=-411(F) 7=-411(F)

Engineer Siges Bey Blyd St. FL 33496

November 16,2007

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handing installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910589
L260956	T02	ROOF TRUSS	1	1	
					Job Reference (optional)
Builders FirstSource, Lake City, FI 32055			00 s Feb 15 2006 N	liTek In	dustries, Inc. Thu Nov 15 16:49:02 2007 Page 2

- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 229 lb uplift at joint 2 and 229 lb uplift at joint 7.

LOAD CASE(S) Standard

Julius Lee Truse Design Ergineer Floride FE No. 3-1880 1166 Createl Bay Elvi Novich Wedert FE 33-35

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MIT ek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult IBCS-1 or HIB-91 Handing Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910590
L260956	T03	ROOF TRUSS	5	1	
					Job Reference (optional)
Builders FirstSo	urce Lake City EL 3	2055 6 30	0 s Eeb 15 2006 M	ATek In	dustries Inc. Thu Nov 15 16:49:03 2007 Page 2

Builders FirstSource, Lake City, FI 32055

6.300 s Feb 15 2006 MiTek Industries, Inc. Thu Nov 15 16:49:03 2007 Page 2

NOTES

6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-54, 4-7=-54, 2-10=-10, 8-10=-70(F=-60), 6-8=-10

ian Chainsse Na Jannse sial May Rive Gaen, iil 35495

November 16,2007

🏔 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters show for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
		6			J1910591
L260956	T04	ROOF TRUSS	1	1	
					Job Reference (optional)
Builders FirstSource, Lake City, FI 32055			6.300 s Feb 15 2006 N	/iTek In	dustries, Inc. Thu Nov 15 16:49:04 2007 Page 2

Builders FirstSource, Lake City, Fr 32055

NOTES

4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 660 lb uplift at joint 2 and 660 lb uplift at joint 7.

7) Girder carries hip end with 7-0-0 end setback.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-54, 3-6=-118(F=-64), 6-8=-54, 2-11=-10, 9-11=-22(F=-12), 7-9=-10 Concentrated Loads (lb) Vert: 11=-411(F) 9=-411(F)

> Julius Law Trues Cession Choinser Floride PE No. 34800 1400 Chastal Rey Blun Govinion Mason, PL 55435

> > November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is instatled and loaded vertically and fabricated with MITek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America. 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
				-	J1910592
L260956	T05	ROOF TRUSS	1	1	
					Job Reference (optional)
Builders FirstSource	Lake City EL 32055	4.	6 300 s Eeb 15 2006	MiTek In	dustries Inc. Thu Nov 15 16:49:05 2007 Page 2

Builders FirstSource, Lake City, Fl 320556.300 s Feb 15 2006 MiTek Industries, Inc. Thu Nov 15 16:49:05 2007 Page 2

NOTES

4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 267 lb uplift at joint 2 and 267 lb uplift at joint 8.

LOAD CASE(S) Standard

Julius Law Truss Dosign Enginsor Florida Pie Ng. 34858 1406 Crassi Ray Blvr Boynton Bason, fil Do405

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handing Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

1	Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
						J1910593
	L200956	T06	ROOF TRUSS	1	1	
						Job Reference (optional)
	Builders FirstSource,	6.300 s Feb 15	5 2006 N	liTek In	dustries, Inc. Thu Nov 15 16:49:07 2007 Page 2	

4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 280 lb uplift at joint 2 and 280 lb uplift at joint 8.

LOAD CASE(S) Standard

Julium Leon Truse Costan Coansor Fluida Fie No Jinou 1400 Constal Ray Alva Goynton Wegan, FL 35435

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MIT ek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handing installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	C	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
						J1910594
L260956	T07	ROOF TRUSS	1	1	1	
						Job Reference (optional)
Builders FirstSource	e, Lake City, FI 32055		6.300 s Feb 15 2	006 N	liTek In	dustries, Inc. Thu Nov 15 16:49:07 2007 Page 2

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 268 lb uplift at joint 2 and 159 lb uplift at joint 9.

LOAD CASE(S) Standard

....

November 16,2007

🛦 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters and READ NOTES of THIS ARD INTERCEDED LIKE REFERENCE FRACE FRA

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910595
L260956	T08	ROOF TRUSS	4	1	
					Job Reference (optional)
Builders FirstSource	e, Lake City, Fl 32055	· · · · · · · · · · · · · · · · · · ·	6.300 s Feb 15 2006	ViTek In	dustries, Inc. Thu Nov 15 16:49:08 2007 Page 2

3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 276 lb uplift at joint 2 and 171 lb uplift at joint 10.

LOAD CASE(S) Standard

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10	1
					J1910596	l
L260956	T09	ROOF TRUSS	1	1		l
					Job Reference (optional)	l
Builders FirstSource.	Lake City, Fl 32055	6.300 s Feb 15	2006 N	/liTek In	dustries, Inc. Thu Nov 15 16:49:09 2007 Page 2	

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS; Lumber DOL=1.60 plate grip DOL=1.60.
- 2) Provide adequate drainage to prevent water ponding.
- 3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 727 lb uplift at joint 8 and 641 lb uplift at joint 2.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-54, 3-7=-118(F=-64), 2-12=-10, 8-12=-22(F=-12) Concentrated Loads (lb) Vert: 12=-411(F)

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handing installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910597
L250956	T10	ROOF TRUSS	1	1	
					Job Reference (optional)
Builders FirstSource	Lake City, FI 32055	6.300 s	Feb 15 2006 N	/iTek In	dustries, Inc. Thu Nov 15 16:49:10 2007 Page 2

 Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

2) Provide adequate drainage to prevent water ponding.

3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) All plates are 3x6 MT20 unless otherwise indicated.

5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 259 lb uplift at joint 9 and 260 lb uplift at joint 2.

LOAD CASE(S) Standard

Julium Leen Truge Condon (Indineer Plande Pla No Jenger Finde Streamin (Begalive) Geynten (Jesath, FL 52495

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
			-	-	J1910598
L260956	T11	ROOF TRUSS	1	1	
					Job Reference (optional)
Buildere FiretS	ource Lake City EL 3	32055 6.30	0 s Feb 15 2006 M	/iTek In	dustries Inc. Thu Nov 15 16:49:11 2007 Page 2

Builders FirstSource, Lake City, FI 32055 6.300 s Feb 15 2006 MiTek Industries, Inc. Thu Nov 15 16:49:

NOTES

4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 280 lb uplift at joint 2 and 163 lb uplift at joint 8.

LOAD CASE(S) Standard

Julius Lee Truse Opeion (Indinser Plands ME No. 3-1885 1456 Creekel Ney Alvei Coynton Geson, N. 59495

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of building designer and / or contractor per ANSI/ TPI 1 as referenced by the building other. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Donofrio Drive, Madison, WI 53719

Builders FirstSource

Job	Truss	Truss Type	Qty	P	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
						J1910599
L260956	T12	ROOF TRUSS	1		1	
						Job Reference (optional)
Builders FirstSourc	e, Lake City, FI 32055	6	.300 s Feb 15 2006	6 MiT	Tek Ind	dustries, Inc. Thu Nov 15 16:49:12 2007 Page 2

JOINT STRESS INDEX

2 = 0.74, 3 = 0.54, 4 = 0.66, 5 = 0.81, 6 = 0.39, 7 = 0.72, 8 = 0.38, 9 = 0.40, 10 = 0.33, 11 = 0.47, 12 = 0.56, 13 = 0.46, 14 = 0.36, 15 = 0.84 and 16 = 0.33

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 287 lb uplift at joint 2 and 160 lb uplift at joint 8.

LOAD CASE(S) Standard

laina Larr Truse Cerlan Charnser Flanda Pie No. 34869 1406 Createl Rey Rivel Boymon Weach, (L. 2242)

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910600
L260956	T13	ROOF TRUSS	1	1	
					Job Reference (optional)
Builders FirstSource	e, Lake City, Fl 32055		6.300 s Feb 15 2006	MiTek Ir	dustries, Inc. Thu Nov 15 16:49:13 2007 Page 2

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All plates are 3x6 MT20 unless otherwise indicated.
- 6) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 297 lb uplift at joint 2 and 172 lb uplift at joint 10.

LOAD CASE(S) Standard

Julius Lee Truss Ceston Engineer Plonicia Pie No. 24 Mar 1406 Engistal May Alvel Doynton Disach, 16, 20425

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of building designer and / or contractor per ANSI / TPI 1 as referenced by the building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building core. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Source

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10 J1910601
L250956	T14	ROOF TRUSS	2	1	Job Reference (optional)
Builders FirstSo	urce, Lake City, Fl	32055 6.3	00 s Feb 15 2006 N	/iTek In	dustries, Inc. Thu Nov 15 16:49:14 2007 Page 2

2) Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 303 lb uplift at joint 2 and 180 lb uplift at joint 10.

LOAD CASE(S) Standard

and Design (Enginter Plints of Rade Nasial May Alvei Judeon, J. Styles

November 16,2007

 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI/TP11 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10 J1910602	
L260956	T15	ROOF TRUSS	4	1	Job Reference (optional)	
Builders FirstSource	, Lake City, FI 32055	6.300 s Feb 15	2006	/iTek In	dustries, Inc. Thu Nov 15 16:49:15 2007 Page 2	

4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

- 5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 308 lb uplift at joint 2 and 289 lb uplift at joint 8.

LOAD CASE(S) Standard

are Indendia Endinade Pris No. 3-1000 Pris Pau Pay Novi I Urgeon, fil Dorido

November 16,2007

A Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI/ TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Source

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910603
L2-60956	T16	ROOF TRUSS	1	1	
					Job Reference (optional)
Builders FirstSourc	e, Lake City, Fl 32055	· · · · · · · · · · · · · · · · · · ·	6.300 s Feb 15 2006	MiTek I	ndustries, Inc. Thu Nov 15 16:49:16 2007 Page 2

15 2006 MITEK Industries,

NOTES

3) Provide adequate drainage to prevent water ponding.

4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 303 lb uplift at joint 2 and 282 lb uplift at joint 9.

LOAD CASE(S) Standard

Endinitier Laiket Rey Rivel

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE A warning "verify design parameters and keal NoTE on the and the action of the action

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10 J1910604
L260956	T17	ROOF TRUSS	1	1	Job Reference (optional)
Builders FirstSourc	e, Lake City, FI 32055	j	6.300 s Feb 15 2006	MiTek Ir	dustries, Inc. Thu Nov 15 16:49:17 2007 Page 2

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 293 lb uplift at joint 2 and 270 lb uplift at joint 7.

LOAD CASE(S) Standard

luium Lann Trubh Orgach Chainggr Planal Pei Nguanggr Planal May Plan Lang Draming Plan Lang Planal Magan, Fl. 20496

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult IBCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

November 16,2007

Job	Truss	Truss Type	Qty	Ply	ROBINSON - BROWN ADDITION	
					J191060)5
L260956	T18	ROOF TRUSS	1	1		
					Job Reference (optional)	
Builders FirstSour	rce, Lake City, FI 320	55	6.300 s Apr 19 2006 l	MiTek In	dustries, Inc. Fri Nov 16 11:11:43 2007 Page 2	

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-3=-54, 3-4=-64(F=-10), 4-6=-54, 2-9=-10, 7-9=-12(F=-2), 5-7=-10 Concentrated Loads (lb) Vert: 9=-48(F) 7=-48(F)

> Julius Lee Truss Coston (Indineer Pichols Pie Nic Jaleer 1476 Canstal Rey Rive Govinión Weson, FL 22420

> > November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

- TOP CHORD
- BOT CHORD 2-5=-390/255, 4-5=-390/255
- 3-5=-243/134 WEBS

JOINT STRESS INDEX

2 = 0.58, 3 = 0.43, 4 = 0.58 and 5 = 0.10

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connector Applicability of building designer and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handhing Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

November 16,2007

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910606
L2-50956	T19	ROOF TRUSS	2	1	
					Job Reference (optional)
Buildore EirstSource	Lake City EL 32055	6 300 s Eeb 15	2006 M	liTek In	dustries Inc. Thu Nov 15 16:49:18 2007 Page 2

Builders FirstSource, Lake City, FI 32055 6.300 s Feb 15 2006 MiTek Industries, Inc. Thu Nov 15 16:49:18 2007 Page 2

NOTES

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 155 lb uplift at joint 4 and 262 lb uplift at joint 2.

LOAD CASE(S) Standard

Julium Law Truck (Design Chourser Florida PE No. 34Mau 1486 Crastal Rey Rivel Boynich Weach, FL 88496

November 16,2007

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 0'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
			_		J1910607
L260956	T20	HIP	1	1	
					Job Reference (optional)
Builders FirstSource, Lake City, FI 32055			300 s Feb 15 2006 N	/iTek In	dustries, Inc. Thu Nov 15 16:49:19 2007 Page 2

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 595 lb uplift at joint 2 and 595 lb uplift at joint 5.

7) Girder carries hip end with 7-0-0 end setback.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-54, 3-4=-118(F=-64), 4-6=-54, 2-8=-10, 7-8=-22(F=-12), 5-7=-10 Concentrated Loads (Ib) Vert: 8=-411(F) 7=-411(F)

November 16,2007

🛦 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters and READ ROLES ON THIS ARD INCLUDED WHER REFERENCE PAGE MIL/473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building structure, including all temporary and permanent bracing, is the and bracing, consult BCS-1 or HIB-91 Handing Installing and Bracing Recommendation available from the Wood Truss Council of America. 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

JOINT STRESS INDEX

2 = 0.69, 3 = 0.93, 4 = 0.69 and 6 = 0.19

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=13ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors Applicability of building designer and / or contractor per ANSI / TPI 1 as referenced by the building structure, including all temporary and permanent bracing, is the and bracing, consult BCS-11 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Julius Lee Truss (Design Engineer Florida Fra NG, 241808 1106 Crastal Ray Rivi Govinion Beach, FL 32435

November 16,2007

Job	Truss	Truss Type	Qty	Ply	GIEBEIG HOMES - MAY-FAIR LOT 10
					J1910608
L260956	T21	QUEENPOST	3	1	
					Job Reference (optional)
Builders FirstSc	dustries Inc. Thu Nov 15 16:49:20 2007 Page 2				

Builders FirstSource, Lake City, FI 32055 6.300 s Feb 15 2006 MiTek Industries, Inc. Thu Nov 15 16:49:20 2007 Page

NOTES

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 404 lb uplift at joint 2 and 404 lb uplift at joint 4.

LOAD CASE(S) Standard

Julius Lon Truss Coston (Indineer Florida FE No 3-Bast 1406 Crastal Ray Alvel Goynion Beson, 11 Setus

November 16,2007

Warning - Verify dealgn parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

		Indicates location of joints at which bearings (supports) occur.	BEARING	continuous lateral bracing.	LATERAL BRACING		4 X 4 The first dimension is the width perpendicular to slots. Second dimension is the length parallel to slots.	PLATE SIZE	connector plates.	of truss and vertical web.	*For 4 x 2 orientation, locate plates 1/8" from outside edge			{ { }		PLATE LOCATION AND ORIENTATION	Symbols
MiTek Engineering Reference Sheet: MII-7473	MITCK	TEE-LOK			SBCCI 9667, 9432A WISC/DILHR 960022-W, 970036-N	BOCA 96-31, 96-67 ICBO 3907, 4922	CONNECTOR PLATE CODE APPROVALS	WEBS ARE NUMBERED FROM LEFT TO RIGHT	JOINTS AND CHORDS ARE NUMBERED CLOCKWISE AROUND THE TRUSS STARTING AT THE LOWEST JOINT FARTHEST TO THE LEFT.		BOTTOM CHORDS J1 J8 J7 J6			J2 J3 J4 TOP CHORDS			Numbering System
© 1993 MiTek® Holdings, Inc.	15. Care should be exercised in handling, erection and installation of trusses.	 Do not cut or alter truss member or plate without prior approval of a professional engineer. 	 13. Do not overload roof or floor trusses with stacks of construction materials. 	 Anchorage and / or load transferring connections to trusses are the responsibility of others unless shown. 	 Battam chards require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted. 	 Top chords must be sheathed or purlins provided at spacing shown on design. 	 Lumber shall be of the species and size, and in all respects, equal to or better than the grade specified. 	8. Plate type, size and location dimensions shown indicate minimum plating requirements.	 Camber is a non-structural consideration and is the responsibility of truss tabricator. General practice is to camber for dead load deflection. 	 Unless expressly noted, this design is not applicable for use with fire retardant or preservative treated lumber. 	5. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.	4. Unless otherwise noted, locate chord splices at 1/4 panel length (\pm 6" from adjacent joint.)	3. Place plates on each face of truss at each joint and embed fully. Avoid knots and wane at joint locations.	2. Cut members to bear tightly against each other.	 Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties. 	Failure to Follow Could Cause Property Damage or Personal Injury	General Safety Notes

MAX. TOT. LD. STATE OF FLORIDA MAX. SPACING		MPH WIND SPEED 15' MEAN HEICHT ENCLOSED I = 1 00
LD. 60 PSF NG 24.0"	BRACING GROUP SIPECIES AND GRADES: GROUP A: SITUE - FINE-TRE A. A. BITE BIT	FYPOSTIPE

	BACKARDUCHER TRASSES REBURE EXTREME CARE DA FADEDATINE, MANDLDG, SHOPPING, DISTALING AND BACCANG. REFER TO BUSI 1-43 CAULING COMPDENT SAFETY INFURANTIDO, PUBLISHED BY THE CRUISE PLATE INSTITUTE, SHA PUBLISHED SA, SATE SHA MASSAN, VL SSTAP AND VETA (KODD TRUSS COMED OF ANEDLAG, SADE RETERING THE MAILSON VL SSTAP AND VETA (KODD TRUSS COMED THESE FUNCTIDOS. UNLESS CHERKISE INDUCATED, THE CHIDD SIMUL HAVE PROPERLY ATTACHED STRUCTURAL PANELS AND BUTTON CHIPD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PANELS AND BUTTON CHIPD SHALL HAVE A PROPERLY ATTACHED	BEDACE (1) EXA T. BRACE (2) BEDACE (1) EXA T. BRACE (2) G G G (1) EXA T. BRACE (2) G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G	2-02. 130 MDH WIND SDEED 30' MEAN
MAX. TOT. No: 34309 STATE OF ILORDA MAX. SPAC	ULIUS LEE'S cons. Engineers P.A. meraly and the angula-man		FNCIOCED I -
TOT. LD. 60 PSF SPACING 24.0"	REF ASCEY-02-CAB13030 DATE 11/26/03 DWC MYER STD GARLE 30' E NT -ENG	BRACENC GROUP SPECIES AND GRADES: GROUP A: SPRING-PING Image: Structure Image: Structure STRUM Image: Structure STRUM Image: Structure Structure	FYDOCITER

PER ANSI/AF&PA NDS-2001 SECTION 12.4.1 - EDGE DISTANCE, END DISTANCE, SPACING: "EDGE DISTANCES, END DISTANCES AND SPACINGS FOR NAILS AND SPIKES SHALL BE SUFFICIENT TO PREVENT SPLITTING OF THE WOOD." TOE-NAILS TO BE DRIVEN AT AN ANGLE OF APPROXIMATELY THIRTY DEGREES WITH THE PIECE AND STARTED APPROXIMATELY ONE-THIRD THE LENGTH OF THE NAIL FROM THE END OF THE MEMBER. Ē NUMBER OF 1/8" ALL WAVARDGEN TRUSSES REBURE EXTREME CARE DY FAREDATING, HANDLING, SHOPPING, DRTALLING AND BACORIG, BETTER TO BEST 1-43 COMLIDING COMPORENT SAFETY (BEDSMATTBOS, PILLING) BY TPI CIRUSS PAATE INSTITUT, SHE YORAFRED DR, SATE ZON ANDZON, VIE (ST/19) AND VTCA (MODE PILLING) PAATE INSTITUT, SHE YORAFRED DR, MATERIA, VI SO'19) AND VTCA (MODE PILLING) THESE FANETIDES, SADE DIFERVISE INMERATED, DIP CHEDE SHALL HAVE PERPERLY ATTACHED STRUCTURAL PANELS AND BUTTEN CHEDE SHALL HAVE A PERPERLY ATTACHED RECED DELLAG JACK ຸ ປັ 4 ω MAXIMUM VERTICAL RESISTANCE OF 16d (0.162"X3.5") COMMON TOE-NAILS VALUES 394# 296# 493# 197# SOUTHERN PINE PLY MAY g BE MULTIPLIED BY APPROPRIATE N #659 511# 258# 383# PLIES GIRDER (2) PLY **OPTIONAL** DOUGLAS FIR-LARCH 452# 361# 271# 181# PLY TOE-NAIL ស 585# 351# 234# 488# PLES DURATION THIS DETAIL DISPLAYS A TOE-NAILED CONNECTION FOR JACK FRAMING INTO A SINGLE OR DOUBLE PLY SUPPORTING GIRDER THE NUMBER OF TOE-NAILS TO BE USED IN A SPECIFIC APPLICATION IS DEPENDENT UPON PROPERTIES FOR THE CHORD SIZE, LUMBER SPECIES, AND NAIL TYPE. PROPER CONSTRUCTION PRACTICES AS WELL AS GOOD JUDGEMENT SHOULD DETERMINE THE NUMBER OF NAILS TO BE USED. DETAIL 158# 390# 312# 234# 30°-60° PLY C HEM-FIR ULIUS LEE'S cons. engineers P.A. 1466 SV 4th AVENUS DELICAY BEACH, FL SH444-2161 No: 34069 STATE OF FLORDA Q N 507# 304# 203# 406# LOAD PLIES FACTOR JACK SPRUCE 384# 1 PLY 307# 230# 154# 1 1/8^{**} TC LL TC DL BC ВС SPACING DUR. FAC. TOT. LD. ALTERNATIVE CONDITION 멉 F PINE FIR N #468 298# 189# THIS DRAWING REPLACES DRAWING 784040 496# PLIES GIRDER OPTIONAL (2) PLY ġ PSF PSF PSF PSF PSF REF DATE DRWG -ENG ۲ CNTONAIL1103 09/12/07 TOE-NAIL

