

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

RE: 3098537 - GIEGEIG CONST. - LOT 33 CW

MiTek USA, Inc.

Site Information:

6904 Parke East Blvd.

Customer Info: GIEBEIG CONST. Project Name: Spec Hse Model: St. Johns Modified

Lot/Block: 33

Subdivision: Crosswinds

Address: TBD SW Chesterfield, TBD

City: Columbia Cty

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name:

License #:

Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2020/TPI2014

Design Program: MiTek 20/20 8.4

Date

3/4/22

Wind Code: ASCE 7-16

Wind Speed: 130 mph

Roof Load: 37.0 psf

Floor Load: N/A psf

This package includes 25 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

|                               |                                                                                                                                                                                                                         |                                                                                                          |                                                                                                                                                                              |              | iliaa boala                                  | 01 1 1010001                    |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------|---------------------------------|
| No. 1234567891112345671890122 | Seal# T27021994 T27021996 T27021996 T27021998 T27021999 T27022000 T27022001 T27022004 T27022004 T27022005 T27022006 T27022007 T27022008 T27022008 T27022001 T27022011 T27022012 T27022011 T27022014 T27022014 T27022015 | Truss Name CJ01 CJ03 CJ05 EJ01 HJ10 T01 T01G T02 T03 T04 T05 T06 T07 T08 T09 T10 T11 T12 T13 T14 T15 T16 | Date 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 3/4/22 | No. 23 24 25 | Seal#<br>T27022016<br>T27022017<br>T27022018 | Truss Nar<br>T17<br>T17G<br>T18 |

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Lake City, FL.

Truss Design Engineer's Name: ORegan, Philip

My license renewal date for the state of Florida is February 28, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd, Tampa FL 33610

March 4,2022

Job Truss Truss Type GIEGEIG CONST. - LOT 33 CW Qty T27021994 3098537 CJ01 Jack-Open 10 1 Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:14 2022 Page 1 ID:fRijugoliQj9qlqT\_5CiYdzq7NP-Hk3BTA3rViDTjfHa59gugstTLJGc1ytclBu3UfzeeWh Scale = 1:8.2 6.00 12

1-0-0

Structural wood sheathing directly applied or 1-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

| LOADIN | G (psf) | SPACING-        | 2-0-0  | CSI.  |      | DEFL.           | in   | (loc) | l/defl | L/d          | PLATES         | GRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|---------|-----------------|--------|-------|------|-----------------|------|-------|--------|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCLL   | 20.0    | Plate Grip DOL  | 1.25   | TC    | 0.14 | Vert(LL)        | 0.00 | 7     | >999   | 240          | MT20           | 244/190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TCDL   | 7.0     | Lumber DOL      | 1.25   | BC    | 0.03 | Vert(CT)        | 0.00 | 7     | >999   | 180          | Ti contraction | TO PARTICIPATE OF THE PROPERTY |
| BCLL   | 0.0 *   | Rep Stress Incr | YES    | WB    | 0.00 | Horz(CT)        | 0.00 | 2     | n/a    | n/a          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BCDL   | 10.0    | Code FBC2020/T  | PI2014 | Matri | x-MP | 110115077455001 |      |       |        | 10.220.00011 | Weight: 6 lb   | FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=39(LC 12) Max Uplift 3=-6(LC 1), 2=-67(LC 12), 4=-19(LC 1)

Max Grav 3=7(LC 16), 2=179(LC 12), 4=19(LC 16) Max Grav 3=7(LC 16), 2=179(LC 1), 4=18(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

### NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
  to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.



Philip J. O'Regan PE No.58126 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022



GIEGEIG CONST - LOT 33 CW Truss Type Qty Job Truss 10 Jack-Open 3098537 CJ03 Job Reference (optional) 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:15 2022 Page 1 ID:fRijugoliQj9qlqT\_5CiYdzq7NP-lxdagW4TF?LKLpsmfsB7C3Qd5jbjmP6mXrec06zeeWg Lake City, FL - 32055, Builders FirstSource (Lake City,FL), Scale = 1:13.3 6.00 12 1-5-13 0-4-8 PLATES GRIP SPACING-2-0-0 DEFL. (loc) l/defl CSI. LOADING (psf) 20.0 1.25 TC 0.14 Vert(LL) 0.01 4-7 >999 240 MT20 244/190 Plate Grip DOL TCLL Lumber DOL 1.25 BC 0.10 Vert(CT) -0.01 >999 180 7.0 TCDL Horz(CT) -0.00 n/a YES WB 0.00 n/a Rep Stress Incr BCLL 0.0 Weight: 12 lb FT = 20%Code FBC2020/TPI2014 Matrix-MP 10.0 BCDL

BRACING-

TOP CHORD

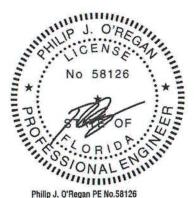
BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical


Max Horz 2=73(LC 12)

Max Uplift 3=-35(LC 12), 2=-58(LC 12), 4=-16(LC 9) Max Grav 3=60(LC 1), 2=210(LC 1), 4=50(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 2-11-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
  to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.



Structural wood sheathing directly applied or 3-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Philip J. O'Regan PE No.58126 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 4,2022



| lob                    | Truss                 | Truss Type                           | Qty            | Ply                      | GIEGEIG CONST LOT 33 CW                                                                  | T07004000                           |
|------------------------|-----------------------|--------------------------------------|----------------|--------------------------|------------------------------------------------------------------------------------------|-------------------------------------|
| 3098537                | CJ05                  | Jack-Open                            | 10             | 1                        | Job Reference (optional)                                                                 | T27021996                           |
| Builders FirstSource ( | Lake City,FL), Lake ( | City, FL - 32055,<br>-1-6-0<br>1-6-0 | 5-0-0          | 8.430 s Au<br>Qj9qlqT_5C | g 16 2021 MiTek Industries, Inc. Thu Mar 3 11:<br>iYdzq7NP-lxdagW4TF?LKLpsmfsB7C3QbsjZZm | 35:15 2022 Page 1<br>P6mXrec06zeeWg |
|                        | 1                     | 1-6-0                                | 5-0-0          |                          | 3                                                                                        | Scale = 1:18.                       |
|                        | 2-10-8                | 6.0                                  | 00 12          | /                        |                                                                                          |                                     |
|                        | D4-8                  | 2                                    |                |                          | <u> </u>                                                                                 |                                     |
|                        | 1                     | 3x4 =                                |                |                          | 4                                                                                        |                                     |
|                        |                       | -                                    | 5-0-0<br>5-0-0 |                          |                                                                                          |                                     |

| LOADIN | G (psf) | SPACING-        | 2-0-0  | CSI.  |      | DEFL.                                   | in    | (loc) | l/defl | L/d   | PLATES        | GRIP                   |
|--------|---------|-----------------|--------|-------|------|-----------------------------------------|-------|-------|--------|-------|---------------|------------------------|
| TCLL   | 20.0    | Plate Grip DOL  | 1.25   | TC    | 0.28 | Vert(LL)                                | 0.03  | 4-7   | >999   | 240   | MT20          | 244/190                |
| TCDL   | 7.0     | Lumber DOL      | 1.25   | BC    | 0.24 | Vert(CT)                                | -0.05 | 4-7   | >999   | 180   | Interdirecto  | THE RESIDENCE OF SECUL |
| BCLL   | 0.0 *   | Rep Stress Incr | YES    | WB    | 0.00 | Horz(CT)                                | 0.00  | 3     | n/a    | n/a   |               |                        |
| BCDL   | 10.0    | Code FBC2020/T  | PI2014 | Matri | x-MP | 110100000000000000000000000000000000000 |       |       |        | 0.000 | Weight: 18 lb | FT = 20%               |

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-

TOP CHORD **BOT CHORD** 

Structural wood sheathing directly applied or 5-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=107(LC 12)

Max Uplift 3=-67(LC 12), 2=-65(LC 12)

Max Grav 3=113(LC 1), 2=276(LC 1), 4=88(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 4-11-4 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.



Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see \*\*ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information\*\* available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GIEGEIG CONST. - LOT 33 CW Truss Type Qty Ply Job Truss T27021997 23 Jack-Partial 3098537 EJ01 Job Reference (optional) 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:16 2022 Page 1 ID:fRijugoliQj9qlqT\_5CiYdzq7NP-D7Byus550JTByzRzDaiMlHzg26okVsMvmUNAYYzeeWf Lake City, FL - 32055. Builders FirstSource (Lake City,FL), Scale = 1:23.2 6.00 12 3-5-13 0-4-8 11 12 3x4 = Plate Offsets (X,Y)- [2:0-1-13,0-1-8] GRIP CSI. DEFL. (loc) I/defl L/d **PLATES** LOADING (psf) SPACING-2-0-0 244/190 Plate Grip DOL 1.25 TC 0.70 Vert(LL) 0.30 4-7 >274 240 MT20 20.0 TCLL 0.69 Vert(CT) 0.26 4-7 >323 180 1.25 BC Lumber DOL TCDL 7.0 0.00 Horz(CT) -0.01 3 n/a n/a YES WB 0.0 Rep Stress Incr BCLL Weight: 25 lb FT = 20% Code FBC2020/TPI2014 Matrix-MS BCDL 10.0 BRACING-

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 TOP CHORD

**BOT CHORD** 

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=137(LC 12)

Max Uplift 3=-86(LC 12), 2=-76(LC 12), 4=-40(LC 9)

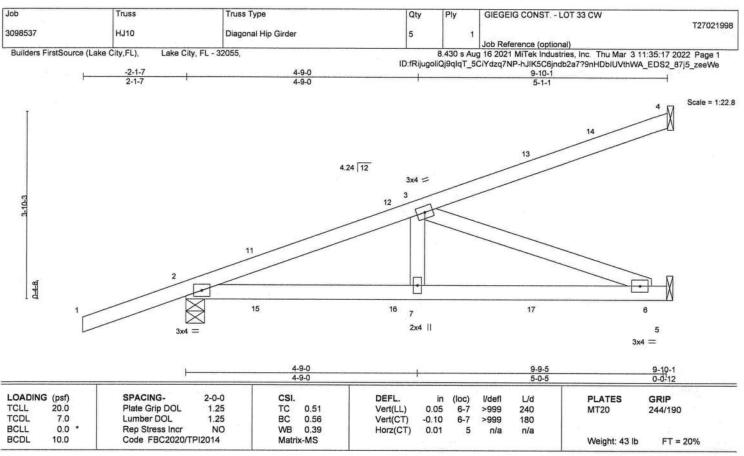
Max Grav 3=164(LC 1), 2=346(LC 1), 4=126(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 6-11-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.




Phillp J. O'Regan PE No.58126 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see 

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 9-5-9 oc bracing.

REACTIONS.

(size) 4=Mechanical, 2=0-4-9, 5=Mechanical

Max Horz 2=149(LC 22)

Max Uplift 4=-72(LC 4), 2=-298(LC 4), 5=-148(LC 4) Max Grav 4=141(LC 1), 2=527(LC 1), 5=307(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-769/323

BOT CHORD 2-7=-377/698, 6-7=-377/698 WEBS 3-7=-63/281, 3-6=-743/402

### NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ff; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
  to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=298.5=148.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 59 lb down and 73 lb up at 1-6-1, 59 lb down and 73 lb up at 1-6-1, 22 lb down and 38 lb up at 4-4-0, and 43 lb up at 3-4-4-0, and 43 lb up at 1-6-1, 41 lb down and 78 lb up at 7-1-15 on top chord, and 41 lb down and 43 lb up at 1-6-1, 41 lb down and 43 lb up at 1-6-1, 19 lb down and 24 lb up at 4-4-0, 19 lb down and 24 lb up at 4-4-0, and 64 lb down at 7-1-15, and 64 lb down at 7-1-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
 Uniform Loads (plf)

Vert: 1-4=-54, 5-8=-20 Concentrated Loads (lb)

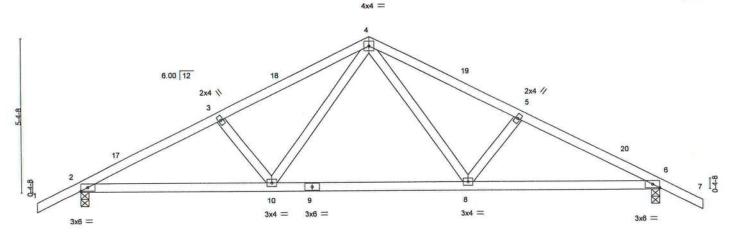
Vert: 13=-73(F=-36, B=-36) 16=-6(F=-3, B=-3) 17=-59(F=-29, B=-29)



Philip J. O'Regan PE No.58126 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, eraction and bracing of trusses and truss systems, see 

\*\*AMSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information\*\* available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GIEGEIG CONST. - LOT 33 CW Ply Qty Truss Type Job Truss T27021999 9 1 T01 Common 3098537 Job Reference (optional) 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:18 2022 Page 1 ID:fRijugoliQj9qlqT\_5CiYdzq7NP-9VJiIX7LYwjvCHaLK\_lqqi24DwQQzipCDosGdRzeeWd Lake City, FL - 32055, Builders FirstSource (Lake City,FL), 20-0-0 10-0-0

Scale = 1:38.5



|                                 | -                             | 6-7-7<br>6-7-7                                              |                             | 13-4-9                 |                      |                                           |                              |                            |                               |                          |                |                     |
|---------------------------------|-------------------------------|-------------------------------------------------------------|-----------------------------|------------------------|----------------------|-------------------------------------------|------------------------------|----------------------------|-------------------------------|--------------------------|----------------|---------------------|
| Plate Offse                     | ets (X,Y)-                    |                                                             |                             |                        |                      |                                           |                              | ,                          |                               |                          |                |                     |
| LOADING<br>TCLL<br>TCDL<br>BCLL | (psf)<br>20.0<br>7.0<br>0.0 * | SPACING-<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr | 2-0-0<br>1.25<br>1.25<br>NO | CSI.<br>TC<br>BC<br>WB | 0.40<br>0.93<br>0.26 | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>-0.17<br>-0.33<br>0.04 | (loc)<br>8-10<br>8-10<br>6 | l/defl<br>>999<br>>729<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b> 244/190 |
| BCDL                            | 10.0                          | Code FBC2020/TPI2                                           | 014                         | Matrix                 | x-MS                 |                                           |                              |                            | 7020000                       | Senior -                 | Weight: 94 lb  | FT = 20%            |

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-2-10 oc purlins.

20 0 0

Rigid ceiling directly applied or 9-3-8 oc bracing.

REACTIONS.

(size) 2=0-3-8, 6=0-3-8 Max Horz 2=85(LC 12)

Max Uplift 2=-241(LC 12), 6=-241(LC 13) Max Grav 2=1024(LC 1), 6=1024(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1764/517, 3-4=-1619/510, 4-5=-1619/510, 5-6=-1764/517

2-10=-378/1532, 8-10=-193/1019, 6-8=-392/1532

**BOT CHORD** WEBS

4-8=-194/680, 4-10=-194/680

NOTES-1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 10-0-0, Exterior(2R) 10-0-0 to 13-0-0, Interior(1) 13-0-0 to 21-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=241, 6=241.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-7=-54, 10-11=-20, 8-10=-80(F=-60), 8-14=-20



Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guildance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see 
ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



6904 Parke East Blvd. Tampa, FL 36610

| Job                  | Truss                | Truss Type             | Qty        | Ply         | GIEGEIG CONST LOT 33 CW                          |                  |
|----------------------|----------------------|------------------------|------------|-------------|--------------------------------------------------|------------------|
|                      |                      |                        |            |             |                                                  | T27022000        |
| 3098537              | T01G                 | Common Supported Gable | 1          | 1           |                                                  |                  |
|                      |                      |                        |            |             | Job Reference (optional)                         |                  |
| Builders FirstSource | (Lake City,FL), Lake | City, FL - 32055,      |            | 8.430 s Aug | g 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35 | 5:19 2022 Page 1 |
|                      |                      |                        | ID:fRijugo | liQj9qlqT_5 | CiYdzq7NP-dit4Wt7zJErmqQ9YuiG3NvaKDKzait         | DPLSScq9tzeeWc   |
| -1-6-0               | 9                    | 10-0-0                 | 1          |             | 20-0-0                                           | 21-6-0           |
| 1-6-0                |                      | 10-0-0                 |            |             | 10-0-0                                           | 1-6-0            |

Scale = 1:38.1



|             |            | <b> </b>        |        |       |      | 20-0-0   |       | -     |        |     | ·              |          |  |  |
|-------------|------------|-----------------|--------|-------|------|----------|-------|-------|--------|-----|----------------|----------|--|--|
| Plate Offse | ets (X,Y)- |                 |        |       |      |          |       |       |        |     |                |          |  |  |
| LOADING     | (psf)      | SPACING-        | 2-0-0  | CSI.  |      | DEFL.    | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |  |  |
| TCLL        | 20.0       | Plate Grip DOL  | 1.25   | TC    | 0.13 | Vert(LL) | -0.00 | 13    | n/r    | 120 | MT20           | 244/190  |  |  |
| CDL         | 7.0        | Lumber DOL      | 1.25   | BC    | 0.10 | Vert(CT) | -0.00 | 13    | n/r    | 120 |                |          |  |  |
| BCLL        | 0.0 *      | Rep Stress Incr | YES    | WB    | 0.05 | Horz(CT) | 0.00  | 12    | n/a    | n/a | 100            |          |  |  |
| BCDL        | 10.0       | Code FBC2020/TI | PI2014 | Matri | k-S  |          |       |       |        |     | Weight: 105 lb | FT = 20% |  |  |

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS** 

**BRACING-**

TOP CHORD **BOT CHORD**  Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 20-0-0.

(lb) - Max Horz 2=-81(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 18, 19, 20, 16, 15, 14 Max Grav All reactions 250 lb or less at joint(s) 2, 12, 17, 18, 19, 20, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

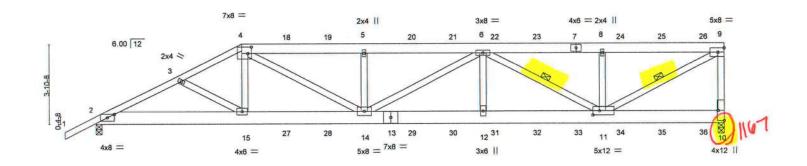
### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 10-0-0, Corner(3R) 10-0-0 to 13-0-0, Exterior(2N) 13-0-0 to 21-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

  4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 18, 19, 20, 16, 15, 14.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 12.



Phillp J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss was and bracing of trusses and truss systems, see ANSI/THI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801



| Job                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Truss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Truss Type               |                       |        | Qty        | Ply          | GIEGEIG CONST LOT 33 CW                           |                               |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|--------|------------|--------------|---------------------------------------------------|-------------------------------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                       |        |            | 12           |                                                   |                               | T27022001     |
| 3098537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | Half Hip Girder       |        | 1          | 1 3          | WHO SHARE AND | 0.0000                        |               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 72                    |        |            | and the same | Job Reference (option                             | nal)                          |               |
| Builders FirstSour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ce (Lake City.FL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lake City, FL            | - 32055.              |        |            | 8.430 s Aug  | g 16 2021 MiTek Indust                            | tries, Inc. Thu Mar 3 11:35:2 | 1 2022 Page 1 |
| The second secon | The state of the s | PROPERTY OF THE PARTY OF | NO THEORETICAL STREET |        | ID:fRijugo | liQj9qlqT_5  | CiYdzq7NP-a4_rxZ9Err                              | r6U3kJw07IXSKgUU7bJAw?        | evm5xElzeeWa  |
| , -1-6-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-0-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-0-0                    | 12-10-2               | 18-6-8 |            | 1            | 24-2-14                                           | 30-1-0                        |               |
| 1-6-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-0-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-11-5                   | 5-10-2                | 5-8-6  |            |              | 5-8-6                                             | 5-10-2                        |               |

Scale = 1:53.4



|             | 65         | 7-0-0                       | 1               | 12-10-2        | Y            | 18-6-8   |       |       | 24-2-1 | 14  | 30-1-0         |          |
|-------------|------------|-----------------------------|-----------------|----------------|--------------|----------|-------|-------|--------|-----|----------------|----------|
|             | 1          | 7-0-0                       |                 | 5-10-2         | 1            | 5-8-6    |       |       | 5-8-6  | 3   | 5-10-2         |          |
| Plate Offse | ets (X,Y)- | [2:0-4-0,0-1-15], [4:0-2-0, | 0-3-12], [10:Ed | ige,0-3-8], [1 | 1:0-3-12,0-2 | -8]      |       |       |        |     |                |          |
| LOADING     | (psf)      | SPACING-                    | 2-0-0           | CSI.           |              | DEFL.    | in    | (loc) | l/defi | L/d | PLATES         | GRIP     |
| TCLL        | 20.0       | Plate Grip DOL              | 1.25            | TC             | 0.85         | Vert(LL) | 0.26  | 12-14 | >999   | 240 | MT20           | 244/190  |
| TCDL        | 7.0        | Lumber DOL                  | 1.25            | BC             | 0.28         | Vert(CT) | -0.40 | 12-14 | >885   | 180 |                |          |
| BCLL        | 0.0        | Rep Stress Incr             | NO              | WB             | 0.87         | Horz(CT) | 0.06  | 10    | n/a    | n/a |                |          |
| BCDL        | 10.0       | Code FBC2020/T              | PI2014          | Matri          | x-MS         |          |       |       |        |     | Weight: 223 lb | FT = 20% |

BRACING-

TOP CHORD

**BOT CHORD** 

WEBS

LUMBER-

TOP CHORD 2x6 SP No.2 \*Except\* 1-4: 2x4 SP No.2

**BOT CHORD** 2x8 SP 2400F 2.0E

2x4 SP No.3 \*Except\* WEBS

4-14,6-14,6-11,9-11: 2x4 SP No.2

REACTIONS. (size) 10=0-3-8, 2=0-3-8 Max Horz 2=141(LC 27)

Max Uplift 10=-1167(LC 5), 2=-892(LC 8)

Max Grav 10=2562(LC 1), 2=2241(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-4404/1862, 3-4=-4286/1871, 4-5=-5321/2390, 5-6=-5317/2388, 6-8=-3378/1522, TOP CHORD

8-9=-3378/1522, 9-10=-2377/1098

2-15=-1696/3891, 14-15=-1701/3850, 12-14=-2326/5171, 11-12=-2326/5171 BOT CHORD WEBS

4-15=-268/717, 4-14=-817/1749, 5-14=-714/365, 6-12=-123/496, 6-11=-2079/932,

8-11=-659/340, 9-11=-1738/3861

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=1167, 2=892.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 128 lb down and 90 lb up at 7-0-0, 110 lb down and 90 lb up at 9-0-12, 110 lb down and 90 lb up at 11-0-12, 110 lb down and 90 lb up at 13-0-12, 110 lb down and 90 lb up at 15-0-12, 110 lb down and 90 lb up at 17-0-12, 110 lb down and 90 lb up at 19-0-12, 110 lb down and 90 lb up at 21-0-12, 110 lb down and 90 lb up at 23-0-12, 110 lb down and 90 lb up at 25-0-12, 110 lb down and 90 lb up at 27-0-12, and 113 lb down and 90 lb up at 29-0-12, and 139 lb down and 88 lb up at 29-11-4 on top chord, and 344 lb down and 241 lb up at 7-0-0, 86 lb down and 60 lb up at 9-0-12, 86 lb down and 60 lb up at 11-0-12, 86 lb down and 60 lb up at 13-0-12, 86 lb down and 60 lb up at 15-0-12, 86 lb down and 60 lb up at 17-0-12, 86 lb down and 60 lb up at 19-0-12, 86 lb down and 60 lb up at 21-0-12, 86 lb down and 60 lb up at 23-0-12, 86 lb down and 60 lb up at 25-0-12, and 86 lb down and 60 lb up at 27-0-12, and 88 lb down and 59 Ib up at 29-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).



Structural wood sheathing directly applied or 2-7-6 oc purlins,

6-11, 9-11

Rigid ceiling directly applied or 7-10-3 oc bracing.

except end verticals.

1 Row at midpt

Philip J. O'Regan PE No.58126 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see 

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job     | Truss | Truss Type      | Qty | Ply | GIEGEIG CONST LOT 33 CW  |
|---------|-------|-----------------|-----|-----|--------------------------|
| 3098537 | T02   | Half Hip Girder | 1   | 1   | T27022001                |
|         |       |                 |     |     | Job Reference (optional) |

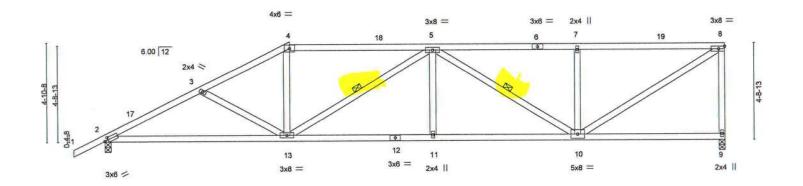
Builders FirstSource (Lake City,FL),

Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek İndustries, İnc. Thu Mar 3 11:35:21 2022 Page 2 ID:fRijugoliQj9qlqT\_5CiYdzq7NP-a4\_rxZ9Err6U3kJw07IXSKgUU7bJAw?evm5xElzeeWa

### LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
 Uniform Loads (plf)


Vert: 1-4=-54, 4-9=-54, 2-10=-20

Concentrated Loads (lb)

Vert: 4=-110(B) 7=-110(B) 9=-139(B) 15=-344(B) 14=-64(B) 5=-110(B) 18=-110(B) 19=-110(B) 20=-110(B) 21=-110(B) 22=-110(B) 23=-110(B) 24=-110(B) 25=-110(B) 


| Job                    | Truss          | Trus                   | з Туре   | Qty             | Ply        | GIEGEIG CONST LOT 33 CW                                        | 22002 |
|------------------------|----------------|------------------------|----------|-----------------|------------|----------------------------------------------------------------|-------|
| 3098537                | T03            | Half                   | Hip      | 1               | 1          | 90.0.4040                                                      |       |
| 0000001                | 1              |                        |          |                 |            | Job Reference (optional)                                       |       |
| Builders FirstSource ( | Lake City,FL), | Lake City, FL - 32055, |          |                 | 8.430 s Au | ug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:22 2022 Page | 1     |
|                        |                |                        |          | ID:fRijugoliQj9 | qlqT_5CiYd | dzq7NP-2HYD8vAsc9ELhuu6Zqpm?YCkYXqBvR6o8QqUmCzeeW              | Z     |
| , -1-6-0 ,             | 4-9-8          | 9-0-0                  | 15-10-10 | 1               | 22-10-     | -15 30-1-0                                                     |       |
| 1-6-0                  | 4-9-8          | 4-2-8                  | 6-10-10  |                 | 7-0-5      | 5 7-2-1                                                        |       |

Scale = 1:54.1



| <b></b>                                               | 9-0-0<br>9-0-0                                                                |                                        |                                                    | 15-10-10<br>6-10-10                       |                                                  |                               |                          | 30-1-0<br>7-2-1                  |                             |
|-------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|-------------------------------------------|--------------------------------------------------|-------------------------------|--------------------------|----------------------------------|-----------------------------|
| Plate Offsets (X,Y)-                                  |                                                                               |                                        |                                                    |                                           |                                                  |                               |                          | _                                |                             |
| LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0 | SPACING-<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code FBC2020/T | 2-0-0<br>1.25<br>1.25<br>YES<br>PI2014 | CSI.<br>TC 0.57<br>BC 0.75<br>WB 0.62<br>Matrix-MS | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in (loc)<br>-0.13 13-16<br>-0.29 13-16<br>0.07 9 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 161 lb | GRIP<br>244/190<br>FT = 20% |

BRACING-

TOP CHORD

**BOT CHORD** 

WEBS

LUMBER-

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

2x4 SP No.3 WEBS

REACTIONS.

(size) 9=0-3-8, 2=0-3-8

Max Horz 2=174(LC 12)

Max Uplift 9=-288(LC 9), 2=-212(LC 12) Max Grav 9=1106(LC 1), 2=1191(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

2-3=-2041/407, 3-4=-1818/390, 4-5=-1577/366, 5-7=-1412/364, 7-8=-1412/364,

8-9=-1042/304

**BOT CHORD** 2-13=-443/1796, 11-13=-487/1918, 10-11=-487/1918

WEBS

4-13=-57/519, 5-13=-506/180, 5-11=0/260, 5-10=-599/145, 7-10=-405/196,

8-10=-421/1638

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-2, Interior(1) 1-6-2 to 9-0-0, Exterior(2R) 9-0-0 to 13-3-1, Interior(1) 13-3-1 to 29-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 9=288 2=212



Structural wood sheathing directly applied or 3-10-11 oc purlins,

5-13, 5-10

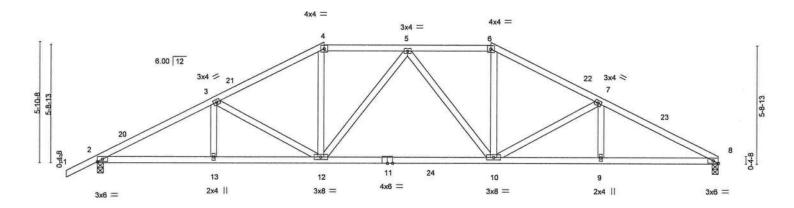
Rigid ceiling directly applied or 8-5-7 oc bracing.

except end verticals.

1 Row at midpt

Philip J. O'Regan PE No.58126 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITe® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see 

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job GIEGEIG CONST. - LOT 33 CW Truss Truss Type Qty T27022003 3098537 T04 Hip Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:23 2022 Page 1 ID:fRijugoliQj9qlqT\_5CiYdzq7NP-WT6bMFAUNTMCI2TJ7YK?XIIzRx9UeyTxN4a1lezeeWY 15-0-8 4-0-8 19-1-0 4-0-8

Scale = 1:53.9



|             | -        | 5-7-15          | 11-0-0 |           | 19-1-0   |             |        | 24-5-1 | 30-1-0         |          |
|-------------|----------|-----------------|--------|-----------|----------|-------------|--------|--------|----------------|----------|
|             |          | 5-7-15          | 5-4-1  | 4         | 8-1-0    |             | - 8    | 5-4-1  | 5-7-15         | 1        |
| Plate Offse | ts (X,Y) | [8:0-2-15,Edge] |        |           |          |             |        |        |                |          |
| LOADING     | (psf)    | SPACING-        | 2-0-0  | CSI.      | DEFL.    | in (loc)    | l/defl | L∕d    | PLATES         | GRIP     |
| TCLL        | 20.0     | Plate Grip DOL  | 1.25   | TC 0.31   | Vert(LL) | -0.23 10-12 | >999   | 240    | MT20           | 244/190  |
| TCDL        | 7.0      | Lumber DOL      | 1.25   | BC 0.81   | Vert(CT) | -0.41 10-12 | >877   | 180    |                |          |
| BCLL        | 0.0 *    | Rep Stress Incr | YES    | WB 0.30   | Horz(CT) | 0.09 8      | n/a    | n/a    |                |          |
| BCDL        | 10.0     | Code FBC2020/T  | PI2014 | Matrix-MS |          |             |        |        | Weight: 156 lb | FT = 20% |

BRACING-

TOP CHORD

**BOT CHORD** 

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.3

(size) 8=0-3-8, 2=0-3-8

Max Horz 2=102(LC 12)

Max Uplift 8=-238(LC 13), 2=-270(LC 12) Max Grav 8=1202(LC 2), 2=1271(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2228/431, 3-4=-1821/373, 4-5=-1572/363, 5-6=-1575/359, 6-7=-1825/375,

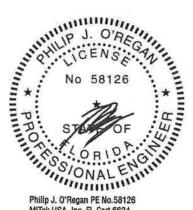
7-8=-2233/442

BOT CHORD 2-13=-407/1953, 12-13=-407/1953, 10-12=-242/1657, 9-10=-338/1969, 8-9=-338/1969 **WEBS** 

3-12=-428/188, 4-12=-80/599, 5-12=-273/116, 5-10=-271/114, 6-10=-80/602,

7-10=-442/198

### NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-2, Interior(1) 1-6-2 to 11-0-0, Exterior(2R) 11-0-0 to 15-0-8, Interior(1) 15-0-8 to 19-1-0, Exterior(2R) 19-1-0 to 23-4-1, Interior(1) 23-4-1 to 30-1-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=238, 2=270.



Structural wood sheathing directly applied or 3-8-7 oc purlins.

Rigid ceiling directly applied or 9-2-11 oc bracing.

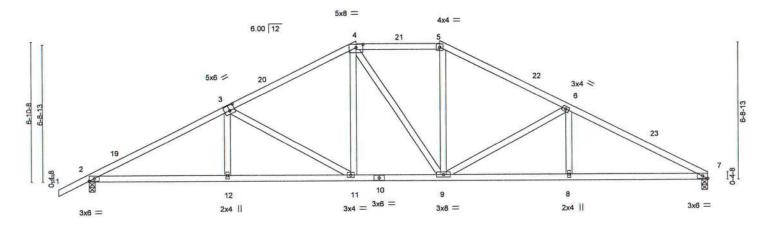
Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTE-80 connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see 
ANS/TPH Quality Criteria, DSB-39 and BCSI Building Comp Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GIEGEIG CONST. - LOT 33 CW Qty Job Truss Truss Type T27022004 Hip T05 3098537 Job Reference (optional) 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:23 2022 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055,


ID:fRijugoliQj9qlqT\_5CiYdzq7NP-WT6bMFAUNTMCl2TJ7YK?XllwCxCmeunxN4a1lezeeWY

30-1-0 6-8-15

Structural wood sheathing directly applied or 3-8-1 oc purlins.

Rigid ceiling directly applied or 9-3-4 oc bracing.

Scale = 1:54.2



|             | V2         | 6-8-15                        | v.             | 13-0-0   |      | 17-1-0               | - 73           |       | 23-4-1       |     | 30-1-0         |                 |
|-------------|------------|-------------------------------|----------------|----------|------|----------------------|----------------|-------|--------------|-----|----------------|-----------------|
|             | -          | 6-8-15                        | 1              | 6-3-1    | 1    | 4-1-0                | '              |       | 6-3-1        |     | 6-8-15         |                 |
| Plate Offse | ets (X,Y)- | [3:0-3-0,0-3-0], [4:0-4-0,0-1 | -15], [7:0-2-1 | 5,Edge]  |      |                      |                |       |              |     |                |                 |
| LOADING     |            | SPACING-                      | 2-0-0          | CSI.     | 0.45 | DEFL.                |                | (loc) | I/defl       | L/d | PLATES<br>MT20 | GRIP<br>244/190 |
| TCLL        | 7.0        | Plate Grip DOL<br>Lumber DOL  | 1.25<br>1.25   | TC<br>BC | 0.45 | Vert(LL)<br>Vert(CT) | -0.09<br>-0.19 | 11-12 | >999<br>>999 | 180 | WIIZU          | 244/190         |
| BCLL        | 0.0        | Rep Stress Incr               | YES            | WB       | 0.53 | Horz(CT)             | 0.08           | 7     | n/a          | n/a | Moight: 156 lb | FT = 20%        |
| BCDL        | 10.0       | Code FBC2020/TPI              | 2014           | Matrix   | c-MS |                      |                |       |              |     | Weight: 156 lb | F1 = 20%        |

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.3

(size) 7=0-3-8, 2=0-3-8

Max Horz 2=118(LC 12) Max Uplift 7=-234(LC 13), 2=-267(LC 12) Max Grav 7=1111(LC 1), 2=1196(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-2035/413, 3-4=-1513/362, 4-5=-1278/354, 5-6=-1516/362, 6-7=-2051/421 TOP CHORD 2-12=-394/1760, 11-12=-395/1758, 9-11=-197/1276, 8-9=-315/1777, 7-8=-315/1777 BOT CHORD 3-12=0/273, 3-11=-553/226, 4-11=-80/396, 5-9=-71/396, 6-9=-571/235, 6-8=0/274 WEBS

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-2, Interior(1) 1-6-2 to 13-0-0, Exterior(2E) 13-0-0 to 17-1-0, Exterior(2R) 17-1-0 to 21-4-1, Interior(1) 21-4-1 to 30-1-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=234, 2=267.



Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. 



Job Truss Truss Type Qty GIEGEIG CONST. - LOT 33 CW T27022005 3098537 T06 Common 3 Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:24 2022 Page 1 ID:fRijugoliQj9qlqT\_5CiYdzq7NP-\_fgzZbB68mU2wC2VhFrE4zl2uLWANPe4bkJbq4zeeWX 15-0-8 7-1-14 Scale = 1:52.1 4x6 = 6.00 12 5x8 = 5x8 > 9 8 7 2x4 || 5x8 = 2x4 || 3x6 = 3x6 = 7-10-10 7-10-10 15-0-8 7-1-14 Plate Offsets (X,Y)-[3:0-4-0,0-3-0], [5:0-4-0,0-3-0], [6:0-2-15,Edge], [8:0-4-0,0-3-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL I/defl PLATES GRIP (loc) L/d TCLL 20.0 Plate Grip DOL 1.25 TC 0.64 Vert(LL) -0.12 7-15 >999 240 244/190 MT20 TCDL 7.0 Lumber DOL 1.25 BC 0.72 Vert(CT) -0.26 7-15 >999 180 BCLL 00 Rep Stress Incr YES WB 0.30 Horz(CT) 0.08 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-MS

BRACING-

TOP CHORD

**BOT CHORD** 

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WEBS

REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=134(LC 12)

Max Uplift 2=-264(LC 12), 6=-231(LC 13) Max Grav 2=1196(LC 1), 6=1111(LC 1)

FORCES. (ib) - Max. Comp./Max. Ten. - All forces 250 (ib) or less except when shown. TOP CHORD 2-3=-1984/390, 3-4=-1352/330, 4-5=-1353/336, 5-6=-1994/401 BOT CHORD 2-9=-381/1704, 8-9=-382/1701, 7-8=-286/1712, 6-7=-286/1715 WEBS 4-8=-142/792, 5-8=-692/281, 5-7=0/320, 3-8=-679/274, 3-9=0/318

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-2, Interior(1) 1-6-2 to 15-0-8, Exterior(2R) 15-0-8 to 18-0-10, Interior(1) 18-0-10 to 30-1-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2=264, 6=231.



Weight: 143 lb

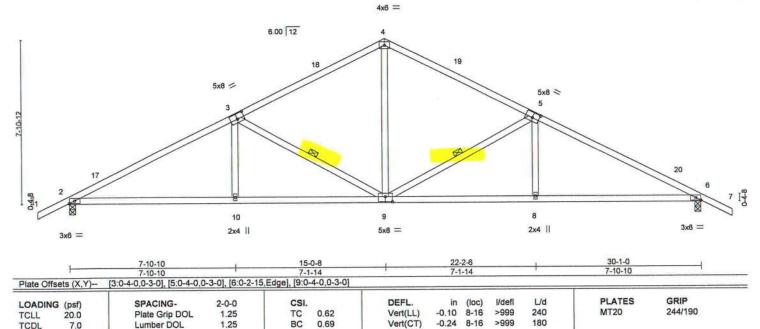
Structural wood sheathing directly applied or 3-3-5 oc purlins.

Rigid ceiling directly applied or 9-3-6 oc bracing.

FT = 20%

Philip J. O'Regan PE No.58126 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss was and for the property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-39 and BCSI Building Composately Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801



6904 Parke East Blvd. Tampa, FL 36610

Qty GIEGEIG CONST. - LOT 33 CW Truss Truss Type Job T27022006 5 T07 Common 3098537 Job Reference (optional) 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:25 2022 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:fRijugoliQj9qlqT\_5CiYdzq7NP-SsEMnxCkv4cvYLdhFzNTcAqEyltr6swEqO38NXzeeWW 30-1-0 7-10-10 7-10-10 7-10-10

Scale = 1:53.0



Horz(CT)

BRACING-

WEBS

TOP CHORD

BOT CHORD

0.08

6

1 Row at midpt

n/a

n/a

Rigid ceiling directly applied or 9-5-1 oc bracing.

Structural wood sheathing directly applied or 3-4-12 oc purlins.

5-9, 3-9

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** WEBS 2x4 SP No.3

7.0

0.0

10.0

REACTIONS. (size) 2=0-3-8, 6=0-3-8

Max Horz 2=123(LC 16) Max Uplift 2=-263(LC 12), 6=-263(LC 13)

Lumber DOL

Rep Stress Incr

Code FBC2020/TPI2014

Max Grav 2=1194(LC 1), 6=1194(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1979/390, 3-4=-1348/329, 4-5=-1348/329, 5-6=-1979/390 TOP CHORD 2-10=-370/1700, 9-10=-370/1697, 8-9=-258/1697, 6-8=-257/1700 BOT CHORD 4-9=-135/787, 5-9=-678/274, 5-8=0/318, 3-9=-678/274, 3-10=0/318 WEBS

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-2, Interior(1) 1-6-2 to 15-0-8, Exterior(2R) 15-0-8 to 18-0-10, Interior(1) 18-0-10 to 31-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-MS

0.30

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=263, 6=263.



Weight: 145 lb

FT = 20%

Philip J. O'Regan PE No.58126 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. 



6904 Parke East Blvd. Tampa, FL 36610

| bb                   | Truss                                 | Truss Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | Qty        | Ply           | GIEGEIG CO      | NST LOT 33       | 3 CW             |                      |
|----------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|---------------|-----------------|------------------|------------------|----------------------|
| 098537               | тов                                   | Roof Special                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 3          | 1             |                 |                  |                  | T270220              |
|                      |                                       | HICKORE MESSON.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | - Par      |               | Job Reference   |                  |                  |                      |
| Builders FirstSource | (Lake City,FL), Lake Ci               | ty, FL - 32055,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ID-(D):110 | 8.430 s Au    | g 16 2021 MiTel | k Industries, Ir | c. Thu Mar 3     | 11:35:27 2022 Page 1 |
| , 3                  | 3-2-15 6-0-0 7                        | -10-10 , 15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-8 | 19-5-0     | did i _oci to | 24-6-1          | D?Rnsanim4i      |                  | Cad0XHiYFRPzeeWU     |
| 3                    | 3-2-15 2-9-1 1                        | -10-10 7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -14 | 4-4-8      |               | 5-1-1           |                  | 30-1-0<br>5-6-15 | 31-7-0<br>1-6-0      |
|                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4x6 | =          |               |                 |                  |                  | Scale = 1:5          |
|                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |               |                 |                  |                  |                      |
|                      |                                       | 6.00 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5   |            |               |                 |                  |                  |                      |
|                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |               |                 |                  |                  |                      |
|                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24  | 25         | 5 3x4 ≫       |                 |                  |                  |                      |
|                      |                                       | 5x6 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | //  |            | 6             |                 |                  |                  |                      |
|                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            | A             | 3x6 ≥           |                  |                  |                      |
| 5                    | 3x4 =                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | //         |               | 7               | 3x4 <>           |                  |                      |
| -10-12               | 3 /                                   | A PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF |     | //         |               |                 | 8                |                  |                      |
|                      | 6x8 =                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2   | //         |               |                 | Sec.             |                  |                      |
|                      | 2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | //         | - 11          | //              |                  |                  |                      |
|                      | 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | /          |               |                 |                  | 2                | 6                    |
| m 1//                | 16                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |            | 13            |                 |                  |                  | 9 , 9                |
| 14                   | 4                                     | x12 = <sup>15</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14  | DX12       | = 8           |                 | •                |                  | 9 10 1 4 0 0         |
| ⊠                    | 17                                    | 3x4 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3x8 | =          | 12            |                 | 11               |                  | 8 0                  |
| 3x6 =                | 3x8 =                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            | 2x4           |                 | 5x6 =            |                  | 3x6 =                |
| 87777                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |               |                 |                  |                  |                      |
|                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |            |               |                 |                  |                  |                      |
| 1                    | 6-0-0 , 7                             | -10-10 , 15-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0-8 | 19-5-0     | 4             | 24-6-1          | ,                | 30-1-0           | - v                  |
| ate Offsets (X,Y)-   | 6-0-0 1<br>[2:0-2-4,0-2-0], [4:0-3-0, | -10-10 15-0<br>-10-10 7-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14  | 4-4-8      |               | 5-1-1           |                  | 5-6-15           |                      |
|                      | 12.0-2-4 0-2-01 14.0-3-0              | 0-3-01 [9:0-2-15 Edge]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |            |               |                 |                  |                  |                      |

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

WEBS

TOP CHORD

**BOT CHORD** 

-0.17

0.17

-0.35 14-15

15 >999

9

1 Row at midpt

>999

n/a

240

180

n/a

Rigid ceiling directly applied or 7-11-0 oc bracing.

MT20

Structural wood sheathing directly applied or 3-2-10 oc purlins.

4-14

Weight: 172 lb

244/190

FT = 20%

LUMBER-

TCLL

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2

20.0

7.0

00

10.0

2x4 SP No.2 "Except" **BOT CHORD** 

6-12: 2x4 SP No.3

WEBS 2x4 SP No.3

REACTIONS.

(size) 1=0-3-8, 9=0-3-8

Max Horz 1=-134(LC 17) Max Uplift 1=-231(LC 12), 9=-264(LC 13) Max Grav 1=1111(LC 1), 9=1196(LC 1)

Plate Grip DOL

Rep Stress Incr

Code FBC2020/TPI2014

Lumber DOL

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2148/458, 2-3=-2778/593, 3-4=-2467/525, 4-5=-1541/351, 5-6=-1501/353,

6-8=-2033/414, 8-9=-2076/411

**BOT CHORD** 1-17=-472/1886, 16-17=-235/979, 3-16=-112/399, 15-16=-553/2519, 14-15=-480/2225,

1.25

1 25

YES

TC

BC

WB 0.84

Matrix-MS

0.62

0.76

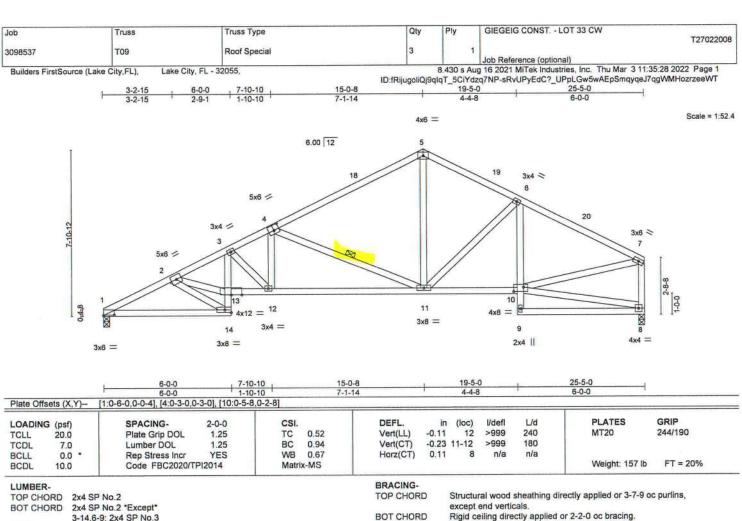
13-14=-240/1773, 6-13=-75/445, 9-11=-287/1804

WEBS 2-17=-1822/489, 2-16=-510/2198, 3-15=-396/101, 4-15=-45/521, 4-14=-1012/352,

5-14=-180/993, 6-14=-661/232, 11-13=-281/1727

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-1-1, Interior(1) 3-1-1 to 15-0-8, Exterior(2R) 15-0-8 to 18-0-10, Interior(1) 18-0-10 to 31-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=231, 9=264.




Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 4,2022

MRNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss evant truss systems, see ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





WEBS

1 Row at midpt

3-14.6-9: 2x4 SP No.3

2x4 SP No.3 WEBS

REACTIONS.

(size) 1=0-3-8, 8=0-3-8

Max Horz 1=159(LC 12)

Max Uplift 1=-203(LC 12), 8=-174(LC 13) Max Grav 1=935(LC 1), 8=935(LC 1)

FORCES. (ib) - Max. Comp./Max. Ten. - All forces 250 (ib) or less except when shown

TOP CHORD

1-2=-1773/411, 2-3=-2241/536, 3-4=-1954/468, 4-5=-1090/300, 5-6=-1053/315, 6-7=-1176/296, 7-8=-877/238

**BOT CHORD** 1-14=-477/1556, 13-14=-239/821, 3-13=-114/349, 12-13=-559/2017, 11-12=-485/1768,

10-11=-208/991

2-14=-1510/497, 2-13=-519/1766, 3-12=-334/102, 4-12=-46/482, 4-11=-954/354, WEBS

5-11=-133/600, 7-10=-208/984

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-1-1, Interior(1) 3-1-1 to 15-0-8, Exterior(2R) 15-0-8 to 18-0-8, Interior(1) 18-0-8 to 25-3-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=203, 8=174.



Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

\*\*ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information\*\* available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801



GIEGEIG CONST. - LOT 33 CW Job Truss Truss Type Qty Ply T27022009 3098537 T10 Common Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:29 2022 Page 1 ID:fRijugoliQj9qlqT\_5CiYdzq7NP-LdTsclFFyJ6L0zwTUoRPn0?vdMEA2fEql01MWlzeeWS 7-10-10 7-10-10 15-0-8 25-5-0 3-2-10 4x6 = Scale = 1:49 5 6.00 12 5x8 = 3x4 > 7-10-12 3x4 > × 10 7 3x6 = 2x4 || 3x8 = 2x4 || 3x6 = Plate Offsets (X,Y)-[2:0-4-0,0-3-0] LOADING (psf) SPACING-2-0-0 CSI DEFL (loc) I/defl **PLATES** GRIP Plate Grip DOL TCLL 20.0 1.25 TC 0.64 Vert(LL) 0.11 10-13 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 0.66 Vert(CT) -0.23 10-13 >999 180 BCLL 0.0 Rep Stress Incr YES WB 0.34 Horz(CT) 0.04 n/a n/a Code FBC2020/TPI2014 BCDL 10.0 Matrix-MS Weight: 134 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 3-9-0 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals. 2x4 SP No.3 WEBS **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 1 Row at midpt 2-8, 4-8

REACTIONS. (size) 1=0-3-8, 6=0-3-8

Max Horz 1=159(LC 12)

Max Uplift 1=-203(LC 12), 6=-174(LC 13) Max Grav 1=935(LC 1), 6=935(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1608/361, 2-3=-966/281, 3-4=-961/278, 4-5=-781/195, 5-6=-924/220

**BOT CHORD** 1-10=-381/1370, 8-10=-381/1367, 7-8=-159/698

WEBS 2-10=0/318, 2-8=-693/281, 3-8=-79/487, 4-7=-444/166, 5-7=-207/900

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

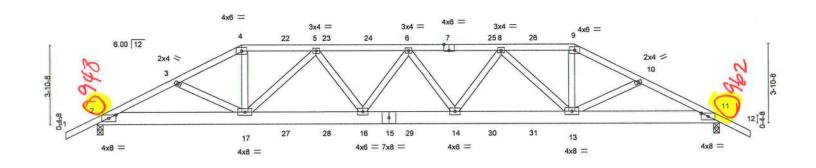
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 15-0-8, Exterior(2R) 15-0-8 to 18-0-8, Interior(1) 18-0-8 to 25-3-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=203, 6=174.



Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITE&S connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801



| Job                           |                                          | Truss                                   |                         | Truss Type |        | Qty        | Ply         | GIEGEIG CO     | NST LOT 33 CW         |                   | T27022010        |
|-------------------------------|------------------------------------------|-----------------------------------------|-------------------------|------------|--------|------------|-------------|----------------|-----------------------|-------------------|------------------|
| 3098537                       |                                          | T11                                     |                         | Hip Girder |        | 1          | 1           |                |                       |                   | 12/022010        |
|                               |                                          |                                         |                         |            |        |            |             | Job Referenc   | e (optional)          |                   | Late Book Street |
| Builders FirstSou             | irce (Lake Ci                            | ty.FL).                                 | Lake City, F            | L - 32055. |        |            | 8.430 s Au  | g 16 2021 MiTe | ek Industries, Inc. T | hu Mar 3 11:35:30 | 2022 Page 1      |
| entranche sent little a round | M-122-1000000000000000000000000000000000 | *************************************** | PRODUCTO (2000 € 14 (2) |            |        | ID:fRijugo | iQi9alaT 50 | CiYdzg7NP-pp1  | FqeGtjcECe7Vf1W       | yeJEY2imgYn1nz    | gmv2kzeeWR       |
| 1-6-0 .                       | 3-10-15                                  | 1                                       | 7-0-0                   | 10-7-2     | 15-0-8 | 19-5-15    |             | 23-1-0         | 26-2-1                | 30-1-0            | , 31-7-0         |
| 1-6-0                         | 3-10-15                                  |                                         | 3-1-1                   | 3-7-2      | 4-5-7  | 4-5-7      | -           | 3-7-2          | 3-1-1                 | 3-10-15           | 1-6-0            |

Scale = 1:53.9



|             | 1          | 7-0-0                       |               | 12-9-13     |      | 17-3-3   |       | 23-   | 1-0    |     | 30-1-0         |          |
|-------------|------------|-----------------------------|---------------|-------------|------|----------|-------|-------|--------|-----|----------------|----------|
|             | 1          | 7-0-0                       |               | 5-9-13      |      | 4-5-6    |       | 5-9   | -13    | 100 | 7-0-0          |          |
| Plate Offse | ets (X,Y)- | [2:0-4-0,0-1-15], [7:0-3-0, | Edge], [11:0- | 4-0,0-1-15] |      |          |       |       |        |     |                |          |
| LOADING     | (psf)      | SPACING-                    | 2-0-0         | CSI.        |      | DEFL.    | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |
| TCLL        | 20.0       | Plate Grip DOL              | 1.25          | TC          | 0.75 | Vert(LL) | 0.28  | 14-16 | >999   | 240 | MT20           | 244/190  |
| TCDL        | 7.0        | Lumber DOL                  | 1.25          | BC          | 0.27 | Vert(CT) | -0.45 | 14-16 | >803   | 180 |                |          |
| BCLL        | 0.0        | Rep Stress Incr             | NO            | WB          | 0.64 | Horz(CT) | 0.08  | 11    | n/a    | n/a |                |          |
| BCDL        | 10.0       | Code FBC2020/T              | PI2014        | Matri       | x-MS |          |       |       |        |     | Weight: 200 lb | FT = 20% |

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x8 SP 2400F 2.0E

2x4 SP No.3

WEBS

REACTIONS. (size) 2=0-3-8, 11=0-3-8

Max Horz 2=63(LC 12)

Max Uplift 2=-948(LC 8), 11=-962(LC 9)

Max Grav 2=2268(LC 1), 11=2303(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-4438/1934, 3-4=-4290/1894, 4-5=-3876/1746, 5-6=-5204/2310, 6-8=-5224/2308,

8-9=-3942/1771, 9-10=-4365/1924, 10-11=-4513/1964

**BOT CHORD** 2-17=-1718/3926, 16-17=-2103/4861, 14-16=-2333/5377, 13-14=-2108/4898,

11-13=-1682/3992

4-17=-685/1590, 5-17=-1426/674, 5-16=-297/658, 6-16=-347/186, 6-14=-304/161, WEBS

8-14=-274/618, 8-13=-1378/644, 9-13=-664/1560

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=948, 11=962.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 128 lb down and 90 lb up at 7-0-0, 110 lb down and 90 lb up at 9-0-12, 110 lb down and 90 lb up at 11-0-12, 110 lb down and 90 lb up at 13-0-12, 110 lb down and 83 ib up at 15-0-8, 110 ib down and 90 ib up at 17-0-4, 110 ib down and 90 ib up at 19-0-4, and 110 ib down and 90 ib up at 21-0-4, and 221 lb down and 168 lb up at 23-1-0 on top chord, and 344 lb down and 241 lb up at 7-0-0, 86 lb down and 60 lb up at 9-0-12, 86 lb down and 60 lb up at 11-0-12, 86 lb down and 60 lb up at 13-0-12, 86 lb down and 60 lb up at 15-0-8, 86 lb down and 60 lb up at 17-0-4, 86 lb down and 60 lb up at 19-0-4, and 86 lb down and 60 lb up at 21-0-4, and 344 lb down and 241 lb up at 23-0-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard



Structural wood sheathing directly applied or 2-0-9 oc purlins.

Rigid ceiling directly applied or 7-10-5 oc bracing.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIL-4/13 rev. 5/19/2/20 BEFORE USE.

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see 

ANSITPIT Quality Criteria, DSB-39 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job     | Truss | Truss Type | Qty | Ply | GIEGEIG CONST LOT 33 CW  |
|---------|-------|------------|-----|-----|--------------------------|
| 3098537 | T11   | Hip Girder | 1   | 1   | T27022010                |
|         |       |            |     |     | Job Reference (optional) |

Builders FirstSource (Lake City,FL),

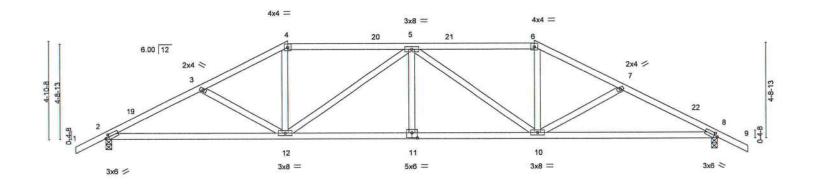
Lake City, FL - 32055,

8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:30 2022 Page 2 ID:fRijugoliQj9qlqT\_5CiYdzq7NP-pp1FqeGtjcECe7Vf1WyeJEY2imgYn1nz\_gmv2kzeeWR

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
 Uniform Loads (plf)

Vert: 1-4=-54, 4-9=-54, 9-12=-54, 2-11=-20


Concentrated Loads (lb)

Vert: 4=-110(B) 7=-110(B) 9=-174(B) 17=-344(B) 16=-64(B) 6=-110(B) 14=-64(B) 13=-344(B) 22=-110(B) 23=-110(B) 24=-110(B) 25=-110(B) 26=-110(B) 27=-64(B) 28=-64(B) 29=-64(B) 30=-64(B) 31=-64(B)



| Job                  | Truss           | 1                   | Truss Type | Qty               | Ply       | GIEGEIG CONST LOT 33 C            | :W             | T07000044  |
|----------------------|-----------------|---------------------|------------|-------------------|-----------|-----------------------------------|----------------|------------|
| 3098537              | T12             | 1                   | Hip        | 1                 | 1         | 1                                 |                | T27022011  |
| 000000               | 1,17-           |                     |            |                   |           | Job Reference (optional)          |                |            |
| Builders FirstSource | (Lake City,FL), | Lake City, FL - 320 | 055,       |                   |           | ug 16 2021 MiTek Industries, Inc. |                |            |
|                      |                 |                     |            | ID:fRijugoliQj9ql | qT_5CiYdz | q7NP-H0bd1_HVUwM3GG4rbDT          | tsR4lq9vQWWE6C | KWSaAzeeWQ |
| , -1-6-0 ,           | 4-9-8           | 9-0-0               | 15-0-8     | , 21              | -1-0      | 25-3-8                            | 30-1-0         | , 31-7-0   |
| 1-6-0                | 4-9-8           | 4-2-8               | 6-0-8      | 6                 | -0-8      | 4-2-8                             | 4-9-8          | 1-6-0      |

Scale = 1:54.8



|              | 0          | 9-0-0                             |                   |              | 15-0-8       | 4        | 21-1-0     |          |     | 30-1-0                                  |          |
|--------------|------------|-----------------------------------|-------------------|--------------|--------------|----------|------------|----------|-----|-----------------------------------------|----------|
|              |            | 9-0-0                             |                   |              | 6-0-8        |          | 6-0-8      |          |     | 9-0-0                                   |          |
| Plate Offs   | sets (X,Y) | [2:0-1-15,0-1-8], [8:0-1-1        | 5,0-1-8], [11:0-: | 3-0,0-3-0]   |              |          |            |          |     |                                         |          |
| OADING       | G (psf)    | SPACING-                          | 2-0-0             | CSI.         |              | DEFL.    | in (loc    | ) I/defl | L/d | PLATES                                  | GRIP     |
| CLL          | 20.0       | Plate Grip DOL                    | 1.25              | TC           | 0.41         | Vert(LL) | -0.14 12-1 | >999     | 240 | MT20                                    | 244/190  |
| CDL          | 7.0        | Lumber DOL                        | 1.25              | BC           | 0.74         | Vert(CT) | -0.30 12-1 | >999     | 180 | 1 0 0 000000000000000000000000000000000 |          |
| BCLL<br>BCDL | 0.0 *      | Rep Stress Incr<br>Code FBC2020/T | YES<br>PI2014     | WB<br>Matrix | 0.57<br>c-MS | Horz(CT) | 0.09       | 8 n/a    | n/a | Weight: 152 lb                          | FT = 20% |

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

(size) 2=0-3-8, 8=0-3-8

Max Horz 2=76(LC 12)

Max Uplift 2=-273(LC 12), 8=-273(LC 13) Max Grav 2=1194(LC 1), 8=1194(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2049/455, 3-4=-1822/386, 4-5=-1578/374, 5-6=-1578/374, 6-7=-1822/386,

7-8=-2049/455

BOT CHORD 2-12=-409/1804, 11-12=-329/1923, 10-11=-329/1923, 8-10=-333/1804

WEBS 4-12=-74/530, 5-12=-519/167, 5-10=-519/167, 6-10=-74/530

### NOTES

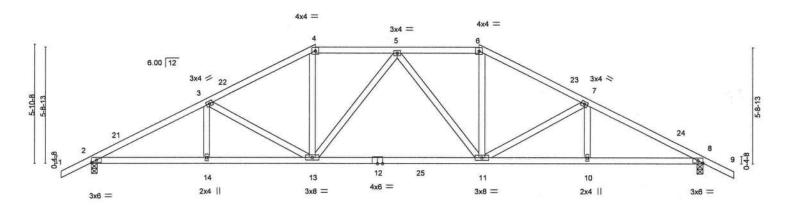
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-2, Interior(1) 1-6-2 to 9-0-0, Exterior(2R) 9-0-0 to 13-3-1, Interior(1) 13-3-1 to 21-1-0, Exterior(2R) 21-1-0 to 25-5-6, Interior(1) 25-5-6 to 31-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
  to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \*This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=273, 8=273.



Structural wood sheathing directly applied or 3-11-5 oc purlins.

Rigid ceiling directly applied or 9-2-9 oc bracing.


Philip J. O'Regan PE No.58126 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022



| Job                    | Truss               | Truss Type        |        | Qty             | Ply        | GIEGEIG CONST L         | OT 33 CW                   |                 |
|------------------------|---------------------|-------------------|--------|-----------------|------------|-------------------------|----------------------------|-----------------|
| 3098537                | T13                 | Hip               |        | 1               | 1          |                         |                            | T27022012       |
|                        | A-652.1             | 1.75              |        |                 |            | Job Reference (option   | al)                        |                 |
| Builders FirstSource ( | Lake City,FL), Lake | City, FL - 32055, |        | VALUE OF STREET | 8.430 s Au | g 16 2021 MiTek Industr | ries, Inc. Thu Mar 3 11:35 | :32 2022 Page 1 |
|                        |                     |                   |        | ID:fRijugoliQ   | j9qlqT_5Ci | Ydzq7NP-IC9?FKH7FEI     | UwtQf19x?6PfdVNZDdF1s      | GR_F06dzeeWP    |
| , -1-6-0               | 5-7-15              | 11-0-0            | 15-0-8 | 19-1-0          | 1          | 24-5-1                  | 30-1-0                     | 31-7-0          |
| 1-6-0                  | 5-7-15              | 5-4-1             | 4-0-8  | 4-0-8           |            | 5-4-1                   | 5-7-15                     | 1-6-0           |

Scale = 1:54 8



|             | ļ.,,,,,    | 5-7-15          | 11-0-0 |          | 19-1-0       |             | 24-    |     | 30-1-0         |          |
|-------------|------------|-----------------|--------|----------|--------------|-------------|--------|-----|----------------|----------|
|             |            | 5-7-15          | 5-4-1  |          | 8-1-0        |             | 5-4    | 4-1 | 5-7-15         |          |
| Plate Offse | ets (X,Y)- | [8:0-2-15,Edge] |        |          |              |             |        |     |                |          |
| LOADING     | (psf)      | SPACING-        | 2-0-0  | CSI.     | DEFL.        | in (loc)    | l/defl | L/d | PLATES         | GRIP     |
| TCLL        | 20.0       | Plate Grip DOL  | 1.25   | TC 0.    | .29 Vert(LL) | -0.23 11-13 | >999   | 240 | MT20           | 244/190  |
| TCDL        | 7.0        | Lumber DOL      | 1.25   | BC 0.    | .81 Vert(CT) | -0.41 11-13 | >880   | 180 | 1071.          |          |
| BCLL        | 0.0        | Rep Stress Incr | YES    | WB 0.    | .29 Horz(CT) | 0.09 8      | n/a    | n/a | -0.07 ( ,-     |          |
| BCDL        | 10.0       | Code FBC2020/T  | PI2014 | Matrix-M | AS           |             |        |     | Weight: 158 lb | FT = 20% |

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No 3 WERS

BRACING-

TOP CHORD Structural wood sheathing directly applied or 3-9-8 oc purlins. **BOT CHORD** Rigid ceiling directly applied or 9-4-4 oc bracing.

(size) 2=0-3-8, 8=0-3-8 REACTIONS.

Max Horz 2=-91(LC 17)

Max Uplift 2=-270(LC 12), 8=-270(LC 13) Max Grav 2=1270(LC 2), 8=1270(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2225/430, 3-4=-1818/366, 4-5=-1569/357, 5-6=-1569/357, 6-7=-1818/366,

7-8=-2225/431

**BOT CHORD** 2-14=-396/1950, 13-14=-396/1950, 11-13=-224/1653, 10-11=-307/1950, 8-10=-307/1950


**WEBS** 3-13=-429/188, 4-13=-79/598, 5-13=-271/115, 5-11=-271/114, 6-11=-79/598,

7-11=-429/189

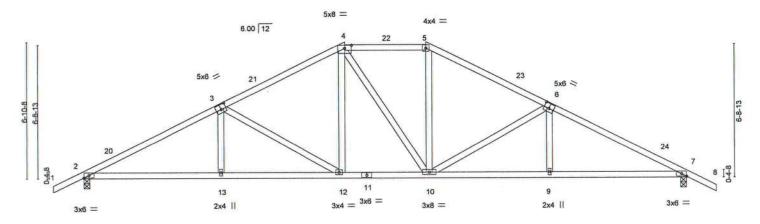
### NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-2, Interior(1) 1-6-2 to 11-0-0, Exterior(2R) 11-0-0 to 15-0-8, Interior(1) 15-0-8 to 19-1-0, Exterior(2R) 19-1-0 to 23-4-1, Interior(1) 23-4-1 to 31-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=270, 8=270.



Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. 



| Job                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Truss                                   | Truss Type  | Qty      | Ply          | GIEGEIG CONS        | T LOT 33 CW                    | T27022013        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|----------|--------------|---------------------|--------------------------------|------------------|
| 3098537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T14                                     | HIP         | 1        |              | 1                   |                                |                  |
| 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.000                                   |             |          |              | Job Reference (or   | ptional)                       |                  |
| Builders FirstSource (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Lake City,FL), Lake City               | FL - 32055, |          | 8.430 s A    | ug 16 2021 MiTek In | dustries, Inc. Thu Mar 3 11:35 | 5:33 2022 Page 1 |
| CONCERNO PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF THE PROCESSOR OF T | * Carlo Control & March Control Control |             | ID:fRiji | goliQj9qlqT_ | 5CiYdzq7NP-DOjNS    | gll0XcnVaEEjeWLxsAeuzdc_F      | ldPge?Zf3zeeWO   |
| , -1-6-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6-10-2                                  | 13-0-0      | 17-1-0   | 2            | 23-2-14             | 30-1-0                         | 31-7-0           |
| 1-6-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6-10-2                                  | 6-1-14      | 4-1-0    |              | 6-1-14              | 6-10-2                         | 1-6-0            |

Scale = 1:55.7



|             | 1          | 6-10-2                      | 4                | 13-0-0          | 1          | 17-1-0   |       | 23    | -2-14 | - I | 30-1-0         |          |
|-------------|------------|-----------------------------|------------------|-----------------|------------|----------|-------|-------|-------|-----|----------------|----------|
|             | 1          | 6-10-2                      |                  | 6-1-14          |            | 4-1-0    | 1     | 6     | 1-14  |     | 6-10-2         |          |
| Plate Offse | ets (X,Y)- | [3:0-3-0,0-3-0], [4:0-4-0,0 | -1-15], [6:0-3-0 | 0,0-3-0], [7:0- | 2-15,Edge] |          |       |       |       |     |                |          |
| LOADING     | (psf)      | SPACING-                    | 2-0-0            | CSI.            |            | DEFL.    | in    | (loc) | Vdefl | L/d | PLATES         | GRIP     |
| TCLL        | 20.0       | Plate Grip DOL              | 1.25             | TC              | 0.43       | Vert(LL) | -0.09 | 12    | >999  | 240 | MT20           | 244/190  |
| TCDL        | 7.0        | Lumber DOL                  | 1.25             | BC              | 0.57       | Vert(CT) | -0.19 | 12-13 | >999  | 180 | 2000, 2000     |          |
| BCLL        | 0.0 *      | Rep Stress Incr             | YES              | WB              | 0.51       | Horz(CT) | 0.08  | 7     | n/a   | n/a |                |          |
| BCDL        | 10.0       | Code FBC2020/T              | PI2014           | Matrix          | k-MS       |          |       |       |       |     | Weight: 158 lb | FT = 20% |

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS

BRACING-

TOP CHORD **BOT CHORD**  Structural wood sheathing directly applied or 3-9-8 oc purlins. Rigid ceiling directly applied or 9-4-12 oc bracing.

REACTIONS. (size) 2=0-3-8, 7=0-3-8

Max Horz 2=107(LC 12)

Max Uplift 2=-267(LC 12), 7=-267(LC 13)

Max Grav 2=1194(LC 1), 7=1194(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2029/411, 3-4=-1508/355, 4-5=-1272/352, 5-6=-1509/355, 6-7=-2028/411

2-13=-383/1754, 12-13=-383/1756, 10-12=-185/1272, 9-10=-291/1756, 7-9=-291/1754 3-13=0/273, 3-12=-556/226, 4-12=-80/395, 5-10=-71/396, 6-10=-555/226, 6-9=0/272 **BOT CHORD** 

WEBS

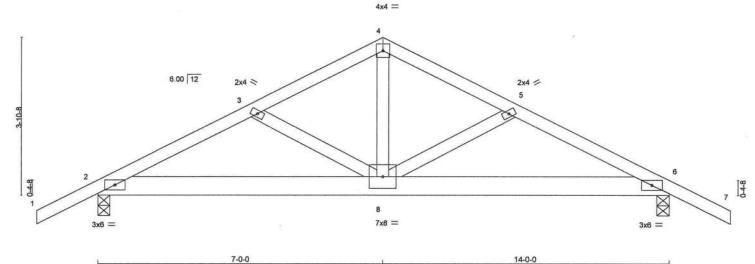
### NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-2, Interior(1) 1-6-2 to 13-0-0, Exterior(2E) 13-0-0 to 17-1-0, Exterior(2R) 17-1-0 to 21-4-1, Interior(1) 21-4-1 to 31-7-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=267, 7=267.



Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see 

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job Truss Type GIEGEIG CONST. - LOT 33 CW Truss Qty Ply T27022014 3098537 T15 QUEENPOST Job Reference (optional) 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:34 2022 Page 1 ID:fRijugoliQjqqt\_5CiYdzq7NP-haHlf0JOnrke7kpQGM1aU4it8N0LjwLZulk7BVzeeWN Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 3-10-15



|        |         |                 | 7-0-0  |       |      |          |       |       |        | 7-0-0 |               |          |
|--------|---------|-----------------|--------|-------|------|----------|-------|-------|--------|-------|---------------|----------|
| LOADIN | G (psf) | SPACING-        | 2-0-0  | CSI.  |      | DEFL.    | in    | (loc) | l/defl | L/d   | PLATES        | GRIP     |
| TCLL   | 20.0    | Plate Grip DOL  | 1.25   | TC    | 0.15 | Vert(LL) | 0.04  | 8-10  | >999   | 240   | MT20          | 244/190  |
| TCDL   | 7.0     | Lumber DOL      | 1.25   | BC    | 0.34 | Vert(CT) | -0.07 | 8-10  | >999   | 180   | 01/73/470000  |          |
| BCLL   | 0.0 *   | Rep Stress Incr | NO     | WB    | 0.35 | Horz(CT) | 0.02  | 6     | n/a    | n/a   |               |          |
| BCDL   | 10.0    | Code FBC2020/T  | PI2014 | Matri | x-MS |          |       |       |        |       | Weight: 76 lb | FT = 20% |

BRACING-

TOP CHORD

**BOT CHORD** 

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 2x6 SP No.2 **BOT CHORD** WEBS

2x4 SP No.3

(size) 2=0-3-8, 6=0-3-8

Max Horz 2=-63(LC 28)

Max Uplift 2=-324(LC 8), 6=-324(LC 9) Max Grav 2=910(LC 1), 6=910(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1508/580, 3-4=-1335/552, 4-5=-1335/552, 5-6=-1508/580

**BOT CHORD** 2-8=-516/1329, 6-8=-473/1329

WEBS 4-8=-400/923

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=324, 6=324,
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 93 lb down and 84 lb up at 7-0-0 on top chord, and 558 lb down and 362 lb up at 7-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 2-6=-20, 1-4=-54, 4-7=-54

Concentrated Loads (lb)

Vert: 4=-64(B) 8=-558(B)



Structural wood sheathing directly applied or 4-8-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITE® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2870 Crain Highway, Suite 203 Waldorf, MD 20801



| Job                | Truss                   | Truss Type          | Qty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ply         | GIEGEIG CONST LOT 33 CW                         | T27022015       |
|--------------------|-------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------|-----------------|
| 3098537            | T16                     | Common              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |                                                 |                 |
|                    |                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Job Reference (optional)                        |                 |
| Builders FirstSour | ce (Lake City,FL), Lake | e City, FL - 32055, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ig 16 2021 MiTek Industries, Inc. Thu Mar 3 11: |                 |
|                    |                         |                     | ID:fRijugo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | liQj9qlqT_5 | CiYdzq7NP-9nq8tLK0Y9sVkuNcq3Yp0HFyunK3          | SR9i7yUgjyzeeWM |
| -1-6-0             | 1                       | 7-0-0               | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA |             | 14-0-0                                          | 15-6-0          |
| 1-6-0              |                         | 7-0-0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 7-0-0                                           | 1-6-0           |
|                    |                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                 |                 |

Scale = 1:27.3 4x6 =

| 3-10-8 | 6.00 12 | 14 |          | 15 | 16 | 4     |
|--------|---------|----|----------|----|----|-------|
| 3x6 =  | 17      | 18 | 6<br>2x4 | 19 | 20 | 3x6 = |

| OADING (psf) | SPACING-        | 2-0-0  | CSI.  |      | DEFL.                | in    | (loc) | l/defl | L/d | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GRIP     |
|--------------|-----------------|--------|-------|------|----------------------|-------|-------|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| TCLL 20.0    | Plate Grip DOL  | 1.25   | TC    | 0.53 | Vert(LL)             | 200   | 6-12  | >999   | 240 | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 244/190  |
| TCDL 7.0     | Lumber DOL      | 1.25   | BC    | 0.50 | Vert(CT)             | -0.13 | 6-9   | >999   | 180 | Name of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last o |          |
| BCLL 0.0 *   | Rep Stress Incr | YES    | WB    | 0.12 | Horz(CT)             | 0.01  | 4     | n/a    | n/a | DAY-FOR II STANFARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| BCDL 10.0    | Code FBC2020/T  | PI2014 | Matri | x-MS | W-042 P-2-26 - 200 W |       |       |        |     | Weight: 54 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FT = 20% |

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 BRACING-

TOP CHORD **BOT CHORD**  Structural wood sheathing directly applied or 5-11-14 oc purlins. Rigid ceiling directly applied or 6-11-15 oc bracing.

14-0-0

REACTIONS. (size) 2=0-3-8, 4=0-3-8

Max Horz 2=63(LC 12)

Max Uplift 2=-148(LC 9), 4=-148(LC 8) Max Grav 2=599(LC 1), 4=599(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-719/787, 3-4=-719/788 BOT CHORD 2-6=-588/575, 4-6=-588/575

3-6=-440/320 WEBS

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 7-0-0, Exterior(2R) 7-0-0 to 10-0-0, Interior(1) 10-0-0 to 15-6-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

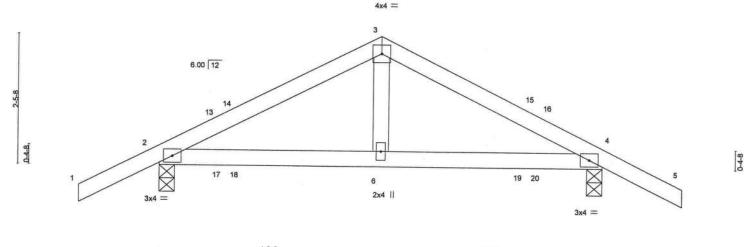
7-0-0

- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=148, 4=148.



Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 4,2022


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qui Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job               | Truss                    | Truss Type        | Qty              | Ply         | GIEGEIG CONST LOT 33 CW                                                               |                    |
|-------------------|--------------------------|-------------------|------------------|-------------|---------------------------------------------------------------------------------------|--------------------|
| 3098537           | T17                      | Common            | 1                | 1           | 100                                                                                   | T27022016          |
| Builders FirstSou | rce (Lake City.FL). Lake | City. FL - 32055. |                  |             | Job Reference (optional)                                                              |                    |
|                   | -1-6-0                   | 4-2-0             | ID:fRijugoliQj9d | alqT_5CiYdz | g 16 2021 MiTek Industries, Inc. Thu Mar<br>cq7NP-dzOW4hKeJS_LM2ypOm32ZVoC8A<br>8-4-0 | AINBuFrMcDDGOzeeWL |
|                   | 1-6-0                    | 4-2-0             |                  |             | 100                                                                                   | -10-0<br> -6-0     |

Scale = 1:20.9



|                                                     | -                            | 4-2-0<br>4-2-0                                                           | 8-4-0<br>4-2-0                                                                                                     |                                                       |
|-----------------------------------------------------|------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 BCDL 10.0 | Plate Grip DOL<br>Lumber DOL | -0-0 CSI.<br>1.25 TC 0.24<br>1.25 BC 0.18<br>YES WB 0.07<br>14 Matrix-MS | DEFL. in (loc) l/defl L/d<br>Vert(LL) 0.03 6-9 >999 240<br>Vert(CT) -0.02 6-9 >999 180<br>Horz(CT) -0.00 4 n/a n/a | PLATES GRIP<br>MT20 244/190<br>Weight: 34 lb FT = 20% |

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS.

(size) 2=0-3-8, 4=0-3-8

Max Horz 2=42(LC 12)

Max Uplift 2=-98(LC 12), 4=-98(LC 13) Max Grav 2=389(LC 1), 4=389(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-390/544, 3-4=-390/544 BOT CHORD 2-6=-378/310, 4-6=-378/310

WEBS 3-6=-286/180

### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 4-2-0, Exterior(2R) 4-2-0 to 7-2-0, Interior(1) 7-2-0 to 9-10-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
  to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.



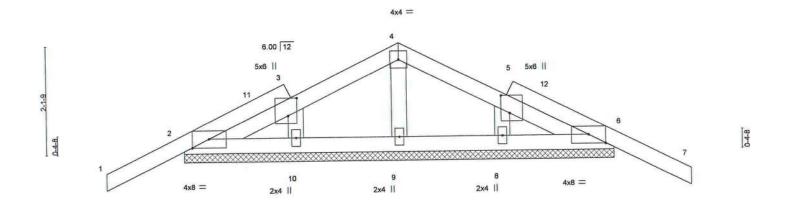
Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 9-2-14 oc bracing.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 4,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and us for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see 

ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job                | Truss               | Truss Type        | Qty          | Ply                      | GIEGEIG CONST LOT 33 CW                                                        | T27022017                                                           |
|--------------------|---------------------|-------------------|--------------|--------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 3098537            | T17G                | GABLE             | 1            | 1                        | Job Reference (optional)                                                       |                                                                     |
| Builders FirstSour | 3,5                 | City, FL - 32055, | ID:fRijugoli | 8.430 s Ai<br>Qj9qlqT_5C | ug 16 2021 MiTek Industries, Inc. Th<br>CiYdzq7NP-69yul1LG4m7C_BX?yUa<br>8-4-0 | nu Mar 3 11:35:37 2022 Page 1<br>H5iKO9a7twM0?bGznoqzeeWK<br>9-10-0 |
|                    | <del>-1-6-0</del> + | 4-2-0             |              |                          | 4-2-0                                                                          | 1-6-0                                                               |

Scale = 1:21.6



|                                        | l                                        |                       |                            | 8-4-0<br>8-4-0                |                      |                 |                      |                   |                |                 |
|----------------------------------------|------------------------------------------|-----------------------|----------------------------|-------------------------------|----------------------|-----------------|----------------------|-------------------|----------------|-----------------|
| Plate Offsets (X,Y                     | - [2:0-4-0,0-2-1], [3:0-4-2,             | 0-2-0], [5:0-4-2,0    | 0-2-0], [6:0-4-0,0-2-1]    |                               |                      |                 |                      |                   | 1              |                 |
| LOADING (psf)<br>TCLL 20.0<br>TCDL 7.0 | SPACING-<br>Plate Grip DOL<br>Lumber DOL | 2-0-0<br>1.25<br>1.25 | CSI.<br>TC 0.16<br>BC 0.03 | DEFL.<br>Vert(LL)<br>Vert(CT) | in<br>-0.01<br>-0.01 | (loc)<br>7<br>7 | l/defl<br>n/r<br>n/r | L/d<br>120<br>120 | PLATES<br>MT20 | GRIP<br>244/190 |
| TCDL 7.0<br>BCLL 0.0<br>BCDL 10.0      | Rep Stress Incr<br>Code FBC2020/         | YES                   | WB 0.04<br>Matrix-S        | Horz(CT)                      | 0.00                 | 6               | n/a                  | n/a               | Weight: 40 lb  | FT = 20%        |

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 **OTHERS** 

BRACING-

Structural wood sheathing directly applied or 6-0-0 oc purlins. TOP CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **BOT CHORD** 

REACTIONS. All bearings 8-4-0.

(lb) - Max Horz 2=37(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 9, 10, 8 Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 4-2-0, Corner(3R) 4-2-0 to 7-2-0, Exterior(2N) 7-2-0 to 9-10-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 9, 10, 8.



Philip J. O'Regan PE No.58126 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

March 4,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Venity design parameters and READ NOTES ON THIS AND INCLUDED MITEX REPERENCE PAGE MIT-4/3 (8). S19/2020 BEFORE USE.

Design valid for use only with MITEX connectors. This design is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

\*\*ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information\*\* available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801



Job Truss Truss Type Qty GIEGEIG CONST. - LOT 33 CW T27022018 3098537 T18 3 Common Job Reference (optional) 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Mar 3 11:35:38 2022 Page 1 Lake City, FL - 32055, Builders FirstSource (Lake City,FL), ID:fRijugoliQj9qlqT\_5CiYdzq7NP-aMWGVNMur4F3bL6BVB6WevtXO\_QUfoj8pwiKKGzeeWJ Scale = 1:17.6 4x4 = 6.00 12 13 12 0-4-8 04-8 16 17 2x4 || 3x4 = 4-2-0 LOADING (psf) SPACING-2-0-0 CSI. DEFL **Vdefl** Ld PLATES GRIP (loc) TCLL 20.0 Plate Grip DOL 1.25 TC 0.26 Vert(LL) 0.03 4-7 >999 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 0.20 Vert(CT) -0.02 >999 180 0.0 0.07 BCLL Rep Stress Incr YES WB Horz(CT) -0.00 n/a 3 n/a BCDL Code FBC2020/TPI2014 Matrix-MS Weight: 29 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD BOT CHORD** Rigid ceiling directly applied or 8-2-5 oc bracing.

2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (size) 1=0-3-8, 3=0-3-8

Max Horz 1=-31(LC 13)

Max Uplift 1=-82(LC 9), 3=-82(LC 8) Max Grav 1=308(LC 1), 3=308(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-430/601, 2-3=-430/601 **BOT CHORD** 1-4=-479/349, 3-4=-479/349

WEBS 2-4=-321/186

### NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-2-0, Exterior(2R) 4-2-0 to 7-2-0, Interior(1) 7-2-0 to 8-4-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

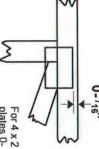
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Philip J. O'Regan PE No.58126 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

March 4,2022

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITE&0 connectors. This design is based only upon parameters and properly incorporate this design in the design as based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2870 Crain Highway, Suite 203 Waldorf, MD 20601




## Symbols

# PLATE LOCATION AND ORIENTATION



offsets are indicated Center plate on joint unless x, y and fully embed teeth. Apply plates to both sides of truss Dimensions are in ft-in-sixteenths.



edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

8

6

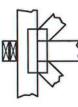
G

required direction of slots in connector plates. This symbol indicates the

\* Plate location details available in MiTek 20/20 software or upon request.

### PLATE SIZE

4×4


to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

# LATERAL BRACING LOCATION



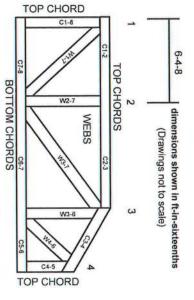
Indicated by symbol shown and/or by text in the bracing section of the if indicated. output. Use T or I bracing

### BEARING



number where bearings occur.

Min size shown is for crushing only reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings


## Industry Standards:

ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction

Installing & Bracing of Metal Plate Connected Wood Trusses. Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing.

**DSB-89** 

# Numbering System



JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

## PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved



MiTek Engineering Reference Sheet MII-7473 rev. 5/19/2020

# General Safety Notes

## Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For bracing should be considered may require bracing, or alternative Tor I wide truss spacing, individual lateral braces themselves
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building all other interested parties. designer, erection supervisor, property owner and
- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing or less, if no ceiling is installed, unless otherwise noted
- Connections not shown are the responsibility of others.
- Do not cut or after truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.

### T-BRACE / I-BRACE DETAIL WITH 2X BRACE ONLY

MII-T-BRACE 2

MiTek USA, Inc. Page 1 of 1

Brace Size

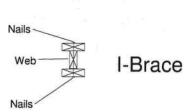


Note: T-Bracing / I-Bracing to be used when continuous lateral bracing is impractical. T-Brace / I-Brace must cover 90% of web length.

Note: This detail NOT to be used to convert T-Brace / I-Brace webs to continuous lateral braced webs.

| ENGINEE | RED     | BY   |               |                            |
|---------|---------|------|---------------|----------------------------|
| 10110   | 7       | TH   | ru(           | П                          |
| Jñúā    | HIN     | ۱ II |               | ш                          |
|         |         | MiTo | L AR          | illate                     |
|         | ENGINEE | RIS  | ENGINEERED BY | ENGINEERED BY  A MiTek Aft |

| Nailing Pattern   |                   |              |  |  |  |  |  |  |  |
|-------------------|-------------------|--------------|--|--|--|--|--|--|--|
| T-Brace size      | Nail Size         | Nail Spacing |  |  |  |  |  |  |  |
| 2x4 or 2x6 or 2x8 | 10d (0.131" X 3") | 6" o.c.      |  |  |  |  |  |  |  |


Note: Nail along entire length of T-Brace / I-Brace (On Two-Ply's Nail to Both Plies)

|            | Specified<br>Rows of La | Continuous<br>Iteral Bracing |
|------------|-------------------------|------------------------------|
| Web Size   | 1                       | 2                            |
| 2x3 or 2x4 | 2x4 T-Brace             | 2x4 I-Brace                  |
| 2x6        | 2x6 T-Brace             | 2x6 I-Brace                  |
| 2x8        | 2x8 T-Brace             | 2x8 I-Brace                  |

|       |                 | Nails   |       |
|-------|-----------------|---------|-------|
|       |                 | SPACING |       |
| WEB   | +               |         |       |
|       |                 | T-BRA   | ACE N |
| Neile | Seation Patrill |         |       |
| Nails | Section Detail  |         |       |
|       | T-Brace         |         |       |

|            | Brace Size<br>for Two-Ply Truss                 |             |  |  |  |
|------------|-------------------------------------------------|-------------|--|--|--|
|            | Specified Continuous<br>Rows of Lateral Bracing |             |  |  |  |
| Web Size   | 1                                               | 2           |  |  |  |
| 2x3 or 2x4 | 2x4 T-Brace                                     | 2x4 I-Brace |  |  |  |
| 2x6        | 2x6 T-Brace                                     | 2x6 I-Brace |  |  |  |
| 2x8        | 2x8 T-Brace                                     | 2x8 I-Brace |  |  |  |

T-Brace / I-Brace must be same species and grade (or better) as web member.



Web



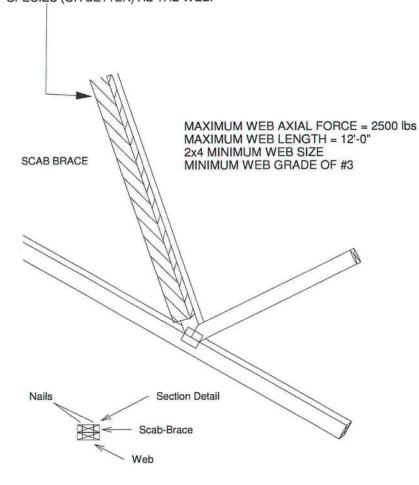
Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

### SCAB-BRACE DETAIL

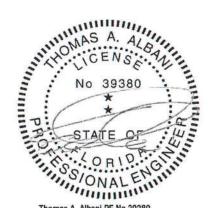
### MII-SCAB-BRACE

MiTek USA, Inc.

Page 1 of 1




Note: Scab-Bracing to be used when continuous lateral bracing at midpoint (or T-Brace) is impractical.

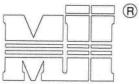

Scab must cover full length of web +/- 6".

\*\*\* THIS DETAIL IS NOT APLICABLE WHEN BRACING IS \*\*\* REQUIRED AT 1/3 POINTS OR I-BRACE IS SPECIFIED.

APPLY 2x\_\_\_ SCAB TO ONE FACE OF WEB WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 6" O.C. SCAB MUST BE THE SAME GRADE, SIZE AND SPECIES (OR BETTER) AS THE WEB.



Scab-Brace must be same species grade (or better) as web member.




Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

### STANDARD REPAIR TO REMOVE END VERTICAL (RIBBON NOTCH VERTICAL)

MII-REP05

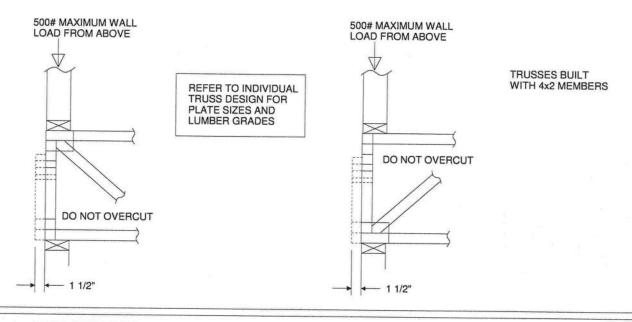
MiTek USA, Inc. Page 1 of 1

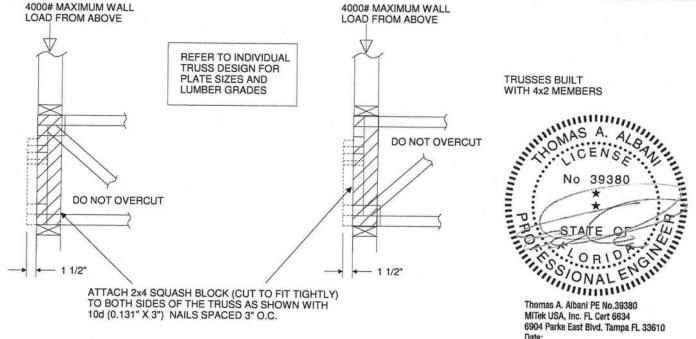


MiTek USA, Inc. ENGINEERED BY 引别别

1. THIS IS A SPECIFIC REPAIR DETAIL TO BE USED ONLY FOR ITS ORIGINAL INTENTION. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED.

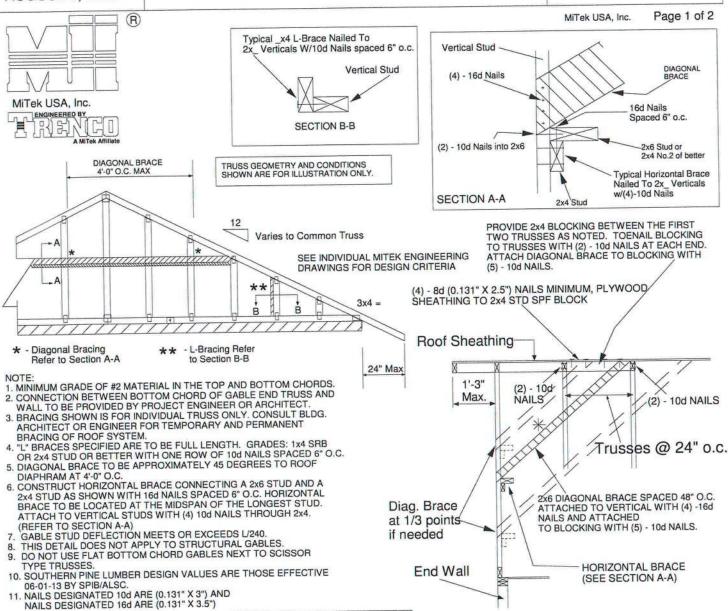
THE LOADS INDICATED.


2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLYING REPAIR AND HELD IN PLACE DURING APPLICATION OF REPAIR.


3. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID SPLITTING OF THE WOOD.

4. LUMBER MUST BE CUT CLEANLY AND ACCURATELY AND THE REMAINING WOOD MUST BE UNDAMAGED.

5. THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 4X\_ORIENTATION ONLY.

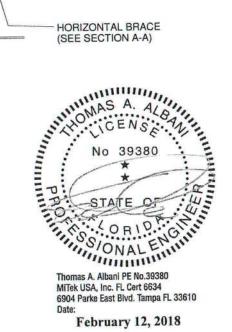

6. CONNECTOR PLATES MUST BE FULLY IMBEDDED AND UNDISTURBED.





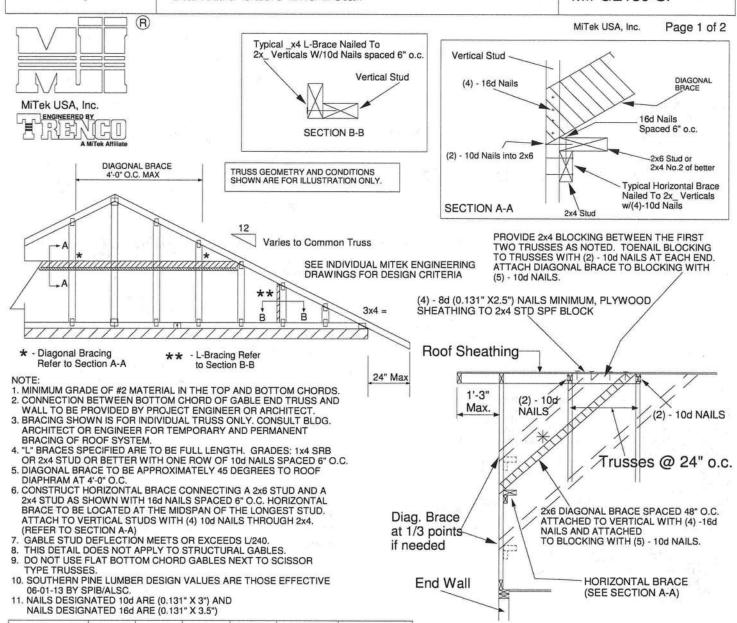
### Standard Gable End Detail

MII-GE130-D-SP




| Minimum<br>Stud Size<br>Species<br>and Grade | Stud<br>Spacing | Without<br>Brace    | 1x4<br>L-Brace | 2x4<br>L-Brace | DIAGONAL<br>BRACE | 2 DIAGONAL<br>BRACES AT<br>1/3 POINTS |
|----------------------------------------------|-----------------|---------------------|----------------|----------------|-------------------|---------------------------------------|
|                                              |                 | Maximum Stud Length |                |                |                   |                                       |
| 2x4 SP No. 3 / Stud                          | 12" O.C.        | 3-9-13              | 4-1-1          | 5-9-6          | 7-1-3             | 11-5-7                                |
| 2x4 SP No. 3 / Stud                          | 16" O.C.        | 3-5-4               | 3-6-8          | 5-0-2          | 6-10-8            | 10-3-13                               |
| 2x4 SP No. 3 / Stud                          | 24" O.C.        | 2-9-11              | 2-10-11        | 4-1-1          | 5-7-6             | 8-5-1                                 |

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

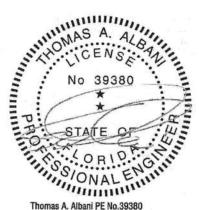

MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE D ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

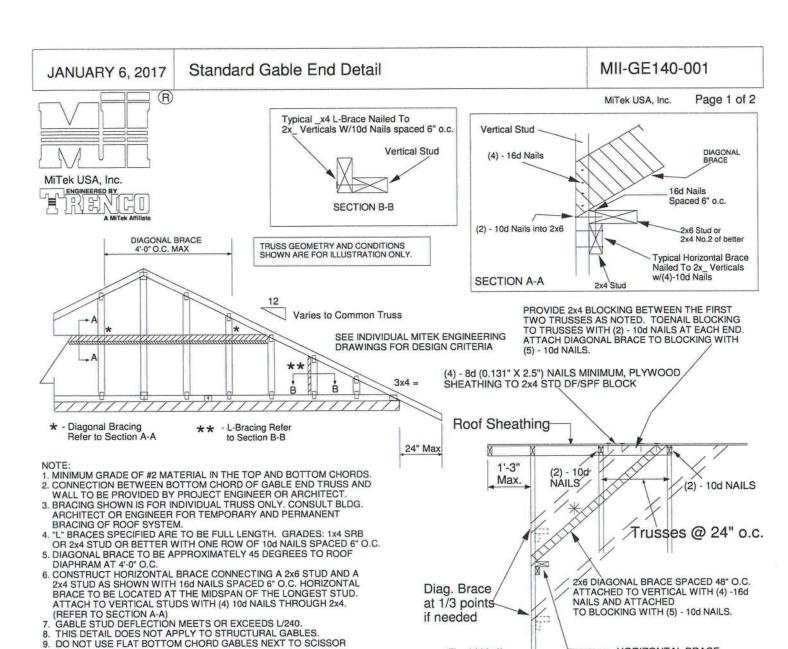


### Standard Gable End Detail

MII-GE130-SP




| Minimum<br>Stud Size<br>Species<br>and Grade | Stud<br>Spacing | Without<br>Brace    | 1x4<br>L-Brace | 2x4<br>L-Brace | DIAGONAL<br>BRACE | 2 DIAGONAL<br>BRACES AT<br>1/3 POINTS |
|----------------------------------------------|-----------------|---------------------|----------------|----------------|-------------------|---------------------------------------|
|                                              |                 | Maximum Stud Length |                |                |                   |                                       |
| 2x4 SP No. 3 / Stud                          | 12" O.C.        | 4-0-7               | 4-5-6          | 6-3-8          | 8-0-15            | 12-1-6                                |
| 2x4 SP No. 3 / Stud                          | 16" O.C.        | 3-8-0               | 3-10-4         | 5-5-6          | 7-4-1             | 11-0-1                                |
| 2x4 SP No. 3 / Stud                          | 24" O.C.        | 3-0-10              | 3-1-12         | 4-5-6          | 6-1-5             | 9-1-15                                |


Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.



Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:



End Wall

| Minimum<br>Stud Size<br>Species<br>and Grade | Stud<br>Spacing | Without<br>Brace    | 1x4<br>L-Brace | 2x4<br>L-Brace | DIAGONAL<br>BRACE | 2 DIAGONAL<br>BRACES AT<br>1/3 POINTS |
|----------------------------------------------|-----------------|---------------------|----------------|----------------|-------------------|---------------------------------------|
|                                              |                 | Maximum Stud Length |                |                |                   |                                       |
| 2x4 DF/SPF Std/Stud                          | 12" O.C.        | 3-10-1              | 3-11-7         | 5-7-2          | 7-8-2             | 11-6-4                                |
| 2x4 DF/SPF Std/Stud                          | 16" O.C.        | 3-3-14              | 3-5-1          | 4-10-2         | 6-7-13            | 9-11-11                               |
| 2x4 DF/SPF Std/Stud                          | 24" O.C.        | 2-8-9               | 2-9-8          | 3-11-7         | 5-5-2             | 8-1-12                                |

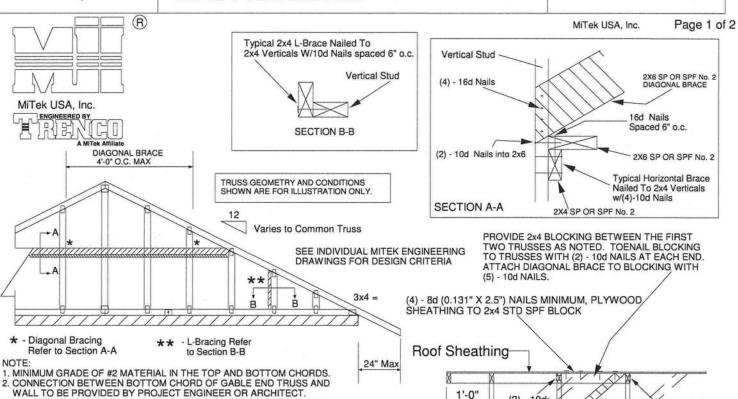
Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAXIMUM WIND SPEED = 140 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 DURATION OF LOAD INCREASE: 1.60

TYPE TRUSSES

10. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.




HORIZONTAL BRACE

(SEE SECTION A-A)

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Gert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

January 19, 2018



WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.

3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG.

ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM.

"L" BRACES SPECIFIED ARE TO BE FULL LENGTH, SPF or SP No.3

OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C.

5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF DIAPHRAM AT 4"-0" O.C.

6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 AND A 2x4 AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST GABLE STUD. ATTACH TO VERTICAL GABLE STUDS WITH (4) 10d NAILS THROUGH 2x4.

(REFER TO SECTION A-A)
GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.
THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.
DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES.

10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC.

11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

| Minimum<br>Stud Size | Stud<br>Spacing | Without<br>Brace | 2x4<br>L-Brace | DIAGONAL<br>BRACE | 2 DIAGONAL<br>BRACES AT<br>1/3 POINTS |  |
|----------------------|-----------------|------------------|----------------|-------------------|---------------------------------------|--|
| Species<br>and Grade |                 | 115              |                |                   |                                       |  |
| 2x4 SP No. 3 / Stud  | 12" O.C.        | 3-9-7            | 5-8-8          | 6-11-1            | 11-4-4                                |  |
| 2x4 SP No. 3 / Stud  | 16" O.C.        | 3-4-12           | 4-11-15        | 6-9-8             | 10-2-3                                |  |
| 2x4 SP No. 3 / Stud  | 24" O.C.        | 2-9-4            | 4-0-7          | 5-6-8             | 8-3-13                                |  |
| 2x4 SP No. 2         | 12" O.C.        | 3-11-13          | 5-8-8          | 6-11-1            | 11-11-7                               |  |
| 2x4 SP No. 2         | 16" O.C.        | 3-7-7            | 4-11-5         | 6-11-1            | 10-10-5                               |  |
| 2x4 SP No. 2         | 24" O.C.        | 3-1-15           | 4-0-7          | 6-3-14            | 9-5-14                                |  |

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2.

MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D ASCE 7-10 170 MPH

**DURATION OF LOAD INCREASE: 1.60** 

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.



(2) - 10d NAILS

Trusses @ 24" o.c.

2x6 DIAGONAL BRACE SPACED 48" O.C. ATTACHED TO VERTICAL WITH

(4) -16d NAILS, AND ATTACHED TO BLOCKING WITH (5) -10d NAILS.

HORIZONTAL BRACE

(SEE SECTION A-A)

(2) - 10d

NAILS

Max.

Diag. Brace

at 1/3 points

End Wall

if needed

Thomas A. Albani PE No.39380 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd, Tampa FL 33610 Date:



# Standard Gable End Detail

# MII-GE180-D-SP

MiTek USA, Inc.

Page 1 of 2

2X6 SP OR SPF No. 2 DIAGONAL BRACE

2X6 SP OR SPF No. 2

(2) - 10d NAILS

Trusses @ 24" o.c.

48" O.C. ATTACHED TO VERTICAL WITH

(4) -16d NAILS, AND ATTACHED TO BLOCKING WITH (5) -10d NAILS.

Typical Horizontal Brace Nailed To 2x4 Verticals w/(4)-10d Nails

16d Nails Spaced 6" o.c.



(REFER TO SECTION A-A)
GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES

DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES

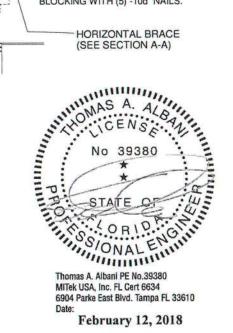
10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC.

NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

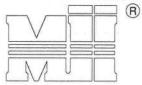
| Minimum<br>Stud Size | Stud<br>Spacing | Without<br>Brace    | 2x4<br>L-Brace | DIAGONAL<br>BRACE | 2 DIAGONAL<br>BRACES AT<br>1/3 POINTS |  |  |  |
|----------------------|-----------------|---------------------|----------------|-------------------|---------------------------------------|--|--|--|
| Species<br>and Grade |                 | Maximum Stud Length |                |                   |                                       |  |  |  |
| 2x4 SP No. 3 / Stud  | 12" O.C.        | 3-7-12              | 5-4-11         | 6-2-1             | 10-11-3                               |  |  |  |
| 2x4 SP No. 3 / Stud  | 16" O.C.        | 3-2-8               | 4-8-1          | 6-2-1             | 9-7-7                                 |  |  |  |
| 2x4 SP No. 3 / Stud  | 24" O.C.        | 2-7-7               | 3-9-12         | 5-2-13            | 7-10-4                                |  |  |  |
| 2x4 SP No. 2         | 12" O.C.        | 3-10-0              | 5-4-11         | 6-2-1             | 11-6-1                                |  |  |  |
| 2x4 SP No. 2         | 16" O.C.        | 3-5-13              | 4-8-1          | 6-2-1             | 10-5-7                                |  |  |  |
| 2x4 SP No. 2         | 24" O.C.        | 3-0-8               | 3-9-12         | 6-1-1             | 9-1-9                                 |  |  |  |

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6in o.c., with 3in minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2.

MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D


ASCE 7-10 180 MPH

**DURATION OF LOAD INCREASE: 1.60** 


STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

if needed

End Wall



MiTek USA, Inc. Page 1 of 1

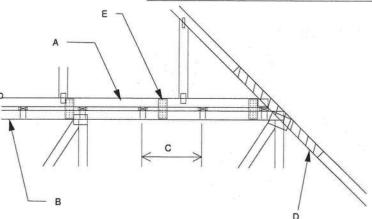


MiTek USA, Inc.



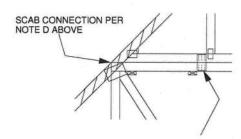
MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C. CATEGORY II BUILDING EXPOSURE B or C **ASCE 7-10 DURATION OF LOAD INCREASE: 1.60** 

DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES).
ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED.

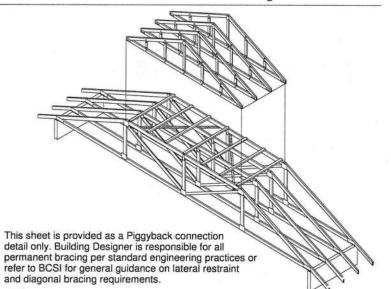

- A PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING. SHALL BE CONNECTED TO EACH PURLIN WITH (2) (0.131" X.3-5") TOE-NAILED. B BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
- PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C. UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING.
- ONLECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH.

  2 X \_ X 4"-0" SCAB, SIZE TO MATCH TOP CHORD OF
  PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED.
  ON INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C.
  SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING
  IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH
  - DIRECTIONS AND:

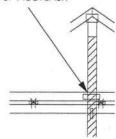
    1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR


    2. WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM PIGGYBACK SPAN OF 12 ft.
- E FOR WIND SPEEDS BETWEEN 126 AND 160 MPH, ATTACH MITEK 3X8 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 72" O.C. W/ (4) (0.131" X 1.5") NAILS PER MEMBER. STAGGER NAILS FROM OPPOSING FACES. ENSURE 0.5" EDGE DISTANCE.

(MIN. 2 PAIRS OF PLATES REQ. REGARDLESS OF SPAN)

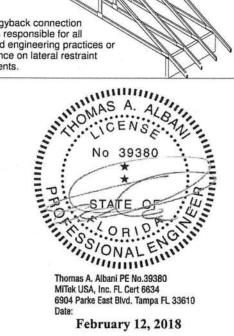



#### WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS:


REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH Nail-On PLATES AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING.



FOR ALL WIND SPEEDS, ATTACH MITEK 3X6 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 48" O.C. W/ (4) (0.131" X 1.5") PER MEMBER. STAGGER NAILS FROM OPPOSING FACES ENSURE 0.5" EDGE DISTANCE.




VERTICAL WEB TO EXTEND THROUGH BOTTOM CHORD OF PIGGYBACK



FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB:

- VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP AS SHOWN IN DETAIL
- ATTACH 2 x \_\_\_ x 4-0" SCAB TO EACH FACE OF TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.)
- (MINIMUM 2X4)
  THIS CONNECTION IS ONLY VALID FOR A MAXIMUM CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS.
- FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS. NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS. CONCENTRATED LOAD MUST BE APPLIED TO BOTH
- THE PIGGYBACK AND THE BASE TRUSS DESIGN.



## STANDARD PIGGYBACK TRUSS CONNECTION DETAIL



MiTek USA, Inc

ENGINEERED BY 门别别 الحال

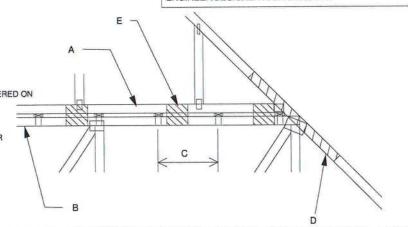
A - PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
SHALL BE CONNECTED TO EACH PURLIN
WITH (2) 0(0.131" X 3.5") TOE-NAILED.
B - BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
C - PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C.
UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING.
CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH.
D - 2 X \_\_ X 4"-0" SCAB, SIZE TO MATCH TOP CHORD OF
PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED ON
INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C.
SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING
IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH
DIRECTIONS AND:

IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH DIRECTIONS AND:

1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR

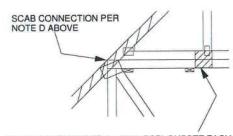
2. WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM PIGGYBACK SPAN OF 12 ft.

E - FOR WIND SPEED IN THE RANGE 126 MPH - 160 MPH ADD 9" x 9" x 112" PLYWOOD (or 7/16" OSB) GUSSET EACH SIDE AT A8" O.C. OR LESS. ATTACH WITH

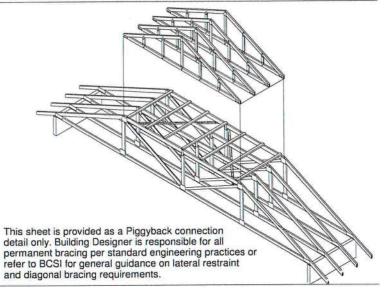

3 - 60 (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS)

MiTek USA, Inc. Page 1 of 1

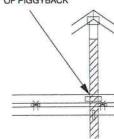
MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C. CATEGORY II BUILDING EXPOSURE B or C **ASCE 7-10** 


DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES). ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED.

**DURATION OF LOAD INCREASE: 1.60** 




#### WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS:


REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH PLYWOOD GUSSETS AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING.



7" x 7" x 1/2" PLYWOOD (or 7/16" OSB) GUSSET EACH SIDE AT 24" O.C. ATTACH WITH 3 - 6d (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS)



VERTICAL WEB TO **BOTTOM CHORD** OF PIGGYBACK



# FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB:

VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP AS SHOWN IN DETAIL.

AS SHOWN IN DETAIL.

ATTACH 2 x \_ x 4'-0" SCAB TO EACH FACE OF
TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS
SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH
VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.)

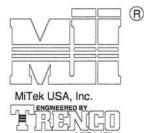
(MINIMUM 2X4)

3) THIS CONNECTION IS ONLY VALID FOR A MAXIMUM CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS.

FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS, NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS.

5) CONCENTRATED LOAD MUST BE APPLIED TO BOTH THE PIGGYBACK AND THE BASE TRUSS DESIGN.



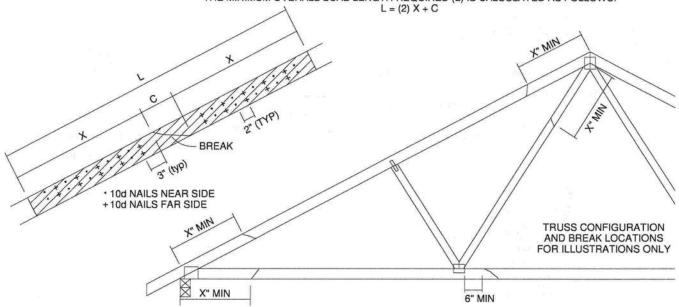

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

#### STANDARD REPAIR DETAIL FOR BROKEN CHORDS, WEBS AND DAMAGED OR MISSING CHORD SPLICE PLATES

### MII-REP01A1

MiTek USA, Inc.

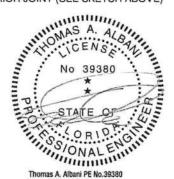
Page 1 of 1




| TOTAL NUMBER OF<br>NAILS EACH SIDE<br>OF BREAK * |     | X<br>INCHES | MAXIMUM FORCE (lbs) 15% LOAD DURATION |      |      |      |      |      |      |      |
|--------------------------------------------------|-----|-------------|---------------------------------------|------|------|------|------|------|------|------|
|                                                  |     |             | SP                                    |      | DF   |      | SPF  |      | HF   |      |
| 2x4                                              | 2x6 |             | 2x4                                   | 2x6  | 2x4  | 2x6  | 2x4  | 2x6  | 2x4  | 2x6  |
| 20                                               | 30  | 24"         | 1706                                  | 2559 | 1561 | 2342 | 1320 | 1980 | 1352 | 2028 |
| 26                                               | 39  | 30"         | 2194                                  | 3291 | 2007 | 3011 | 1697 | 2546 | 1738 | 2608 |
| 32                                               | 48  | 36"         | 2681                                  | 4022 | 2454 | 3681 | 2074 | 3111 | 2125 | 3187 |
| 38                                               | 57  | 42"         | 3169                                  | 4754 | 2900 | 4350 | 2451 | 3677 | 2511 | 3767 |
| 44                                               | 66  | 48"         | 3657                                  | 5485 | 3346 | 5019 | 2829 | 4243 | 2898 | 4347 |

\* DIVIDE EQUALLY FRONT AND BACK

ATTACH 2x\_SCAB OF THE SAME SIZE AND GRADE AS THE BROKEN MEMBER TO EACH FACE OF THE TRUSS (CENTER ON BREAK OR SPLICE) WITH 10d (0.131" X 3") NAILS (TWO ROWS FOR 2x4, THREE ROWS FOR 2x6) SPACED 4" O.C. AS SHOWN. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 0-2-0 O.C. SPACING IN THE MAIN MEMBER. USE A MIN. 0-3-0 MEMBER END DISTANCE.


THE LENGTH OF THE BREAK (C) SHALL NOT EXCEED 12". (C=PLATE LENGTH FOR SPLICE REPAIRS) THE MINIMUM OVERALL SCAB LENGTH REQUIRED (L) IS CALCULATED AS FOLLOWS:

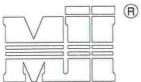


THE LOCATION OF THE BREAK MUST BE GREATER THAN OR EQUAL TO THE REQUIRED X DIMENSION FROM ANY PERIMETER BREAK OR HEEL JOINT AND A MINIMUM OF 6" FROM ANY INTERIOR JOINT (SEE SKETCH ABOVE)

#### DO NOT USE REPAIR FOR JOINT SPLICES

- 1. THIS REPAIR DETAIL IS TO BE USED ONLY FOR THE APPLICATION SHOWN, THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED. 2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLING REPAIR
- AND HELD IN PLACE DURING APPLICATION OF REPAIR.
  THE END DISTANCE, EDGE DISTANCE AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.
- WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES. THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 2x\_ORIENTATION ONLY. THIS REPAIR IS LIMITED TO TRUSSES WITH NO MORE THAN THREE BROKEN MEMBERS.




Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

# LATERAL TOE-NAIL DETAIL

MII-TOENAIL SP

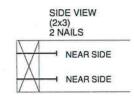
MiTek USA, Inc.

Page 1 of 1



MiTek USA, Inc. ENGINEERED BY 4別

NOTES:


- 1. TOE-NAILS SHALL BE DRIVEN AT AN ANGLE OF 45 DEGREES WITH THE MEMBER AND MUST HAVE FULL WOOD SUPPORT. (NAIL MUST BE DRIVEN THROUGH AND EXIT AT THE BACK CORNER OF THE MEMBER END AS SHOWN.

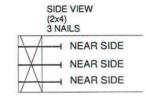
  2. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.

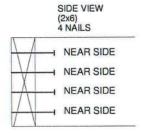
  3. ALLOWABLE VALUE SHALL BE THE LESSER VALUE OF THE TWO SPECIES FOR MEMBERS OF DIFFERENT SPECIES
- FOR MEMBERS OF DIFFERENT SPECIES.

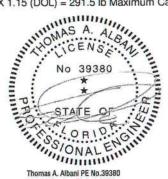
#### THIS DETAIL APPLICABLE TO THE THREE END DETAILS SHOWN BELOW

VIEWS SHOWN ARE FOR ILLUSTRATION PURPOSES ONLY

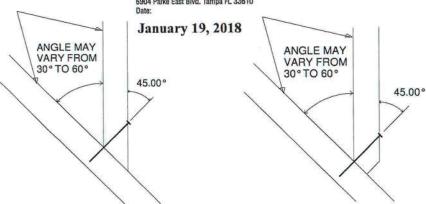


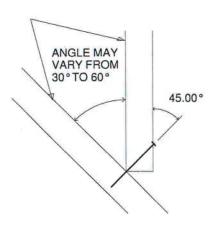

OE-NAIL SINGLE SHEAR VALUES PER NDS 2001 (lb/nail) SPF-S DIAM. HF 131 69.9 68.4 59.7 88.0 80.6 LONG 63.4 135 93.5 85.6 74.2 72.6 84.5 73.8 86.4 162 108.8 99.6 3.5 ONG 57.6 50.3 .128 74.2 67.9 58.9 69.5 60.3 59.0 51.1 131 75.9 3.25" 64.6 63.2 52.5 .148 81.4 74.5


VALUES SHOWN ARE CAPACITY PER TOE-NAIL APPLICABLE DURATION OF LOAD INCREASES MAY BE APPLIED.


#### EXAMPLE:

(3) - 16d (0.162" X 3.5") NAILS WITH SPF SPECIES BOTTOM CHORD


For load duration increase of 1.15: 3 (nails) X 84.5 (lb/nail) X 1.15 (DOL) = 291.5 lb Maximum Capacity

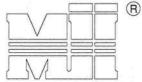







Thomas A. Albani PE No.39380 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610





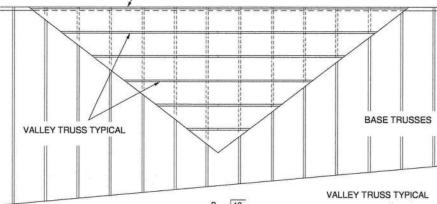

# TRUSSED VALLEY SET DETAIL

MII-VALLEY HIGH WIND1

MiTek USA, Inc.

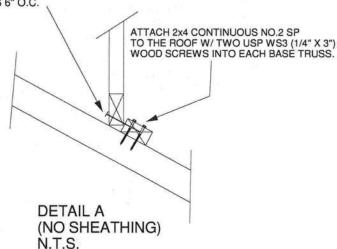
Page 1 of 1




MiTek USA, Inc.

ENGINEERED BY

GABLE END, COMMON TRUSS OR GIRDER TRUSS


#### GENERAL SPECIFICATIONS

- NAIL SIZE 10d (0.131" X 3")
   WOOD SCREW = 3" WS3 USP OR EQUIVALENT
   DO NOT USE DRYWALL OR DECKING TYPE SCREW
   INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND
- SECURE PER DETAIL A
- 4. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- 5. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 6. NAILING DONE PER NDS 01
- 7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.



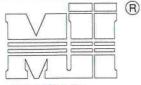
GABLE END, COMMON TRUSS OR GIRDER TRUSS 12 SEE DETAIL A BELOW (TYP.)

SECURE VALLEY TRUSS W/ ONE ROW OF 10d NAILS 6" O.C.



WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05  $\,$  146 MPH WIND DESIGN PER ASCE 7-10  $\,$  160 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING EXPOSURE C WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 6 PSF ON THE TRUSSES




Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

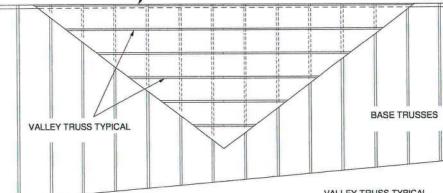
# TRUSSED VALLEY SET DETAIL

MII-VALLEY HIGH WIND2

MiTek USA, Inc.

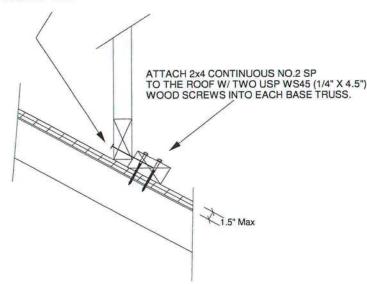
Page 1 of 1




MiTek USA, Inc.

GABLE END, COMMON TRUSS OR GIRDER TRUSS

#### **GENERAL SPECIFICATIONS**


- 1. NAIL SIZE 10d (0.131" X 3") 2. WOOD SCREW = 4.5" WS45 USP OR EQUILIVANT 3. INSTALL SHEATHING TO TOP CHORD OF BASE TRUSSES.
- 4. INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE TO BASE TRUSSES AS PER DETAIL A 5. BRACE VALLEY WEBS IN ACCORDANCE WITH THE
- INDIVIDUAL DESIGN DRAWINGS.

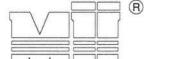
  6. NAILING DONE PER NDS-01
- 7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.



GABLE END, COMMON TRUSS OR GIRDER TRUSS VALLEY TRUSS TYPICAL 12 SEE DETAIL A BELOW (TYP.)

SECURE VALLEY TRUSS W/ ONE ROW OF 10d NAILS 6" O.C.




WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING **EXPOSURE C** WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 6 PSF ON THE TRUSSES

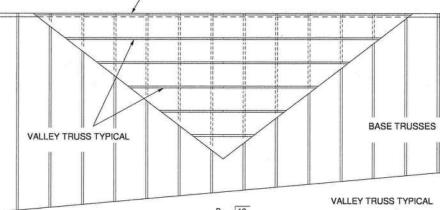


Thomas A. Albani PE No.39380 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

MiTek USA, Inc.

Page 1 of 1




MiTek USA, Inc.

ENGINEERED BY

GABLE END, COMMON TRUSS OR GIRDER TRUSS

#### GENERAL SPECIFICATIONS

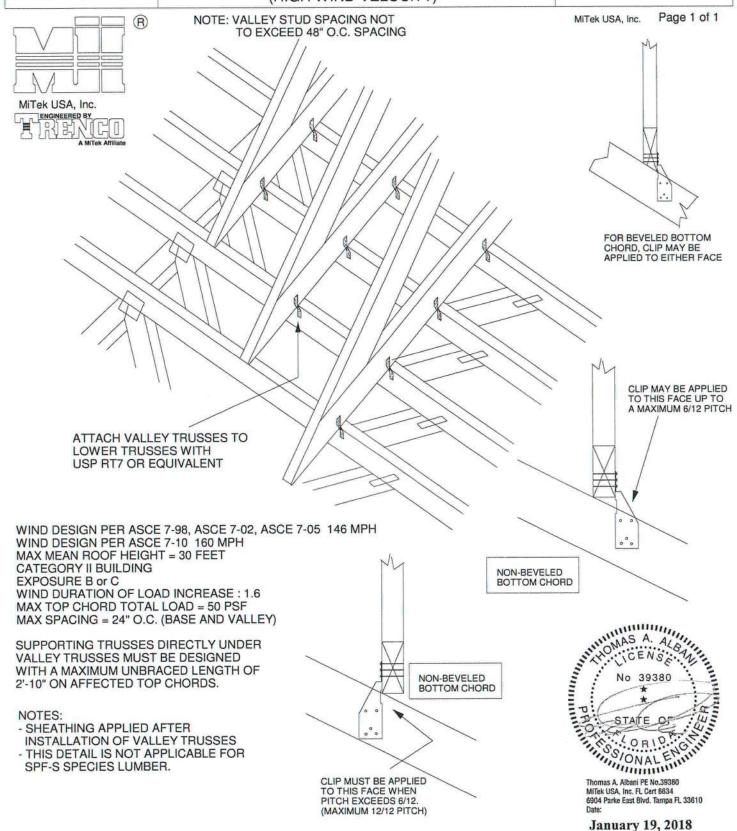
- 1. NAIL SIZE 16d (0.131" X 3.5") 2. INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A
- 3. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 5. NAILING DONE PER NDS 01
- 6. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.
- 7. ALL LUMBER SPECIES TO BE SP.



GABLE END, COMMON TRUSS OR GIRDER TRUSS 12 SEE DETAIL A BELOW (TYP.) **\*\*\*\*\*\*\*\*\*** 

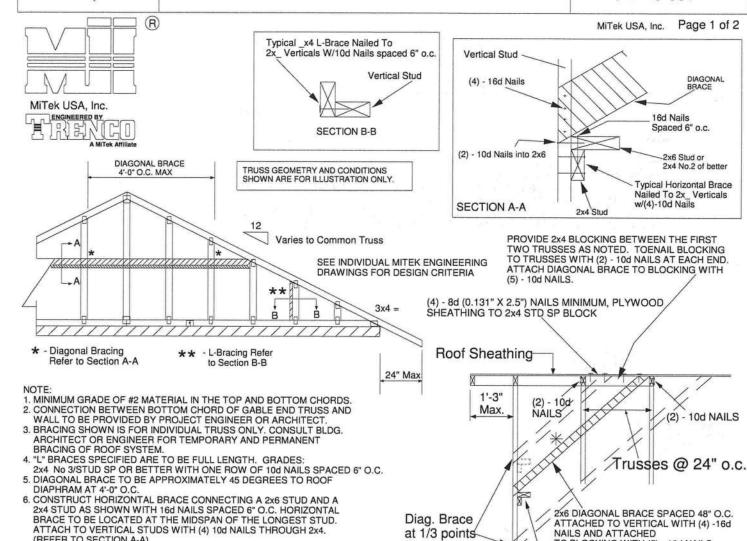
SECURE VALLEY TRUSS W/ ONE ROW OF 16d NAILS 6" O.C. ATTACH 2x4 CONTINUOUS NO.2 SP TO THE ROOF W/ TWO 16d NAILS INTO EACH BASE TRUSS. **DETAIL A** 

(MAXIMUM 1" SHEATHING) N.T.S.


WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 120 MPH WIND DESIGN PER ASCE 7-10 150 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 10/12 CATEGORY II BUILDING EXPOSURE C OR B WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 60 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 4.2 PSF ON THE TRUSSES



Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


# TRUSSED VALLEY SET DETAIL (HIGH WIND VELOCITY)

MII-VALLEY



# Standard Gable End Detail

MII-GE146-001



at 1/3 points

End Wall

if needed

- (REFER TO SECTION A-A)
- 7. GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.
  8. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.
  9. DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES.
- NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

| Minimum<br>Stud Size | Stud<br>Spacing | Without<br>Brace    | 2x4<br>L-Brace | DIAGONAL<br>BRACE | 2 DIAGONAL<br>BRACES AT<br>1/3 POINTS |  |  |  |
|----------------------|-----------------|---------------------|----------------|-------------------|---------------------------------------|--|--|--|
| Species<br>and Grade |                 | Maximum Stud Length |                |                   |                                       |  |  |  |
| 2x4 SP No 3/Stud     | 12" O.C.        | 3-11-3              | 6-8-0          | 7-2-14            | 11-9-10                               |  |  |  |
| 2x4 SP No 3/Stud     | 16" O.C.        | 3-6-14              | 5-9-5          | 7-1-13            | 10-8-11                               |  |  |  |
| 2x4 SP No 3/Stud     | 24" O.C.        | 3-1-8               | 4-8-9          | 6-2-15            | 9-4-7                                 |  |  |  |

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAXIMUM WIND SPEED = 146 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.



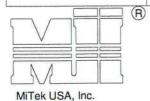
NAILS AND ATTACHED

TO BLOCKING WITH (5) - 10d NAILS.

HORIZONTAL BRACE

(SEE SECTION A-A)

MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


## **OCTOBER 5, 2016**

# REPLACE BROKEN OVERHANG

MII-REP13B

MiTek USA, Inc.

Page 1 of 1

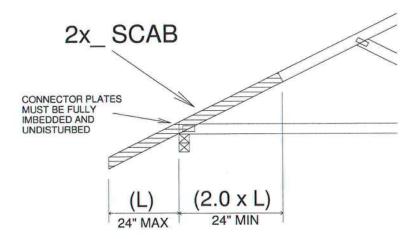


TRUSS CRITERIA:

LOADING: 40-10-0-10 DURATION FACTOR: 1.15 SPACING: 24" O.C. TOP CHORD: 2x4 OR 2x6 PITCH: 4/12 - 12/12

HEEL HEIGHT: STANDARD HEEL UP TO 12" ENERGY HEEL

**END BEARING CONDITION** 


NOTES:

1. ATTACH 2x SCAB (MINIMUM NO.2 GRADE SPF, HF, SP, DF) TO ONE FACE OF

TRUSS WITH TWO ROWS OF 10d (0.131" X 3") SPACED 6" O.C. 2. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH

AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.

3. WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES.

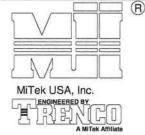


#### **IMPORTANT**

This detail to be used only with trusses (spans less than 40') spaced 24" o.c. maximum and having pitches between 4/12 and 12/12 and total top chord loads not exceeding 50 psf. Trusses not fitting these criteria should be examined individually.

REFER TO INDIVIDUAL TRUSS DESIGN FOR PLATE SIZES AND LUMBER GRADES

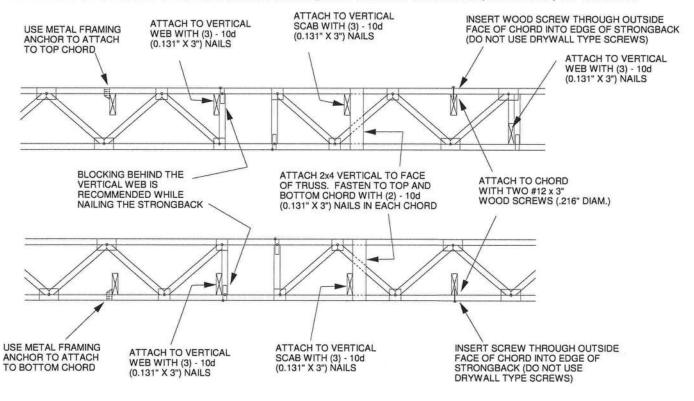


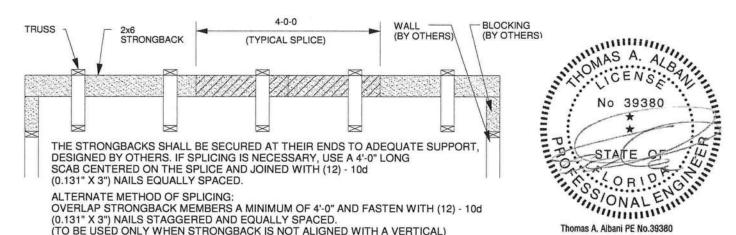

MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

# LATERAL BRACING RECOMMENDATIONS

MII-STRGBCK

MiTek USA, Inc.


Page 1 of 1




TO MINIMIZE VIBRATION COMMON TO ALL SHALLOW FRAMING SYSTEMS, 2x6 "STRONGBACK" IS RECOMMENDED, LOCATED EVERY 8 TO 10 FEET ALONG A FLOOR TRUSS.

NOTE 1: 2X6 STRONGBACK ORIENTED VERTICALLY MAY BE POSITIONED DIRECTLY UNDER THE TOP CHORD OR DIRECTLY ABOVE THE BOTTOM CHORD. SECURELY FASTENED TO THE TRUSS USING ANY OF THE METHODS ILLUSTRATED BELOW.

NOTE 2: STRONGBACK BRACING ALSO SATISFIES THE LATERAL BRACING REQUIREMENTS FOR THE BOTTOM CHORD OF THE TRUSS WHEN IT IS PLACED ON TOP OF THE BOTTOM CHORD, IS CONTINUOUS FROM END TO END, CONNECTED WITH A METHOD OTHER THAN METAL FRAMING ANCHOR, AND PROPERLY CONNECTED, BY OTHERS, AT THE ENDS.





MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

|  | , |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |