

REVISIONS

SOFTPLAN

WINDLOAD ENGINEER: Mark Disosway, PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419

DIMENSIONS: Stated dimensions supercede scaled dimensions. Refer all questions to Mark Disosway, P.E. for resolution.

Do not proceed without clarification.

COPYRIGHTS AND PROPERTY RIGHTS:
Mark Disosway, P.E. hereby expressly reserves
its common law copyrights and property right in
these instruments of service. This document is
not to be reproduced, altered or copied in any
form or manner without first the express written
permission and consent of Mark Disosway.

CERTIFICATION: I hereby certify that I have examined this plan, and that the applicable portions of the plan, relating to wind engineering comply with section R301.2.1, florida building code residential 2004, to the best of my knowledge.

LIMITATION: This design is valid for one building, at specified location.

MARK DISOSWAY
P.E. 53915

SEAL

Dale, Kathy, & Howard Peeler Residence

ADDRESS: CR 242 Columbia County, Florida

Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE:
September 19, 2007

DRAWN BY: STRUCTURAL BY:

DRAWN BY: STRUCTURAL B
David Disosway David Disosway

FINALS DATE: 19 / Sep / 07 JOB NUMBER:

709181

A-2
OF 6 SHEETS

REVISIONS

SOFTPI AND ARCHITECTURAL DESIGN SOFTWARE

ELECTRICAL PLAN NOTES

- E -1 WIRE ALL APPLIANCES, HVAC UNITS AND OTHER EQUIPMENT PER MANUF. SPECIFICATIONS.
- E -2 CONSULT THE OWNER FOR THE NUMBER OF SEPERATE TELEPHONE LINES TO BE INSTALLED.
- E -3 ALL INSTALLATIONS SHALL BE PER NAT'L. ELECTRIC CODE.
- E -4

 ALL SMOKE DETECTORS SHALL BE 120V W/ BATTERY
 BACKUP OF THE PHOTOELECTRIC TYPE, AND SHALL
 BE INTERLOCKED TOGETHER. INSTALL INSIDE AND
 NEAR ALL BEDROOMS.
- E -5
 TELEPHONE, TELEVISION AND OTHER LOW VOLTAGE
 DEVICES OR OUTLETS SHALL BE AS PER THE OWNER'S
 DIRECTIONS, & IN ACCORDANCE W/ APPLICABLE
 SECTIONS OF NEC-LATEST EDITION.
- E -6 ELECTRICAL CONT'R SHALL BE RESPONSIBLE FOR THE DESIGN & SIZING OF ELECTRICAL SERVICE AND CIRCUITS.
- E -7 ENTRY OF SERVICE (UNDERGROUND OR OVERHEAD) TO BE DETERMINED BY POWER COMPANY.
- E -8 ALL BEDROOM RECEPTACLES SHALL BE AFCI (ARC FAULT CIRCUIT INTERRUPT)
- E -9 ALL OUTLETS TO BE LOCATED ABOVE BASE FLOOD ELEVATION
- A SERVICE DISCONNECT WITH OVER CURRENT PROTECTION SHALL BE INSTALLED OUTSIDE OF THE BUILDING, ON THE LOAD SIDE OF THE METER, AT THE PLACE ELECTRIC CONDUCTORS ENTER THE BUILDING.

 SERVICE ENTRANCE CONDUCTORS MAY NOT BE LOCATED INSIDE OF THE OF THE BUILDING WITHOUT SPECIAL APPROVAL OF THE BUILDING OFFICIAL

	ELECTRICAL LEGEND
	CEILING FAN (PRE-WIRE FOR LIGHT KIT)
QD	DOUBLE SECURITY LIGHT
	2X4 FLUORESCENT LIGHT FIXTURE
0	RECESSED CAN LIGHT
- ∳ - ₩	BATH EXAUST FAN WITH LIGHT
₩	BATH EXAUST FAN
-	LIGHT FIXTURE
Ф	DUPLEX OUTLET
Ф	220v OUTLET
Фан	GFI DUPLEX OUTLET
•	SMOKE DETECTOR
\$	WALL SWITCH
\$3	3 WAY WALL SWITCH
\$4	4 WAY WALL SWITCH
∯ _{WP/GFI}	WATER PROOF GFI OUTLET
∇	PHONE JACK
0	TELEVISION JACK
•	GARAGE DOOR OPENER
<u> </u>	WALL HEATER

WINDLOAD ENGINEER: Mark Disosway, PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419

DIMENSIONS: Stated dimensions supercede scaled dimensions. Refer all questions to Mark Disosway, P.E. for resolution. Do not proceed without clarification.

COPYRIGHTS AND PROPERTY RIGHTS:
Mark Disosway, P.E. hereby expressly reserves
its common law copyrights and property right in
these instruments of service. This document is
not to be reproduced, altered or copied in any
form or manner without first the express written
permission and consent of Mark Disosway.

CERTIFICATION: I hereby certify that I have examined this plan, and that the applicable portions of the plan, relating to wind engineering comply with section R301.2.1, florida building code residential 2004, to the best of my knowledge.

LIMITATION: This design is valid for one building, at specified location.

Dale, Kathy, & Howard Peeler Residence

ADDRESS: CR 242 Columbia County, Florida

Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE:
September 19, 2007

DRAWN BY: STRUCTURAL BY

David Disosway David Disosway

FINALS DATE:

19 / Sep / 07

JOB NUMBER:

709181 DRAWING NUMBER

A-3 OF 6 SHEETS

-SIMPSON ABU POST BASE

w/ (12) - 16d & 5/8" x 10"

-SEE FOOTING DETAILS

TYPICAL PORCH POST DETAIL

SCALE: 1/2" = 1'-0"

ANCHOR BOLT

IF BEAM JOINT IS AT -

INSTALL ONE SIMPSON LSTA18 ON ONE SIDE

4-SIMPSON LSTA18 -

SUPPORTIVE CENTER POST TO BEAM DETAIL

(2-ONE SIDE, 2-ON

POST CONNECTION,

BEAM W/4-16d

BEAM MAY BE ATTACHED IN EITHER METHOD SHOWN ABOVE

BEAM CORNER CONNECTION. DETAIL

-SIMPSON HUS412 MIN

SCALE: N.T.S.

SEE STRUCTURAL PLAN

OBTAIN UPLIFT REQUIREMENTS FROM TRUSS

< 760

< 760

< 1065

< 1235

< 1030

< 1705

< 1305

< 2570

< 3695

< 1400

< 3335

< 2200

< 2300

< 2320

SP4

SPH4

SPH6

LSTA18

CS20

CS16

STUD ANCHORS*

LTT19

LTTI31

HTT16

HPAHD22

ABU66

ABU88

14-10d

16-10d

18-8d

28-8d

TO STUDS

8-16d

18-10d, 1 1/

2-5/8" BOLTS

18 - 16d

16-16d

16-16d

12-16d

12-16d

18 - 16d

MANUFACTURER'S ENGINEERING UPLIFT LBS. SYP UPLIFT LBS. SPF TO PLATES TO RAFTER/TRUSS TRUSS CONNECTOR* < 245 3-8d < 265 H5 4-8d 4-8d < 235 4-8d 4-8d < 320 4-8d 4-8d < 365 H2.5 5-8d 5-8d < 535 H2.5A 5-8d 5-8d < 820 8-8d 8-8d < 565 H8 5-10d, 1 1/2 < 1050 H14-1 13-8d 12-8d, 1 1/2" < 1050 H14-2 15-8d 12-8d, 1 1/2" < 850 H10-1 8-8d, 1 1/2" 8-8d, 1 1/2" < 655 H10-2 6-10d 6-10d < 1265 H16-1 10-10d, 1 1/2 2-10d, 1 1/2" < 1265 H16-2 10-10d, 1 1/2" 2-10d, 1 1/2" < 860 MTS24C 7-10d 1 1/2" 7-10d 1 1/2" < 1245 HTS24 12-10d 1 1/2" | 12-10d 1 1/2" < 2490 2 - HTS24 < 1785 LGT2 14 -16d **HEAVY GIRDER TIEDOWNS** TO FOUNDATION 1-5/8" THREADED ROD < 3330 MGT 22 -10d 12" EMBEDMENT 2-5/8" THREADED ROD HGT-2 16 -10d 12" EMBEDMENT 2-5/8" THREADED ROD < 9035 HGT-3 16 -10d 12" EMBEDMENT 2-5/8" THREADED ROD < 9250 HGT-4 16 -10d 12" EMBEDMENT STUD STRAP CONNECTOR* TO STUDS SSP DOUBLE TOP PLATE 4 -10d < 420 SSP SINGLE SILL PLATE 1 -10d 4 -10d DSP DOUBLE TOP PLATE 6 -10d 8 -10d DSP SINGLE SILL PLATE 8 -10d

GENERAL NOTES:

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR 2004. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN

FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

WELDED WIRE REINFORCED SLAB: 6" x 6" W1.4 x W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL.

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH / WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO WNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

BAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * D8 (25" FOR #5 BARS); REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FT = 60 RSI. ALL LAF SELICE 40 DE (315-96, U.N.O. UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAMS: GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"0C INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNC

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

VASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

THE BUILDER AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE SPECIFICALLY NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK. CONFIRM SITE CONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND BACKFILL HEIGHT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE. PROVIDE MATERIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBCR 2004 REQUIREMENTS FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES. PROVIDE A CONTINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION, IF YOU BELIEVE THE PLAN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL THE WIND LOAD ENGINEER IMMEDIATELY. VERIFY THE TRUSS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL

ROOF SYSTEM DESIGN

BEARING LOCATIONS.

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBCR 2004, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN ROFESSIONAL FOR CORRECT APPLICATION OF FBC 2001 REQUIRE LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

6-10d, 1 1/2"

10-10d, 1 1/2"

6-10d, 1 1/2"

10-10d, 1 1/2"

TO FOUNDATION

1/2" AB

1/2" AB

5/8" AB

5/8" AB

1/2" AB

1/2" AB

2-5/8" AB

WIND LOADS PER FLORIDA BUILDING CO	DE 2004 RESIDENTIAL, SECTION R301.2.1
MEAN ROOF HEIGHT NOT EXCEEDING LE ON UPPER HALF OF HILL OR ESCARPMEI	IGS WITH FLAT, HIPPED, OR GABLE ROOFS; AST HORIZONTAL DIMENSION OR 60 FT; NOT NT 60FT IN EXP. B, 30FT IN EXP. C AND >10% OR 50x HEIGHT OR 1 MILE WHICHEVER IS LES
BUILDING IS NOT IN THE HIGH VELOCITY	HURRICANE ZONE
BUILDING IS NOT IN THE WIND-BORNE DE	BRIS REGION
1.) BASIC WIND SPEED = 110 MPH	
2.) WIND EXPOSURE = B	
3.) WIND IMPORTANCE FACTOR = 1.0	
4.) BUILDING CATEGORY = II	
5.) ROOF ANGLE = 10-45 DEGREES	
6.) MEAN ROOF HEIGHT = <30 FT	
7.) INTERNAL PRESSURE COEFFICIENT	
8.) COMPONENTS AND CLADDING DESI	GN WIND PRESSURES (TABLE R301.2(2))
	Zone Effective Wind Area (ft2)
***	10 100
	1 19.9 -21.8 18.1 -18.1
2 2	2 19.9 -25.5 18.1 -21.8
5	2 O'hg -40.6 -40.6
2 2 2 5	3 19.9 -25.5 18.1 -21.8
4 3 4	3 O'hg -68.3 -42.4
55	4 21.8 -23.6 18.5 -20.4
**	5 21.8 -29.1 18.5 -22.6
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Doors & Windows 21.8 -29.1
12/	Worst Case
	(Zone 5, 10 ft2)
5 2 3	8x7 Garage Door 19.5 -22.9
2 4 2 5	16x7 Garage Door 18.5 -21.0
3 4 1	
15151	
55	

30 PSF (SLEEPING ROOMS)

ROOF 20 PSF (FLAT OR <4:12)

SOIL BEARING CAPACITY 1000PSF

16 PSF (4:12 TO <12:12)

NOT IN FLOOD ZONE (BUILDER TO VERIFY

12 PSF (12:12 AND GREATER)

STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS)

30 PSF (ATTICS WITH STORAGE)

10 PSF (ATTICS WITHOUT STORAGE, <3:12)

PE No.53915, POB 868, Lake City, FL

32056, 386-754-5419

REVISIONS

Stated dimensions supercede scaled dimensions. Refer all questions to Mark Disosway, P.E. for resolution. Do not proceed without clarification

COPYRIGHTS AND PROPERTY RIGHTS:

Mark Disosway, P.E. hereby expressly reserve its common law copyrights and property right in hese instruments of service. This document not to be reproduced, altered or copied in any form or manner without first the express writte permission and consent of Mark Disosway. CERTIFICATION: I hereby certify that I have examined this plan, and that the applicable

ortions of the plan, relating to wind enginee comply with section R301.2.1, florida building code residential 2004, to the best of my

LIMITATION: This design is valid for one building, at specified location.

Dale, Kathy, & Howard Peeler Residence

ADDRESS: CR 242 Columbia County, Florida

Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE: September 19, 2007 DRAWN BY:

STRUCTURAL BY David Disosway David Disosway

FINALS DATE: 19 / Sep / 07 JOB NUMBER: 709181

> DRAWING NUMBER OF 6 SHEETS

GRADE & SPECIES TABLE

		Fb (psi)	E (10 ⁶ psi)
2x8	SYP #2	1200	1.6
2x10	SYP #2	1050	1.6
2x12	SYP #2	975	1.6
GLB	24F-V3 SP	2400	1.8
LSL	TIMBERSTRAND	1700	1.7
LVL	MICROLAM	2900	2.0
PSL	PARALAM	2900	2.0

2x6 SYP #2 GARAGE DOOR BUCK ATTACHMENT ATTACH GARAGE DOOR BUCK TO STUD PACK AT EACH SIDE OF DOOR OPENING WITH 3/8"x4" LAG SCREWS w/ 1" WASHER LAG SCREWS MAY BE COUNTERSUNK. HORIZONTAL JAMBS DO NOT TRANSFER LOAD. CENTER LAG SCREWS OR STAGGER 16d NAILS OR (2) ROWS OF 131 x 3 1/4"

DOOR WIDTH	3/8" x 4" LAG	16d STAGGER	(2) ROWS OF .131 x 3 1/4" GN
8' - 10'	24" O.C.	5" O.C.	5" O.C.
11' - 15'	18" O.C.	4" O.C.	4" O.C.
16' - 18'	16" O.C.	3" O.C.	3" O.C.

GARAGE DOOR BUCK INSTALLATION DETAIL

SCALE: N.T.S.

TYPICAL STRAPPING (U.N.O.)

(1) 2X6 SPF #2 SILL UP TO 7'-6" U.N.O.

(2) 2X4 SPF #2 SILL UP TO 7'-8" U.N.O.

(1) 2X4 SPF #2 SILL UP TO 5'-1" U.N.O.

(FOR: 120 MPH, 10'-0" WALL HEIGHT U.N.O.)

TYPICAL 1 STORY HEADER STRAPING DETAIL

(SEE STRUCTURAL PLAN)

F9 STEM WALL FOOTING S-2 SCALE: 1/2" = 1'-0"

F2 INTERIOR BEARING FOOTING

F3 INTERIOR BEARING STEP FOOTING S-2 SCALE: 1/2" = 1'-0"

F4 GARAGE DOOR FOOTING S-2 SCALE: 1/2" = 1'-0"

F5 PORCH FOOTING S-2 SCALE: 1/2" = 1'-0"

F6 TYPICAL NON - BEARING STEP FOOTING
S-2 SCALE: 1/2" = 1'-0"

F12 ALT. STEM WALL PORCH FOOTING SCALE: 1/2" = 1'-0"

TALL STEM WALL TABLE

The table assumes 60 ksi reinforcing bars with 6" hook in the footing and bent 24" into the reinforced slab at the top. The vertical steel is to be placed toward the tension side of the CMU wall (away from the soil pressure, within 2" of the exterior side of the wall). If the wall is over 8' high, add Durowall ladder reinforcement at 16"OC vertically or a horizontal bond beam with 1#5 continuous at mid height. For higher parts of the wall 12" CMU may be used with reinforcement as shown in the table below.

STEMWALL HEIGHT (FEET)	UNBALANCED BACKFILL HEIGHT	FOR 8	AL REINFOR B" CMU STEM INCHES O.C	MWALL	VERTICAL REINFORCEMENT FOR 12" CMU STEMWALL (INCHES O.C.)			
		#5	#7	#8	#5	#7	#8	
3.3	3.0	96	96	96	96	96	96	
4.0	3.7	96	96	96	96	96	96	
4.7	4.3	88	96	96	96	96	96	
5.3	5.0	56	96	96	96	96	96	
6.0	5.7	40	80	96	80	96	96	
6.7	6.3	32	56	80	56	96	96	
7.3	7.0	24	40	56	40	80	96	
8.0	7.7	16	32	48	32	64	80	
8.7	8.3	8	24	32	24	48	64	
9.3	9.0	8	16	24	16	40	48	

REVISIONS

SOFTPIAN

Dale, Kathy, & Howard

Peeler Residence

ADDRESS: CR 242 Columbia County, Florida

Mark Disosway P.E.

P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419

Fax: (386) 269 - 4871

PRINTED DATE:

September 19, 2007

DRAWN BY: STRUCTURAL BY

JOB NUMBER: 709181

DRAWING NUMBER

S-2

OF 6 SHEETS

David Disosway

David Disosway

FINALS DATE: 19 / Sep / 07

-ABU (TYP.) SCAB ON O.H. THIS AREA (2) 2X12X6,2J 2K (2) 2X12X6',2J 2K TRAY CLG SWS = 4.5' (2) 2X12X4',2, 2K (2) 2X12X6',2J 2K USE H2.5A (4801b) FOR ALL TRUSS TO WALL FRAME AND PORCH BEAM CONNECTIONS UNLESS NOTED OTHERWISE -(3) 2X4 SPF #2 STUDS CENTERED UNIDER TRUSS 611 LB-UPLIFT A5G (2-PLY) SWS = 3.5 (2) 2X12X5',2J 2K (2) 2X12X6',2J 2K F = = = $-857\,\mathrm{LB}^{-1}$ UPLIFT (3) 2X4 SPF #2 STUDS -JC3 CENTERED UNDER TRUSS

ABU (TYP.)

A1HG

PF3

S sws = 7 5'

(2) 2X12X6',2J 2K

STRUCTURAL PLAN SCALE: 1/4" = 1'-0" REVISIONS

SOFTPIAN ARCHITECTURAL DESIGN SOFTWARE

STRUCTURAL PLAN NOTES

- ALL LOAD BEARING FRAME WALL & PORCH HEADERS SHALL BE A MINIMUM OF (2) 2X12 SYP#2 (U.N.O.)
- SN-2 ALL LOAD BEARING FRAME WALL HEADERS SHALL HAVE (1) JACK STUD & (1) KING STUD EACH SIDE (U.N.O.)
- SN-3
 DIMENSIONS ON STRUCTURAL SHEETS
 ARE NOT EXACT. REFER TO ARCHITECTURAL
 FLOOR PLAN FOR ACTUAL DIMENSIONS
- SN-4

 PERMANENT TRUSS BRACING IS TO BE INSTALLED AT LOCATIONS AS SHOWN ON THE SEALED TRUSS DRAWINGS.

 LATERAL BRACING IS TO BE RESTRAINED PER BCSI1-03, BCSI-B1, BCSI-B2, & BCSI-B3. BCSI-B1, BCSI-B2, & BCSI-B3 ARE FURNISHED BY THE TRUSS SUPPLIER, WITH THE SEALED TRUSS PACKAGE

WALL LEGEND

SWS = 0.0'	1ST FLOOR EXTERIOR WALL
SWS = 0.0'	2ND FLOOR EXTERIOR
IBW 200000001 = = = = 100000000	1ST FLOOR INTERIOR BEARING WALLS SEE DETAILS ON SHEET S-1
IBW	2ND FLOOR INTERIOR BEARING WALLS SEE DETAILS ON SHEET S-1

THREADED ROD LEGEND

INDICATES LOCATION OF:
1ST FLOOR 1/2" A307 ALL THREADED ROD

INDICATES LOCATION OF:
2ND FLOOR 1/2" A307 ALL THREADED ROD

HEADER LEGEND

- 12" EMBEDMENT

-12" EMBEDMENT

TOTAL SHEAR WALL SEGMENTS

SWS = 0.0' INDICATES SHEAR WALL SEGMENTS

REQUIRED ACTUAL
TRANSVERSE 36.8' 93.0'
LONGITUDINAL 32.5' 57.0'

ALTERNATE WALL TIE CONNECTION WHERE
THREADED ROD CANNOT BE PLACED IN WALL
SCALE: 1/2" = 1'-0"

WINDLOAD ENGINEER: Mark Disosway, PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419

DIMENSIONS:
Stated dimensions supercede scaled dimensions. Refer all questions to Mark Disosway, P.E. for resolution. Do not proceed without clarification.

COPYRIGHTS AND PROPERTY RIGHTS:

COPYRIGHTS AND PROPERTY RIGHTS:
Mark Disosway, P.E. hereby expressly reserves
its common law copyrights and property right in
these instruments of service. This document is
not to be reproduced, altered or copied in any
form or manner without first the express written
permission and consent of Mark Disosway.

CERTIFICATION: I hereby certify that I have
examined this plan, and that the applicable
portions of the plan, relating to wind engineering
comply with section R301.2.1, florida building
code residential 2004, to the best of my

LIMITATION: This design is valid for one building, at specified location.

Dale, Kathy, & Howard Peeler Residence

ADDRESS: CR 242 Columbia County, Florida

Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE:
September 19, 2007

DRAWN BY: STRUCTURAL BY:
David Disosway David Disosway

FINALS DATE: 19 / Sep / 07

JOB NUMBER: 709181 DRAWING NUMBER

> S-3 OF 6 SHEETS

CONNECTIONS, WALL, & HEADER DESIGN IS BASED ON REACTIONS & UPLIFTS FROM TRUSS ENGINEERING FURNISHED BY BUILDER. W.B. HOWLAND JOB #3721

ANCHOR TABLE OBTAIN UPLIFT REQUIREMENTS FROM TRUSS

DIAGONAL BRACE MUST BE NAILED

OVER 12' IT MAY BE "T" BRACED UP

TO TRUSS WEBS FOR LENGTH

TO 12' AND UNBRACED UP TO 7'

/-- (4) 12dS --

- 2X4X8' RAT RUN NAIL EACH

12dS = 12d SINKER

-(2) 2X4 SPF #2 TOP PLATE

-(2) 2X12 SYP #2 HEADER U.N.O

SEE STRUCTURAL PLAN

-(2) JACKS STUDS

-FOUNDATION SEE

SEE FOOTING DETAILS

-SPH4/6 ALL OPENINGS (U.N.O.)

SPH4/6 @ 48" O.C. (U.N.O.)

CRIPPLES IF REQUIRED

(4) .131 x 3 1/4" GUN NAILS

—TOE NAILED THRU SILL—

INTO JACK STUD U.N.O.

TYPICAL STRAPPING (U.N.O.)

-SPH4/6 ALL OPENINGS (U.N.O.)-

(1) 2X6 SPF #2 SILL UP TO 11'-0" U.N.O. (1) 2X4 SPF #2 SILL UP TO 7'-3" U.N.O.

(FOR: 110 MPH, 10'-0" WALL HIGHT U.N.O.)

(SEE STRUCTURAL PLAN)

w/ (2) ROWS 10d @

12" O.C. EACH SIDE

-SIMPSON SPH4/6 @ 32" O.C.

-(6) .131 x 3 1/4" GUN NAILS

INTO KING STUD

TOE NAILED THRU HEADER

OR .135" X 3.125"

OR .131 X 3.25"

CONNECTION w/ (4) 12dS

UPLIFT LBS. SYP	UPLIFT LBS. SPF	TRUSS CONNECTOR*	TO PLATES	TO RAFTER/TRUSS	TO STUDS
< 420	< 245	H5A	3-8d	3-8d	
< 455	< 265	H5	4-8d	4-8d	
< 360	< 235	H4	4-8d	4-8d	
< 455	< 320	Н3	4-8d	4-8d	
< 415	< 365	H2.5	5-8d	5-8d	
< 600	< 535	H2.5A	5-8d	5-8d	
< 950	< 820	H6	8-8d	8-8d	
< 745	< 565	H8	5-10d, 1 1/2"	5-10d, 1 1/2"	
< 1465	< 1050	H14-1	13-8d	12-8d, 1 1/2"	
< 1465	< 1050	H14-2	15-8d	12-8d, 1 1/2"	
< 990	< 850	H10-1	8-8d, 1 1/2"	8-8d, 1 1/2"	
< 760	< 655	H10-2	6-10d	6-10d	
< 1470	< 1265	H16-1	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1470	< 1265	H16-2	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1000	< 860	MTS24C	7-10d 1 1/2"	7-10d 1 1/2"	
< 1450	< 1245	HTS24	12-10d 1 1/2"	12-10d 1 1/2"	
< 2900	< 2490	2 - HTS24			
< 2050	< 1785	LGT2	14 -16d	14 -16d	
		HEAVY GIRDER TIEDOWNS*			TO FOUNDATION
< 3965	< 3330	MGT		22 -10d	1-5/8" THREADED R 12" EMBEDMENT
< 10980	< 6485	HGT-2		16 -10d	2-5/8" THREADED R 12" EMBEDMENT
< 10530	< 9035	HGT-3		16 -10d	2-5/8" THREADED R 12" EMBEDMENT
< 9250	< 9250	HGT-4		16 -10d	2-5/8" THREADED R 12" EMBEDMENT
		STUD STRAP CONNECTOR*			TO STUDS
< 435	< 435	SSP DOUBLE TOP PLATE	3 -10d		4 -10d
< 455	< 420	SSP SINGLE SILL PLATE	1 -10d		4 -10d
< 825	< 825	DSP DOUBLE TOP PLATE	6 -10d		8 -10d
< 825	< 600	DSP SINGLE SILL PLATE	2 -10d		8 -10d
< 885	< 760	SP4			6-10d, 1 1/2"
< 1240	< 1065	SPH4			10-10d, 1 1/2"
< 885	< 760	SP6			6-10d, 1 1/2"
< 1240	< 1065	SPH6			10-10d, 1 1/2"
< 1235	< 1165	LSTA18	14-10d		
< 1235	< 1235	LSTA21	16-10d		
< 1030	< 1030	CS20	18-8d		
< 1705	< 1705	CS16	28-8d		
		STUD ANCHORS*	TO STUDS		TO FOUNDATION
< 1350	< 1305	LTT19	8-16d		1/2" AB
< 2310	< 2310	LTTI31	18-10d, 1 1/2"		1/2" AB
< 2775	< 2570	HD2A	2-5/8" BOLTS		5/8" AB
< 4175	< 3695	HTT16	18 - 16d		5/8" AB
< 1400	< 1400	PAHD42	16-16d		
< 3335	< 3335	HPAHD22	16-16d		
< 2200	< 2200	ABU44	12-16d		1/2" AB
< 2300	< 2300	ABU66	12-16d		1/2" AB
< 2320	< 2320	ABU88	18 - 16d	-	2-5/8" AB

GRADE & SPECIES TABLE

SYP #2

SYP #2

24F-V3 SP

LSL TIMBERSTRAND 1700

MICROLAM

PARALAM

2x6 SYP #2 GARAGE DOOR BUCK ATTACHMENT

ATTACH GARAGE DOOR BUCK TO STUD PACK AT

EACH SIDE OF DOOR OPENING WITH 3/8"x4" LAG

STAGGER 16d NAILS OR (2) ROWS OF .131 x 3 1/4"

3/8" x 4" LAG

24" O.C.

18" O.C.

16" O.C.

GARAGE DOOR BUCK INSTALLATION DETAIL

SCREWS w/ 1" WASHER LAG SCREWS MAY BE

COUNTERSUNK. HORIZONTAL JAMBS DO NOT

TRANSFER LOAD, CENTER LAG SCREWS OR

GN PER TABLE BELOW:

DOOR WIDTH

8' - 10'

2x6SYP #2 DOOR BUCK --

GLB

Fb (psi) | E (10⁶psi)

1.8

1.7

1200

1050

975

2400

2900

2900

16d (2) ROWS OF

5" O.C.

4" O.C.

3" O.C.

5" O.C.

4" O.C.

3" O.C.

GENERAL NOTES:

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR 2004. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTER\$ WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN

FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

WELDED WIRE REINFORCED SLAB: 6" × 6" W1.4 × W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUND\$ PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM ¢ 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL.

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH / WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 1 DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAMS: GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO, SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"OC INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLT\$ TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO.

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

SPECIFICALLY	NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK.
CONFIRM SITE CO BACKFILL HEIGHT	NDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE.
	ALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBCR 2004 OR THE STATED WIND VELOCITY AND DESIGN PRESSURES.
BELIEVE THE PLA	NUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU NOMITS A CONTINUOUS LOAD PATH CONNECTION, CALL NGINEER IMMEDIATELY.
DESIGN, PLACEM	S MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS ENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL

ROOF SYSTEM DESIGN

BEARING LOCATIONS.

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBCR 2004, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBC 2001 REQUIRE LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

DESIGN DATA

2.) WIND EXPOSURE = B 3.) WIND IMPORTANCE FACTOR = 1.0 4.) BUILDING CATEGORY = II 5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT 7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) Tone Effective Wind Area (ft2)													IDENTIA				
ON UPPER HALF OF HILL OR ESCARPMENT 60FT IN EXP. B, 30FT IN EXP. C AND >1 SLOPE AND UNOBSTRUCTED UPWIND FOR 50x HEIGHT OR 1 MILE WHICHEVER IS BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION 1.) BASIC WIND SPEED = 110 MPH 2.) WIND EXPOSURE = B 3.) WIND IMPORTANCE FACTOR = 1.0 4.) BUILDING CATEGORY = II 5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT 7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) Zone Effective Wind Area (ft2) 10 100 1 19.9 -21.8 18.1 -18.1 2 19.9 -25.5 18.1 -21.8 2 0'hg -40.6 -40.6 3 19.9 -25.5 18.1 -21.8	(EN	AN	DSEL	SIM	PLE [DIAF	PHR	AGI	M BU	JILDI	NGS W	THFL	AT, HIP	PED,	OR G	ABLE	ROO
SLOPE AND UNOBSTRUCTED UPWIND FOR 50x HEIGHT OR 1 MILE WHICHEVER IS BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION 1.) BASIC WIND SPEED = 110 MPH 2.) WIND EXPOSURE = B 3.) WIND IMPORTANCE FACTOR = 1.0 4.) BUILDING CATEGORY = II 5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT 7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) Tone Effective Wind Area (ft2) 2 19.9 -25.5 18.1 -21.8 2 0'hg -40.6 -40.6 3 19.9 -25.5 18.1 -21.8	ON	UP	PER	HALF	OF F	HILL	OR	ES	CAR	PME	VT 60F	TINE	XP. B. 3	OFT II	N EXF	C Al	VD >1
BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION 1.) BASIC WIND SPEED = 110 MPH 2.) WIND EXPOSURE = B 3.) WIND IMPORTANCE FACTOR = 1.0 4.) BUILDING CATEGORY = II 5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT 7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) Tone Effective Wind Area (ft2)	SLC	OPE	AND	UNC	BST	RUC	CTE	D UI	PWIN	ND F	OR 50x	HEIGH	IT OR 1	MILE	WHI	CHEV	ER IS
1.) BASIC WIND SPEED = 110 MPH 2.) WIND EXPOSURE = B 3.) WIND IMPORTANCE FACTOR = 1.0 4.) BUILDING CATEGORY = II 5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT 7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) To 10 100	BUI	ILDI	NG IS	TON 8	INT	HE	HIG	ΗV	ELO	CITY	HURR	CANE	ZONE				
2.) WIND EXPOSURE = B 3.) WIND IMPORTANCE FACTOR = 1.0 4.) BUILDING CATEGORY = II 5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT 7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) Tone Effective Wind Area (ft2)	BUI	ILDI	NG IS	TON	INT	HE	WIN	ID-E	BORN	NE DI	BRIS	REGIO	N				
3.) WIND IMPORTANCE FACTOR = 1.0 4.) BUILDING CATEGORY = II 5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT 7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) Tone Effective Wind Area (ft2) 10 100 100 1 19.9 -21.8 18.1 -18.1 -21.8 10 100 100 1 19.9 -25.5 18.1 -21.8 10.1 -21.8 10.1 -21.8 10.1 -21.8 10.1 -21.8 10.1 -21.8 10.1 -21.8 10.1 -21.8 10.1 -21.8 10.1 -21.8 10.1 -21.8	1.)	В	ASIC	WIND	SPE	ED	= 1	10 1	MPH								
4.) BUILDING CATEGORY = II 5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT 7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) Tone Effective Wind Area (ft2)	2.)	W	IND E	XPO	SUR	E = 1	В						1				
5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT 7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) Tone Effective Wind A/ea (ft2)	3.)	W	IND I	MPOF	RTAN	ICE	FAC	сто	R=	1.0							
6.) MEAN ROOF HEIGHT = <30 FT 7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) Tone Effective Wind Area (ft2) 10 100 1 19.9 -21.8 18.1 -18.1 -21.8 1 2 19.9 -25.5 18.1 -21.8 2 2 2 2 2 2 2 2 2	4.)	В	JILDII	NG C	ATEG	SOR	Y =	11									
7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) To	5.)	R	OOF	ANGL	E = 1	0-4	5 DE	EGR	REES	3							
8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) Zone Effective Wind Area (ft2)	6.)	M	EAN I	ROOF	HEI	GHT	T = <	30 I	FT								
Zone Effective Wind Area (ft2) 10 100 1 19.9 -21.8 18.1 -18.1 2 19.9 -25.5 18.1 -21.8 2 O'hg -40.6 -40.6 3 19.9 -25.5 18.1 -21.8	7.)	IN	TERN	IAL P	RES	SUF	RE C	OE	FFIC	IENT	= N/A	ENCL	OSED E	UILD	ING)		
10 100 1 19.9 -21.8 18.1 -18.1 2 19.9 -25.5 18.1 -21.8 2 O'hg -40.6 -40.6 3 19.9 -25.5 18.1 -21.8	8.)	C	OMPO	ONEN	TS A	ND	CLA	NDD	ING	DESI	GN WII	ND PR	ESSUR	ES (T	ABLE	R301	.2(2))
10 100 1 19.9 -21.8 18.1 -18.1 2 19.9 -25.5 18.1 -21.8 2 O'hg -40.6 -40.6 3 19.9 -25.5 18.1 -21.8																	
1 19.9 -21.8 18.1 -18.1 2 19.9 -25.5 18.1 -21.8 2 O'hg -40.6 -40.6 3 19.9 -25.5 18.1 -21.8			×										Zone		-		
2 19.9 -25.5 18.1 -21.8 2 O'hg -40.6 -40.6 3 19.9 -25.5 18.1 -21.8				XÎ	1												
2 O'hg -40.6 -40.6 3 19.9 -25.5 18.1 -21.8			1	×.										-	-	-	-
3 19.9 -25.5 18.1 -21.8		R	<	1	1									19.9	-		
2/ 11/2/ 15		5	/	3		1.	1	>=	7					10.0		_	-
	1	2		4	$\sqrt{}^2$	12	/2/		5				3 O'hq		-25.5	-	-42.4
4 21.8 -23.6 18.5 -20.4				1			/						-	21.0	20.0	10.3	20.7

5 21.8 -29.1 18.5 -22.6 Doors & Windows 21.8 -29.1 Worst Case (Zone 5, 10 ft2) 8x7 Garage Door 19.5 -22.9 16x7 Garage Door 18.5 -21.0	Doors & Windows 21.8 -29.1 Worst Case (Zone 5, 10 ft2) 8x7 Garage Door 19.5 -22.9			a.c c	10.0	
Worst Case (Zone 5, 10 ft2) 8x7 Garage Door 19.5 -22.9	Worst Case (Zone 5, 10 ft2) 8x7 Garage Door 19.5 -22.9	5	21.8	-29.1	18.5	-22.6
8x7 Garage Door 19.5 -22.9	8x7 Garage Door 19.5 -22.9	Wor	st Cas	е	21.8	-29.1
16x7 Garage Door 18.5 -21.0	16x7 Garage Door 18.5 -21.0	8x7 Gar	age D	oor	19.5	
		16x7 G	arage [Door	18.5	-21.0
					<u> </u>	

DESIGN LOADS

FLOOR	40 PSF (ALL OTHER DWELLING ROOMS)	
	30 PSF (SLEEPING ROOMS)	
	30 PSF (ATTICS WITH STORAGE)	
	10 PSF (ATTICS WITHOUT STORAGE, <3:12)	
ROOF	20 PSF (FLAT OR <4:12)	
	16 PSF (4:12 TO <12:12)	
	12 PSF (12:12 AND GREATER)	
STAIRS	40 PSF (ONE & TWO FAMILY DWELLINGS)	

SOIL BEARING CAPACITY 1000PSF

NOT IN FLOOD ZONE (BUILDER TO VERIFY

FLOOR	40 PSF (ALL OTHER DWELLING ROOMS)	
	30 PSF (SLEEPING ROOMS)	
	30 PSF (ATTICS WITH STORAGE)	
	10 PSF (ATTICS WITHOUT STORAGE, <3:12)	
ROOF	20 PSF (FLAT OR <4:12)	.
	16 PSF (4:12 TO <12:12)	-
	12 PSF (12:12 AND GREATER)	

709181a DRAWING NUMBER

> **S-1** OF 6 SHEETS

PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419 Stated dimensions supercede scaled dimensions. Refer all questions to Mark Disosway, P.E. for resolution. Do not proceed without clarification.

REVISIONS

COPYRIGHTS AND PROPERTY RIGHTS: Mark Disosway, P.E. hereby expressly reserve its common law copyrights and property right in these instruments of service. This document not to be reproduced, altered or copied in any form or manner without first the express writte permission and consent of Mark Disosway

CERTIFICATION: I hereby certify that I have examined this plan, and that the applicable portions of the plan, relating to wind enginee comply with section R301.2.1, florida building code residential 2004, to the best of my

LIMITATION: This design is valid for one building, at specified location.

Dale, Kathy, & Howard Peeler Residence

ADDRESS: CR 242 Columbia County, Florida

Mark Disosway P.E. P.O. Box 868

Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE: January 07, 2008 STRUCTURAL BY David Disosway David Disosway

FINALS DATE: 07 / Jan / 08 JOB NUMBER:

F9 STEM WALL FOOTING S-2 SCALE: 1/2" = 1'-0"

F2 INTERIOR BEARING FOOTING S-2 SCALE: 1/2" = 1'-0"

F3 INTERIOR BEARING STEP FOOTING S-2 SCALE: 1/2" = 1'-0"

F4 GARAGE DOOR FOOTING S-2 SCALE: 1/2" = 1'-0"

F5 PORCH FOOTING S-2 SCALE: 1/2" = 1'-0"

F6 TYPICAL NON - BEARING STEP FOOTING S-2 SCALE: 1/2" = 1'-0"

F12 ALT. STEM WALL PORCH FOOTING S-2 SCALE: 1/2" = 1'-0"

TALL STEM WALL TABLE

The table assumes 60 ksi reinforcing bars with 6" hook in the footing and bent 24" into the reinforced slab at the top. The vertical steel is to be placed toward the tension side of the CMU wall (away from the soil pressure, within 2" of the exterior side of the wall). If the wall is over 8' high, add Durowall ladder reinforcement at 16"OC vertically or a horizontal bond beam with 1#5 continuous at mid height. For higher parts of the wall 12" CMU may be used with reinforcement as shown in the table below.

STEMWALL HEIGHT (FEET)	UNBALANCED BACKFILL HEIGHT	VERTICAL REINFORCEMENT FOR 8" CMU STEMWALL (INCHES O.C.)			VERTICAL REINFORCEMENT FOR 12" CMU STEMWALL (INCHES O.C.)		
		#5	#7	#8	#5	#7	#8
3.3	3.0	96	96	96	96	96	96
4.0	3.7	96	96	96	96	96	96
4.7	4.3	88	96	96	96	96	96
5.3	5.0	56	96	96	96	96	96
6.0	5.7	40	80	96	80	96	96
6.7	6.3	32	56	80	56	96	96
7.3	7.0	24	40	56	40	80	96
8.0	7.7	16	32	48	32	64	80
8.7	8.3	8	24	32	24	48	64
9.3	9.0	8	16	24	16	40	48

REVISIONS

SOFTPIAN

ADDRESS: CR 242 Columbia County, Florida

Mark Disosway P.E.

P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419

Fax: (386) 269 - 4871

DRAWN BY: David Disosway

FINALS DATE:

07 / Jan / 08

PRINTED DATE: January 07, 2008

JOB NUMBER: 709181a

DRAWING NUMBER

S-2

OF 6 SHEETS

STRUCTURAL BY

STRUCTURAL PLAN NOTES

SN-1 ALL LOAD BEARING FRAME WALL & PORCH HEADERS SHALL BE A MINIMUM OF (2) 2X12 SYP#2 (U.N.O.)

SN-2 ALL LOAD BEARING FRAME WALL HEADERS SHALL HAVE (1) JACK STUD & (1) KING STUD EACH SIDE (U.N.O.)

SN-3 DIMENSIONS ON STRUCTURAL SHEETS ARE NOT EXACT. REFER TO ARCHITECTURAL FLOOR PLAN FOR ACTUAL DIMENSIONS

PERMANENT TRUSS BRACING IS TO BE INSTALLED AT LOCATIONS AS SHOWN ON THE SEALED TRUSS DRAWINGS.

LATERAL BRACING IS TO BE RESTRAINED PER BCSI1-03, BCSI-B1, BCSI-B2, & BCSI-B3. BCSI-B1, BCSI-B2, & BCSI-B3 ARE FURNISHED BY THE TRUSS SUPPLIER, WITH THE SEALED TRUSS PACKAGE

WALL LEGEND

SWS = 0.0'	1ST FLOOR EXTERIOR WALL
SWS = 0.0'	2ND FLOOR EXTERIOR
IBW	1ST FLOOR INTERIOR BEARING WALLS
IBW	2ND FLOOR INTERIOR BEARING WALLS

HEADER LEGEND

TOTAL SHEAR WALL SEGMENTS

SWS = 0.0' INDICATES SHEAR WALL SEGMENTS

	REQUIRED	ACTUAL
RANSVERSE	36.8'	93.0'
ONGITUDINAL	32.5'	57.0'

WINDLOAD ENGINEER: Mark Disosway, PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419 DIMENSIONS:

Stated dimensions supercede scaled dimensions. Refer all questions to Mark Disosway, P.E. for resolution. Do not proceed without clarification.

COPYRIGHTS AND PROPERTY RIGHTS: Mark Disosway, P.E. hereby expressly reserves its common law copyrights and property right in these instruments of service. This document is not to be reproduced, altered or copied in any form or manner without first the express written permission and consent of Mark Disosway.

CERTIFICATION: I hereby certify that I have examined this plan, and that the applicable portions of the plan, relating to wind engineering comply with section R301.2.1, florida building code residential 2004, to the best of my knowledge.

LIMITATION: This design is valid for one building, at specified location.

Dale, Kathy, & Howard Peeler Residence

ADDRESS: CR 242 Columbia County, Florida

Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE:
January 07, 2008
PRAWN BY: STRUCT

DRAWN BY: STRUCTURAL BY:
David Disosway David Disosway

FINALS DATE: 07 / Jan / 08

JOB NUMBER: 709181a DRAWING NUMBER

S-3OF 6 SHEETS

CONNECTIONS, WALL, & HEADER DESIGN IS BASED ON REACTIONS & UPLIFTS FROM TRUSS ENGINEERING FURNISHED BY BUILDER. W.B. HOWLAND JOB #4913