

Project Information for:

L280800

Builder: Address: Woodman Park Builders, Inc. 798 Southwest Utah Street

... .

Ft. White, FL 32038

County:

Columbia

Truss Count:

26

Design Program: MiTek 20/20 6.3
Building Code: FBC2004/TPI2002
Truss Design Load Information:

Gravity:

Roof (psf): 42.0

Wind Standard: ASCE 7-02

Wind Exposure: B

Floor (psf): N/A

Wind Speed (mph): 110

Note: See the individual truss drawings for special loading conditions.

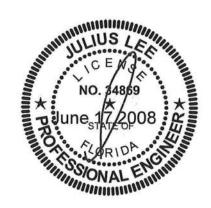
Contractor of Record, responsible for structural engineering:

Mark E. Haddox Florida Certified Residental Contractor License No. CRC1329442

Address: Woodman Park Builders, Inc. 4816 W U.S. Highway 90 Suite# 100 Lake City, Florida 32055

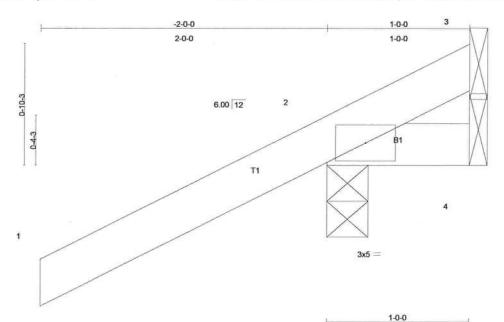
Truss Design Engineer: Julius Lee, PE Florida P.E. License No. 34869

Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435


Notes:

 Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1-2002 Section 2.2

2. The seal date shown on the individual truss component drawings must match the seal date on this index sheet.


3. The Truss Design Engineer's responsibility relative to this structure consists solely of the design of the individual truss components and does not include the design of any additional structural elements including but not limited to continuous lateral bracing elelments in the web and chord planes. See Florida Administrative Code 61G15-31.003 sections 3 c) & 5 and Chapter 2 of the National Design Standard for Metal Plate Connected Wood Truss Construction ANSI/TPI 1-2002 for additional information on the responsibilities of the delegated "Truss Design Engineer". Builders FirstSource and Julius Lee, PE do not accept any additional delegations beyond the scope of work described in the referenced documents above.

No.	Drwg. #	Truss ID	Date
1	J1973297	CJ1	6/16/08
2	J1973298	CJ3	6/16/08
3	J1973299	CJ5	6/16/08
4	J1973300	EJ7	6/16/08
5	J1973301	HJ9	6/16/08
6	J1973302	T01	6/16/08
7	J1973303	T01G	6/16/08
8	J1973304	T02	6/16/08
9	J1973305	T03	6/16/08
10	J1973306	T03G	6/16/08
11	J1973307	T04	6/16/08
12	J1973308	T05	6/16/08
13	J1973309	T06	6/16/08
14	J1973310	T07	6/16/08
15	J1973311	T08	6/16/08
16	J1973312	T09	6/16/08
17	J1973313	T10	6/16/08
18	J1973314	T11	6/16/08
19	J1973315	T12	6/16/08
20	J1973316	T13	6/16/08
21	J1973317	T14	6/16/08
22	J1973318	T15	6/16/08
23	J1973319	T16	6/16/08
24	J1973320	T17	6/16/08
25	J1973321	T18	6/16/08
26	J1973322	T19	6/16/08

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
		0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			J1973297
	CJ1	JACK	4	1	
		AT LOSS SAN SAN		15.5	Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:45 2008 Page 1

1-0-0 LOADING (psf) 2-0-0 SPACING CSI DEFL (loc) I/defl L/d **PLATES** GRIP TCLL 20.0 Plates Increase 1.25 TC 0.28 Vert(LL) -0.002 >999 360 MT20 244/190 TCDL 7.0 Lumber Increase 1.25 BC 0.01 Vert(TL) -0.002 >999 240 BCLL 10.0 Rep Stress Incr YES WB 0.00 Horz(TL) 0.00 3 n/a n/a Code FBC2004/TPI2002 BCDL 5.0 (Matrix) Weight: 7 lb

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING

TOP CHORD

Structural wood sheathing directly applied or

1-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=256/0-3-8, 4=5/Mechanical, 3=-90/Mechanical

Max Horz 2=87(load case 6)

Max Uplift 2=-274(load case 6), 3=-90(load case 1)

Max Grav 2=256(load case 1), 4=14(load case 2), 3=127(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-69/75

BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.17

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 274 Ib uplift at joint 2 and 90 lb uplift at joint 3. Continued on page 2

Julius Lee Truss Design Engineer Florida Fils No. 34888 1100 Crastal Ray Blvd Boynton Beach, FL 33435

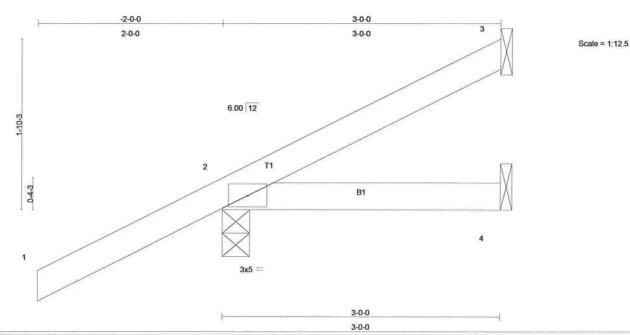
June 16,2008

Scale: 1.5"=1"

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973297
	CJ1	JACK	4	1	The till State of District Constraints
	NICCONTS.	14 Ph. 1			Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:45 2008 Page 2


LOAD CASE(S) Standard

Julius Les Truss Design Engineer Flonds FE No. 34889 1 100 Cassial Bay Blvd Boynion Besch, FL 30435

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
		58			J197329
	CJ3	JACK	4	1	
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:45 2008 Page 1

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.29	Vert(LL)	-0.00	2-4	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.06	Vert(TL)	-0.01	2-4	>999	240		
BCLL	10.0	* Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	5.0	5.0 Code FBC2004/TPI2002		(Matrix)							Weight: 13 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING

TOP CHORD

Structural wood sheathing directly applied or

3-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (lb/size) 3=31/Mechanical, 2=250/0-3-8, 4=14/Mechanical

Max Horz 2=132(load case 6)

Max Uplift 3=-28(load case 7), 2=-203(load case 6)

Max Grav 3=31(load case 1), 2=250(load case 1), 4=42(load case 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-57/7

BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.15

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3 and 203 lb uplift at joint 2. Continued on page 2

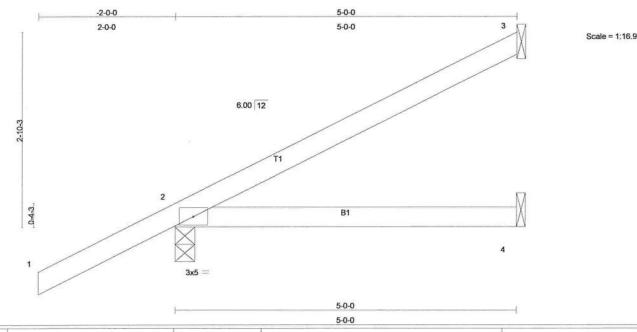
Julius Lee Truss Cesion Engineer Flonda FE No. 24899 1400 Crastal Ray Blvd Bovnton Besch, Ft. 23425

June 16,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973298
	CJ3	JACK	4	1	31973290
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:45 2008 Page 2


LOAD CASE(S) Standard

Julius Lee Truss Cesign Engineer 1702 Cess No. 24868 1703 Cess No. 24868 1704 Cess No. 2486 1704 Cess No. 2486

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
					J1973299
	CJ5	JACK	4	1	
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:46 2008 Page 1

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.29	Vert(LL)	-0.03	2-4	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.16	Vert(TL)	-0.05	2-4	>999	240		
BCLL	10.0	* Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)						Weight: 19 lb	

LU	M	BE	ΞR
----	---	----	----

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

BRACING

TOP CHORD

Structural wood sheathing directly applied or

5-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) 3=103/Mechanical, 2=295/0-3-8, 4=24/Mechanical

Max Horz 2=178(load case 6)

Max Uplift 3=-87(load case 6), 2=-199(load case 6)

Max Grav 3=103(load case 1), 2=295(load case 1), 4=72(load case 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-88/36

BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.17

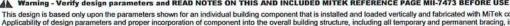
NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 3 and 199 lb uplift at joint 2. Continued on page 2

Julius Leer Truse Cestion Engineer Floride ME No. 24899 1109 Coastal Bay Slvri Boynton Beach, FL 20435

June 16,2008

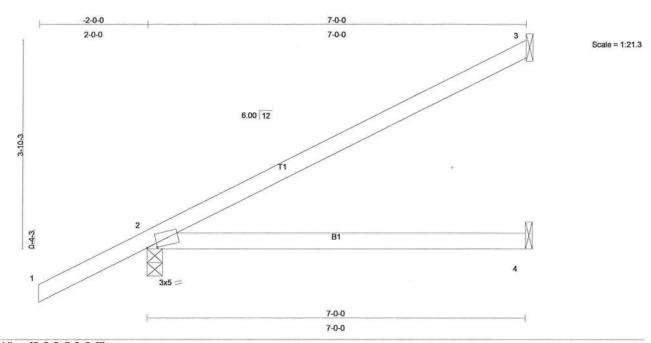
Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE



Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973299
	CJ5	JACK	4	1	01373233
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:46 2008 Page 2

LOAD CASE(S) Standard


June 16,2008

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
					J1973300
	EJ7	JACK	25	1	
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:47 2008 Page 1

Plate Of	fsets (X,)	(): [2:0-2-5,0-0-7]		1								
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L∕d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.48	Vert(LL)	-0.08	2-4	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.28	Vert(TL)	-0.16	2-4	>501	240		
BCLL	10.0	* Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)						Weight: 26 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING

TOP CHORD

Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 3=154/Mechanical, 2=352/0-3-8, 4=45/Mechanical

Max Horz 2=161(load case 6)

Max Uplift 3=-84(load case 6), 2=-139(load case 6)

Max Grav 3=154(load case 1), 2=352(load case 1), 4=94(load case 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-119/54

BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.81

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb Cofficient in page 139 lb uplift at joint 2.

Truss Design Engineer Flonda FE No. 24898 1100 Coastal Bay Blvd Boynton Beach, Ft. 33435

June 16,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	EJ7	JACK	25	1	J1973300
	E37	JACK	25	1	Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:47 2008 Page 2

LOAD CASE(S) Standard

Julius Lew Truse Design Engineer Florida ME No. 2-1898 1 109 Crastal May Rive Boynton Beach, FL 99495

		11466 17		۵.,	,				21111 01 7 1111 011	J1973301
	HJ9	MONO T	RUSS	2	1	1 Job	Referenc	e (optional)	
Builders FirstSource	e, Lake City, FI 32055	,	6.30	00 s Feb 15 2006	MiTek					8 Page 1
-2	-9-15		4-3-0					9-10-13		
2-	9-15		4-3-0					5-7-13		Scale = 1.21.2
			4.2	4 12			/			
9-14				3x5	=					
6				11 1	X					
				W2				W1		
0-3-14	2	1			B1					
				7						6 5
1	3x6 :	=		2x4					3	3x5 =
			4-3-0					9-10-1		9-10-13
			4-3-0					5-7-1		0-0-12
LOADING (psf)	SPACING	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0 TCDL 7.0	Plates Increase Lumber Increase	1.25 1.25	TC 0.61 BC 0.40	Vert(LL) Vert(TL)	0.05 -0.12	6-7 6-7	>999 >986	360 240	MT20	244/190
BCLL 10.0 BCDL 5.0	* Rep Stress Incr Code FBC2004/T	NO	WB 0.34 (Matrix)	Horz(TL)	0.01	5	n/a	n/a	Weight: 45	lb
LUMBER				BRACING	-					

TOP CHORD

BOT CHORD

Qty

Ply

REACTIONS (lb/size) 4=268/Mechanical, 2=456/0-5-11, 5=218/Mechanical

Max Horz 2=269(load case 3)

Max Uplift 4=-232(load case 3), 2=-281(load case 3), 5=-62(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/50, 2-3

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

1-2=0/50, 2-3=-647/120, 3-4=-105/65

BOT CHORD 2-7=-308/599, 6-7=-308/599, 5-6=0/0 WEBS 3-7=0/190, 3-6=-624/321

2 X 4 SYP No.3

JOINT STRESS INDEX

2 = 0.77, 3 = 0.18, 6 = 0.21 and 7 = 0.13

NOTES

WEBS

Job

Truss

Truss Type

- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone; Lumber DOL=1.60 plate grip DOL=1.60.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 232 lb uplift at joint 4, 281 lb uplift at joint 2 and 62 lb uplift at joint 5.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

Continued on page 2

Truss Design Engineer Florida File No. 34899 1100 Ceastal Bay Blvd Boynton Beach, FL 35435

WOODMAN PARK - JOHN & PAM SMITH

Structural wood sheathing directly applied or

Rigid ceiling directly applied or 10-0-0 oc

6-0-0 oc purlins.

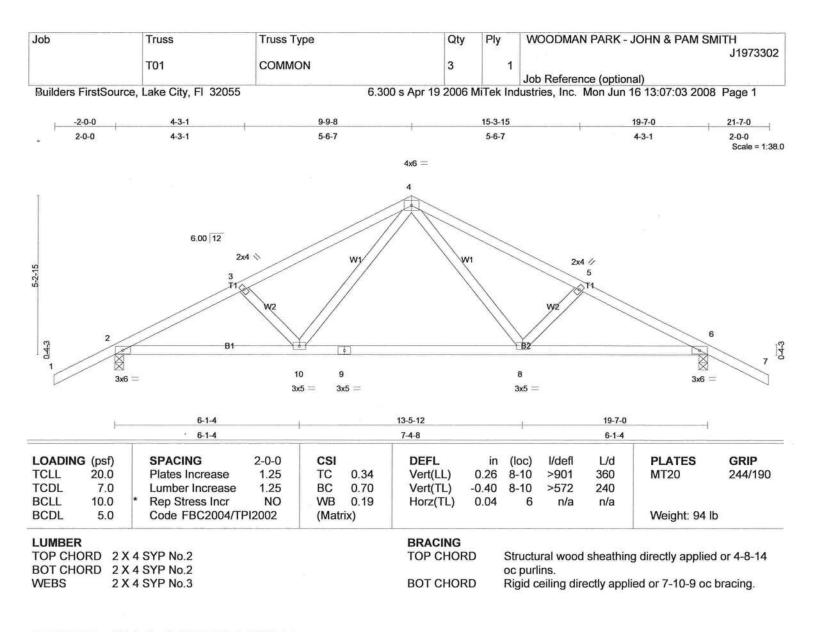
bracing.

June 16,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	1 200 (1000)	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ides ve.		J1973301
	HJ9	MONO TRUSS	2	1	
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:47 2008 Page 2


LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-2=-54 Trapezoidal Loads (plf)

Vert: 2=-3(F=25, B=25)-to-4=-134(F=-40, B=-40), 2=-0(F=5, B=5)-to-5=-25(F=-7, B=-7)

REACTIONS (lb/size) 2=955/0-3-8, 6=955/0-3-8

Max Horz 2=-94(load case 7)

Max Uplift 2=-292(load case 6), 6=-292(load case 7)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-1603/857, 3-4=-1456/828, 4-5=-1456/828, 5-6=-1603/857, 6-7=0/47

BOT CHORD 2-10=-608/1365, 9-10=-310/911, 8-9=-310/911, 6-8=-608/1365

WEBS 3-10=-195/185, 4-10=-287/583, 4-8=-287/583, 5-8=-195/185

JOINT STRESS INDEX

2 = 0.71, 3 = 0.34, 4 = 0.76, 5 = 0.34, 6 = 0.71, 8 = 0.42, 9 = 0.60 and 10 = 0.42

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

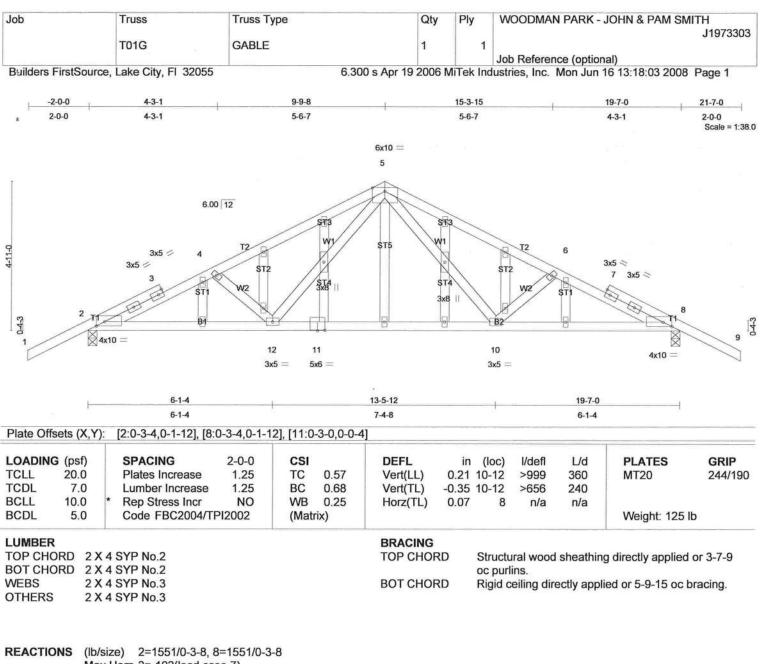
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 292 lb uplift at joint 6.
- 6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

June 16,2008

Continued on page 2

Warming - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	The second of th				J1973302
	T01	COMMON	3	1	
					Job Reference (optional)


6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:07:03 2008 Page 2

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-7=-54, 2-10=-10, 8-10=-70(F=-60), 6-8=-10

Max Horz 2=-102(load case 7)

Max Uplift 2=-796(load case 6), 8=-796(load case 7)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-23/100, 2-3=-2682/1452, 3-4=-2575/1414, 4-5=-2272/1256, 5-6=-2272/1256,

6-7=-2575/1414, 7-8=-2682/1452, 8-9=-23/100

BOT CHORD 2-12=-1176/2364, 11-12=-612/1424, 10-11=-612/1424, 8-10=-1176/2364

WEBS 4-12=-618/422, 5-12=-401/787, 5-10=-401/787, 6-10=-618/422

JOINT STRESS INDEX

2 = 0.90, 3 = 0.00, 3 = 0.62, 3 = 0.72, 4 = 0.34, 5 = 0.48, 6 = 0.34, 7 = 0.00, 7 = 0.72, 7 = 0.62, 8 = 0.90, 10 = 0.56, 11 = 0.43, 12 = 0.5613 = 0.34, 14 = 0.48, 15 = 0.34, 16 = 0.00, 17 = 0.34, 18 = 0.34, 19 = 0.34, 20 = 0.34, 21 = 0.34, 22 = 0.34, 23 = 0.48, 24 = 0.34, 250.34, 26 = 0.34 and 27 = 0.34

NOTES

1) Unbalanced roof live loads have been considered for this design.

e Design 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the Coffice on Mitch 2"Standard Gable End Detail"

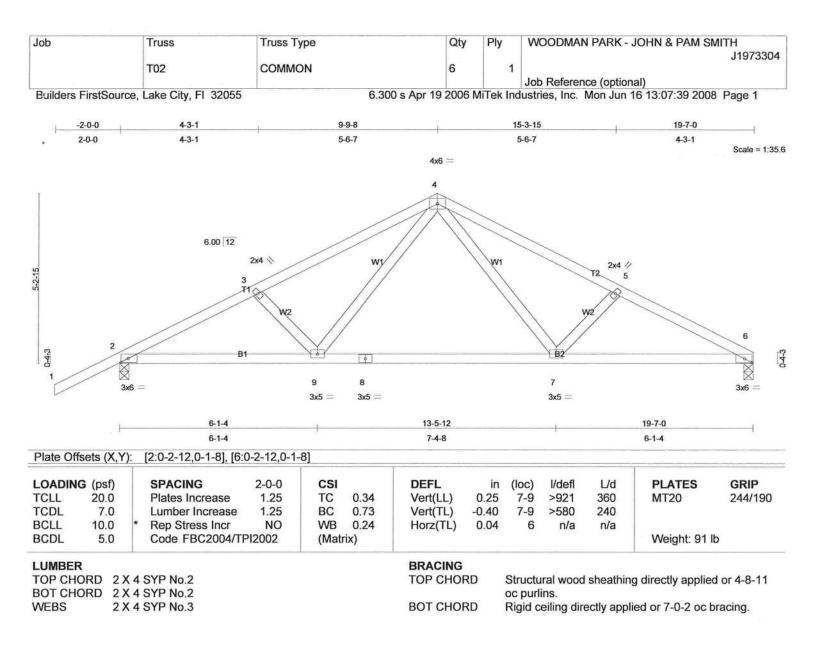
June 16,2008

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	100000000000000000000000000000000000000	Control of the contro	100000	10000	J1973303
	T01G	GABLE	1	1	
	WENTERBOOK	MCENTANCISANES			Job Reference (optional)

6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:18:03 2008 Page 2

NOTES

- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 796 lb uplift at joint 2 and 796 lb uplift at joint 8
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

 Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-5=-114(F=-60), 5-9=-114(F=-60), 2-12=-10, 10-12=-40(F=-30), 8-10=-10

Julius Lee Trues Cesion Engineer Florida PE No. 3-1999 1-100 Crestal Bay Blvd

REACTIONS (lb/size) 6=832/0-3-8, 2=961/0-3-8

Max Horz 2=107(load case 6)

Max Uplift 6=-195(load case 7), 2=-293(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-1615/878, 3-4=-1468/849, 4-5=-1495/894, 5-6=-1648/932

BOT CHORD 2-9=-704/1376, 8-9=-409/924, 7-8=-409/924, 6-7=-766/1413 WEBS 3-9=-195/187, 4-9=-282/582, 4-7=-347/619, 5-7=-217/221

JOINT STRESS INDEX

2 = 0.76, 3 = 0.34, 4 = 0.73, 5 = 0.34, 6 = 0.76, 7 = 0.45, 8 = 0.60 and 9 = 0.45

NOTES

Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

 *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Florida PE No. 24888 1100 Cassial Ray Blvd. Bovnion Besch, FL 23438

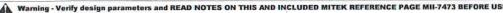
4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

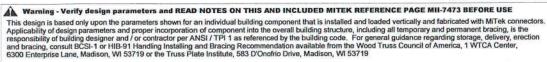
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 195 lb uplift at joint 6 and 293 lb uplift at joint 2.

6) In the LOAD GASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

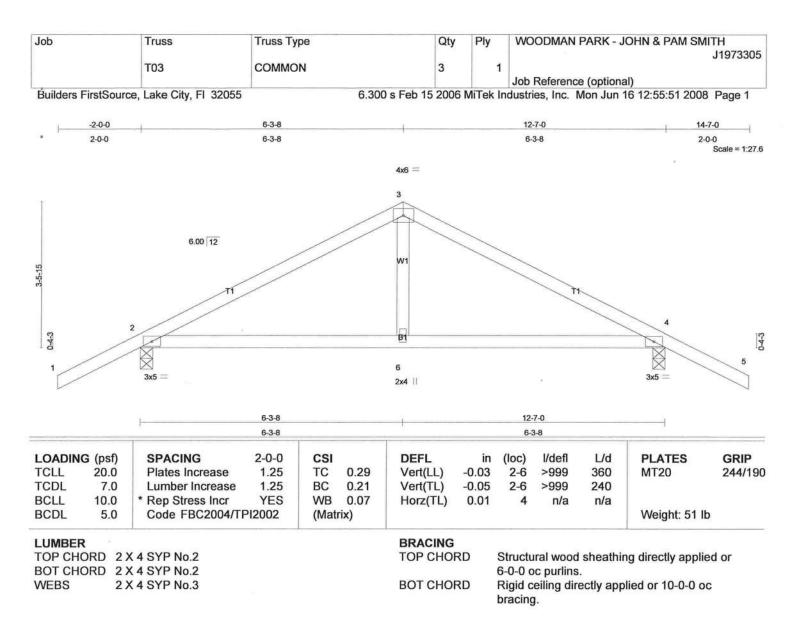
June 16,2008

Warming - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE


Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
		5.50	3.50	100	J1973304
	T02	COMMON	6	1	30007000.0000
					Job Reference (optional)


6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:07:39 2008 Page 2

LOAD CASE(S) Standard


1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-54, 2-9=-10, 7-9=-70(F=-60), 6-7=-10

REACTIONS (lb/size) 2=509/0-3-8, 4=509/0-3-8

Max Horz 2=-73(load case 7)

Max Uplift 2=-184(load case 6), 4=-184(load case 7)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-537/276, 3-4=-537/276, 4-5=0/47

BOT CHORD 2-6=-66/412, 4-6=-66/412

WEBS 3-6=0/210

JOINT STRESS INDEX

2 = 0.40, 3 = 0.73, 4 = 0.40 and 6 = 0.15

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 184 lb uplift at joint 2 and 184 lb uplift at joint 4. Continued on page 2

Julius Les Truss Design Engineer Florida PE No. 24899 1109 Cassial Bay Sivil Boynon Besch, Ft. 22425

June 16,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
		552		1180	J1973305
	T03	COMMON	3	1	1
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:51 2008 Page 2

LOAD CASE(S) Standard

Julius Lee Truss Ossian Engineer Florida PE No. 34889 1106 Crastal Bay Blyd

ob	Truss T03G	Truss Type GABLE	Qty 1	Ply 1	WOODMAN PARK - JOH Job Reference (optional)	N & PAM SMITH J1973306
Builders FirstS	Source, Lake City, FI 32	055	6.300 s Feb 15 2006	MiTek In	dustries, Inc. Mon Jun 16 1	12:55:52 2008 Page 1
-2-0-	0 1	6-3-8			12-7-0	14-7-0
2-0-0	0	6-3-8			6-3-8	2-0-0 Scale = 1:27.
			4x5 =			
			5			
			3			
		6.00 12 2x4		2x4		
		4 2x4		2x4 6	II	
	3x5 =	3x5 =	ST2	2x4 6	3x5 = 7 3x5 =	
	3x5 =	3x5 =		2x4 6	3x5 = 7 3x5 =	
		3x5 = 3		6	3x5 = 7 3x5 =	8
0-4-3	3x5 ==	3x5 = 3		6	3x5 = 7 3x5 =	8
1 04-3	2 11	3x5 = 3	STZ	ST1	3x5	9
1		3x5 = 3	STZ	ST1	3x5 = 7 3x5 = 4x10	
1	2 11	3x5 = T2 ST1 ST1	ST2	6 ST1	3x5	9

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.49	Vert(LL)	-0.03	9	n/r	120	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.08	Vert(TL)	-0.05	9	n/r	90	ADMINISTRAÇÃO DOS	
BCLL	10.0	* Rep Stress Incr	NO	WB	0.07	Horz(TL)	0.00	8	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)	8 85					Weight: 61 lb	

LUMBERTOP CHORD2 X 4 SYP No.2TOP CHORDStructural wood sheathing directly applied or 10-0-0 oc purlins.BOT CHORD2 X 4 SYP No.3BOT CHORDRigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS (lb/size) 2=489/12-7-0, 8=489/12-7-0, 11=206/12-7-0, 12=416/12-7-0,

10=416/12-7-0

Max Horz 2=-78(load case 7)

Max Uplift 2=-319(load case 6), 8=-332(load case 7), 11=-52(load case 6),

12=-205(load case 6), 10=-208(load case 7)

Max Grav 2=494(load case 10), 8=494(load case 11), 11=206(load case 1),

12=417(load case 10), 10=417(load case 11)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-27/99, 2-3=-34/48, 3-4=-64/174, 4-5=-6/109, 5-6=-6/109, 6-7=-41/174,

7-8=-34/48, 8-9=-27/99

BOT CHORD 2-12=-71/144, 11-12=-71/144, 10-11=-71/144, 8-10=-71/144

WEBS 5-11=-206/56, 4-12=-374/295, 6-10=-374/295

Julius Lee Trues Design Engineer Florida PE No. 34869 1100 Crastal Bay Blvd Doynton Besch, FL 33405

JOINT STRESS INDEX

2 = 0.78, 2 = 0.00, 3 = 0.00, 3 = 0.49, 3 = 0.49, 4 = 0.15, 5 = 0.10, 6 = 0.15, 7 = 0.00, 7 = 0.49, 7 = 0.49, 8 = 0.78, 8 = 0.00, 10 = 0.16, 11 = 0.07 and 12 = 0.16

NOTES

1) Unbalanced roof live loads have been considered for this design.

Continued on page 2

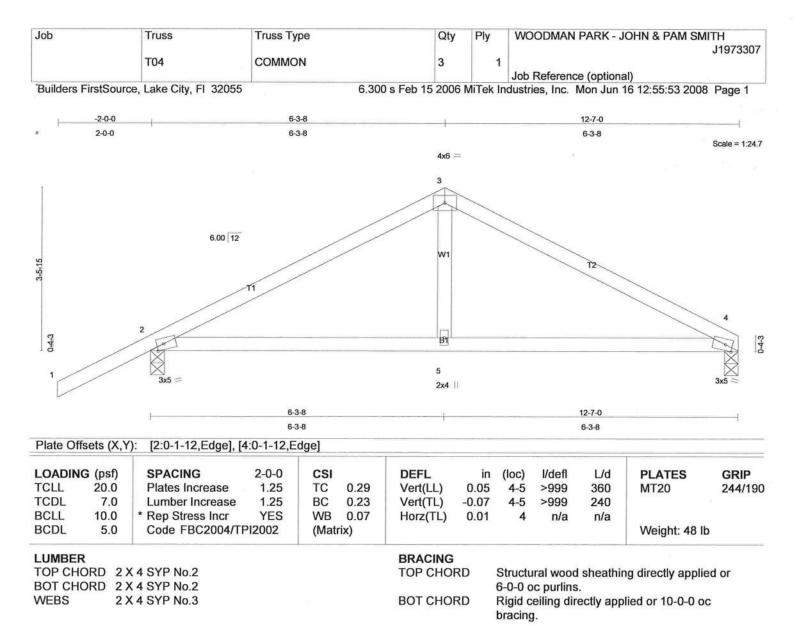
Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
100000000000000000000000000000000000000	Minute Version				J1973306
	T03G	GABLE	1	1	
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:52 2008 Page 2

NOTES

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 319 lb uplift at joint 2, 332 lb uplift at joint 8, 52 lb uplift at joint 11, 205 lb uplift at joint 12 and 208 lb uplift at joint 10.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=-114(F=-60), 5-9=-114(F=-60), 2-8=-10

Julius Lee Florida PE No. 34868 1 108 Cassisi Rey Rivel Bovaton Besca, FL 23425

REACTIONS (lb/size) 4=383/0-3-8, 2=519/0-3-8

Max Horz 2=86(load case 6)

Max Uplift 4=-84(load case 7), 2=-186(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/47, 2-3=-568/328, 3-4=-564/320

BOT CHORD

2-5=-191/441, 4-5=-191/441

WEBS

3-5=0/214

JOINT STRESS INDEX

2 = 0.73, 3 = 0.81, 4 = 0.73 and 5 = 0.15

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

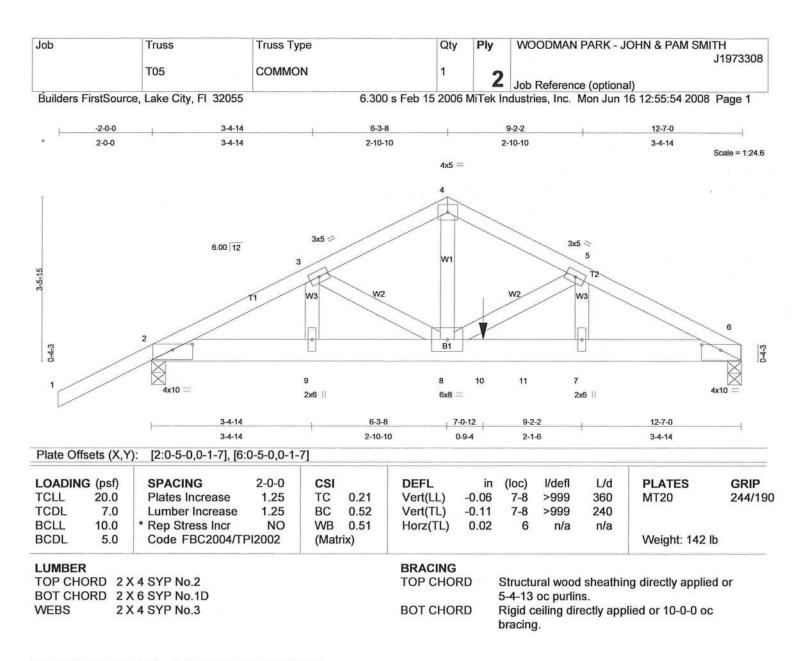
4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi Continued on page 2

Poynton Beach, FL 33435

June 16,2008

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
			1118	1115	J1973307
	T04	COMMON	3	1	School Mark 19 deal - Control
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:53 2008 Page 2


NOTES

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 4 and 186 lb uplift at joint 2.

LOAD CASE(S) Standard

Julius Lee Trues Design Engineer Floride PE No. 24808 1180 Chastal Ray Blyd Boynton Besch, FL 33435

REACTIONS

(lb/size) 6=3563/0-3-8, 2=1960/0-3-8

Max Horz 2=89(load case 5)

Max Uplift 6=-964(load case 6), 2=-585(load case 5)

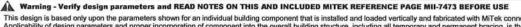
FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/51, 2-3=-3554/919, 3-4=-3847/1051, 4-5=-3843/1043, 5-6=-5951/1603

BOT CHORD 2-9=-785/3123, 8-9=-785/3123, 8-10=-1397/5275, 10-11=-1397/5275,

7-11=-1397/5275, 6-7=-1397/5275

WEBS 3-9=-410/169, 3-8=-115/445, 4-8=-864/3193, 5-8=-2145/625, 5-7=-507/1917


JOINT STRESS INDEX

2 = 0.65, 3 = 0.81, 4 = 0.75, 5 = 0.81, 6 = 0.65, 7 = 0.45, 8 = 0.39 and 9 = 0.45

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2 X 4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0-4-0 oc. Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads Contrible 36 (F) 25 (B), unless otherwise indicated.

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	1 Have consisted	100 000 000 000 000 00 0000 00 000		11000	J1973308
	T05	COMMON	1	2	
	1000000	18			Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:54 2008 Page 2

NOTES

3) Unbalanced roof live loads have been considered for this design.

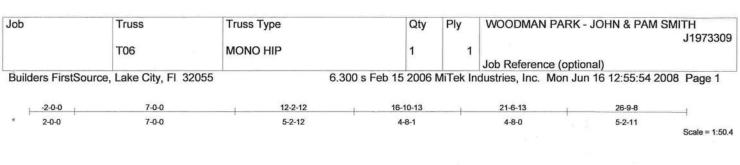
- 4) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS; Lumber DOL=1.60 plate grip DOL=1.60.
- 5) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

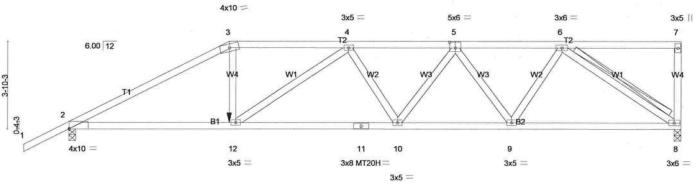
6) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 964 lb uplift at joint 6 and 585 lb uplift at joint 2.
- 8) Girder carries tie-in span(s): 33-9-8 from 8-0-0 to 12-7-0

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25


Uniform Loads (plf)


Vert: 1-4=-54, 4-6=-54, 2-11=-10, 6-11=-519(F=-509)

Concentrated Loads (lb) Vert: 10=-2363(F)

> Julius Lee Truss Design Engineer Flonda PE No. 24899 1 100 Chastal Pay Blvd

7-0.0 7-4-11 5.0.2 7-4-11	7-0-0	14-4-11	19-4-13	26-9-8
7411 302 7411	7-0-0	7-4-11	5-0-2	7-4-11

Plate Of	fsets (X,Y	'): [2:Edge,0-0-2], [5:	0-3-0,0-3-	0]		,					4	
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L∕d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.69	Vert(LL)	-0.19	10	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.79	Vert(TL)	-0.44	10-12	>728	240	MT20H	187/143
BCLL	10.0	* Rep Stress Incr	NO	WB	0.69	Horz(TL)	0.13	8	n/a	n/a	850500000000	
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)	9 970					Weight: 136 lb	

LUMBER		BRACING
TOP CHORD	2 X 4 SYP No.2	TOP CHORD
BOT CHORD	2 X 4 SYP No.2	
WERS	2 X 4 SYP No 3	BOT CHORD

Structural wood sheathing directly applied or 3-1-10 oc purlins, except end verticals.

ORD Rigid ceiling directly applied or 5-7-4 oc

bracing.

WEBS T-Brace:

2 X 4 SYP No.3 - 6-8

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in

minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) 8=1883/0-3-8, 2=1818/0-3-8

Max Horz 2=163(load case 5)

Max Uplift 8=-649(load case 4), 2=-578(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-3360/1085, 3-4=-2956/1008, 4-5=-3532/1196, 5-6=-2790/938,

6-7=-85/15, 7-8=-288/143

BOT CHORD 2-12=-997/2914, 11-12=-1273/3610, 10-11=-1273/3610, 9-10=-1162/3346,

8-9=-798/2236

WEBS 3-12=-296/996, 4-12=-799/378, 4-10=-150/148, 5-10=-60/323, 5-9=-966/389,

6-9=-270/1065, 6-8=-2625/956

JOINT STRESS INDEX

2 = 0.76, 3 = 0.77, 4 = 0.42, 5 = 0.55, 6 = 0.79, 7 = 0.64, 8 = 0.79, 9 = 0.79, 10 = 0.42, 11 = 0.87 and 12 = 0.73

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
			1.5	I FR	J1973309
	T06	MONO HIP	1	1	100000000000000000000000000000000000000
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:55 2008 Page 2

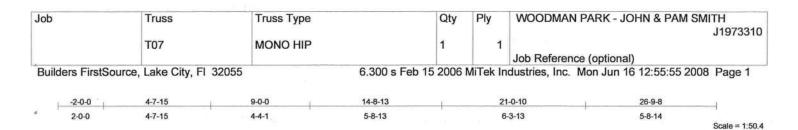
NOTES

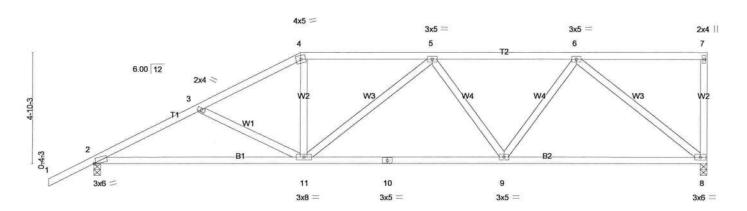
- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS; Lumber DOL=1.60 plate grip DOL=1.60.
- 2) Provide adequate drainage to prevent water ponding.
- 3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 649 lb uplift at joint 8 and 578 lb uplift at joint 2.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)


Vert: 1-3=-54, 3-7=-118(F=-64), 2-12=-10, 8-12=-22(F=-12)


Concentrated Loads (lb)

Vert: 12=-411(F)

Julius Law Truss Cesign Engineer Flonds PE No. 24899 1106 Chestal Bay Blvd 1006 Description 150435

9-0-0				8-10-12			8-10-13			
Plate Offsets (X,Y): [2:0-1-1,0-0-7]									
LOADING (psf)	SPACING	2-0-0	CSI	DEFL	in	(loc)	I/defl	L/d	PLATES	GRIF

17-10-12

TCLL 20.0 Plates Increase 1.25 TC 0.49 Vert(LL) 2-11 >999 360 -0.13TCDL 7.0 Lumber Increase 1.25 BC 0.43 Vert(TL) -0.242-11 >999 240 **BCLL** 10.0 * Rep Stress Incr YES WB 0.97 0.05 Horz(TL) n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix)

MT20 244/190

Weight: 141 lb

LUMBER
TOP CHORD 2 X 4 SYP No.2

BRACING
TOP CHORD

BOT CHORD 2 X 4 SYP No.2 WEBS 2 X 4 SYP No.3

YP No.3 BOT CHORD

Structural wood sheathing directly applied or

26-9-8

5-0-4 oc purlins, except end verticals. Rigid ceiling directly applied or 6-10-7 oc

bracing.

REACTIONS (lb/size) 8=843/0-3-8, 2=969/0-3-8

Max Horz 2=195(load case 6)

9-0-0

Max Uplift 8=-229(load case 5), 2=-248(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-1537/763, 3-4=-1299/656, 4-5=-1126/644, 5-6=-1073/568, 6-7=-40/7

, 7-8=-135/93

BOT CHORD 2-11=-827/1311, 10-11=-698/1238, 9-10=-698/1238, 8-9=-476/847

WEBS 3-11=-216/207, 4-11=-73/334, 5-11=-145/117, 5-9=-290/228, 6-9=-162/410,

6-8=-1052/605

JOINT STRESS INDEX

2 = 0.83, 3 = 0.33, 4 = 0.74, 5 = 0.41, 6 = 0.41, 7 = 0.82, 8 = 0.60, 9 = 0.41, 10 = 0.48 and 11 = 0.56

NOTES

 Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

Truss Design Engineer Florida FE No. 34888 1109 Coastal Bay Blvd Boynton Besch, FL 35435

2) Provide adequate drainage to prevent water ponding.

3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other Collyn page 2

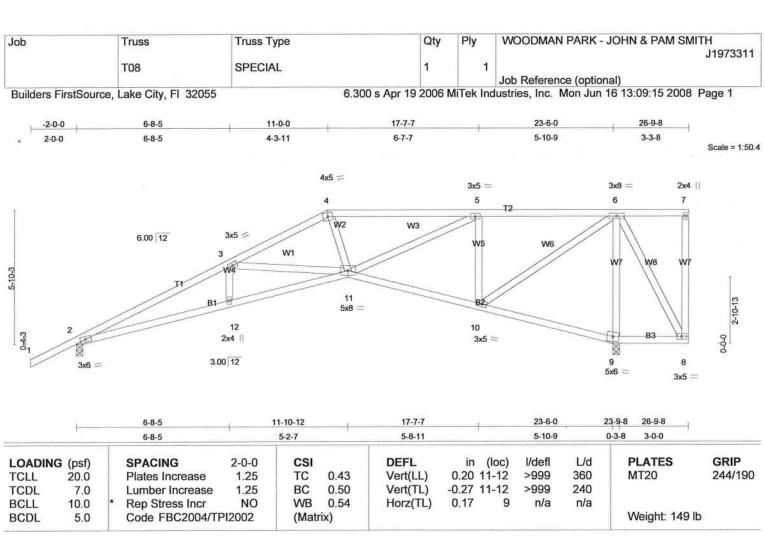
June 16,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973310
	T07	MONO HIP	1	1	30212112
	122				Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:55 2008 Page 2

NOTES


4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 229 lb uplift at joint 8 and 248 lb uplift at joint 2.

LOAD CASE(S) Standard

Julius Lee Truss Cesign Engineer Florida FE No. 34888 1 109 Crastal Bay Rivi Boynton Besch, Ft. 23425

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3 BRACING

TOP CHORD

Structural wood sheathing directly applied or

3-10-12 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 5-6-9 oc bracing.

REACTIONS (lb/size) 2=844/0-3-8, 9=1052/0-3-8

Max Horz 2=226(load case 6)

Max Uplift 2=-237(load case 6), 9=-284(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/46, 2-3=-2229/1204, 3-4=-1600/921, 4-5=-1523/937, 5-6=-746/435, 6-7=-2/3,

7-8=-92/58

2-12=-1289/1967, 11-12=-1290/1966, 10-11=-453/776, 9-10=-105/59, 8-9=-69/37

3-12=0/185, 3-11=-517/378, 4-11=-207/426, 5-11=-553/856, 5-10=-722/491, **WEBS**

6-10=-588/1015, 6-9=-966/593, 6-8=-74/139

JOINT STRESS INDEX

2 = 0.72, 3 = 0.48, 4 = 0.79, 5 = 0.56, 6 = 0.97, 7 = 0.34, 8 = 0.46, 9 = 0.45, 10 = 0.66, 11 = 0.61 and 12 = 0.34

BOT CHORD

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Provide adequate drainage to prevent water ponding.
- 3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live

All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

designer should verify capacity of bearing surface. Continued on page 2

Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building

June 16,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	V46940255480		10000000	1.00	J1973311
	T08	SPECIAL	1	1	
	0.000	account and managers and as	100	78	Job Reference (optional)

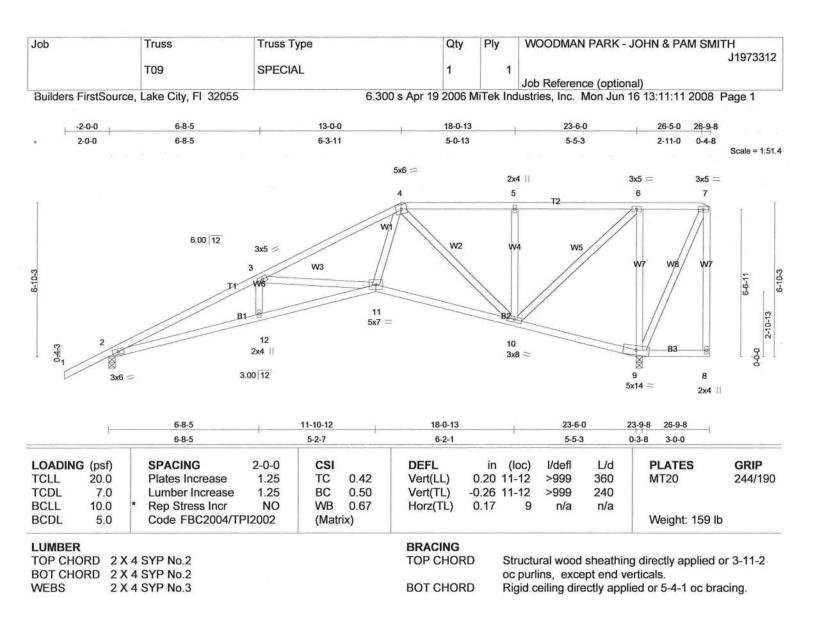
6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:09:15 2008 Page 2

NOTES

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 237 lb uplift at joint 2 and 284 lb uplift at joint 9.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)


Vert: 1-4=-54, 4-7=-54, 2-11=-10, 9-11=-10, 8-9=-10

Concentrated Loads (lb)

Vert: 7=-54(F) 8=-30(F)

Julius Lee Tuss Design Engineer Florida ME No. Ideab 1106 Cassial May Mivi Boymon beach, FL 30435

REACTIONS

BOT CHORD

(lb/size) 2=844/0-3-8, 9=1052/0-3-8

Max Horz 2=258(load case 6)

Max Uplift 2=-240(load case 6), 9=-281(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/46, 2-3=-2257/1244, 3-4=-1533/879, 4-5=-537/327, 5-6=-537/327, 6-7=-33/65,

7-8=-9/50

2-12=-1383/1997, 11-12=-1385/1997, 10-11=-720/1079, 9-10=-92/52, 8-9=-0/1

WEBS 3-12=0/180, 3-11=-633/487, 4-11=-550/899, 4-10=-719/526, 5-10=-308/194, 6-10=-508/847,

6-9=-846/542, 7-9=-152/77

JOINT STRESS INDEX

2 = 0.73, 3 = 0.48, 4 = 0.57, 5 = 0.34, 6 = 0.59, 7 = 0.48, 8 = 0.34, 9 = 0.42, 10 = 0.84, 11 = 0.66 and 12 = 0.34

NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

Truss Design Engineer Flonds PE No. 24888 1109 Createl Bay Blyd Boymon Beach, FL 33435

June 16,2008

Continued on page 2

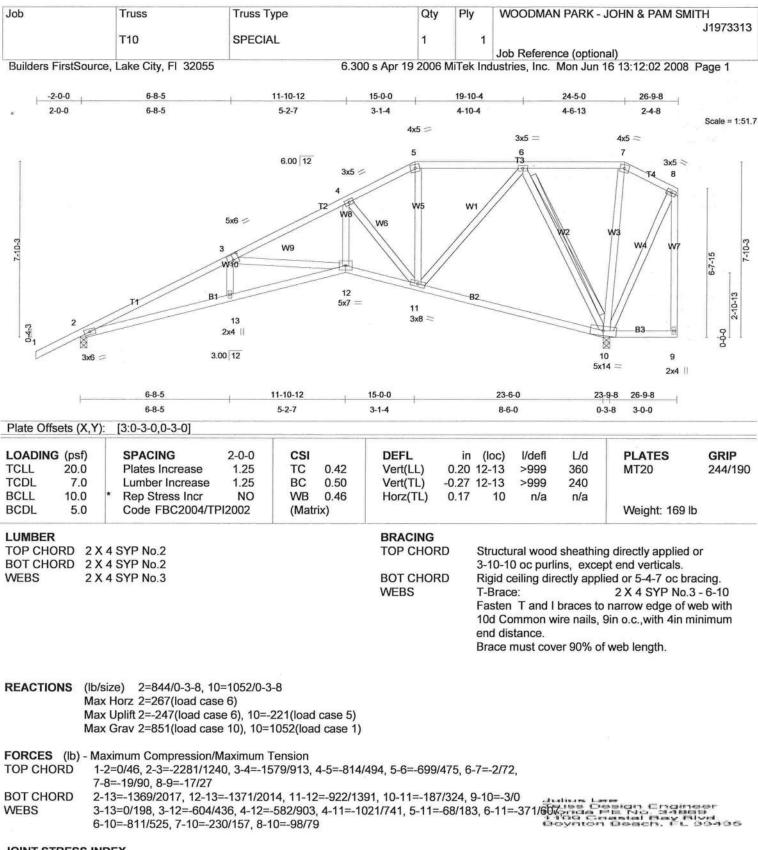
▲ Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973312
	T09	SPECIAL	1	1	
	0.00000				Job Reference (optional)

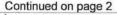

6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:11:11 2008 Page 2

NOTES

- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 240 lb uplift at joint 2 and 281 lb uplift at joint
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-4=-54, 4-7=-54, 2-11=-10, 9-11=-10, 8-9=-10 Concentrated Loads (lb) Vert: 8=-30(F) 7=-54(F)




JOINT STRESS INDEX

2 = 0.73, 3 = 0.55, 4 = 0.79, 5 = 0.42, 6 = 0.46, 7 = 0.60, 8 = 0.48, 9 = 0.34, 10 = 0.42, 11 = 0.64, 12 = 0.67 and 13 = 0.34

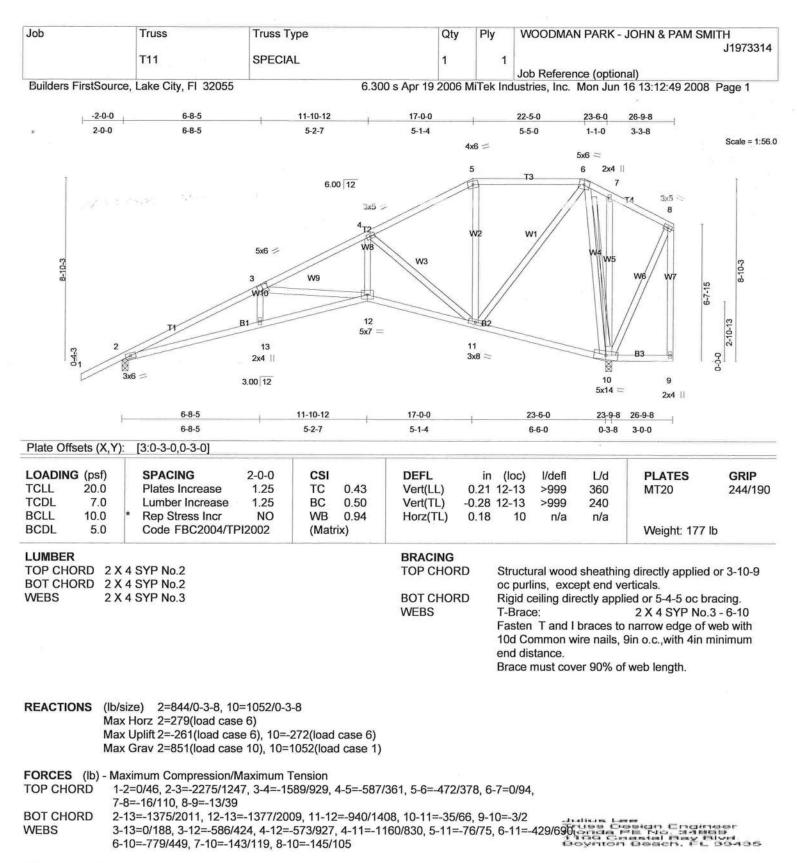
NOTES

Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
					J1973313
	T10	SPECIAL	1	1	
					Job Reference (optional)

6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:12:02 2008 Page 2

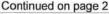
NOTES


- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 247 lb uplift at joint 2 and 221 lb uplift at joint 10.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-5=-54, 5-7=-54, 7-8=-54, 2-12=-10, 10-12=-10, 9-10=-10 Concentrated Loads (lb) Vert: 9=-30(F) 8=-54(F)

> Julius Lee Truss Design Engineer Florida FE No. 34889 1 100 Chastal Bay Rivi Boynton Besch, FL 33435



JOINT STRESS INDEX

2 = 0.73, 3 = 0.52, 4 = 0.81, 5 = 0.60, 6 = 0.32, 7 = 0.34, 8 = 0.48, 9 = 0.34, 10 = 0.42, 11 = 0.75, 12 = 0.67 and 13 = 0.34

NOTES

Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	S. Barrer Process				J1973314
	T11	SPECIAL	1	1	15 STORE - 20 15
		Section 1 and 1 an			Job Reference (optional)

6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:12:49 2008 Page 2

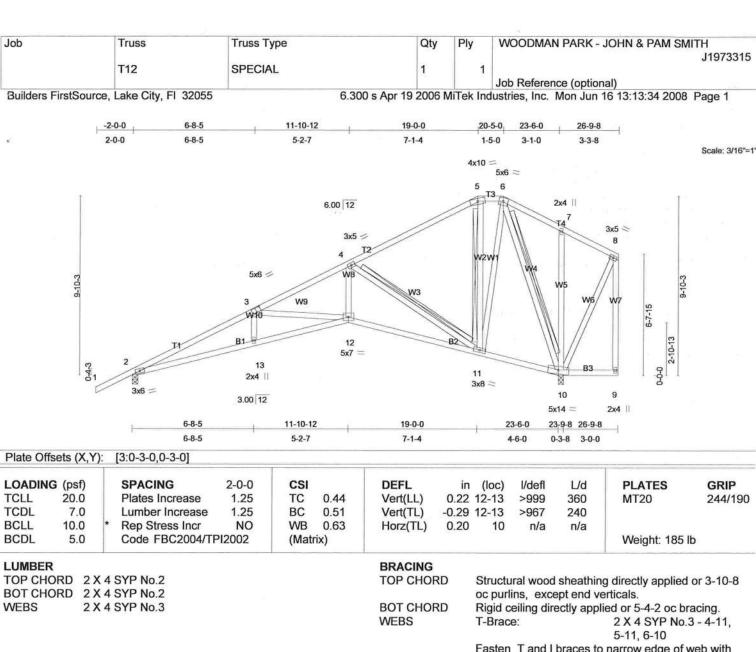
NOTES

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 261 lb uplift at joint 2 and 272 lb uplift at joint 10.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)


Vert: 1-5=-54, 5-6=-54, 6-8=-54, 2-12=-10, 10-12=-10, 9-10=-10

Concentrated Loads (lb)

Vert: 9=-30(F) 8=-54(F)

Julius Lee Truse Design Engineer Flonda PE No. 3-1869 1 109 Chastel Rey Blvd Bovnton Beach, FL 93435

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum

end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) 2=850/0-3-8, 10=1046/0-3-8

Max Horz 2=291(load case 6)

Max Uplift 2=-253(load case 6), 10=-239(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/46, 2-3=-2260/1266, 3-4=-1611/970, 4-5=-418/274, 5-6=-295/322, 6-7=0/102,

7-8=-13/109, 8-9=-8/56

BOT CHORD 2-13=-1391/1996, 12-13=-1392/1996, 11-12=-987/1440, 10-11=-95/199, 9-10=-2/2

WEBS 3-13=0/174, 3-12=-543/395, 4-12=-575/942, 4-11=-1315/949, 5-11=-236/201, 6-11=-481/742, 6-10=-762/403, 7-10=-203/204, 8-10=-145/94

Cresion Engineer a PE No. 34865 Crestal Rev Blod

JOINT STRESS INDEX

2 = 0.73, 3 = 0.47, 4 = 0.82, 5 = 0.67, 6 = 0.43, 7 = 0.34, 8 = 0.48, 9 = 0.34, 10 = 0.42, 11 = 0.93, 12 = 0.70 and 13 = 0.34

Unbalanced roof live loads have been considered for this design.

June 16,2008

Continued on page 2

👠 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

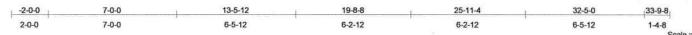
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erecti and bracing, consult BCSI-1 or HIB-97 Handling Installing and Bracing Recommendation will be Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
and the second s					J1973315
	T12	SPECIAL	1	1	
					Job Reference (optional)

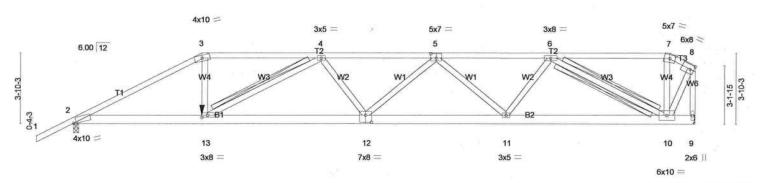
6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:13:34 2008 Page 2

NOTES

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 253 lb uplift at joint 2 and 239 lb uplift at joint 10.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-5=-54, 5-6=-54, 6-8=-54, 2-12=-10, 10-12=-10, 9-10=-10 Concentrated Loads (lb) Vert: 9=-30(F) 8=-54(F)


> Julius Les Truss Design Engineer Florida ME No. 2-1938 1 100 Chestal Bay filvi Boynton Beach, FL 33435

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973316
	T13	HIP	1	1	Job Reference (optional)
Builders Firs	stSource, Lake City, FI	32055 6.3	800 s Feb 15 2006	MiTek In	Job Reference (optional) adustries, Inc. Mon Jun 16 12:56:01 2008 Page 1

Scale = 1:62.7

Simpson HTU26

<u> </u>	7-0-0	15-10-8	23-6-8	32-5-0	33-9-8
	7-0-0	8-10-8	7-8-0	8-10-8	1-4-8
Plate Offsets (X,Y):	[2:0-1-11,0-0-6	6], [5:0-3-8,0-3-0], [12:0-4-0,0	0-4-8], [13:0-3-8,0-1-8]		

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L∕d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.94	Vert(LL)	-0.36	11-12	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.71	Vert(TL)	-0.68	12-13	>589	240	150703455-00056	
BCLL	10.0	* Rep Stress Incr	NO	WB	1.00	Horz(TL)	0.15	9	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	2002	(Mati	rix)	182 8					Weight: 198 lb	

LUMBER		BRACING
TOP CHORD	2 X 4 SYP No.2	TOP CHORD
BOT CHORD	2 X 6 SYP No.1D	

Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

2 X 4 SYP No.3 -

WEBS

I-Brace:

6-10

T-Brace:

2 X 4 SYP No.3 -

4-13

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in

Brace must cover 90% of web length.

minimum end distance.

REACTIONS (lb/size) 2=2313/0-3-8, 9=2363/Mechanical

Max Horz 2=122(load case 5)

Max Uplift 2=-716(load case 5), 9=-787(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/51, 2-3=-4517/1485, 3-4=-4027/1378, 4-5=-5721/1945, 5-6=-4785/1629,

6-7=-1016/363, 7-8=-1050/329, 8-9=-2367/718

BOT CHORD 2-13=-1324/3966, 12-13=-1954/5639, 11-12=-1955/5649, 10-11=-1442/4130,

9-10=-9/32

2 X 4 SYP No.3

3-13=-418/1454, 4-13=-1930/748, 4-12=0/271, 5-12=0/182, 5-11=-1166/489,

6-11=-265/1154, 6-10=-3553/1277, 7-10=-209/197, 8-10=-738/2278

June 16,2008

Continued on page 2

WEBS

WEBS

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973316
1	T13	HIP	1	1	Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:01 2008 Page 2

JOINT STRESS INDEX

2 = 0.81, 3 = 0.98, 4 = 0.62, 5 = 0.81, 6 = 0.84, 7 = 0.85, 8 = 0.86, 9 = 0.61, 10 = 0.92, 11 = 0.82, 12 = 0.90 and 13 = 0.91

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS; Lumber DOL=1.60 plate grip DOL=1.60.

3) Provide adequate drainage to prevent water ponding.

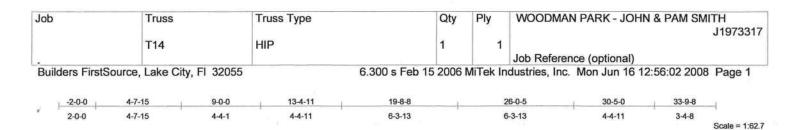
4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

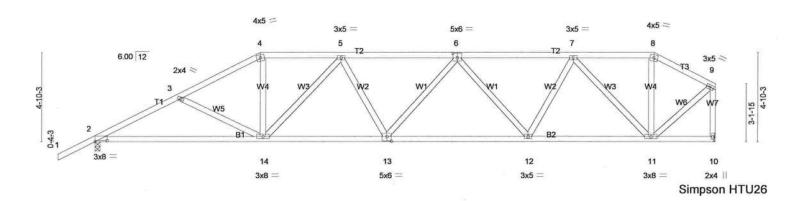
5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 716 lb uplift at joint 2 and 787 lb uplift at joint 9.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25


Uniform Loads (plf)


Vert: 1-3=-54, 3-7=-118(F=-64), 7-8=-118(F=-64), 2-13=-10, 9-13=-22(F=-12)

Concentrated Loads (lb) Vert: 13=-411(F)

> Julius Lee Truss Design Engineer Flonds FE No. 24899 1106 Chastel Bay Sivi Bovaton Beach, FL 33435

Plate Of	fsets (X,Y	(): [2:0-8-0,0-0-10], [6	3:0-3-0,0-3	3-0], [13	:0-3-0,0-	3-0]					-	
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.33	Vert(LL)	-0.16	2-14	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.54	Vert(TL)	-0.31	2-14	>999	240	W200000000	
BCLL	10.0	* Rep Stress Incr	YES	WB	0.69	Horz(TL)	0.09	10	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)						Weight: 186 lb	

23-6-15

7-8-14

30-5-0

6-10-1

33-9-8

3-4-8

LUMBERTOP CHORD2 X 4 SYP No.2TOP CHORDStructural wood sheathing directly applied or 4-4-1 oc purlins, except end verticals.BOT CHORD2 X 4 SYP No.3BOT CHORDRigid ceiling directly applied or 6-3-6 oc bracing.

REACTIONS (lb/size) 2=1192/0-3-8, 10=1068/Mechanical

Max Horz 2=162(load case 6)

9-0-0

9-0-0

Max Uplift 2=-277(load case 6), 10=-241(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-2014/1040, 3-4=-1776/933, 4-5=-1558/894, 5-6=-1933/1073,

6-7=-1637/909, 7-8=-727/447, 8-9=-843/455, 9-10=-1051/566

BOT CHORD 2-14=-990/1734, 13-14=-992/1893, 12-13=-1019/1938, 11-12=-728/1405,

10-11=-15/17

3-14=-216/207, 4-14=-227/535, 5-14=-566/265, 5-13=-17/150, 6-13=-64/94,

15-10-1

6-10-1

6-12=-473/299, 7-12=-205/497, 7-11=-1009/534, 8-11=-52/208, 9-11=-460/932

JOINT STRESS INDEX

2 = 0.70, 3 = 0.33, 4 = 0.63, 5 = 0.43, 6 = 0.50, 7 = 0.43, 8 = 0.38, 9 = 0.66, 10 = 0.37, 11 = 0.89, 12 = 0.43, 13 = 0.56 and 14 = 0.56

NOTES

WEBS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This Contrastal designed for C-C for members and forces, and for MWFRS for reactions specified.

Truss Ossign Engineer Florida FE No. 24888 1 100 Chastal Bay Blvd Boynton Beach, FL 33435

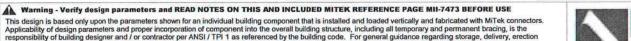
June 16,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	AN INCOME.	- C			J1973317
	T14	HIP	1	1	
	The state of the s	IA ANDROI			Job Reference (optional)

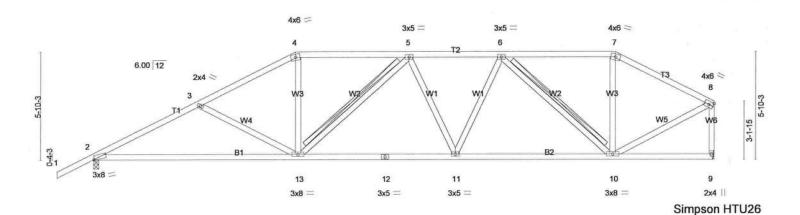
6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:02 2008 Page 2


NOTES

3) Provide adequate drainage to prevent water ponding.

- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 277 lb uplift at joint 2 and 241 lb uplift at joint 10.

LOAD CASE(S) Standard


June 16,2008

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-97 Handling Installing and Bracing Recommendation who was a proper formation of the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job		Truss	Truss Type		Qty 1	Ply 1	WOODMAN PARK	- John & Pam S	MITH J1973318
Builder	rs FirstSou	urce, Lake City, FI	32055	6.300 s I	Feb 15 2006	MiTek In	Job Reference (option dustries, Inc. Mon Ju-	The second secon	08 Page 1
-2	2-0-0	5-9-14	11-0-0	17-2-7	22-2-	9	28-5-0	33-9-8	
2	2-0-0	5-9-14	5-2-2	6-2-7	5-0-2	2	6-2-7	5-4-8	Scale = 1:62.

		11-0-0			8-8-8	3		8-	8-8		5-4-8	
Plate O	ffsets (X,	r): [2:0-0-10,Edge]										
LOADIN	NG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.38	Vert(LL)	-0.30	2-13	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.71	Vert(TL)	-0.56	2-13	>713	240		
BCLL	10.0	* Rep Stress Incr	YES	WB	0.33	Horz(TL)	0.08	9	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	212002	(Mat	rix)						Weight: 185 lb	

19-8-8

BCLL BCDL	10.0 5.0	* Rep Stress Incr Code FBC2004/TF	1.25 YES PI2002	WB (Mat	0.71 0.33 rix)	Horz(TL)	0.08	9	>/13 n/a	n/a	Weight: 185 lb
LUMBEI TOP CH		X 4 SYP No.2				BRACING TOP CHO		Structu	ıral wood	sheathir	ng directly applied or
BOT CH	ORD 2	X 4 SYP No.2						4-3-8 c	c purlins	, except	end verticals.
WEBS	2	X 4 SYP No.3				вот сно	RD	Rigid o	eiling dir	ectly app	lied or 6-3-14 oc

BOT CHORD

WEBS T-Brace:

bracing.

2 X 4 SYP No.3 -5-13, 6-10

33-9-8

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) 2=1192/0-3-8, 9=1068/Mechanical

11-0-0

Max Horz 2=173(load case 6)

Max Uplift 2=-292(load case 6), 9=-210(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-1980/1046, 3-4=-1675/905, 4-5=-1453/876, 5-6=-1564/919,

6-7=-903/579, 7-8=-1061/577, 8-9=-1044/580

BOT CHORD 2-13=-985/1700, 12-13=-839/1627, 11-12=-839/1627, 10-11=-752/1465,

9-10=-34/36

3-13=-291/278, 4-13=-152/439, 5-13=-350/150, 5-11=-166/131, 6-11=-80/278,

6-10=-803/416, 7-10=-11/229, 8-10=-469/983

JOINT STRESS INDEX

WEBS

2 = 0.88, 3 = 0.33, 4 = 0.74, 5 = 0.45, 6 = 0.45, 7 = 0.71, 8 = 0.68, 9 = 0.43, 10 = 0.90, 11 = 0.45, 12 = 0.57 and 13 = 0.56

Continued on page 2

June 16,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors.

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HiB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
		122	10000		J1973318
	T15	HIP	1	1	
	0.46841	NO. CO.	1 525	324	Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:03 2008 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide adequate drainage to prevent water ponding.

4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 292 lb uplift at joint 2 and 210 lb uplift at joint 9.

LOAD CASE(S) Standard

Julius Lee Trues Design Engineer Flonda PE No. 34866 1100 Chastel Bay Blvd

Job Truss Truss Type Qty Ply WOODMAN PARK - JOHN & PAM SMITH J1973319 T16 HIP 1 1 Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:04 2008 Page 1 7-0-0 13-0-0 19-8-8 -2-0-0 26-5-0 32-5-0 39-5-0 41-5-0 7-0-0 6-0-0 6-8-8 6-8-8 6-0-0 2-0-0 7-0-0 2-0-0 Scale = 1:73.6 5x6 = 3x8 = 5x6 = 6 6.00 12 3x6 = 3x6 < 3 W3 B1 B1 3x6 = 14 13 12 11 10 2x6 // 3x8 = 5x6 = 3x8 = 2x6 \\ 5-9-4 13-0-0 19-8-8 26-5-0 33-9-8 39-5-0 5-9-4 7-2-12 6-8-8 6-8-8 7-4-8 5-7-8 Plate Offsets (X,Y): [2:0-1-13,0-0-7], [8:0-1-13,0-0-7], [12:0-3-0,0-3-0] SPACING 2-0-0 L/d LOADING (psf) CSI DEFL (loc) I/defl **PLATES** GRIP in TCLL 20.0 TC 0.40 Vert(LL) 360 Plates Increase 1.25 -0.09 13-14 >999 **MT20** 244/190 TCDL 7.0 Lumber Increase 1.25 BC 0.37 Vert(TL) -0.20 13-14 >999 240 **BCLL** 10.0 * Rep Stress Incr YES **WB** 0.54 Horz(TL) 0.06 10 n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 214 lb LUMBER BRACING TOP CHORD 2 X 4 SYP No.2 TOP CHORD Structural wood sheathing directly applied or BOT CHORD 2 X 4 SYP No.2 4-3-10 oc purlins. **WEBS BOT CHORD** 2 X 4 SYP No.3 Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 2 X 4 SYP No.3 -

T-Brace:

5-13, 5-11

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in

minimum end distance. Brace must cover 90% of web length.

REACTIONS (lb/size) 2=1140/0-3-8, 10=1597/0-3-8

Max Horz 2=-113(load case 7)

Max Uplift 2=-303(load case 6), 10=-535(load case 7) Max Grav 2=1144(load case 10), 10=1597(load case 1)

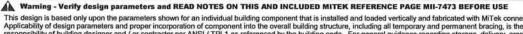
FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-1900/878, 3-4=-1440/745, 4-5=-1227/734, 5-6=-769/409,

6-7=-927/389, 7-8=-846/733, 8-9=0/47

BOT CHORD 2-14=-601/1616, 13-14=-615/1591, 12-13=-272/1220, 11-12=-272/1220,

10-11=-122/538, 8-10=-578/905


WEBS 3-14=0/221, 3-13=-422/336, 4-13=-68/340, 5-13=-134/95, 5-12=0/186,

5-11=-638/388, 6-11=-6/196, 7-11=-612/970, 7-10=-1579/1193

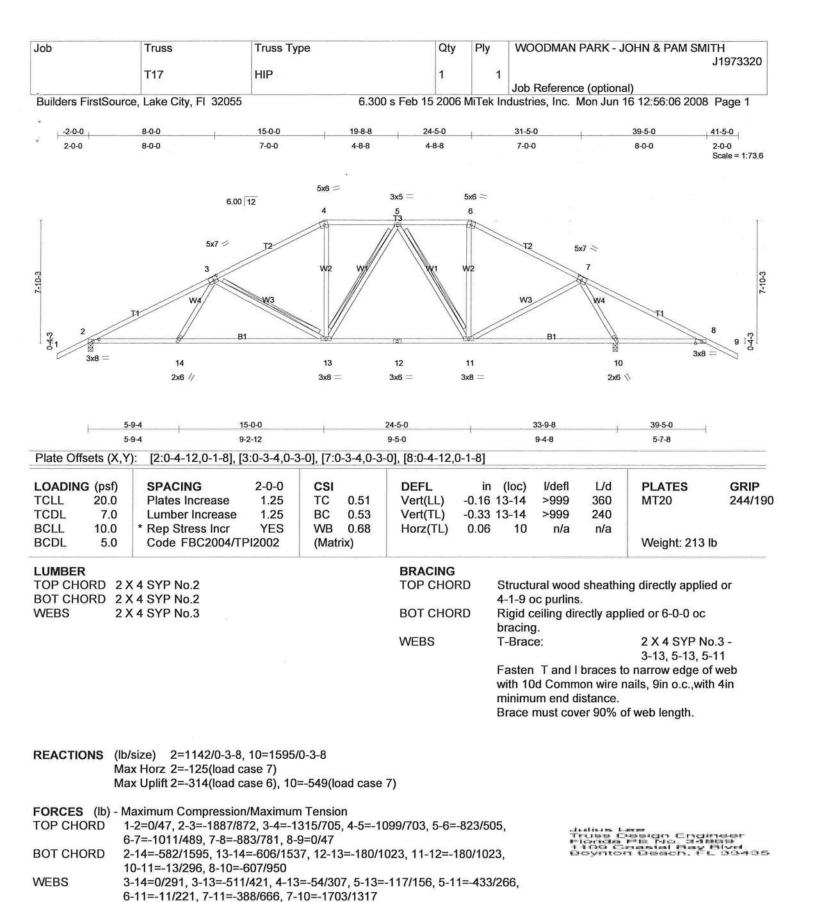
Cricalmanes

JOINT STRESS INDEX

Continued on 3 = 0.72, 4 = 0.54, 5 = 0.56, 6 = 0.54, 7 = 0.72, 8 = 0.79, 10 = 0.54, 11 = 0.89, 12 = 0.44, 13 = 0.89 and 14 = 0.54

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
					J1973319
	T16	HIP	1	1	
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:04 2008 Page 2


NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; cantilever right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 303 lb uplift at joint 2 and 535 lb uplift at joint 10.

LOAD CASE(S) Standard

Julius Lee Truss Cesign Engineer Flonda FE No. 34889 1189 Cesstal Bay Blyd Boynton Beach, FL 23436

JOINT STRESS INDEX

2 = 0.70, 3 = 0.84, 4 = 0.54, 5 = 0.43, 6 = 0.54, 7 = 0.84, 8 = 0.70, 10 = 0.74, 11 = 0.61, 12 = 0.43, 13 = 0.61 and 14 = 0.74June 16,2008 Continued on page 2

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973320
	T17	HIP	1	1	31073323
	35,00000	1000	225		Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:06 2008 Page 2

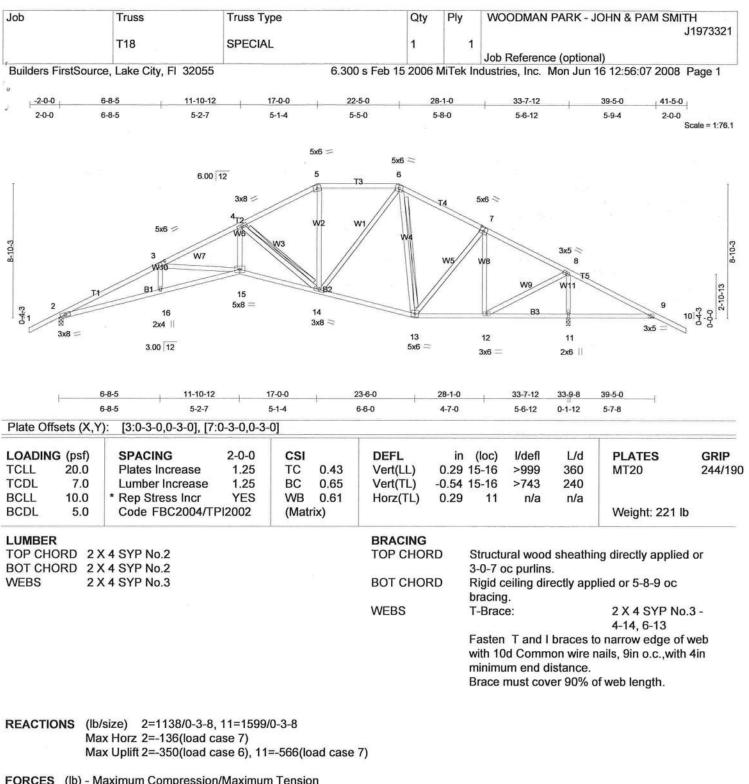
NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; cantilever right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide adequate drainage to prevent water ponding.

4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 314 lb uplift at joint 2 and 549 lb uplift at joint 10.

LOAD CASE(S) Standard

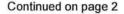
Julius Lee Trues Design Engineer Flooda FE No. 34898 4 168 Chestal Bay Blyd Boynton Beach, FL 33435

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/46, 2-3=-3441/1524, 3-4=-2805/1216, 4-5=-1362/711, 5-6=-1172/693,

6-7=-959/544, 7-8=-774/276, 8-9=-807/679, 9-10=0/47

BOT CHORD 2-16=-1211/3075, 15-16=-1213/3074, 14-15=-787/2529, 13-14=-117/868, 12-13=-83/631, 11-12=-540/858, 9-11=-540/858


3-16=0/184, 3-15=-537/413, 4-15=-495/1451, 4-14=-1676/759, 5-14=-105/336,

6-14=-213/590, 6-13=-347/156, 7-13=-150/259, 7-12=-581/474, 8-12=-899/1318,

8-11=-1520/1150

Chains

June 16,2008

WEBS

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
			1 1 1 1		J1973321
	T18	SPECIAL	1	1	300 No. 100 No
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:07 2008 Page 2

JOINT STRESS INDEX

2 = 0.79, 3 = 0.53, 4 = 0.83, 5 = 0.43, 6 = 0.43, 7 = 0.45, 8 = 0.79, 9 = 0.54, 11 = 0.54, 12 = 0.74, 13 = 0.42, 14 = 0.85, 15 = 0.93 and 16 = 0.33

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; cantilever right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 350 lb uplift at joint 2 and 566 lb uplift at joint 11.

LOAD CASE(S) Standard

Julius Lee Truss Design Engineer Florida FE No. 3-1898 1 100 Coastal Ray Blvd

Job	Truss	Truss Type)		Qty	Ply	V	VOODMAN	PARK -	JOHN &	PAM SMI	TH J1973322
	T19	SPECIAL			1		1					0 1973322
Buildors EirstSours	a Lake City El 32055			6.300 s Feb 1	5 2006	MiTok		b Reference			·08 2008	Page 1
Builders FirstSourc	e, Lake City, FI 32055			0.300 S Feb 1	5 2000 1	VIIIEK	mau	stries, mc.	WON Jun	10 12.50	.00 2000	Page 1
-2-0-0	6-8-5 11-10-12		19-0-0	20-5-0	27-2-8		+	33-7-12		39-5-0	41-5-0	1
2-0-0	6-8-5 5-2-7		7-1-4	1-5-0	6-9-8			6-5-4		5-9-4	2-0-0	Scale = 1:76.9
				5x6 =								
				5x6 =								
9	6	.00 12		5 6 								
	=	107.11.155										
		3x8 =			14	5	5x6 <					
		4 12		W2 / \			7					
9-10-3	5x6	W			ĺ.		1					9-10-3
d	3 W8		W4		1	W5//	WB		3x5 > 8			op.
	Wife				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	//	- 11	W9/	W11			[_
	B1 19	15 5x8 =	B	2	11///		11		1		0	2-10-13
271	16 2x4	5.00 —		14	#		1	В3	8		Test .	1018-8/4
3x8 =				3x8 =	13		12		11		3x5 =	1 - 0
	3.00 12				5x6 =		3x5	=	2x6			
¥	6-8-5 11-10-12	- Y	19-0-0	23-6-0		28-2-12	1	33-7-12	33-9-8	39-5-0		
A	6-8-5 5-2-7	,	7-1-4	4-6-0		4-8-12		5-5-0	0-1-12	5-7-8	.00	
Plate Offsets (X,Y): [3:0-3-0,0-3-0], [7:	0-3-0,0-3-0]										
OADING (psf)	SPACING	2-0-0	CSI	DEF	Ĺ	in	(loc) I/defl	L/d	PLA	TES	GRIP
TCLL 20.0	Plates Increase	1.25		.44 Vert	(LL)	0.31	15-1	6 >999	360	MT2		244/19
TCDL 7.0	Lumber Increase	1.25		66 Vert	N. (5)	-0.56			240			
BCLL 10.0 BCDL 5.0	* Rep Stress Incr Code FBC2004/TF	YES PI2002	WB 0. (Matrix)	.83 Horz	(IL)	0.32	1	1 n/a	n/a	Wei	ght: 229	lb
0.0	0000 1 00200 1/11	IZUUZ	(Matrix)							1100	JIII. 220	
L UMBER FOP CHORD 2)	/ A CVD No 2				CHOP		Ctru	otural waa	d choath	ina diroo	the applic	d or
BOT CHORD 2				101	CHORI			ctural woo 5 oc purlin		ing unec	uy applie	u or
	(4 SYP No.3			BOT	CHORI		Rigid	d ceiling di		plied or s	5-8-3 oc	
			6	WEB	c		brac T-Br			2 8	4 SYP No	n 3
				VVL	0		וטייו	acc.			, 6-13	J.J -
								en T and				
								10d Comm			o.c.,wit	h 4in
								e must co			enath.	
REACTIONS (lb/	/size) 2=1138/0-3-8,	11=1599/0-	-3-8									
	x Horz 2=-148(load ca		0 0									
Ma	x Uplift 2=-331(load ca	ase 6), 11=-	577(load	case 7)								
		/Mavimum ⁻	Tension									
FORCES (lb) - M	aximum Compression											
TOP CHORD 1	aximum Compression -2=0/46, 2-3=-3431/15	543, 3-4=-28	329/1255,		33, 5-6	=-945/	/648,					
TOP CHORD 1	-2=0/46, 2-3=-3431/15 -7=-949/581, 7-8=-768	543, 3-4=-28 3/281, 8-9=-	329/1255, 803/675,	9-10=0/47	-35		,					
TOP CHORD 1 6 3OT CHORD 2	-2=0/46, 2-3=-3431/15	543, 3-4=-28 8/281, 8-9=- 6=-1227/30	329/1255, 803/675, 64, 14-15	9-10=0/47 =-832/2561,	-35		,					

Continued on page 2

8-11=-1522/1159

Julius Lee Trues Design Engineer Flonds ME No. 24868 1 100 Coastal Bay Blvd Boynton Besch, FL 25425

June 16,2008

6-14=-189/625, 6-13=-320/85, 7-13=-71/165, 7-12=-572/479, 8-12=-892/1306,

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
					J1973322
	T19	SPECIAL	1	1	
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:08 2008 Page 2

JOINT STRESS INDEX

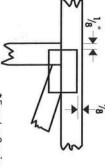
2 = 0.79, 3 = 0.49, 4 = 0.84, 5 = 0.66, 6 = 0.58, 7 = 0.65, 8 = 0.79, 9 = 0.56, 11 = 0.55, 12 = 0.81, 13 = 0.28, 14 = 0.92, 15 = 0.93 and 16 = 0.33

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; cantilever right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 331 lb uplift at joint 2 and 577 lb uplift at joint 11.

LOAD CASE(S) Standard

Julius Les Truss Design Engineer Florida Fle No. 24899 1 100 Chastal Bay filvri Bovnton Besch, FL 22425



Symbols

PLATE LOCATION AND ORIENTATION

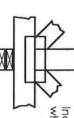
*Center plate on joint unless Dimensions are in inches. Apply plates to both sides of truss and dimensions indicate otherwise. securely seat

*For 4 x 2 orientation, locate plates 1/8" from outside edge of truss and vertical web.

*This symbol indicates the required direction of slots in connector plates

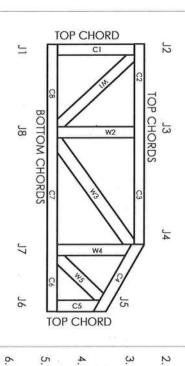
PLATE SIZE

4 × 4


dimension is the length parallel perpendicular to slots. Second to slots. The first dimension is the width

LATERAL BRACING

continuous lateral bracing. Indicates location of required


BEARING

4

which bearings (supports) occur. Indicates location of joints at

Numbering System

JOINTS AND CHORDS ARE NUMBERED CLOCKWISE AROUND THE TRUSS STARTING AT THE LOWEST JOINT FARTHEST TO THE LEFT.

WEBS ARE NUMBERED FROM LEFT TO RIGHT

CONNECTOR PLATE CODE APPROVALS

ICBO 3907, 4922

BOCA

96-31, 96-67

9667, 9432A

SBCCI

WISC/DILHR 960022-W, 970036-N

561

NER

MiTek Engineering Reference Sheet: MII-7473

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Provide copies of this truss design to the owner and all other interested parties building designer, erection supervisor, property
- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Avoid knots and wane at joint locations.
- at 1/4 panel length (± 6" from adjacent joint.) Unless otherwise noted, locate chord splices
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not preservative treated lumber. applicable for use with fire retardant or
- 7. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 8 Plate type, size and location dimensions shown indicate minimum plating requirements.
- 9 Lumber shall be of the species and size, and grade specified. in all respects, equal to or better than the
- Top chords must be sheathed or purlins provided at spacing shown on design.
- Bottom chords require lateral bracing at 10 unless otherwise noted. ft. spacing, or less, if no ceiling is installed
- 12. Anchorage and / or load transferring others unless shown connections to trusses are the responsibility of
- Do not overload roof or floor trusses with stacks of construction materials.
- Do not cut or alter truss member or plate without prior approval of a professional engineer
- Care should be exercised in handling. erection and installation of trusses

© 1993 MiTek® Holdings, Inc.

C E NO. 4869 NO. 4869 NO. 4869 STATE OF REVIEWED By julius loe at 12:00 pm, Jun 11, 2008 REPER TO CHART ABOVE REPER TO SALL HAVE A REPERCATOR REPER TO CHART ABOVE REPER TO SALL HAVE ARREPT ABOVE REPER TO SALL HAVE A REPERCATOR REPE DIAGONAL BEACE OFTON: VERTICAL LENGTH MAY BE DOGREED WEEN DIAGONAL BRACE IS USED, CONNECT INACONAL BEACE FOR SAG TOTAL LENGTH IS 14. AT BACK END. VERTICAL LENGTH MAX GABLE SPACING SPECIES PERTICAL INGTH SHOWN 12" O.C. O.C GABLE VERTICAL HAN WEH SPF DFL SPF DFL SPF SP SP FL ASCE STANDARD STANDARD STANDARD STANDARD STANDARD GRADE \$1 / #Z COLLS TANDARD COLS CUIS STUD STUD 古書 BRACE 7-02: #2 GABLE TRUSS BRACES 130 ZX4 SP #ZK, DF-L #Z, SPF #L/#Z, OR BETTER DIAGONAL BRACE; SINGLE OR DOUBLE GROUP A Ξ 5, 10, DUT (AS SHUWN) AT 8 8 MPH IX4 "L" BRACE . UPPER END. GROUP a MIND J, O 0 N GROUP (1) 2X4 "L" SPEED ä P GROUP B BRACE . 8, 8, 8, 10, REFER TO CHART ABOVE FOR MAX GABLE VERTICAL LENGTH 15 A POOET 18 18 (2) 2X4 "L" GROUP A 6 5 5 ō MEAN CONLINOORS BEVERING EX4 #EN OR BETTER GROUP B BRACE ** 10' 2" 0 HEIGHT, CONS \mathfrak{S} GROUP A DELRAY HEACH, PL 33444-2161 13 B 10' 7" 10' 4" ö ö ž 12' 5 12 ō exe No: 34869 STATE OF FLORIDA G, US LEE'S H. ENCLOSED, GROUP B BRACE . 12 13 12 10' 3" 14 ō (3) GROUP A 12, 11, EX2 S Н 년 XAX MAX GROUP 11 BRACE 13' 11" 13' 7" 13' 3" 14' 0° 14' D' 14 0° 13' 11" TOT. LD. 1.00, SPACING W 1 ATLACE EACH "L" BRACE WITH 10d NAILS. # FOR (1) "L" BRACE, SPACE NAILS AT 8" O.C. IN 18" END ZONES AND 4" O.C. HETWINEN ZON ## FOR (2) "L" BRACES: SPACE NAILS AT 3" O.C. CARLE END SUPPORTS LOAD FROM 4' O" CONTINUOUS BEARING (6 PSF TC DEAD T." BRACING MUST BE A MINIMUM OF 80% OF WEB MINIBER LENGTH. LIVE LOAD DEPLECTION CHAIRRIA IS L/240. DOUGLAS FIR-LARCH PLYWOOD OVERHANG. DUTILODARES WITH E' O' OVERHANG, OR 12" BRACING EXPOSURE SPRUCE-PINE-IVE §1 / #2 STANDARD #3 STUD VEHINGAL LENGTH LESS THAN 4' 0° GREATER THAN 11' 8° GREATER THAN 11' 8° IN 18" IND ZONES AND 6" O.C. BETWEEN ZONES CAHLE SOUTHERN PINE 60 24.0 PEAK, SPLICE, AND HEEL PLATES. GABLE VERTICAL PLATE SIZES STANDARD PSF GROUP SPECIES TRUSS DATE REF DRWG FI & BIR GROUP GROUP B: E. D. BOLL SPACE NAILS AT 3" O.C. DETAIL 0 MITEX STD CABLE 15 E HI DOUGLAS FIR-LARCE 11/26/09 ASCE7-02-GAB13015 A: SOUTHERN PONE IX4 OR EX3 AND STANDARD 2.5X4 136 FLF OVER 55 NOTES 772 STANDARD GRADES: LOAD).

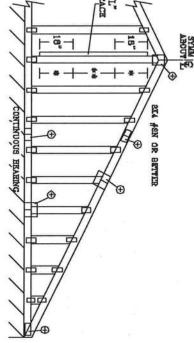
ASCE 7-02: 130 MPH WIND SPEED, 30 MEAN HEIGHT, ENCLOSED, II 1.00, EXPOSURE 0

SPRUCE - PONI - INB
#3 STUD

BRACING GROUP SPECIES AND GRADES:

GROUP

A.


DOUGLAS FIR-LARCH

SOUTHEEN PINE STANDARD

STANDARD

GENTANDE

_	_				_			_	_	_	_				_	_	_							_		_	_		
			M	A	X		0	i	I	3]		E	•	V	E	R	Γ	ľ	C	A	L		L	E	N	IC	ı, r	ľΗ	
		1	2	21	ì	0	.(3.			1	6	51		0	.(3.	E.		2	4	"		0	.(C.	•	SPACING	CART
		L F	1	7) j	TIT	I I	בוערי	בבים	2027/2017/2017		1	77) j	TTT.	ij	OFF	ELC DI		L H	1	7	ì	TTT.	I I	CT	CIT	SPACING SPECIES	CARIE VERTICAL
	STANDARD	STUD	‡ 3	#22	*1	STANDARD	STUD	£5	打 / #8	STANDARD	STUD	古	#23	41	STANDARD	STUD	₽\$	11 / H2	STANDARD	STUD	£ 3	#22	41	STANDARD	STUD	#8	3# / 1字	GRADE	BRACE
	4' 0"	4. E	4' 2"	4' 4"	4.	3' 11"	3' 11"	3' 11"	4. 0.	3' B	3 8	3. 8.	3' 11"	4. 0,	3' 7'	3' 7"	3' 7"	3. 8.	3' 0"	3' 3"	3' 3'	3' 6"	3' 6"	2' 11"	3' 1"	3' 1"	3, 5,	BRACES	Z 5
	5' 6"	8' 4'	8' 6"	6' 11"	B' 11°	5' 4"		8 3	6' 11"	4' 9"	5 6	5. 3.	8' 4"	8' 4"		5' 6"	5' 5"	8' 4'	3' 10"	4' B*	4' 6"	5' 6'	5 6	3' 8"	4' 6"		5' 6'	GROUP A	,T, 7XT (T)
	5, 8,		6' 5"	7' 6"	7, 6,	5 4	6' 3"	8 3°	7' 2"		5' 6"	6. 7.	8' 10"		4' 8"	6′ 5"	5, 5,	6. 8.	3' 10"		4' 6"	5' 11"		3′ 9"	4' 5"	4' 5"	6' 8"	GROUP H	BRACE +
	7, 3,	8' 3"	8' 3"	F 19	8 3 4	7' 1"	B 3"			6" 3"	7' 3"	-				7' 2"	7, 5,	7' 6"	6° 1"	5' 11"		6, 8,		6′ 0"	6537	6, 10.	6, 8,	GROUP A	T. +XZ (T)
CI MULYS	7' 3"	8' 6"	B, 6,		B' 11°	7' 1"	8º 3º	8' 3 ^x	B' 6.		7' 3"	7' 4"	8' 1"	B' 1°	6. 8.	-3i	7' 2"	7' 8"	5' 1"	5' 11"	6' 0"	7' 0"	7' 0"	5' 0"	5' 10"	5' 10°	8. 8.	GRO	L" BRACE .
5	8, 8,	9′ 10″	9' 10"	8, 10,	8' 10°	9' 6"	9' 10"	8, 10,,			8' 11"	8' 11"	8' 11"	B' 11"	8. 3	8' 11"	8' 11"	8, 11,	6' 11"	7, 10,	7, 10,	7' 10"	7' 10"	6, 9,	7' 10"	7' 10"	7' 10'	GROUP A	(2) 2X4 "L"
- 1	9, 9,	10′ 4″	10′ 4″	10' 7"	10' 7"	9, 8,	9' 10"	9' 10"	10, 1,	B' 5"	9' 5"			8, 2,		8' 11"		6, 5,	6, 11,	8'0"	8, 1,	8, 2,	8, 2,	6′ 9"	7' 10"	7' 10"	8′ 0"	GROUP B	BRACE **
	11' 4"		12, 11,	18, 11,	12' 11"	11' 1"	18' 10"	Jest	12' 11"	80	11' 4"	11. 5.	11' 9"	11, 8,	9' 7"	11, 1,,	11, 2,	11' 9'	B' 0*	8' 3"	9' 4"	10′ 3″	10' 3"	7' 10"	9' 1"	9' 1"	10' 3"	GROUP A	(1) axe 'L'
	11' 4"	13. 1.	18' 3'	13' 11"	13' 11"		12' 10"	12' 11"	13' 4"	8, 8,,	11' 4"		12' B"		8. 2.	11. 1.	11, 5,		8, 0,	8, 3,	9. 4."	11, 1,	11, 1,,	7' 10"	9, 1,	9' 1"	10' 7"	GROUP B	BRACE .
	14' 0"	14. Q.		14' 0"	14. 0*	14' 0"	14' O*	14' 0°	14' Q"	13' 3"	14. O.	14' O"	14' 0"	14' 0"	18. 11.	14' 0"	14. 0.	14. O.	10, 10,	12' 3"	12, 3,	12' 3"			12' 8"	12' 3"		GROUP A	T. 8XZ (2)
	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	13' 3"	14' 0"	14' 0"	14' D"	14' 0"	12, 11,	14' 0°	14' 0"	14. 0.	10' 10"	12' 6"	12, 8,	13' 2"	13' 2"			12' 3"	12, 7,	GROUP B	HRACE SE

DIAGONAL BEACE OPTION:
YMPTICAL LENGTH MAY BE
DOUBLED WHEN DIAGONAL
BRACE IS USED. CONNECT
DIAGONAL BRACE IDR SBOJ
AT EACH IND. MAY WEB
TOTAL LINGTH IS 14.

CABLE TRUSS

VERTICAL LENGTH SHOWN IN TABLE ABOVE.

ZX4 SP OR

III-L #2 OH

BETTIR DIAGONAL

BRACE; SINGLE

OH DOUBLE

CUT (AS SHOWN)

AT UPPER END

CABLE TRUSS DETAIL NOTES:

SOUTHING PINE

DOUGLAS FIR-LARCH

AT & BIE GROUP B:

CABLE END SUPPORTS LOAD FROM 4' 0" LIVE LOAD DEPLECTION CRITERIA IS L/240. PROVIDE UPLATT CONNECTIONS FOR 180 FLF OVER CONTENTIONS BEADING (6 PSF TC DEAD LOAD).

PLYWOOD OVERHANG.

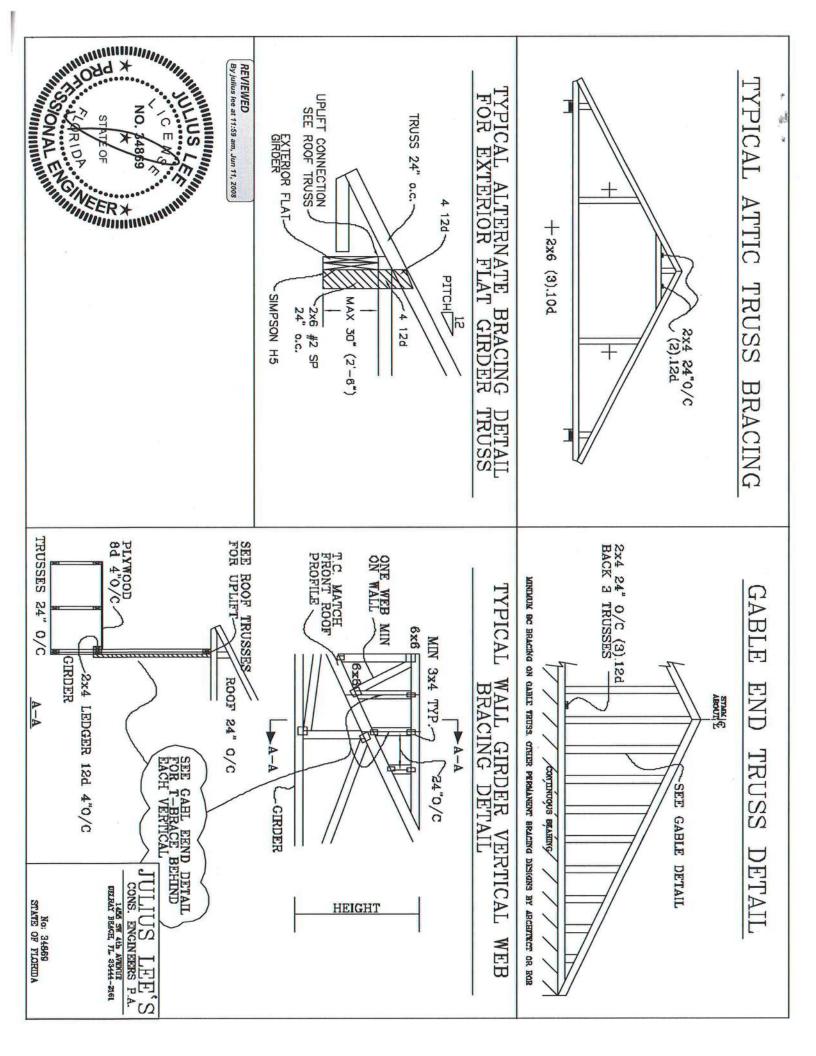
ATTACE EACH "L" BRACE WITH 104 MAIS.

FOR (1) "L" BRACE, SPACE NAIS AT 8" O.C.

FOR (2) "L" BRACES; SPACE NAIS AT 3" O.C.

FOR (3) "L" BRACES; SPACE NAIS AT 3" O.C.

IN 18" EMD ZONES AND 4" O.C. BETWIEN ZONES. MEMBER LENGTH. T. BRACING MUST BE A MINIMUM OF BOX OF WEB


PLATES.	PEAK, SPLICE, AND HEEL
THUSS DESIGN FOR	REFER TO COMMON TRUSS
2.5X4	GREATER THAN 11' 6"
2X4	GREATER THAN 4' D', BUT
1X4 OR EXS	IPSS THAN 4' 0"
ND SPLICE	VEHIVCAL LENGTH
E SIZES	CABLE VERTICAL PLATE

MINISTER WEB.	WILEW IN CHARL MONAD LAW WAY PARIE ADVINCAT TEMPTO	90.	
MINING TO THE THE PARTY OF THE			REF ASCE7-02-GAB13030
C I NO SWAMPHOLIN TRUSSES RESURE EXTREME CARE IN FARROCATING, HANDLING, DISTALING AND SWAMPHOLIN TRUSSES RESURE EXTREME CARE IN FARROCATING, HANDLING, DISTALING AND THE CHRIST	CONS. ENGINEERS P.A.		DATE 11/26/09
NO. 34869 - CAMBRICA, 680 ENTERPRISE IN MOSSIN, VIS 537191 AND VICA (MOSSIN IN SAME IN PRACTICES FROM ID P	DELBAY BEACH FL SSA44-2161		DWC MIEER SED GVBIT 30, E HJ
A SEPTICIONAL PANCES AND BUTTON CHORD SHALL HAVE A PROPERTY ATTROPED REED CELLUS			-ENG
STATE OF REVIEWED		MAX. TOT. LD. 60 PSF	
By julius lee at 12:00 pm, Jun 11, 2008	4. 0.050		
The state of the s	STATE OF ILUMDA	MAX. SPACING 24.0"	

NO. 4889

NO. 4889

NO. 4889

BOT CHORD CHORD WEBS 284 2000 222 BETTER BETTER BETTER

SPACE PIGGYBACK VERTICALS AT 4' OC MAX. REFER TO SEALED DESIGN FOR DASHED PLATES.

TOP AND BOTTOM CHORD SPLICES MUST BE STAGGERED SO THAT ONE SPLICE IS NOT DIRECTLY OVER ANOTHER.

PIGGYBACK BOTTOM CHORD MAY BE OMITTED. TRUSS TOP CHORD WITH 1.5X3 PLATE. ATTACH VERTICAL WEBS TO

ATTACH PURLINS TO TOP OF FLAT TOP CHORD. IF PRIGYBACK IS SOLID LUMBER OR THE BOTTOM CHORD IS OMITTED, PURLINS MAY BE APPLIED BRNEATH THE TOP CHORD OF SUPPORTING TRUSS. REFER TO ENCINEER'S SEALED DESIGN FOR REQUIRED FURLIN SPACING.

THIS DETAIL IS APPLICABLE FOR THE FOLLOWING WIND CONDITIONS:

110 MPH WIND, 30' MEAN HGT, FBC ENCLOSED BLDG, LOCATED ANYWHERE IN ROOF WIND TC DL-5 PSF, WIND BC DL-5 PSF

110 MPH WIND, 30' MEAN HGT, ASCE 7-03, CLOSED BLDC, LOCATED ANYWHERE IN ROOF, 1 MI FROM COAST CAT I, EXP C, WIND TO DL=5 PSF, WIND BC DL=5 PSF

HIND TC DL=6 F 30' MEAN HGT, ASCE 7-02, ANYWHERE IN ROOF, CAT II, PSF, WIND HC DL=6 PSF EXP. C,

FRONT FACE (E,*) PLATES MAY BE OFFSET FROM BACK FACE PLATES AS LONG AS BOTH FACES ARE SPACED 4' OC MAX. LOCATION IS ACCEPTABLE XAX V 12 20' FLAT TOP CHORD MAX SPAN В WAX SIZE OF ZX12 J-TYP. D-SPLICE

		_				_
Ħ	ы	c	H	>	TYPE	TOINT
4XB 0	5 X 4	1.5 X 3	4X8	23/4	30'	
R SX6 TI	9X6	1.6X4	5X6	2.5X4	34'	SPANS
OR SX6 TRULOX AT 4' OC,	£X6	1.5X4	6X8	2.6X4	86	SPANS UP TO
LY DC,	5X6	1.5 X 4	5X6	3X6	52'	

ATTACH TRULOX PLATES WITH (8) 0.120" X 1.375" NAILS, (EQUAL, PER FACE PER PLY. (4) NAILS IN EACH MEMBER BE CONNECTED. REFER TO DRAWING 160 TL FOR TRULOX INFORMATION. 乌음

	7,040		-	
10' 70 14'	7'9" TO 10'	0	E	
덩	OI	0	LED	
	10'	7,9,	GIB	
2x4 "I" BRACE. SAME GRADE, SPECIES AS WEB MEMBER, OR HETTER, AND 80% LENGTH OF WEB MEMBER. ATTACH WITH 16d NAILS AT 4° OC.	1x4 "T" BRACE. SAME GRADE, SPECIES AS WEB MEMBER, OR BETTER, AND 80% LENGTH OF WEB MEMBER. ATTACH WITH 8d NAMES AT 4" OC.	NO BRACING	REQUIRED BRACING	WEB BRACING CHART

0

O O C 0

8 1/4"

H PIGGYBACK WITH 3X8 TRULOX OR ALPINE PIGGYBACK SPECIAL PLATE

ARKIKIOM TRAKSKES REGUIDE EXTREDE CARE IN FABRICATING, HAMILING SKIPPING, INTRALLING AND SHARIKION FROM TRAKSES BEGUIDE EXTREDE CAREN TRANSPORTATION, PUBLICISION BY TPIC CRUESS IN DISTRICTS AND ACTOR CYCLIN TRAKS CILIKCIS AND SHETCH PROCESS PRIOR TO PERFORMS SEFUNCTIONS, CASID EXTERPRISE LY, MANISON, WI 33739 FOR SAFETY PROCUESS PRIOR TO PERFORMS SEFUNCTIONS, CASID EXTERPLISE AND SHARICATED, TO FURDE SHALL HAVE PROPERLY ATTACHED STRUCKS AND BOTTON CHIERO SHALL HAVE PROPERLY ATTACHED STRUCKS.

		1460 SW 4th AVENUE	CONS. ENGINEERS P.A.		THIS DRAWIN
47 PSF AT 1.15 DUR. FAC.	1.25 DUR. FAC.	1.33 DUR. FAC.	55 PSF AT	MAX LOADING	G REPLACES DRAWINGS
	-ENG JL	DRWGMITEK STD PIGGY	DATE 09/12/07	REF PIGGYBACK	THIS DRAWING REPLACES DRAWINGS 634,016 634,017 & 847,045

SPACING

24.0

NO.

REVIL REVIL

REVIEWED

By julius lee at 11:59 am, Jun 11, 2008

VALLEYTRUSS DETAIL

HOP CHORD SHITW 2X4 SP #2 OR SPF #1/#2 OR BETTER. 2X3(*) OR 2X4 SP #2N OR SPF #1/#2 ZX4 SP #3 OR BETTER. OR BETTER.

d

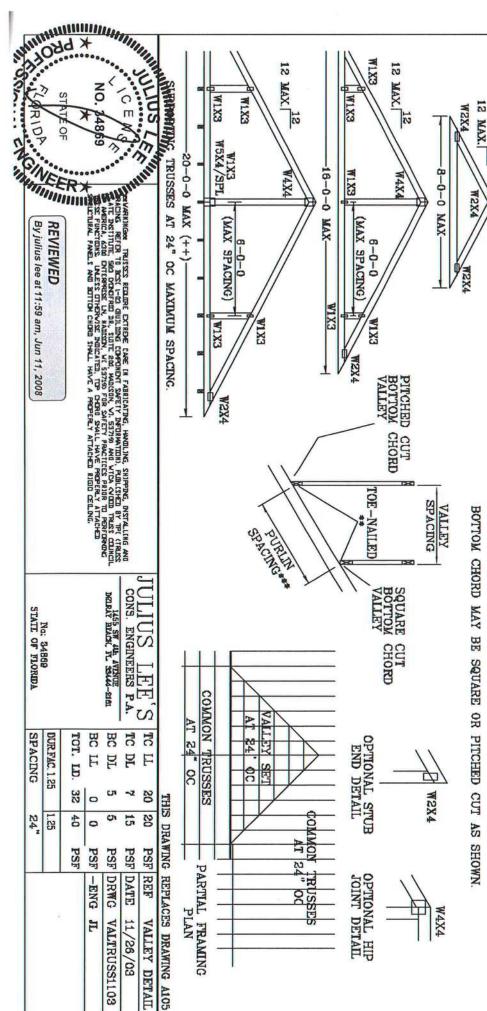
- ZX3 MAY BE RIPPED FRON A ZX6 (PITCHED OR SQUARE).
- * ATTACH EACH VALLEY TO EVERY SUPPORTING TRUSS WITH: FEC 2004 110 MPH, ASCE 7-02 110 MPH WIND ASCE 7-02 130 MPH WIND. 15' MEAN HEIGHT, ASCE 7-02 130 MPH WIND. 15' MEAN HEIGHT, BUILDING, EXP. C. RESIDENTIAL WIND TC DL=5 18d BOX (0.135" X 3.5") NAILS TOE-NAILED FOR PSF. OR (3) 16d ENCLOSED FOR

UNLESS SPECIFIED ON ENGINEER'S SEALED DESIGN, APPLY 1X4 "I"-BRACE, 80% LENGTH OF WEH, VALLEY WEH, SAME SPECIES AND GRADE OR BETTER, ATTACHED WITH 8d BOX (0.113" X 2.5") NAILS AT 6" OC, OR CONTINUOUS LATERAL BRACING, EQUALLY SPACED, FOR VERTICAL VALLEY WEBS GREATER THAN 7'9".

MAXIMUM VALLEY VERTICAL HEIGHT MAY NOT EXCEED 12'0"

TOP CHORD OF TRUSS BENEATH VALLEY SET MUST BE BRACED WITH: PROPERLY ATTACHED, RATED SHEATHING APPLIED PRIOR TO VALLEY INSTALLATION TRUSS

PURLINS AT 24" ENGINEERS' BY VALLEY TRUSSES USED IN SEALED DESIGN. 8 OR AS OTHERWISE SPECIFIED ON ENGINEERS' LIEU OF PURLIN SPACING AS SPECIFIED ON SEALED DESIGN


HENEATH THE VALLEY IS MEASURED ALONG THE SLOPE OF ++ LARGER SPANS MAY BE BUILT AS LONG AS THE VERTICAL HEIGHT DOES THE TOP CHORD.

LARGER AS REQ'D

4-0-0

XAM

NOT EXCEED 12'0".

CONS.

ENGINEERS P.A.

DELEVAL BEACH, IN SOUTH-SIGH

BC LL BC

PSF PSF

-ENG

I

PSF DRWG PSF DATE

VALTRUSS1103 11/26/09

TOT.

E

32

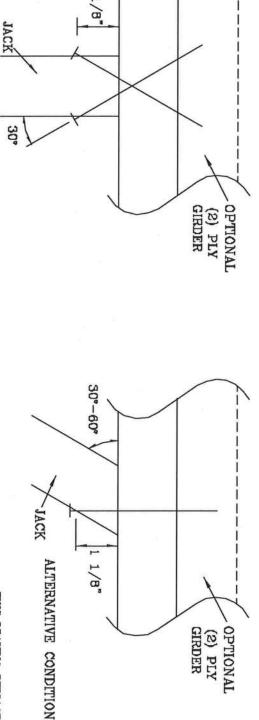
NG: 34869 STATE OF FLORIDA

SPACING DUR.FAC. 1.25

24 1.25 40

TOE-NAIL DETAIL

TOE-NAILS TO BE DRIVEN AT AN ANGLE OF APPROXIMATELY THIRTY DEGREES WITH THE PIECE AND STARTED APPROXIMATELY ONE-THIRD THE LENGTH OF THE NAIL FROM THE END OF THE MEMBER.


PER ANSI/AF&PA NDS-2001 SECTION 12.4.1 END DISTANCE, SPACING: "EDGE DISTANCES, SPACINGS FOR NAILS AND SPIKES SHALL BE PREVENT SPLITTING OF THE WOOD." - EDGE DISTANCE, END DISTANCES AND SUFFICIENT TO

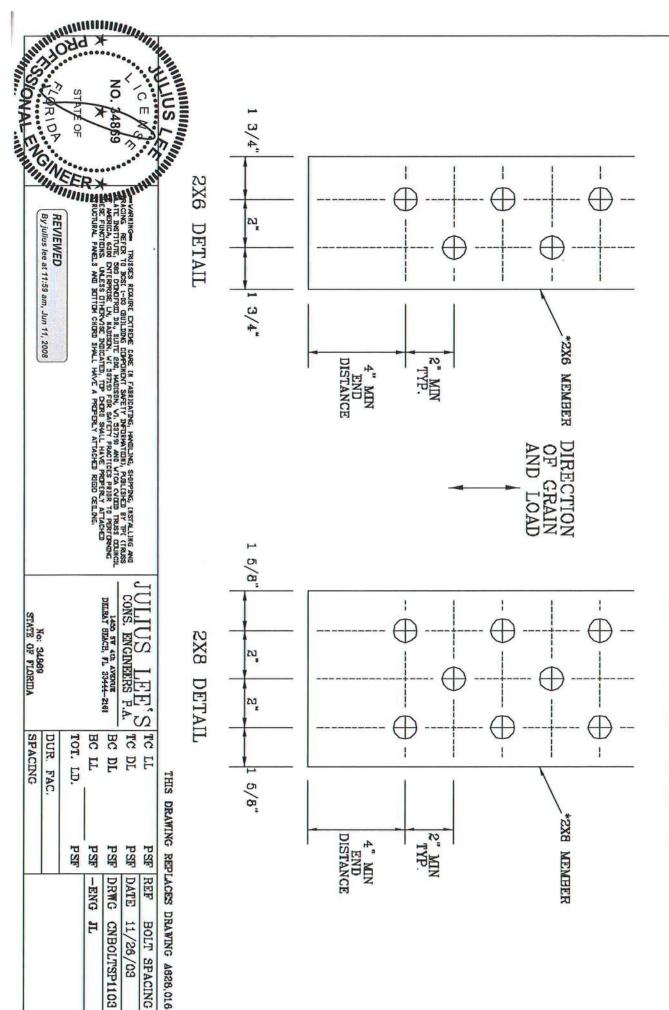
THE NUMBER OF TOE-NAILS TO BE USED IN A SPECIFIC APPLICATION IS DEPENDENT UPON PROPERTIES FOR THE CHORD SIZE, LUMBER SPECIES, AND NAIL TYPE. PROPER CONSTRUCTION PRACTICES AS WELL AS GOOD JUDGEMENT SHOULD DETERMINE THE NUMBER OF NAILS TO BE USED.

THIS DETAIL DISPLAYS A TOE-NAILED CONNECTION FOR JACK FRAMING INTO A SINGLE OR DOUBLE PLY SUPPORTING GIRDER.

MAXIMUM VERTICAL RESISTANCE OF 16d (0.162"X3.5") COMMON TOE-NAILS

	5 493#	4 394#	3 296#	2 197#	TOE-NALLS 1 PLY	NUMBER OF SOUTH	
	639#	511#	383#	256#	2 PLIES 1 PLY	SOUTHERN PINE	
	452#	361#	271#	181#	1 PLY	DOUGLAS	
	585#	468#	351#	234#	2 PLIES	DOUGLAS FIR-LARCH	
	390#	312#	234#	156#	1 PLY		
	507#	406#	304#	203#	2 PLIES	HEM-FIR	
	384#	307#	230#	154#	1 PLY	SPRUCE	
I	496#	397#	298#	189#	2 PLIES	PINE FIR	

	SPACING	STATE OF FLORIDA	III Change
DUR. FAC. 1.00	DUR.	No: 34969	By julius lee at 11:59 am, Jun 11, 2008
LD. PSF	TOT. LD.		STATE OF REVIEWED
L PSF -ENG JL	BC II		SEDICITIZAL PANELS AND BRITCH OF CRED SHALL HAVE A PROPERTY ATTACHED RIGHD CELLING
DAWG CNTONAIL1103	BC DL	DELRAY BEACH, FL SH444-2161	NO. 34869 MATE INSTITUTE, 388 D'UNCHEID DR. SUITE 200, NADISCH, MC 33719) AND VICA (MOID TR MERICA, 6800 ENIDEMISE, M, MOISSEN, M 33719) FIR SAFETY PRACTICES PRINT ID P
)L PSF DATE 09/12/07	A TC DL	_	TRUSSES REQUIRE EXTREME CAME IN FARRICATING, HANDLING, SUPPORIG. INSTALLING AND REACHER TO BOSS 1-43 COMMING COMPONENT SAFETY (NETROLING, DUBLISHED BY THE CRAISE
L PSF REF TOE-NAIL	SIGE	JULIUS LEE	AND COUNTY OF THE PARTY OF THE


DIAMETER BOLT SPACING FOR LOAD APPLIED PARALLEL TO GRAIN.

* GRADE AND SPECIES AS SPECIFIED ON THE ALPINE DESIGN

BOLT HOLES SHALL BE A MINIMUM OF 1/52" TO A MAXIMUM OF 1/16" LARGER THAN BOLT DIAMETER.

TYPICAL LOCATION OF 1/2" DIAMETER THRU BOLTS. QUANTITIES AS NOTED ON SEALED DESIGN MUST BE IN ONE OF THE PATTERNS SHOWN BELOW.

WASHERS REQUIRED UNDER BOLT HEAD AND NUT

ARION HARDING.

REVIEWED

By julius lee at 11:59 am, Jun 11, 2008

DELRAY SEACH, FL 33444-2161

BC LL BC DL TC DL

TOT.

Ū.

PSF PSF PSF PSF

DATE

11/26/03

DRWG -ENG

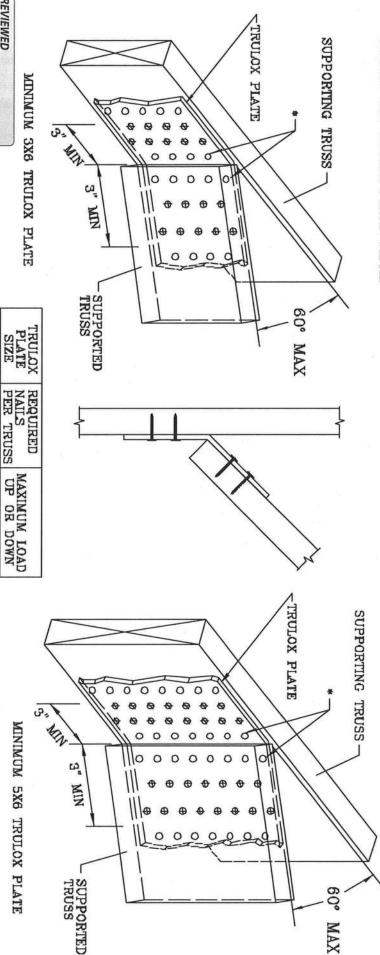
CNBOLTSP1103

H

No: 34869 STATE OF FLORIDA

SPACING DUR. FAC.

TRULOX CONNECTION


SHOWN (+). 11 GAUGE (0.120" X 1.375") NAILS REQUIRED FOR TRULOX PLATE ATTACHMENT. FILL ROWS COMPLETELY WHERE

NAILS MAY BE OMITTED FROM THESE ROWS THIS DETAIL MAY BE USED WITH SO. PINE, DOUGLAS-FIR OR HEM-FIR CHORDS WITH A MINIMUM 1.00 DURATION OF LOAD OR SPRUCE-PINE-FIR CHORDS WITH A MINIMUM 1.15 DURATION OF LOAD. CHORD SIZE OF BOTH TRUSSES MUST EXCEED THE TRULOX PLATE WIDTH.

TRULOX PLATE IS CENTERED ON THE CHORDS AND BENT BETWEEN NAIL ROWS.

INFORMATION NOT SHOWN THIS DETAIL FOR LUMBER, PLATES, AND OTHER REFER TO ENGINEER'S SEALED DESIGN REFERENCING

MAX

NO. 4869

STATE OF ER MERCHES FOR DATE OF THE GRAPH AVERSAGE REPORT OF THE

Gem IRUSSES REQUIRE EXTREME CARE IN FARRICATING, HANILING, SHPPING, INSTALLING AND RETER 10 2631—1402 (BUILDING DEPONENT SAFETY DEFORMITION), PUBLISED BY TP1 (TRUSS STITUTE, 383 D'ONORTH DR, SMITE BM, MARISON, VI. 35719 AND VICA VACUE TRANS COUNCIL A, 6500 ENTERPRISE LM, MARISON, VI. 35719 FOR SAFETY PRACTICES PRICE TO ERRICANDO (NOTIONS, UM.LESS DIFFERESE MODIFICED, TIP CARDO SAMEL HAVE PROPERLY ATTACHED (NOTIONS, UM.LESS DIFFERESE MODIFICED, TIP CARDO SAMEL HAVE PROPERLY ATTACHED

REVIEWED

By julius lee at 11:58 am, Jun 11, 2008

3X6

15 9

#088 350#

SULTO CONS.

> LEE'S 1,154,844

THIS DRAWING REPLACES DRAWINGS 1,158,989

MINIMUM 5X6 TRULOX PLATE

1,152,217

1,152,017

1,159,154 & 1,151,524

1,158,989/R

TRULOX

DATE REF

DRWG -ENG

> CNTRULOX1103 11/26/03

DELEVAL BEYOR' 11" 221/19-21EI

ENGINEERS P.A.

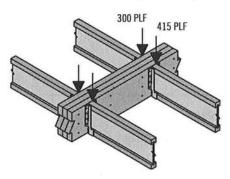
No: 34869 STATE OF FLORIDA

NO. 44889 TAVE OF TAVE OF THE PROPERTY OF THE By julius lee at 11:58 am, Jun 11, 2008 REVIEWED TO BEARING TO BEARING ADD 2x4 #2 SP ONE FACE 10'-0" 0/C MAX STRONG BACK DETAIL SYSTEM-42 OR FLAT TRUSS ALTERNATE DETAIL FOR STRONG BACK WITH VERTICAL (3)10d-10'-0" 0/C MAX NOT LINING UP (3)10d 3 10d #2 SP 3 10d JULIUS LEE'S cons. ENGINEERS P.A. DIXEAY BEACH, FL 33444-2161 No: 34869 STATE OF FLORIDA

MULTIPLE-MEMBER CONNECTIONS FOR SIDE-LOADED BEAMS

Maximum Uniform Load Applied to Either Outside Member (PLF)

	A TEMPLE CONTRACTOR			50	Co	nnector Pattern		
Connector Type	Number of Rows	Connector On-Center Spacing	Assembly A 2" 134"	Assembly B	Assembly C	Assembly D	Assembly E 1 2 1 2 1 31/2 1	Assembly F
			3½" 2-ply	51/4" 3-ply	51/4" 2-ply	7" 3-ply	7" 2-ply	7" 4-ply
10d (0.128" x 3")	2	12"	370	280	280	245		
Nail ⁽¹⁾	3	12"	555	415	415	370		
		24"	505	380	520	465	860	340
1/2" A307 Through Bolts ⁽²⁾⁽⁴⁾	2	19.2"	635	475	655	580	1,075	425
ini ondu poirzessa		16"	760	570	785	695	1,290	505
		24"	680	510	510	455		
SDS 1/4" x 31/2"(4)	2	19.2"	850	640	640	565		
		16"	1,020	765	765	680		
	A CHEST OF STREET	24"				455	465	455
SDS 1/4" x 6"(3)(4)	2	19.2"				565	580	565
		16"				680	695	680
	Service Marine	24"	480	360	360	320		
USP WS35 (4)	2	19.2"	600	450	450	400		
		16"	715	540	540	480		
	To the second	24"				350	525	350
USP WS6 (3)(4)	2	19.2"				440	660	440
		16"				525	790	525
23/-11		24"	635	475	475	425		
33/8" TrussLok(4)	2	19.2"	795	595	595	530	7	
Hudatur		16"	955	715	715	635		
5"		24"		500	500	445	480	445
TrussLok(4)	2	19.2"		625	625	555	600	555
i, uddeon		16"		750	750	665	725	665
63/4"		24"				445	620	445
TrussLok(4)	2	19.2"				555	770	555
HUGGEOR	N. C. San Springer	16"				665	925	665


Nailed connection values may be doubled for 6" on-center or tripled for 4" on-center nail spacing.

- (2) Washers required. Bolt holes to be 9/16" maximum.
- (3) 6" SDS or WS screws can be used with Parallam® PSL and Microllam® LVL, but are not recommended for TimberStrand® LSL.
- (4) 24" on-center bolted and screwed connection values may be doubled for 12" on-center

General Notes

- Connections are based on NDS® 2005 or manufacturer's code report.
- Use specific gravity of 0.5 when designing lateral connections.
- Values listed are for 100% stress level. Increase 15% for snow-loaded roof conditions or 25% for non-snow roof conditions, where code allows.
- Bold Italic cells indicate Connector Pattern must be installed on both sides.
 Stagger fasteners on opposite side of beam by ½ the required Connector Spacing.
- Verify adequacy of beam in allowable load tables on pages 16–33.
- 7" wide beams should be side-loaded only when loads are applied to both sides
 of the members (to minimize rotation).
- Minimum end distance for bolts and screws is 6".
- Beams wider than 7" require special consideration by the design professional.

Uniform Load Design Example

First, check the allowable load tables on pages 16–33 to verify that three pieces can carry the total load of 715 plf with proper live load deflection criteria. Maximum load applied to either outside member is 415 plf. For a 3-ply 1¾" assembly, two rows of 10d (0.128" x 3") nails at 12" on-center is good for only 280 plf. Therefore, use three rows of 10d (0.128" x 3") nails at 12" on-center (good for 415 plf).

Alternates:

Two rows of 1/2" bolts or SDS 1/4" x 31/2" screws at 19.2" on-center.

Point Load—Maximum Point Load Applied to Either Outside Member (lbs)

				Co	onnector Pattern		11700000000000000000000000000000000000
Connector Type	Number of Connectors	Assembly A	Assembly B	Assembly C	Assembly D	Assembly E	Assembly F
		1¾ ¹ 3½" 2-ply	1¾" 5¼" 3-ply	1¾" 3½" 5¼" 2-ply	1¾" 3½" 1¾" 7" 3-ply	3½" 7" 2-ply	1¾" 7" 4-ply
	6	1,110	835	835	740		
10d (0.128" x 3")	12	2,225	1,670	1,670	1,485		
Nail	18	3,335	2,505	2,505	2,225		
	24	4,450	3,335	3,335	2,965	The state of the s	to the second
SDS Screws	4	1,915	1,435(4)	1,435	1,275	1,860(2)	1,405(2)
1/4" x 31/2" or WS35	6	2,870	2,150 (4)	2,150	1,915	2,785(2)	2,110(2)
1/4" x 6" or WS6(1)	8	3,825	2,870 (4)	2,870	2,550	3,715(2)	2,810(2)
63/H FH	4	2,545	1,910 (4)	1,910	1,695	1,925(3)	1,775(3)
33/8" or 5" TrussLok™	6	3,815	2,860 (4)	2,860	2,545	2,890 ⁽³⁾	2,665(3)
IIuaacun	8	5,090	3,815 (4)	3,815	3,390	3,855(3)	3,550(3)

(1) 6" SDS or WS screws can be used with Parallam® PSL and Microllam® LVL, but are not recommended for TimberStrand® LSL.

See General Notes on page 38

Point Load Design Example 3.000 lbs

- (2) 6" long screws required.
- (3) 5" long screws required.
- (4) 3½" and 35%" long screws must be installed on both sides.

Connections

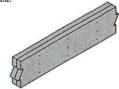
4 or 6 or Screw Connection SDS or TrussLok™ screw, typical 2", typical top and bottom 1/2 beam depth

Connection SDS or TrussLok™ screw, typical Equal spacing

Nail Connection 8 Screw 10d (0.128" x 3") nails, typical. Stagger to prevent splitting. -10" spacing, typical 11/2" minimum spacing, typical There must be an equal number of

First, verify that a 3-ply 1¾" x 14" beam is capable of supporting the 3,000 lb point load as well as all other loads applied. The 3,000 lb point load is being transferred to the beam with a face mount hanger. For a 3-ply 13/4" assembly, eight 33/8" TrussLok™ screws are good for 3,815 lbs with a face mount hanger.

MULTIPLE-MEMBER CONNECTIONS FOR TOP-LOADED BEAMS


nails on each side of the connection

134" Wide Pieces

- Minimum of three rows of 10d (0.128" x 3") nails at 12" on-center.
- Minimum of four rows of 10d (0.128" x 3") nails at 12" on-center for 14" or deeper.
- If using 12d-16d (0.148"-0.162" diameter) nails, the number of nailing rows may be reduced by one.
- Minimum of two rows of SDS, WS, or TrussLok™ screws at 16" on-center. Use 33/8" minimum length with two or three plies: 5" minimum for 4-ply members. 6" SDS and WS screws are not recommended for use with TimberStrand® LSL. For 3- or 4-ply members, connectors must be installed
- on both sides. Stagger fasteners on opposite side of beam by 1/2 of the required connector spacing.
- Load must be applied evenly across entire beam width. Otherwise, use connections for side-loaded beams.

31/2" Wide Pieces

- Minimum of two rows of SDS, WS, or TrussLok™ screws, 5" minimum length, at 16" on-center. 6" SDS and WS screws are not recommended for use with TimberStrand® LSL. Connectors must be installed on both sides. Stagger fasteners on opposite side of beam by 1/2 of the required connector spacing.
- Load must be applied evenly across entire beam width. Otherwise, use connections for side-loaded
- Minimum of two rows of 1/2" bolts at 24" on-center staggered.

Multiple pieces can be nailed or bolted together to form a header or beam of the required size, up to a maximum width of 7'

Project Information for:

L280800

Builder: Address:

Woodman Park Builders, Inc. 798 Southwest Utah Street

Ft. White, FL 32038

County:

Columbia

Truss Count:

26

Design Program: MiTek 20/20 6.3 Building Code: FBC2004/TPI2002

Gravity:

Truss Design Load Information:

Roof (psf): 42.0

Wind Standard: ASCE 7-02

Wind Exposure: B

Floor (psf): N/A

Wind Speed (mph): 110

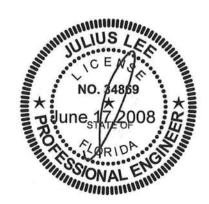
Note: See the individual truss drawings for special loading conditions. Contractor of Record, responsible for structural engineering:

Mark E. Haddox Florida Certified Residental Contractor License No. CRC1329442

Address: Woodman Park Builders, Inc. 4816 W U.S. Highway 90 Suite# 100 Lake City, Florida 32055

Truss Design Engineer: Julius Lee, PE Florida P.E. License No. 34869

Address: 1109 Coastal Bay Blvd. Boynton Beach, FL 33435


Notes:

1. Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1-2002 Section 2.2

2. The seal date shown on the individual truss component drawings must match the seal date on this index sheet.


3. The Truss Design Engineer's responsibility relative to this structure consists solely of the design of the individual truss components and does not include the design of any additional structural elements including but not limited to continuous lateral bracing elelments in the web and chord planes. See Florida Administrative Code 61G15-31.003 sections 3 c) & 5 and Chapter 2 of the National Design Standard for Metal Plate Connected Wood Truss Construction ANSI/TPI 1-2002 for additional information on the responsibilities of the delegated "Truss Design Engineer". Builders FirstSource and Julius Lee, PE do not accept any additional delegations beyond the scope of work described in the referenced documents above.

No.	Drwg. #	Truss ID	Date
1	J1973297	CJ1	6/16/08
2	J1973298	CJ3	6/16/08
3	J1973299	CJ5	6/16/08
4	J1973300	EJ7	6/16/08
5	J1973301	HJ9	6/16/08
6	J1973302	T01	6/16/08
7	J1973303	T01G	6/16/08
8	J1973304	T02	6/16/08
9	J1973305	T03	6/16/08
10	J1973306	T03G	6/16/08
11	J1973307	T04	6/16/08
12	J1973308	T05	6/16/08
13	J1973309	T06	6/16/08
14	J1973310	T07	6/16/08
15	J1973311	T08	6/16/08
16	J1973312	T09	6/16/08
17	J1973313	T10	6/16/08
18	J1973314	T11	6/16/08
19	J1973315	T12	6/16/08
20	J1973316	T13	6/16/08
21	J1973317	T14	6/16/08
22	J1973318	T15	6/16/08
23	J1973319	T16	6/16/08
24	J1973320	T17	6/16/08
25	J1973321	T18	6/16/08
26	J1973322	T19	6/16/08

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	CJ1	JACK	4	1	J1973297
	551	o/ tort	3		Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:45 2008 Page 1

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L∕d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.28	Vert(LL)	-0.00	2	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.01	Vert(TL)	-0.00	2	>999	240	in the second se	
BCLL	10.0	* Rep Stress Incr	YES	WB	0.00	Horz(TL)	0.00	3	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)						Weight: 7 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING

TOP CHORD

Structural wood sheathing directly applied or

1-0-0 oc purlins.

1.0.0

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=256/0-3-8, 4=5/Mechanical, 3=-90/Mechanical

Max Horz 2=87(load case 6)

Max Uplift 2=-274(load case 6), 3=-90(load case 1)

Max Grav 2=256(load case 1), 4=14(load case 2), 3=127(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-69/75

BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.17

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 274 lb uplift at joint 2 and 90 lb uplift at joint 3. Continued on page 2

Truse Design Engineer Florida PE No. 34898 1109 Coastal Bay Blvd Boynton Beach, FL 33435

June 16,2008

Scale: 1.5"=1"

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI /TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation will be Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973297
	CJ1	JACK	4	1	01010201
		1			Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:45 2008 Page 2

LOAD CASE(S) Standard

linis Lee 1988 Cesign Engineer 1986 PE No. 34898 OG Crestal Bay Blvd Synton Beach, FL 33435

Job	Truss	Truss Type		Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973298
	CJ3	JACK		4	1	Job Reference (optional)
Builders Firs	tSource, Lake City, FI	32055	6.300 s Feb 15	2006	MiTek In	dustries, Inc. Mon Jun 16 12:55:45 2008 Page 1
		-2-0-0			3-0-0	
¥	1	2-0-0			3-0-0	3 Scale = 1:12.
			6.00 12			
	140-3		1 spending flat dev		/	
			2 T1			
	8				B1	\V
	848					/\
						4
	1 /		3x5 =			
			5x5 —			

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.29	Vert(LL)	-0.00	2-4	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.06	Vert(TL)	-0.01	2-4	>999	240	Santo-Vaccos Co.	
BCLL	10.0	* Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)						Weight: 13 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

BRACING

TOP CHORD

Structural wood sheathing directly applied or

3-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 3=31/Mechanical, 2=250/0-3-8, 4=14/Mechanical

Max Horz 2=132(load case 6)

Max Uplift 3=-28(load case 7), 2=-203(load case 6)

Max Grav 3=31(load case 1), 2=250(load case 1), 4=42(load case 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-57/7

BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.15

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3 and 203 lb uplift at joint 2. Continued on page 2

Truss Ossign Engineer Florida PE No. 34889 1109 Coestal Bay Blvd Boynton Beach, FL 33435

June 16,2008

▲ Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation will be from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
		2.5		2	J1973298
	CJ3	JACK	4	1	200-00-00-00-00-00-00-00-00-00-00-00-00-
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:45 2008 Page 2

LOAD CASE(S) Standard

Julius Lee Truse Design Engineer 1710 e No. 34868 1100 Chastel Bay Blyd Boynton Beach, FL 33435

Truss Type Job Truss Qty Ply WOODMAN PARK - JOHN & PAM SMITH J1973299 CJ₅ **JACK** 4 Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:46 2008 Page 1 -2-0-0 5-0-0 2-0-0 5-0-0 Scale = 1:16.9 6.00 12 04-3 3x5 5-0-0 5-0-0 2-0-0 LOADING (psf) SPACING CSI DEFL L/d (loc) I/defl **PLATES** GRIP in TCLL 20.0 Plates Increase 1.25 TC 0.29 Vert(LL) -0.03>999 360 MT20 244/190 2-4 TCDL 7.0 Lumber Increase 1.25 BC 0.16 Vert(TL) -0.052-4 >999 240 -0.00**BCLL** 10.0 * Rep Stress Incr YES WB 0.00 Horz(TL) 3 n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 19 lb LUMBER BRACING TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

TOP CHORD

Structural wood sheathing directly applied or

5-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 3=103/Mechanical, 2=295/0-3-8, 4=24/Mechanical

Max Horz 2=178(load case 6)

Max Uplift 3=-87(load case 6), 2=-199(load case 6)

Max Grav 3=103(load case 1), 2=295(load case 1), 4=72(load case 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-88/36

BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.17

NOTES

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 2) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 3 and 199 lb uplift at joint 2. Continued on page 2

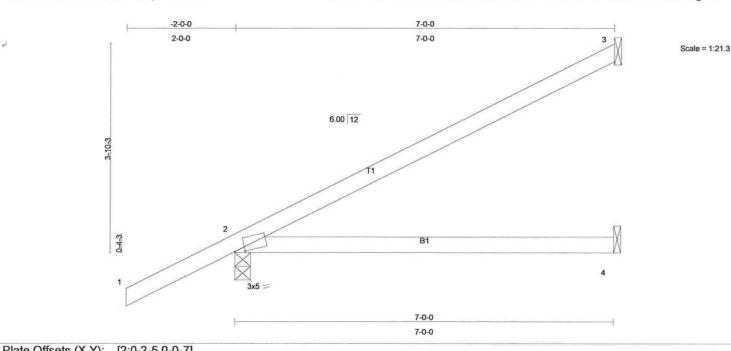
June 16,2008

🛦 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	I MATERIAL CONTROL	30000000000000000000000000000000000000	100%	CELLED	J1973299
	CJ5	JACK	4	1	
	10000000000000000000000000000000000000	G 10 C 2 Series 1884 1 6	27	Al-	Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:46 2008 Page 2


LOAD CASE(S) Standard

Julius Les Truss Design Engineer Flonde PE No. 34898 1400 Chesial Bay Alvi Boynton Beach, FL 99435

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
					J197330
	EJ7	JACK	25	1	
		30000000	1370327.	-117	Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:47 2008 Page 1

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.48	Vert(LL)	-0.08	2-4	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.28	Vert(TL)	-0.16	2-4	>501	240		
BCLL	10.0	* Rep Stress Incr	YES	WB	0.00	Horz(TL)	-0.00	3	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mati	rix)	(30)					Weight: 26 lb	

LUMBER

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 BRACING

TOP CHORD

Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 3=154/Mechanical, 2=352/0-3-8, 4=45/Mechanical

Max Horz 2=161(load case 6)

Max Uplift 3=-84(load case 6), 2=-139(load case 6)

Max Grav 3=154(load case 1), 2=352(load case 1), 4=94(load case 2)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-119/54

BOT CHORD 2-4=0/0

JOINT STRESS INDEX

2 = 0.81

NOTES

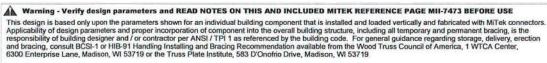
- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb Complified in the same 139 lb uplift at joint 2.

Truss Design Engineer Florida PE No. 34888 1106 Coastal Bay Blyd Boynton Beach, FL 33435

June 16,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI /TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation and bracing lescommendation by Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719


Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	11		7,75		J1973300
	EJ7	JACK	25	1	
	DALASIA		25,1103		Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:47 2008 Page 2

LOAD CASE(S) Standard

Julius Lee Truss Design Engineer Florida He No. 24868 1109 Coastal Ray Alve 1001 Coastal Ray Alve 1001 Coastal Ray Alve

		Truss	Truss Typ	oe	Qty	Ply	WO	ODMAN	PARK - J	OHN & PAM SI	MITH J1973301
		НЈ9	моно т	RUSS	2	1	55 Jan 1991		A 7200000000000000	120	31973301
Ruilders Firs	tSource	Lake City, FI 32055		6 300	s Feb 15 2006	MiTek			e (optiona Mon Jun 1	il) 6 12:55:47 200)8 Page 1
Juliacio i lio	noodroc,	Lake Oily, 11 02000		0.000	0100102000	, iiii i Oik i	aaotii	00, 1110.	non oun i	12.00. 17 200	o rugo r
-	-2-9-1			4-3-0					9-10-13		
Ī	2-9-1	5		4-3-0					5-7-13		Scale = 1:21
										//	
					generation						
				4.24	12 3x5	= _					
					3						
					11 5	<					
					W2				W1		
									_		
		2	//								
-3-14		2				B1					
0-3-14		2			7	B1					• 5
1		3x6			7 2x4	B1					6 5 3x5 =
1						B1					3x5 =
1			:	4-3-0		B1			9-10-1		3x5 = 9-10-13
1		3x6		4-3-0	2x4				5-7-1		9-10-13 0-0-12
OADING (SPACING	2-0-0	4-3-0 CSI	2x4 DEFL	în	(loc) 6-7	l/defl >999	5-7-1 L/d	PLATES	3x5 = 9-10-1; 0-0-12
LOADING (20.0	SPACING Plates Increase	2-0-0 1.25	4-3-0 CSI TC 0.61	DEFL Vert(LL)	in 0.05	(loc) 6-7 6-7	>999	5-7-1 L/d 360		3x5 = 9-10-13 0-0-12 GRIP
OADING (CLL 2	20.0 7.0	SPACING	2-0-0	4-3-0 CSI	2x4 DEFL	în	6-7		5-7-1 L/d	PLATES	3x5 = 9-10-1; 0-0-12
LOADING (FCLL 2 FCDL 3 BCLL 1	20.0 7.0	SPACING Plates Increase Lumber Increase	2-0-0 1.25 1.25 NO	CSI TC 0.61 BC 0.40	DEFL Vert(LL) Vert(TL)	in 0.05 -0.12	6-7 6-7	>999 >986	5-7-1 L/d 360 240	PLATES	3x5 = 9-10-13 0-0-12 GRIP 244/19
LOADING (CLL 2 CCDL 3CLL 1	20.0 7.0 10.0	SPACING Plates Increase Lumber Increase * Rep Stress Incr	2-0-0 1.25 1.25 NO	CSI TC 0.61 BC 0.40 WB 0.34	DEFL Vert(LL) Vert(TL)	in 0.05 -0.12	6-7 6-7	>999 >986	5-7-1 L/d 360 240	PLATES MT20	3x5 = 9-10-13 0-0-12 GRIP 244/19
OADING (CLL 2 CCDL 3CLL 1 3CDL LUMBER COP CHOR	20.0 7.0 10.0 5.0	SPACING Plates Increase Lumber Increase * Rep Stress Incr Code FBC2004/TF	2-0-0 1.25 1.25 NO	CSI TC 0.61 BC 0.40 WB 0.34	DEFL Vert(LL) Vert(TL) Horz(TL)	in 0.05 -0.12 0.01	6-7 6-7 5	>999 >986 n/a ural wood	5-7-1 L/d 360 240 n/a sheathir	PLATES MT20	9-10-1: 0-0-12 GRIP 244/19
LOADING (FCLL 2 FCDL 3CLL 1 BCDL	20.0 7.0 10.0 5.0 D 2 X 4	SPACING Plates Increase Lumber Increase * Rep Stress Incr Code FBC2004/TF	2-0-0 1.25 1.25 NO	CSI TC 0.61 BC 0.40 WB 0.34	DEFL Vert(LL) Vert(TL) Horz(TL)	in 0.05 -0.12 0.01	6-7 6-7 5 Structu 6-0-0 o	>999 >986 n/a aral wood	5-7-1 L/d 360 240 n/a sheathir	PLATES MT20 Weight: 45	9-10-1: 0-0-12 GRIP 244/19 Ib

REACTIONS (lb/size) 4=268/Mechanical, 2=456/0-5-11, 5=218/Mechanical

Max Horz 2=269(load case 3)

Max Uplift 4=-232(load case 3), 2=-281(load case 3), 5=-62(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/50, 2-3=-647/120, 3-4=-105/65

BOT CHORD

2-7=-308/599, 6-7=-308/599, 5-6=0/0

WEBS

3-7=0/190, 3-6=-624/321

JOINT STRESS INDEX

2 = 0.77, 3 = 0.18, 6 = 0.21 and 7 = 0.13

NOTES

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone; Lumber DOL=1.60 plate grip DOL=1.60.
- 2) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 232 Ib uplift at joint 4, 281 lb uplift at joint 2 and 62 lb uplift at joint 5.
- 5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). Continued on page 2

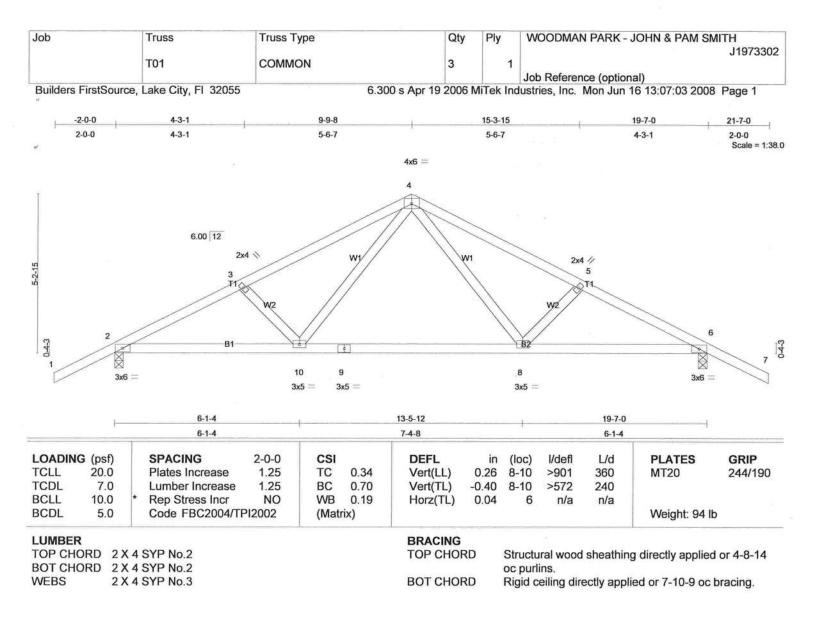
June 16,2008

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
		100	5350	95	J1973301
	HJ9	MONO TRUSS	2	1	4
	NO. 150-150	(Company Company Compa	1000		Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:47 2008 Page 2

LOAD CASE(S) Standard


1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-2=-54 Trapezoidal Loads (plf)

Vert: 2=-3(F=25, B=25)-to-4=-134(F=-40, B=-40), 2=-0(F=5, B=5)-to-5=-25(F=-7, B=-7)

Julius Lee Truss Cesign Engineer Florida ME No. 3-1868 1400 Chastal Bay Blvd

REACTIONS (lb/size) 2=955/0-3-8, 6=955/0-3-8

Max Horz 2=-94(load case 7)

Max Uplift 2=-292(load case 6), 6=-292(load case 7)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-1603/857, 3-4=-1456/828, 4-5=-1456/828, 5-6=-1603/857, 6-7=0/47

BOT CHORD 2-10=-608/1365, 9-10=-310/911, 8-9=-310/911, 6-8=-608/1365

WEBS 3-10=-195/185, 4-10=-287/583, 4-8=-287/583, 5-8=-195/185

JOINT STRESS INDEX

2 = 0.71, 3 = 0.34, 4 = 0.76, 5 = 0.34, 6 = 0.71, 8 = 0.42, 9 = 0.60 and 10 = 0.42

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4,2psf; BCDL=3,0psf; Category II: Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 292 lb uplift at joint 2 and 292 lb uplift at joint 6.
- 6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

June 16,2008

Continued on page 2

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
			0.00		J1973302
	T01	COMMON	3	1	and the second s
					Job Reference (optional)

6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:07:03 2008 Page 2

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-54, 4-7=-54, 2-10=-10, 8-10=-70(F=-60), 6-8=-10

Julius Lee Truss Design Engineer Floride FIE No. 34888 1 1702 Chastal Ray Rivel Boynton Beach, FL 33435

Job WOODMAN PARK - JOHN & PAM SMITH Truss Truss Type Qty Ply J1973303 T01G **GABLE** 1 1 Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:18:03 2008 Page 1 -2-0-0 4-3-1 9-9-8 15-3-15 19-7-0 21-7-0 2-0-0 4-3-1 5-6-7 5-6-7 4-3-1 2-0-0 Scale = 1:38.0 6x10 = 5 6.00 12 STS ST W1 **T2 J**2 6 3x5 < 3x5 ST2 3x5 < ST4 STA B2 4x10 = 12 11 10 4x10 = 3x5 5x6 = 3x5 = 13-5-12 6-1-4 19-7-0 6-1-4 7-4-8 6-1-4 Plate Offsets (X,Y): [2:0-3-4,0-1-12], [8:0-3-4,0-1-12], [11:0-3-0,0-0-4] LOADING (psf) SPACING 2-0-0 CSI DEFL L∕d **PLATES** GRIP (loc) I/defl in TCLL 20.0 1.25 TC 0.57 0.21 10-12 Plates Increase Vert(LL) >999 360 MT20 244/190 TCDL 7.0 Lumber Increase 1.25 BC 0.68 Vert(TL) -0.3510-12 >656 240 BCLL 10.0 Rep Stress Incr NO WB 0.25 Horz(TL) 0.07 8 n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 125 lb LUMBER BRACING TOP CHORD 2 X 4 SYP No.2 TOP CHORD Structural wood sheathing directly applied or 3-7-9 BOT CHORD 2 X 4 SYP No.2 oc purlins. **WEBS** 2 X 4 SYP No.3 **BOT CHORD** Rigid ceiling directly applied or 5-9-15 oc bracing. **OTHERS** 2 X 4 SYP No.3 REACTIONS (lb/size) 2=1551/0-3-8, 8=1551/0-3-8 Max Horz 2=-102(load case 7) Max Uplift 2=-796(load case 6), 8=-796(load case 7) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-23/100, 2-3=-2682/1452, 3-4=-2575/1414, 4-5=-2272/1256, 5-6=-2272/1256, 6-7=-2575/1414, 7-8=-2682/1452, 8-9=-23/100 **BOT CHORD** 2-12=-1176/2364, 11-12=-612/1424, 10-11=-612/1424, 8-10=-1176/2364 **WEBS** 4-12=-618/422, 5-12=-401/787, 5-10=-401/787, 6-10=-618/422 JOINT STRESS INDEX 2 = 0.90, 3 = 0.00, 3 = 0.62, 3 = 0.72, 4 = 0.34, 5 = 0.48, 6 = 0.34, 7 = 0.00, 7 = 0.72, 7 = 0.62, 8 = 0.90, 10 = 0.56, 11 = 0.43, 12 = 0.56

2 = 0.90, 3 = 0.00, 3 = 0.62, 3 = 0.72, 4 = 0.34, 5 = 0.48, 6 = 0.34, 7 = 0.00, 7 = 0.72, 7 = 0.62, 8 = 0.90, 10 = 0.56, 11 = 0.43, 12 = 0.56, 13 = 0.34, 14 = 0.48, 15 = 0.34, 16 = 0.00, 17 = 0.34, 18 = 0.34, 19 = 0.34, 20 = 0.34, 21 = 0.34, 22 = 0.34, 23 = 0.48, 24 = 0.34, 25 = 0.34, 26 = 0.34 and 27 = 0.34

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60.

This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the Continued on Mage 2"Standard Gable End Detail"

June 16,2008

Marming - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

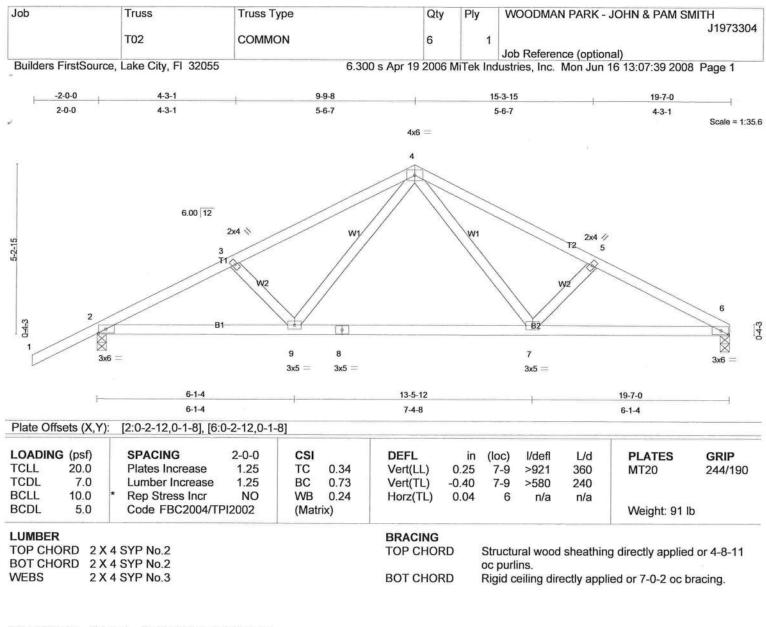
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI /TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation will be Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	10000000000		D=Start	0.000	J1973303
	T01G	GABLE	1	1	
	85 SC 45 (1955)	Property Management	1 20	19	Job Reference (optional)

6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:18:03 2008 Page 2

NOTES

- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 796 lb uplift at joint 2 and 796 lb uplift at joint
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-5=-114(F=-60), 5-9=-114(F=-60), 2-12=-10, 10-12=-40(F=-30), 8-10=-10

Les Clesian Endersor a PE No. 34808 Coestal Bay Alvo on Beach, FL 93435

REACTIONS (lb/size) 6=832/0-3-8, 2=961/0-3-8

Max Horz 2=107(load case 6)

Max Uplift 6=-195(load case 7), 2=-293(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-1615/878, 3-4=-1468/849, 4-5=-1495/894, 5-6=-1648/932

BOT CHORD 2-9=-704/1376, 8-9=-409/924, 7-8=-409/924, 6-7=-766/1413

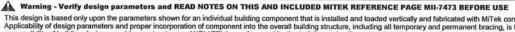
WEBS 3-9=-195/187, 4-9=-282/582, 4-7=-347/619, 5-7=-217/221

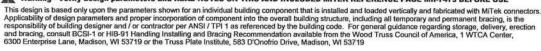
JOINT STRESS INDEX

2 = 0.76, 3 = 0.34, 4 = 0.73, 5 = 0.34, 6 = 0.76, 7 = 0.45, 8 = 0.60 and 9 = 0.45

NOTES

1) Unbalanced roof live loads have been considered for this design.


- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 195 lb uplift at joint 6 and 293 lb uplift at joint 2.

June 16,2008

E) In the I OAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

Engine

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
					J1973304
	T02	COMMON	6	1	2021.209.11
	127-00-01	CONTRACTOR STATE AND ADDRESS OF A STATE OF A			Job Reference (optional)

6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:07:39 2008 Page 2

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-54, 2-9=-10, 7-9=-70(F=-60), 6-7=-10

ultus Lee TUSS Casign Engineer Ionda FE No. 3-1866 100 Casstal Rey Alvd Cynton Besch. FL 30435

REACTIONS (lb/size) 2=509/0-3-8, 4=509/0-3-8

Max Horz 2=-73(load case 7)

Max Uplift 2=-184(load case 6), 4=-184(load case 7)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/4

1-2=0/47, 2-3=-537/276, 3-4=-537/276, 4-5=0/47

BOT CHORD 2-6=-66/412, 4-6=-66/412

WEBS 3-6=0/210

JOINT STRESS INDEX

2 = 0.40, 3 = 0.73, 4 = 0.40 and 6 = 0.15

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 184 lb uplift at joint 2 and 184 lb uplift at joint 4. Continued on page 2

Truss Design Engineer Flonda PE No. 34868 1400 Chastal Bay Blvd Boynton Beach, FL 33435

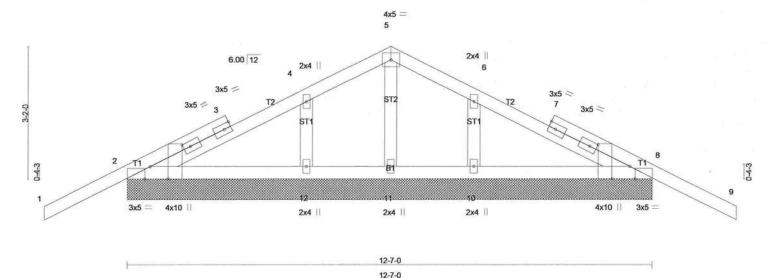
June 16,2008

warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	000000000000000000000000000000000000000	A STATE OF THE STA			J1973305
	T03	COMMON	3	1	2
	A1650714	State Control of the			Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:51 2008 Page 2


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
		Section Control Control			J1973306
	T03G	GABLE	1	1	
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:52 2008 Page 1

Plate Offsets (X,Y): [2:0-3-8,Edge], [2:0-1-8,Edge], [3:0-1-15,0-1-8], [7:0-1-15,0-1-8], [8:0-3-8,Edge], [8:0-1-8,Edge]												
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.49	Vert(LL)	-0.03	9	n/r	120	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.08	Vert(TL)	-0.05	9	n/r	90		
BCLL	10.0	* Rep Stress Incr	NO	WB	0.07	Horz(TL)	0.00	8	n/a	n/a		
BCDL			(Mat	rix)						Weight: 61 lb		

LUMBER
TOP CHORD 2 X 4 SYP No.2
BOT CHORD 2 X 4 SYP No.2
OTHERS 2 X 4 SYP No.3
BRACING
TOP CHORD 5 Structural wood sheathing directly applied or 10-0-0 oc purlins.
BOT CHORD 7 Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS (lb/size) 2=489/12-7-0, 8=489/12-7-0, 11=206/12-7-0, 12=416/12-7-0, 10=416/12-7-0

Max Horz 2=-78(load case 7)

Max Uplift 2=-319(load case 6), 8=-332(load case 7), 11=-52(load case 6),

12=-205(load case 6), 10=-208(load case 7)

Max Grav 2=494(load case 10), 8=494(load case 11), 11=206(load case 1),

12=417(load case 10), 10=417(load case 11)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-27/99, 2-3=-34/48, 3-4=-64/174, 4-5=-6/109, 5-6=-6/109, 6-7=-41/174,

7-8=-34/48, 8-9=-27/99

BOT CHORD 2-12=-71/144, 11-12=-71/144, 10-11=-71/144, 8-10=-71/144

WEBS 5-11=-206/56, 4-12=-374/295, 6-10=-374/295

Julius Les Truss Design Engineer Florida FE No. 24869 1109 Chastal Ray Blvd Doviton Desch, FL 93435

JOINT STRESS INDEX

2 = 0.78, 2 = 0.00, 3 = 0.00, 3 = 0.49, 3 = 0.49, 4 = 0.15, 5 = 0.10, 6 = 0.15, 7 = 0.00, 7 = 0.49, 7 = 0.49, 8 = 0.78, 8 = 0.00, 10 = 0.16, 11 = 0.07 and 12 = 0.16

NOTES

1) Unbalanced roof live loads have been considered for this design.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	5 W. W. S.	The state of the s		CEC-9E	J1973306
	T03G	GABLE	1	1	8 (8) · · ·
		Section of Administration			Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:52 2008 Page 2

NOTES

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 319 lb uplift at joint 2, 332 lb uplift at joint 8, 52 lb uplift at joint 11, 205 lb uplift at joint 12 and 208 lb uplift at joint 10.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Regular: Lumber Increase=1.25, Plate Increase=1.25
 Uniform Loads (plf)

Vert: 1-5=-114(F=-60), 5-9=-114(F=-60), 2-8=-10

Julius Lee Truss Clesion Engineer Flonda FE No. 24898 1400 Calestal Rey Blyd Boynion Beson, FL 93435

Job	Truss	Truss Ty	ре	Qty	Ply	WO	ODMAN	PARK - J	OHN & PAM SM	ITH J1973307
	T04	соммо	N	3	1	1	D . (- /	D.	01070007
Builders FirstSource,	Lake City, FI 32055	5	6.30	0 s Feb 15 2006	6 MiTek			e (optiona Mon Jun 1	al) 16 12:55:53 2008	Page 1
	1.50									
-2-0-0	-		3-8 3-8					12-7-0 6-3-8		
2-0-0		b -1	3-8					0-3-0		Scale = 1:24.7
				4x6 =	=					
T				3						
	6.00 12									
			///	W1						
0								T2		
	/	11								
										4
	2			Bi					_	19
14				ы						14
1//				5						3x5 =
	3x5 =			2x4	1					323
			3-8					12-7-0		
			3-8					6-3-8		
Plate Offsets (X,Y):	[2:0-1-12,Edge],	[4:0-1-12,E	dge]	7						
LOADING (psf)	SPACING	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plates Increase	1.25	TC 0.29	Vert(LL)	0.05	4-5	>999	360	MT20	244/190
TCDL 7.0	Lumber Increase	1.25 YES	BC 0.23 WB 0.07	Vert(TL)	-0.07 0.01	4-5 4	>999 n/a	240 n/a		
BCLL 10.0 BCDL 5.0	* Rep Stress Incr Code FBC2004/1		(Matrix)	Horz(TL)	0.01	4	IIIa	IIIa	Weight: 48 I	b
LUMBER				BRACING						
TOP CHORD 2X	4 SYP No.2			TOP CHO					ng directly appli	ed or
	4 SYP No.2						c purlins			
WEBS 2 X	4 SYP No.3			BOT CHO	RD	Rigid o	_	ectly app	lied or 10-0-0 o	C

bracing.

REACTIONS (lb/size) 4=383/0-3-8, 2=519/0-3-8

Max Horz 2=86(load case 6)

Max Uplift 4=-84(load case 7), 2=-186(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/47, 2-3=-568/328, 3-4=-564/320

BOT CHORD

2-5=-191/441, 4-5=-191/441

WEBS

3-5=0/214

JOINT STRESS INDEX

Continued on page 2

2 = 0.73, 3 = 0.81, 4 = 0.73 and 5 = 0.15

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

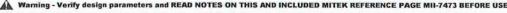
4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

Trues Design Engineer Florida PE No. 24888 1100 Coastal Bay Blyd Boynton Besch. FL 93435

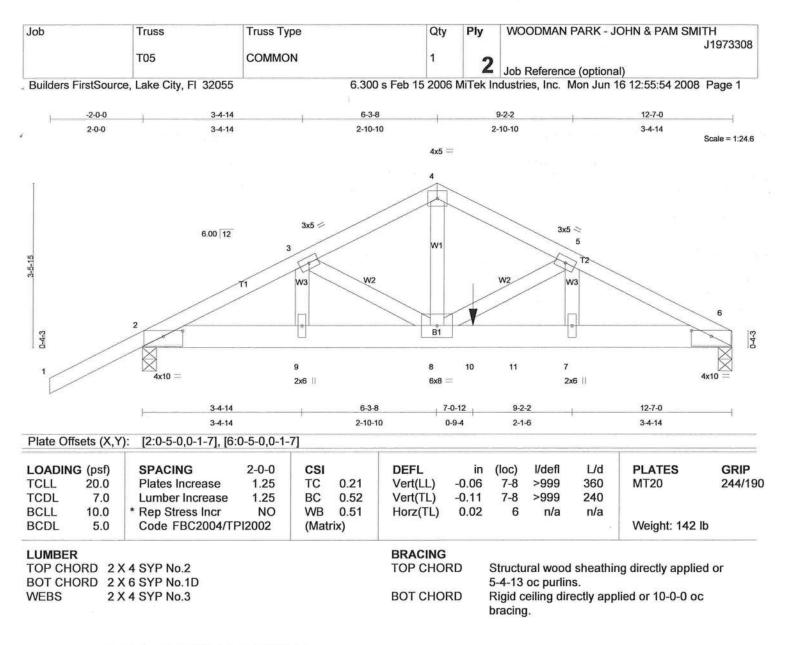
June 16,2008

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
				1000000	J1973307
	T04	COMMON	3	1	
	A TOTAL OF THE PARTY OF THE PAR	Court of Harmon Court	P.Stat.		Job Reference (optional)


6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:53 2008 Page 2

NOTES


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 4 and 186 lb uplift at joint 2.

LOAD CASE(S) Standard

an lesion Endineer PE No. 2-1898 nastal Ray filvi n Beach, FL 00405

REACTIONS (lb/size) 6=3563/0-3-8, 2=1960/0-3-8

Max Horz 2=89(load case 5)

Max Uplift 6=-964(load case 6), 2=-585(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

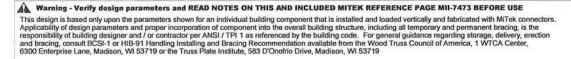
TOP CHORD 1-2=0/51, 2-3=-3554/919, 3-4=-3847/1051, 4-5=-3843/1043, 5-6=-5951/1603

BOT CHORD 2-9=-785/3123, 8-9=-785/3123, 8-10=-1397/5275, 10-11=-1397/5275,

7-11=-1397/5275, 6-7=-1397/5275

WEBS 3-9=-410/169, 3-8=-115/445, 4-8=-864/3193, 5-8=-2145/625, 5-7=-507/1917

JOINT STRESS INDEX


2 = 0.65, 3 = 0.81, 4 = 0.75, 5 = 0.81, 6 = 0.65, 7 = 0.45, 8 = 0.39 and 9 = 0.45

NOTES

 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2 X 4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0-4-0 oc. Webs connected as follows: 2 X 4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads Control as (F) as (B), unless otherwise indicated.

Truss Cesian Engineer Florida PE No. 34888 1100 Chastel Bay Blvd Boynton Beach, FL 38435

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
i constant	NEST PROPERTY OF THE PROPERTY	Beautiful (1997)			J1973308
	T05	COMMON	1	2	
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:54 2008 Page 2

NOTES

3) Unbalanced roof live loads have been considered for this design.

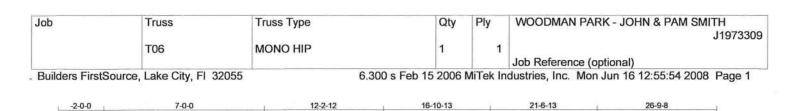
- 4) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS; Lumber DOL=1.60 plate grip DOL=1.60.
- 5) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 964 lb uplift at joint 6 and 585 lb uplift at joint 2.
- 8) Girder carries tie-in span(s): 33-9-8 from 8-0-0 to 12-7-0

LOAD CASE(S) Standard

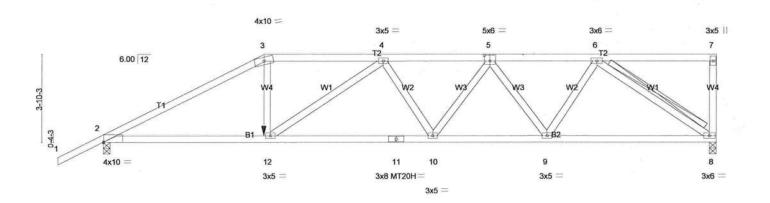
 Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)


Vert: 1-4=-54, 4-6=-54, 2-11=-10, 6-11=-519(F=-509)

Concentrated Loads (lb)

Vert: 10=-2363(F)

Johns Lee Truss Clesion Engineer Florida Pie Pio 24868 1100 Chastal Bay Blvd Boynton Beach, FL 30435



4-8-1

4-8-0

5-2-11

Scale = 1:50.4

14-4-11

5-2-12

		7-0-0		7	7-4-11		5-0-	2		7	-4-11	
Plate Of	ffsets (X,Y	(): [2:Edge,0-0-2], [5:	0-3-0,0-3-	0]								
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L∕d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.69	Vert(LL)	-0.19	10	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.79	Vert(TL)	-0.44	10-12	>728	240	MT20H	187/143
BCLL	10.0	* Rep Stress Incr	NO	WB	0.69	Horz(TL)	0.13	8	n/a	n/a	W 300 300 300 300 300 300 300 300 300 30	
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)	0.000-000-000-000					Weight: 136 I	b

19-4-13

LUMBER		BRACING		
TOP CHORD	2 X 4 SYP No.2	TOP CHORD	Structural wood s	heathing directly applied or
BOT CHORD	2 X 4 SYP No.2		3-1-10 oc purlins,	except end verticals.
WEBS	2 X 4 SYP No.3	BOT CHORD		ctly applied or 5-7-4 oc
			bracing.	
		WEBS	T-Brace:	2 X 4 SYP No.3 - 6-8
			Fasten T and I b	races to narrow edge of web

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

26-9-8

Brace must cover 90% of web length.

REACTIONS (lb/size) 8=1883/0-3-8, 2=1818/0-3-8

Max Horz 2=163(load case 5)

Max Uplift 8=-649(load case 4), 2=-578(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-3360/1085, 3-4=-2956/1008, 4-5=-3532/1196, 5-6=-2790/938,

6-7=-85/15, 7-8=-288/143

BOT CHORD 2-12=-997/2914, 11-12=-1273/3610, 10-11=-1273/3610, 9-10=-1162/3346,

8-9=-798/2236

WEBS 3-12=-296/996, 4-12=-799/378, 4-10=-150/148, 5-10=-60/323, 5-9=-966/389,

6-9=-270/1065, 6-8=-2625/956

didius Les Truss Design Engineer Flonda FE No. 34888 1100 Chastal Bay Blvd Doynton Beach, FL 33435

JOINT STRESS INDEX

2-0-0

7-0-0

7-0-0

2 = 0.76, 3 = 0.77, 4 = 0.42, 5 = 0.55, 6 = 0.79, 7 = 0.64, 8 = 0.79, 9 = 0.79, 10 = 0.42, 11 = 0.87 and 12 = 0.73

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	1000		1	0.200	J1973309
	T06	MONO HIP	1	1	
	III/SWYON	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1947	Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:55 2008 Page 2

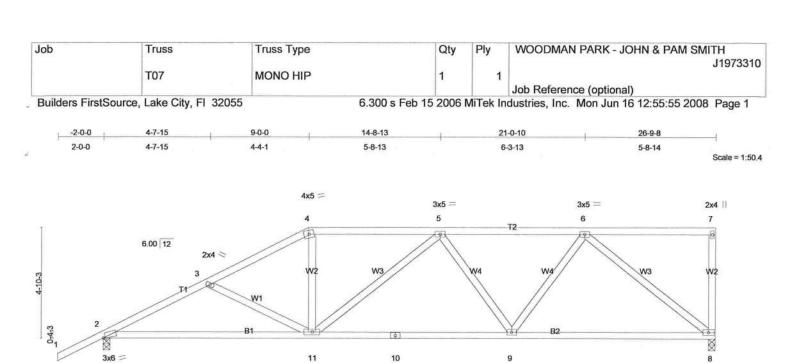
NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS; Lumber DOL=1.60 plate grip DOL=1.60.
- 2) Provide adequate drainage to prevent water ponding.
- 3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 649 lb uplift at joint 8 and 578 lb uplift at joint 2.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)


Vert: 1-3=-54, 3-7=-118(F=-64), 2-12=-10, 8-12=-22(F=-12)

Concentrated Loads (lb)

Vert: 12=-411(F)

Julius Les Truss Cesian Enainser Flonda FE No. 34888 1406 Chestal Ray Blvd Bovnjon Besch, FL 35435

3x8 =

LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.49	Vert(LL)	-0.13	2-11	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.43	Vert(TL)	-0.24	2-11	>999	240		
BCLL	10.0	* Rep Stress Incr	YES	WB	0.97	Horz(TL)	0.05	8	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	212002	(Mat	rix)	THE COLUMN TO STATE OF					Weight: 141 lb	

3x5 =

LUMBER TOP CHORD 2 X 4 SYP No.2

BOT CHORD 2 X 4 SYP No.2

WEBS 2 X 4 SYP No.3 BRACING

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or

3x6 =

5-0-4 oc purlins, except end verticals. Rigid ceiling directly applied or 6-10-7 oc

bracing.

3x5 =

REACTIONS (lb/size) 8=843/0-3-8, 2=969/0-3-8

Max Horz 2=195(load case 6)

Max Uplift 8=-229(load case 5), 2=-248(load case 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-1537/763, 3-4=-1299/656, 4-5=-1126/644, 5-6=-1073/568, 6-7=-40/7

, 7-8=-135/93

BOT CHORD 2-11=-827/1311, 10-11=-698/1238, 9-10=-698/1238, 8-9=-476/847

WEBS 3-11=-216/207, 4-11=-73/334, 5-11=-145/117, 5-9=-290/228, 6-9=-162/410,

6-8=-1052/605

JOINT STRESS INDEX

2 = 0.83, 3 = 0.33, 4 = 0.74, 5 = 0.41, 6 = 0.41, 7 = 0.82, 8 = 0.60, 9 = 0.41, 10 = 0.48 and 11 = 0.56

NOTES

1) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

Provide adequate drainage to prevent water ponding.

3) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other Colivinueadon page 2

June 16,2008

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult BCSI-1 or HIB-97 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
		Maria silves	14.5	11.5	J1973310
	T07	MONO HIP	1	1	
	1 230,000	The Control of the Control			Job Reference (optional)

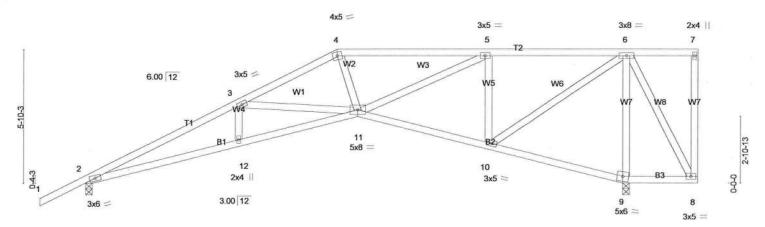
6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:55:55 2008 Page 2

NOTES

4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 229 lb uplift at joint 8 and 248 lb uplift at joint 2.

LOAD CASE(S) Standard


Julius Lee Truss Cession Endineer Floride ME No. 3-4888 1108 Cessial Ray Blyd Boynton Besch. Ft. 33435

6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:09:15 2008 Page 1

	1	6-8-5		11-10-12		17-7-7		1	23-6-0	- 2	23-9-8 26-9-8	
		6-8-5		5-2-7		5-8-11			5-10-9		0-3-8 3-0-0	
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.43	Vert(LL)	0.20	11-12	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.50	Vert(TL)	-0.27	11-12	>999	240	40.40.00.00.00	
BCLL	10.0	 Rep Stress Incr 	NO	WB	0.54	Horz(TL)	0.17	9	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	PI2002	(Mat	rix)	5 8					Weight: 149 II	b

	L	U	N	1	В	E	R
--	---	---	---	---	---	---	---

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 WEBS 2 X 4 SYP No.3

BRACING

TOP CHORD

Structural wood sheathing directly applied or

3-10-12 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 5-6-9 oc bracing.

REACTIONS (lb/size) 2=844/0-3-8, 9=1052/0-3-8

Max Horz 2=226(load case 6)

Max Uplift 2=-237(load case 6), 9=-284(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/46, 2-3=-2229/1204, 3-4=-1600/921, 4-5=-1523/937, 5-6=-746/435, 6-7=-2/3,

7-8=-92/58

2-12=-1289/1967, 11-12=-1290/1966, 10-11=-453/776, 9-10=-105/59, 8-9=-69/37

WEBS 3-12=0/185, 3-11=-517/378, 4-11=-207/426, 5-11=-553/856, 5-10=-722/491,

6-10=-588/1015, 6-9=-966/593, 6-8=-74/139

JOINT STRESS INDEX

2 = 0.72, 3 = 0.48, 4 = 0.79, 5 = 0.56, 6 = 0.97, 7 = 0.34, 8 = 0.46, 9 = 0.45, 10 = 0.66, 11 = 0.61 and 12 = 0.34

NOTES

BOT CHORD

- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Provide adequate drainage to prevent water ponding.
- *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Julius Lee Truss Design Engineer Flonds ME No. 34868 1109 Constal Bay Blvd Boynton Besch, FL 22425

June 16,2008

Continued on page 2

Warming - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
					J1973311
	T08	SPECIAL	1	1	
					Job Reference (optional)

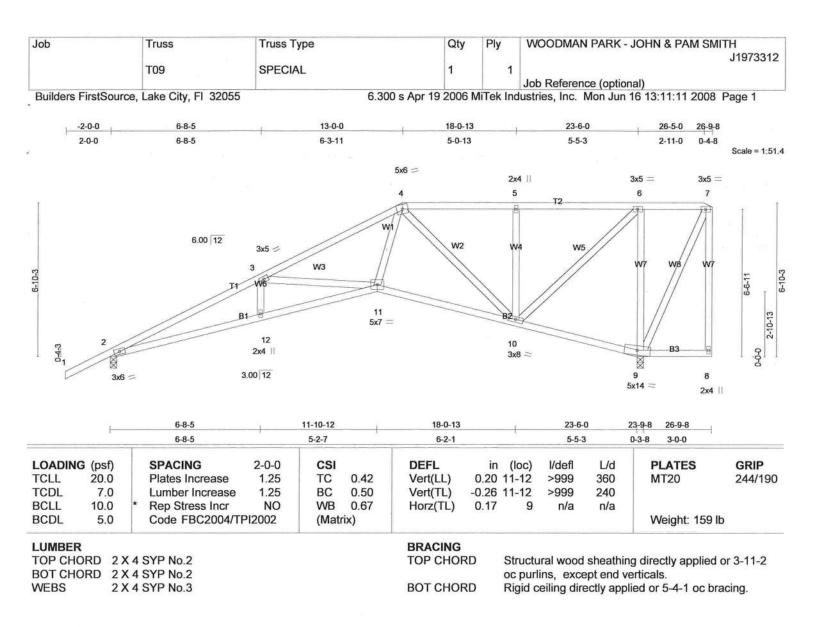
6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:09:15 2008 Page 2

NOTES

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 237 lb uplift at joint 2 and 284 lb uplift at joint 9.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)


Vert: 1-4=-54, 4-7=-54, 2-11=-10, 9-11=-10, 8-9=-10

Concentrated Loads (lb)

Vert: 7=-54(F) 8=-30(F)

Julius Lee Truss Cesign Engineer Flonds ME No. 34889 1106 Cassial Ray Blvd Boymon Besch, FL 35435

REACTIONS

BOT CHORD

(lb/size) 2=844/0-3-8, 9=1052/0-3-8

Max Horz 2=258(load case 6)

Max Uplift 2=-240(load case 6), 9=-281(load case 5)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/46, 2-3=-2257/1244, 3-4=-1533/879, 4-5=-537/327, 5-6=-537/327, 6-7=-33/65,

7-8=-9/50

2-12=-1383/1997, 11-12=-1385/1997, 10-11=-720/1079, 9-10=-92/52, 8-9=-0/1

WEBS 3-12=0/180, 3-11=-633/487, 4-11=-550/899, 4-10=-719/526, 5-10=-308/194, 6-10=-508/847,

6-9=-846/542, 7-9=-152/77

JOINT STRESS INDEX

2 = 0.73, 3 = 0.48, 4 = 0.57, 5 = 0.34, 6 = 0.59, 7 = 0.48, 8 = 0.34, 9 = 0.42, 10 = 0.84, 11 = 0.66 and 12 = 0.34

NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

Truse Design Engineer Flonds PE No. 34866 1100 Coastal Bay Blvd Boynton Beach, FL 33436

June 16,2008

Continued on page 2

🛦 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

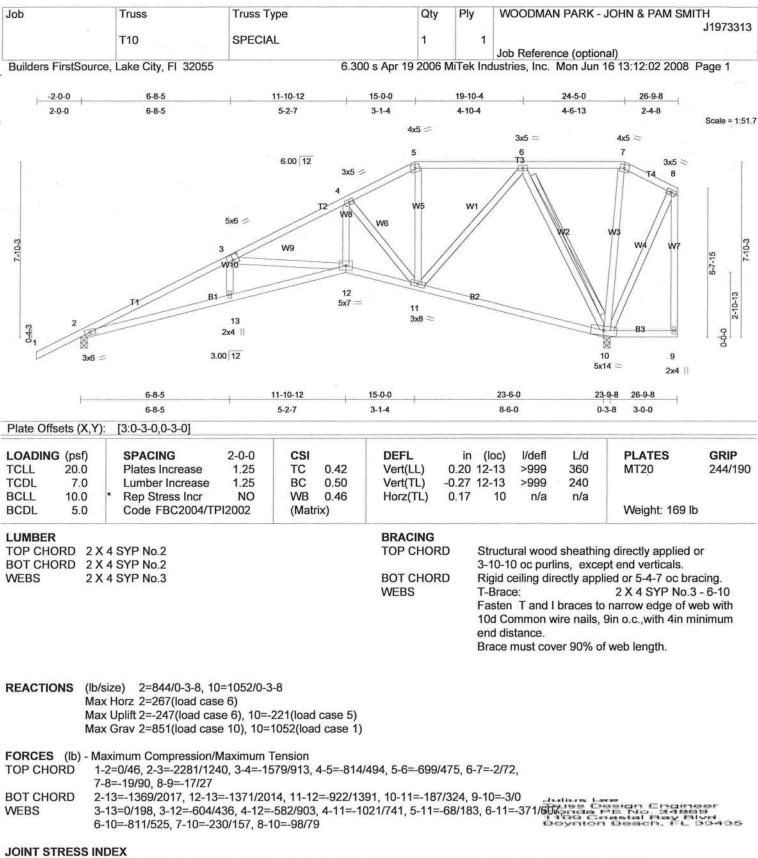
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI /TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation willable from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973312
	T09	SPECIAL	1	1	31973312
	Table Control	CAR 201 2010 Security 2010			Job Reference (optional)

6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:11:11 2008 Page 2

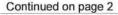
NOTES

- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 240 lb uplift at joint 2 and 281 lb uplift at joint
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-4=-54, 4-7=-54, 2-11=-10, 9-11=-10, 8-9=-10 Concentrated Loads (lb)

Vert: 8=-30(F) 7=-54(F)


us Les se Ossian Engineer nda PE No. 34898 10 Chestal Bay Blvd (nton Gesch, FL 33435

2 = 0.73, 3 = 0.55, 4 = 0.79, 5 = 0.42, 6 = 0.46, 7 = 0.60, 8 = 0.48, 9 = 0.34, 10 = 0.42, 11 = 0.64, 12 = 0.67 and 13 = 0.34

Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
		34.0	7	- 20	J197331
	T10	SPECIAL	1	1	The state of the s
				117	Job Reference (optional)

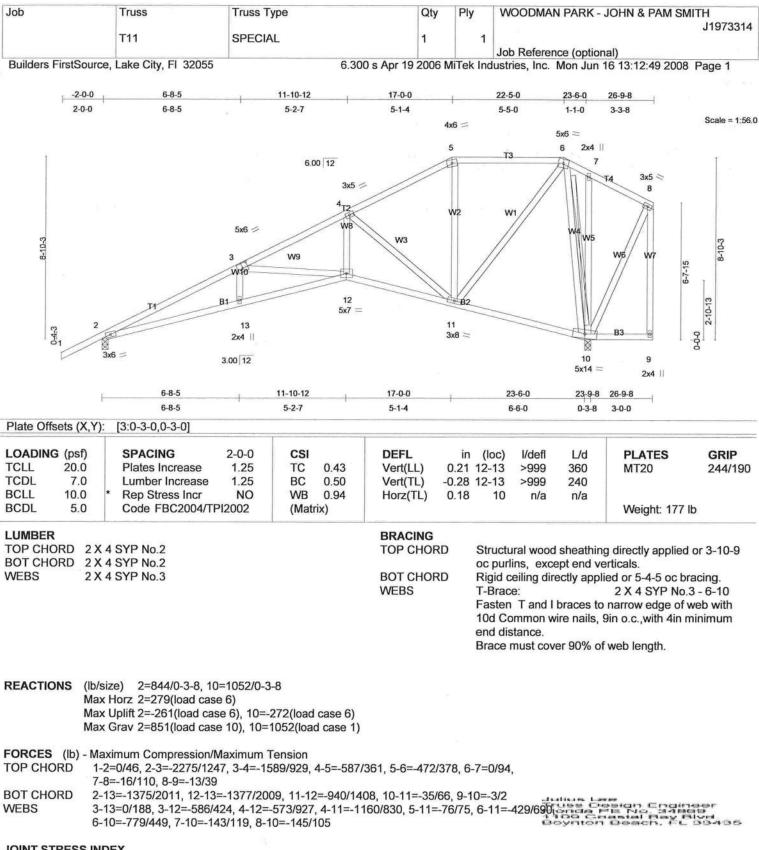
6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:12:02 2008 Page 2

NOTES

- Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 247 lb uplift at joint 2 and 221 lb uplift at joint 10
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)


Vert: 1-5=-54, 5-7=-54, 7-8=-54, 2-12=-10, 10-12=-10, 9-10=-10

Concentrated Loads (lb)

Vert: 9=-30(F) 8=-54(F)

Julius Lee Truss Cesian Engineer Florida His No. 24888 1 106 Chastel Rey Slvd Boynton Besch, FL 35435

JOINT STRESS INDEX

2 = 0.73, 3 = 0.52, 4 = 0.81, 5 = 0.60, 6 = 0.32, 7 = 0.34, 8 = 0.48, 9 = 0.34, 10 = 0.42, 11 = 0.75, 12 = 0.67 and 13 = 0.34

1) Unbalanced roof live loads have been considered for this design.

June 16,2008

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
3.52.3		200	1 2	1 2	J1973314
	T11	SPECIAL	1	1	
				1	Job Reference (optional)

6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:12:49 2008 Page 2

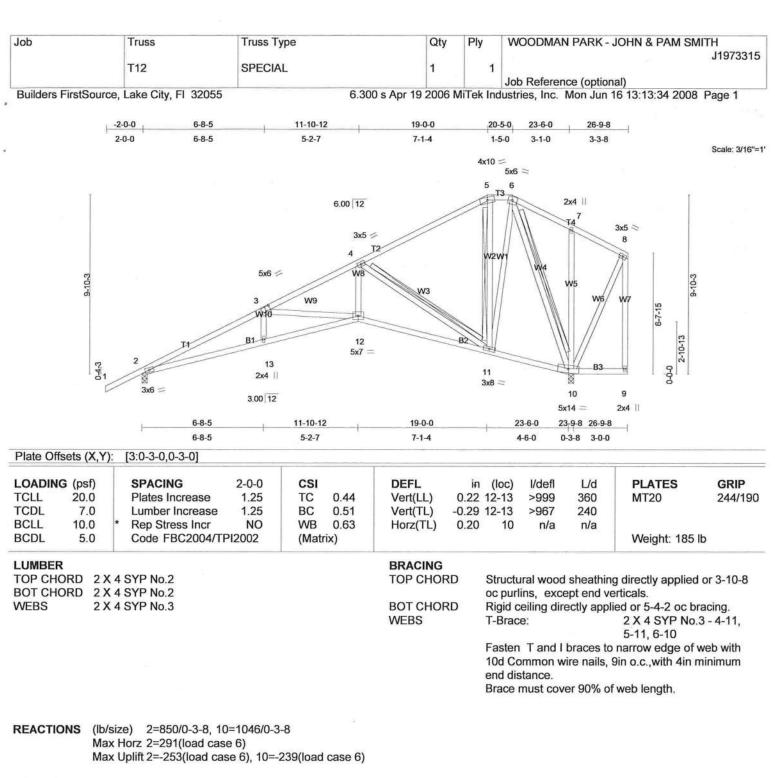
NOTES

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 261 lb uplift at joint 2 and 272 lb uplift at joint 10.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)


Vert: 1-5=-54, 5-6=-54, 6-8=-54, 2-12=-10, 10-12=-10, 9-10=-10

Concentrated Loads (lb)

Vert: 9=-30(F) 8=-54(F)

Julium Lee Truss Cesian Engineer Florida ME No. 34868 1409 Casastal Rey Plyd Boynton Besch, FL 93435

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/46, 2-3=-2260/1266, 3-4=-1611/970, 4-5=-418/274, 5-6=-295/322, 6-7=0/102,

7-8=-13/109, 8-9=-8/56

BOT CHORD 2-13=-1391/1996, 12-13=-1392/1996, 11-12=-987/1440, 10-11=-95/199, 9-10=-2/2

WEBS 3-13=0/174, 3-12=-543/395, 4-12=-575/942, 4-11=-1315/949, 5-11=-236/201,

6-11=-481/742, 6-10=-762/403, 7-10=-203/204, 8-10=-145/94

Julius Leer Truss Design Engineer Flonda FE No. 34888 1109 Ceastal Bay Blvd Boynton Beach, FL 33405

JOINT STRESS INDEX

2 = 0.73, 3 = 0.47, 4 = 0.82, 5 = 0.67, 6 = 0.43, 7 = 0.34, 8 = 0.48, 9 = 0.34, 10 = 0.42, 11 = 0.93, 12 = 0.70 and 13 = 0.34

NOTES

1) Unbalanced roof live loads have been considered for this design.

June 16,2008

Continued on page 2

Warming - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
		1000	P 2		J1973315
	T12	SPECIAL	1	1	
					Job Reference (optional)

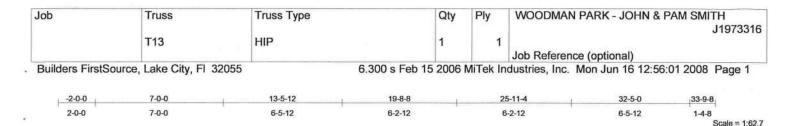
6.300 s Apr 19 2006 MiTek Industries, Inc. Mon Jun 16 13:13:34 2008 Page 2

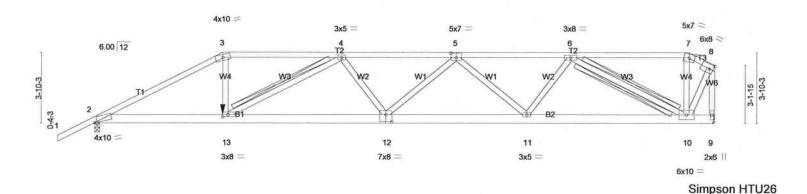
NOTES

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 253 lb uplift at joint 2 and 239 lb uplift at joint 10
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)


Vert: 1-5=-54, 5-6=-54, 6-8=-54, 2-12=-10, 10-12=-10, 9-10=-10


Concentrated Loads (lb)

Vert: 9=-30(F) 8=-54(F)

Julius Lee Truss Design Engineer Flonds ME No. 34869 1106 Chastal Ray Alvid Bonton Beach, FL 20435

7-0-0 8-10-8 7-8-0 8-10-8 1-4-8 Plate Offsets (X,Y): [2:0-1-11,0-0-6], [5:0-3-8,0-3-0], [12:0-4-0,0-4-8], [13:0-3-8,0-1-8] LOADING (psf) SPACING 2-0-0 CSI DEFL L∕d in (loc) I/defl **PLATES GRIP** TCLL 20.0 Plates Increase 1.25 TC 0.94 Vert(LL) -0.36 11-12 >999 360 MT20 244/190 BC TCDL 7.0 1.25 0.71 Vert(TL) -0.68 12-13 Lumber Increase >589 240 * Rep Stress Incr **BCLL** 10.0 WB 1.00 NO Horz(TL) 0.15 9 n/a n/a Code FBC2004/TPI2002 BCDL 5.0 (Matrix) Weight: 198 lb

LUMBERTOP CHORD2 X 4 SYP No.2TOP CHORDStructural wood sheathing directly applied, except end verticals.BOT CHORD2 X 6 SYP No.1DBOT CHORDRigid ceiling directly applied or 6-0-0 oc bracing.

WEBS I-Brace:

23-6-8

S I-Brace: 2 X 4 SYP No.3 - 6-10

T-Brace: 2 X 4 SYP No.3 - 4-13

32-5-0

33-9-8

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) 2=2313/0-3-8, 9=2363/Mechanical

Max Horz 2=122(load case 5)

Max Uplift 2=-716(load case 5), 9=-787(load case 3)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/51, 2-3=-4517/1485, 3-4=-4027/1378, 4-5=-5721/1945, 5-6=-4785/1629,

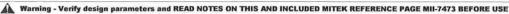
15-10-8

6-7=-1016/363, 7-8=-1050/329, 8-9=-2367/718

BOT CHORD 2-13=-1324/3966, 12-13=-1954/5639, 11-12=-1955/5649, 10-11=-1442/4130,

9-10=-9/32

7-0-0


WEBS 3-13=-418/1454, 4-13=-1930/748, 4-12=0/271, 5-12=0/182, 5-11=-1166/489,

6-11=-265/1154, 6-10=-3553/1277, 7-10=-209/197, 8-10=-738/2278

Julius Lee Trues Design Engineer Flonds PE No. 24888 1-100 Chastel Bay Blvd Boynton Beach, FL 20425

June 16,2008

Continued on page 2

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
					J1973316
	T13	HIP	1	1	
	4				Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:01 2008 Page 2

JOINT STRESS INDEX

2 = 0.81, 3 = 0.98, 4 = 0.62, 5 = 0.81, 6 = 0.84, 7 = 0.85, 8 = 0.86, 9 = 0.61, 10 = 0.92, 11 = 0.82, 12 = 0.90 and 13 = 0.91

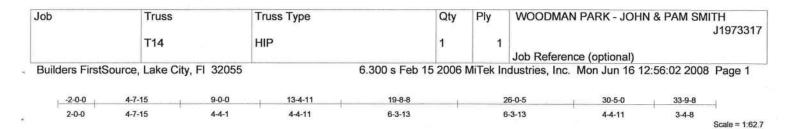
NOTES

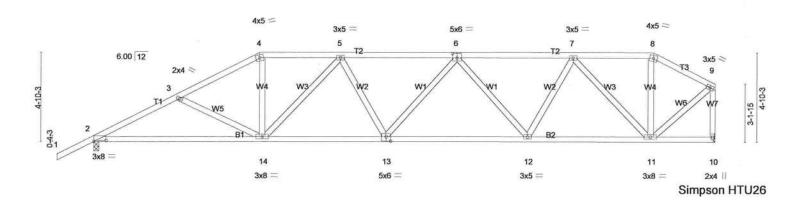
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS; Lumber DOL=1.60 plate grip DOL=1.60.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 716 lb uplift at joint 2 and 787 lb uplift at joint 9.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)


Vert: 1-3=-54, 3-7=-118(F=-64), 7-8=-118(F=-64), 2-13=-10, 9-13=-22(F=-12)


Concentrated Loads (lb)

Vert: 13=-411(F)

Julius Lee Truss Ossian Engineer Flonda PE No. 34868 1109 Crestal Ray Blyd Dovoton Reser Et 23425

		9-0-0		6-10-1		/-2	3-14			6-10-1	3-4-8	
Plate Of	ffsets (X,Y	(): [2:0-8-0,0-0-10], [0	3:0-3-0,0-3	3-0], [13	:0-3-0,0-	3-0]						
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.33	Vert(LL)	-0.16	2-14	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.54	Vert(TL)	-0.31	2-14	>999	240	112000000	
BCLL	10.0	* Rep Stress Incr	YES	WB	0.69	Horz(TL)	0.09	10	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)						Weight: 186 lb	

LUIVIDER	
TOP CHORD	2 X 4 SYP No.2
BOT CHORD	2 X 4 SYP No.2
WEBS	2 X 4 SYP No.3

BRACING TOP CHORD BOT CHORD

23-6-15

Structural wood sheathing directly applied or 4-4-1 oc purlins, except end verticals. Rigid ceiling directly applied or 6-3-6 oc bracing.

30-5-0

33-9-8

REACTIONS (lb/size) 2=1192/0-3-8, 10=1068/Mechanical

Max Horz 2=162(load case 6)

9-0-0

Max Uplift 2=-277(load case 6), 10=-241(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-2014/1040, 3-4=-1776/933, 4-5=-1558/894, 5-6=-1933/1073,

6-7=-1637/909, 7-8=-727/447, 8-9=-843/455, 9-10=-1051/566

BOT CHORD 2-14=-990/1734, 13-14=-992/1893, 12-13=-1019/1938, 11-12=-728/1405,

10-11=-15/17

3-14=-216/207, 4-14=-227/535, 5-14=-566/265, 5-13=-17/150, 6-13=-64/94,

15-10-1

 $6-12 = -473/299, \ 7-12 = -205/497, \ 7-11 = -1009/534, \ 8-11 = -52/208, \ 9-11 = -460/932$

JOINT STRESS INDEX

2 = 0.70, 3 = 0.33, 4 = 0.63, 5 = 0.43, 6 = 0.50, 7 = 0.43, 8 = 0.38, 9 = 0.66, 10 = 0.37, 11 = 0.89, 12 = 0.43, 13 = 0.56 and 14 = 0.56

NOTES

WEBS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This Confide Gesigned for C-C for members and forces, and for MWFRS for reactions specified.

Julius Leer Truss Cossign Engineer Floride PE No. 24865 1466 Crestal Bay Blvd Boynton Besch, FL 93435

June 16,2008

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

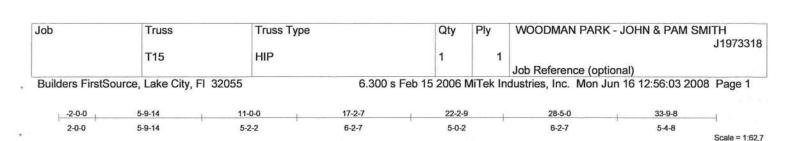
This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

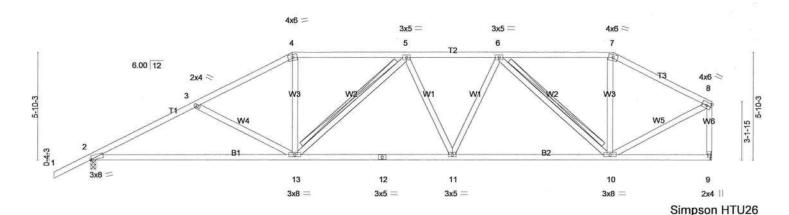
Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973317
	T14	HIP	1	1	
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:02 2008 Page 2

NOTES

3) Provide adequate drainage to prevent water ponding.


4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 277 lb uplift at joint 2 and 241 lb uplift at joint 10.

LOAD CASE(S) Standard

	11-0-0			8-8-8		1	8-8-8			5-4-8		
Plate Of	ffsets (X,Y	'): [2:0-0-10,Edge]										
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.38	Vert(LL)	-0.30	2-13	>999	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.71	Vert(TL)	-0.56	2-13	>713	240		
BCLL	10.0	* Rep Stress Incr	YES	WB	0.33	Horz(TL)	0.08	9	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)	7.00.000.000 3 .00.00 . 00					Weight: 185 lb	

19-8-8

LUIVIDER	
TOP CHORD	2 X 4 SYP No.2
BOT CHORD	2 X 4 SYP No.2
WEBS	2 X 4 SYP No.3

LUMBER

BRACING TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-3-8 oc purlins, except end verticals. Rigid ceiling directly applied or 6-3-14 oc bracing.

28-5-0

WEBS T-Brace: 2 X 4 SYP No.3 -5-13, 6-10

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) 2=1192/0-3-8, 9=1068/Mechanical

11-0-0

Max Horz 2=173(load case 6)

Max Uplift 2=-292(load case 6), 9=-210(load case 4)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/47, 2-3=-1980/1046, 3-4=-1675/905, 4-5=-1453/876, 5-6=-1564/919,

6-7=-903/579, 7-8=-1061/577, 8-9=-1044/580

BOT CHORD 2-13=-985/1700, 12-13=-839/1627, 11-12=-839/1627, 10-11=-752/1465,

3-13=-291/278, 4-13=-152/439, 5-13=-350/150, 5-11=-166/131, 6-11=-80/278,

6-10=-803/416, 7-10=-11/229, 8-10=-469/983

JOINT STRESS INDEX

WEBS

2 = 0.88, 3 = 0.33, 4 = 0.74, 5 = 0.45, 6 = 0.45, 7 = 0.71, 8 = 0.68, 9 = 0.43, 10 = 0.90, 11 = 0.45, 12 = 0.57 and 13 = 0.56Continued on page 2

June 16,2008

👠 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
1	1 255000			1000	J1973318
	T15	HIP	1	1	
	V-50-10	and the second s			Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:03 2008 Page 2

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 292 lb uplift at joint 2 and 210 lb uplift at joint 9.

LOAD CASE(S) Standard

Julius Lee Truss Design Engineer Flonda Ms No. 34868 1100 Chastal Bay Blvd

Job Truss Truss Type Qty Ply WOODMAN PARK - JOHN & PAM SMITH J1973319 T16 HIP 1 1 Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:04 2008 Page 1 -2-0-0 7-0-0 13-0-0 19-8-8 26-5-0 32-5-0 39-5-0 41-5-0 2-0-0 7-0-0 6-0-0 6-8-8 6-8-8 6-0-0 7-0-0 2-0-0 Scale = 1:73.6 3x8 = 5x6 = 6 6.00 12 3x6 = 3x6 < W3 W3 B1 **B1** 3x6 = 13 12 14 11 10 2x6 // 3x8 5x6 = 3x8 2x6 \\ 13-0-0 19-8-8 26-5-0 33-9-8 39-5-0 7-2-12 6-8-8 6-8-8 7-4-8 5-7-8 Plate Offsets (X,Y): [2:0-1-13,0-0-7], [8:0-1-13,0-0-7], [12:0-3-0,0-3-0] SPACING 2-0-0 L/d LOADING (psf) CSI DEFL (loc) I/defl **PLATES** GRIP in TCLL 20.0 1.25 TC 360 Plates Increase 0.40 Vert(LL) -0.09 13-14 >999 MT20 244/190 7.0 TCDL Lumber Increase 1.25 BC 0.37 Vert(TL) -0.20 13-14 >999 240 **WB BCLL** 10.0 * Rep Stress Incr YES 0.54 0.06 Horz(TL) 10 n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 214 lb LUMBER BRACING TOP CHORD TOP CHORD 2 X 4 SYP No.2 Structural wood sheathing directly applied or

BOT CHORD 2 X 4 SYP No.2 2 X 4 SYP No.3 **WEBS**

4-3-10 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc

bracing.

WEBS

T-Brace:

5-13, 5-11

2 X 4 SYP No.3 -

Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance.

Brace must cover 90% of web length.

REACTIONS (lb/size) 2=1140/0-3-8, 10=1597/0-3-8

Max Horz 2=-113(load case 7)

Max Uplift 2=-303(load case 6), 10=-535(load case 7) Max Grav 2=1144(load case 10), 10=1597(load case 1)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD

1-2=0/47, 2-3=-1900/878, 3-4=-1440/745, 4-5=-1227/734, 5-6=-769/409,

6-7=-927/389, 7-8=-846/733, 8-9=0/47

BOT CHORD 2-14=-601/1616, 13-14=-615/1591, 12-13=-272/1220, 11-12=-272/1220,

10-11=-122/538, 8-10=-578/905

WEBS 3-14=0/221, 3-13=-422/336, 4-13=-68/340, 5-13=-134/95, 5-12=0/186,

5-11=-638/388, 6-11=-6/196, 7-11=-612/970, 7-10=-1579/1193

JOINT STRESS INDEX

Continued to 3 3 ag 0.72, 4 = 0.54, 5 = 0.56, 6 = 0.54, 7 = 0.72, 8 = 0.79, 10 = 0.54, 11 = 0.89, 12 = 0.44, 13 = 0.89 and 14 = 0.54 June 16,2008

₩ Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
	161/17/02/09/21	100000000000000000000000000000000000000			J1973319
	T16	HIP	1	1	
6.1					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:04 2008 Page 2

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; cantilever right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide adequate drainage to prevent water ponding.

4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 303 lb uplift at joint 2 and 535 lb uplift at joint 10.

LOAD CASE(S) Standard

Julius Lee Truss Coston Engineer Flonds FE No. 24899 1100 Coastal Bay Blord Boynton Beson, FL 99435

Job Truss Truss Type Qty Ply WOODMAN PARK - JOHN & PAM SMITH J1973320 T17 HIP 1 1 Job Reference (optional) Builders FirstSource, Lake City, FI 32055 6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:06 2008 Page 1 -2-0-0 8-0-0 15-0-0 24-5-0 31-5-0 41-5-0 2-0-0 8-0-0 7-0-0 4-8-8 4-8-8 7-0-0 8-0-0 2-0-0 Scale = 1:73.6 5x6 = 3x5 = 5x6 = 6.00 12 6 5x7 / 5x7 > 7-10-3 W4 3x8 14 13 12 11 10 2x6 // 3x8 = 2x6 \\ 3x8 = 3x6 =15-0-0 24-5-0 33-9-8 39-5-0 9-2-12 9-5-0 9-4-8 5-7-8 Plate Offsets (X,Y): [2:0-4-12,0-1-8], [3:0-3-4,0-3-0], [7:0-3-4,0-3-0], [8:0-4-12,0-1-8] 2-0-0 LOADING (psf) SPACING CSI DEFL I/defl L∕d **PLATES GRIP** in (loc) TCLL 20.0 TC Plates Increase 1.25 0.51 Vert(LL) -0.16 13-14 360 >999 MT20 244/190 TCDL 7.0 1.25 BC 0.53 Vert(TL) -0.33 13-14 240 Lumber Increase >999 * Rep Stress Incr **BCLL** 10.0 WB 0.68 YES 0.06 10 Horz(TL) n/a n/a BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 213 lb LUMBER BRACING TOP CHORD 2 X 4 SYP No.2 TOP CHORD Structural wood sheathing directly applied or BOT CHORD 2 X 4 SYP No.2 4-1-9 oc purlins. 2 X 4 SYP No.3 **WEBS BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing. T-Brace: **WEBS** 2 X 4 SYP No.3 -3-13, 5-13, 5-11 Fasten T and I braces to narrow edge of web with 10d Common wire nails, 9in o.c., with 4in minimum end distance. Brace must cover 90% of web length. **REACTIONS** (lb/size) 2=1142/0-3-8, 10=1595/0-3-8 Max Horz 2=-125(load case 7) Max Uplift 2=-314(load case 6), 10=-549(load case 7) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/47, 2-3=-1887/872, 3-4=-1315/705, 4-5=-1099/703, 5-6=-823/505,

6-7=-1011/489, 7-8=-883/781, 8-9=0/47

BOT CHORD 2-14=-582/1595, 13-14=-606/1537, 12-13=-180/1023, 11-12=-180/1023,

10-11=-13/296, 8-10=-607/950

WEBS 3-14=0/291, 3-13=-511/421, 4-13=-54/307, 5-13=-117/156, 5-11=-433/266,

6-11=-11/221, 7-11=-388/666, 7-10=-1703/1317

JOINT STRESS INDEX

2 = 0.70, 3 = 0.84, 4 = 0.54, 5 = 0.43, 6 = 0.54, 7 = 0.84, 8 = 0.70, 10 = 0.74, 11 = 0.61, 12 = 0.43, 13 = 0.61 and 14 = 0.74. Continued on page 2

June 16,2008

Marning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973320
	T17	HIP	1	1	01010020
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:06 2008 Page 2

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; cantilever right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 314 lb uplift at joint 2 and 549 lb uplift at joint 10.

LOAD CASE(S) Standard

Julius Lee Truss Design Engineer Flonds FE No. 34868 1460 Crastal Ray Blvd Bovnton Basch, FL 20435

Job	Truss	Truss Type			Qty	Ply	WO	ODMAN	PARK - J	IOHN & P		Section recovers and the second
	T18	SPECIAL			1		1				J	11973321
	100 T00 T00 T00 T00 T00 T00 T00 T00 T00	No. Control (Alexandra), Control			180				e (optiona			
Builders FirstSourc	e, Lake City, FI 32055		6	6.300 s Feb	15 2006	MiTek	Industri	es, Inc.	Mon Jun	16 12:56:0	07 2008 I	Page 1
-2-0-0	3-8-5 11-10-12	17-0	0-0	22-5-0	1	28-1-0	1	33-7-12		39-5-0	41-5-0	
2-0-0	3-8-5 5-2-7	5-1	-4	5-5-0		5-8-0	1	5-6-12	1	5-9-4	2-0-0	
											s	icale = 1:76.1
			5x6 =		F-6 -							
	6.00	12	5		5x6 <i>□</i> 6							
		2.0 /	(8)	T3	飛		F. C >					1
		3x8 =				14	5x6 <>					-
	5x6 =	T2	W2	W1//		1	7					
	. //	The state of the s	3		1	/			3x5 <			B-10-3
	3 W7			//		W5//	WB		8			-8
	B1 9		B2	/		//		W9	W11			6
, ,	814	15 5x8 =	G-DZ			/					٩	3 2-10-13
P1 2	16	5.0	14 3x8 =		W		160	B3	8		10	014-8 9
3x8 =	2x4		3,0 <		13		12		∞ 11		3x5 =	0 0
	3.00 12				5x6 =		3x6 =		2x6			
2		10.44							122220000	22.22		
	3-8-5 11-10-12 3-8-5 5-2-7	17-0		23-6-0 6-6-0	-	28-1-0 4-7-0		33-7-12 5-6-12	33 ₋ 9-8 0-1-12	39-5-0 5-7-8	-1	
Plate Offsets (X,Y						Salaton .			7			
										T		
OADING (psf)	SPACING	2-0-0	CSI	DEI		in		I/defi	L/d	PLAT		GRIP
CLL 20.0 CDL 7.0	Plates Increase Lumber Increase	1.25 1.25	TC 0.4 BC 0.6		t(LL) t(TL)	-0.54	15-16 15-16	>999 >743	360 240	MT20		244/19
CLL 10.0	* Rep Stress Incr	YES	WB 0.6		z(TL)	0.29	11	n/a	n/a			
CDL 5.0	Code FBC2004/TF	0.0000000000000000000000000000000000000	(Matrix)	1 1101	2(12)	0.20	* *	III'U	i ii a	Weigl	nt: 221 lb	65
UMBER OP CHORD 2 X	4 SYP No 2				ACING CHOP	SD	Structu	ral woor	l sheathi	ng directl	v annlied	or
OT CHORD 2 X				101	OHO	\D		c purlins		ng unccu	y applica	01
VEBS 2 X	4 SYP No.3			BOT	Г СНОБ	RD				olied or 5-	8-9 oc	
				=90.000=1	2012		bracing					24
				WEI	BS		T-Brac	e:			SYP No.	3 -
							Fasten	T and I	hraces t	4-14, o narrow		weh
										nails, 9in		
								m end d		240 M 4 D 50 4 D 400 D 50 C 50 D		
							Brace i	nust cov	er 90% d	of web ler	ngth.	
				60								
FACTIONS (lb/	size) 2=1138/0 ₋ 3 ₋ 8	11=1599/0-	3_8	6								
	size) 2=1138/0-3-8, x Horz 2=-136(load ca		3-8	6								

Max Uplift 2=-350(load case 6), 11=-566(load case 7)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/46, 2-3=-3441/1524, 3-4=-2805/1216, 4-5=-1362/711, 5-6=-1172/693,

6-7=-959/544, 7-8=-774/276, 8-9=-807/679, 9-10=0/47

BOT CHORD 2-16=-1211/3075, 15-16=-1213/3074, 14-15=-787/2529, 13-14=-117/868, 12-13=-83/631, 11-12=-540/858, 9-11=-540/858

3-16=0/184, 3-15=-537/413, 4-15=-495/1451, 4-14=-1676/759, 5-14=-105/336,

6-14=-213/590, 6-13=-347/156, 7-13=-150/259, 7-12=-581/474, 8-12=-899/1318,

8-11=-1520/1150

Julius Les Truss Design Engineer florida FE No. 34898 1100 Casstal Bay Blvd Boynton Besch, FL 23435

Continued on page 2

WEBS

ders

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH
VACULTADA.	100000000000000000000000000000000000000				J1973321
	T18	SPECIAL	1	1	1111
					Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:07 2008 Page 2

JOINT STRESS INDEX

2 = 0.79, 3 = 0.53, 4 = 0.83, 5 = 0.43, 6 = 0.43, 7 = 0.45, 8 = 0.79, 9 = 0.54, 11 = 0.54, 12 = 0.74, 13 = 0.42, 14 = 0.85, 15 = 0.93 and 16 = 0.33

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; cantilever right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 350 lb uplift at joint 2 and 566 lb uplift at joint 11.

LOAD CASE(S) Standard

Julius Lee Truss Design Engineer Florida ME No. 24865 1100 Coestal Bay Sive Boynton Beach, FL 20425

Job	Truss	Truss Ty	pe		Qty	Ply	WO	ODMAN	PARK -	JOHN & F		TH J1973322
	T19	SPECIAL	L _a		1		1 lob	Deference	o (ontion	-al\	,	01313322
Builders FirstSour	ce, Lake City, FI 3205	55		6.300 s Feb	15 2006	MiTek		Referencies, Inc.			08 2008	Page 1
200	605 4446	142	10.0.0	20 5 0	27.2.0			20.7.40		20.5.0	44.5.0	
2-0-0	6-8-5 11-10 6-8-5 5-2		19-0-0 7-1-4	20-5-0 1-5-0	27-2-8 6-9-8		-	33-7-12 6-5-4		39-5-0 5-9-4	2-0-0	
				5x6 🗢								Scale = 1:76.9
				5x6 =								
Ī		6.00 12		5 T3 6								1
		3x8 🦈			14		5x6 🗢					
	5x6 =	4 T2		W2 /	(3		7					
9-10-3	3 /W		W4			W5//	W6		3x5 🗢			9-10-3
	WHO				\\\\		1		8 15			1
. /	14 B1 8	15 5x8 =	B	32	11/			W9	W11		0	2-10-13
2	16	3.0		14			(6)	B3	8		11	24 3 4
81	2x4											0
3x8 =	2x4			3x8 ==	13		12		11		3x5 =	
					13 5x6 =		12 3x5 =		2x6		3x5 = \	
//	2x4 3.00 6-8-5 11-10		19-0-0 7-1-4	3x8 = 23-6-0	5x6 =	28-2-12 4-8-12		33-7-12 5-5-0	2x6 33-9-8	39-5-0	3x5 = \	
	2x4 3.00 12 6-8-5 11-10 6-8-5 5-2-	-7	7-1-4	3x8 ==	5x6 =	28-2-12 4-8-12		33-7-12 5-5-0	2x6		3x5 = \	
3x8 =	2x4 3.00 12 6-8-5 11-10 6-8-5 5-2- Y): [3:0-3-0,0-3-0],	7 [7:0-3-0,0-3-	7-1-4 0]	3x8 = 23-6-0 4-6-0	5x6 =	4-8-12	3x5 =	5-5-0	2x6 33-9-8 0-1-12	39-5-0 5-7-8	-1	
Plate Offsets (X, VLOADING (psf)	2x4 3.00 12 6-8-5 11-10 6-8-5 5-2	-7	7-1-4 0] CSI TC 0	3x8 = 23-6-0 4-6-0 DEF Veri	5x6 =	4-8-12 in 0.31	3x5 = (loc) 15-16	Olomotol III	2x6 33-9-8	39-5-0	TES	GRIP
Plate Offsets (X, Coading (psf)) FCLL 20.0 FCDL 7.0	2x4 3.00 12 6-8-5	7 [7:0-3-0,0-3- 2-0-0 1.25 e 1.25	7-1-4 0] CSI TC 0 BC 0	3x8 = 23-6-0 4-6-0 DEF Veri 1.66 Veri	5x6 = 	in 0.31 -0.56	(loc) 15-16 15-16	5-5-0 I/defl >999 >712	2x6 33 ₁ 9-8 0-1-12 L/d 360 240	39-5-0 5-7-8 PLA1	TES	GRIP
Plate Offsets (X, LOADING (psf) TCLL 20.0	2x4 3.00 12 6-8-5	2-0-0 1.25 2 1.25 YES	7-1-4 0] CSI TC 0 BC 0	23-6-0 4-6-0 DEF 1.44 Verl 1.66 Verl 1.83 Hor	5x6 =	4-8-12 in 0.31	3x5 = (loc) 15-16	5-5-0 l/defl >999	2x6 33-9-8 0-1-12 L/d 360	39-5-0 5-7-8 PLAT MT20	TES	GRIP 244/19
Plate Offsets (X, LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 10.0 BCDL 5.0 LUMBER TOP CHORD 2	2x4 3.00 12 6-8-5	2-0-0 1.25 2 1.25 YES	7-1-4 0] CSI TC 0 BC 0 WB 0	23-6-0 4-6-0 1.44 Verl 1.66 Verl 1.83 Hora	5x6 = 	in 0.31 -0.56 0.32	(loc) 15-16 15-16 11	5-5-0 I/defl >999 >712 n/a	2x6 33-9-8 0-1-12 L/d 360 240 n/a	39-5-0 5-7-8 PLAT MT20	TES 0 ht: 229 lt	GRIP 244/19
Plate Offsets (X,) LOADING (psf) FCLL 20.0 FCDL 7.0 BCLL 10.0 BCDL 5.0 LUMBER FOP CHORD 2 BOT CHORD 2	2x4 3.00 12 6-8-5	2-0-0 1.25 2 1.25 YES	7-1-4 0] CSI TC 0 BC 0 WB 0	23-6-0 4-6-0 1.44 Verl 1.66 Verl 1.83 Horr	FL t(LL) t(TL) z(TL)	in 0.31 -0.56 0.32	(loc) 15-16 15-16 11 Structu 3-0-5 c Rigid c	l/defl >999 >712 n/a ural wood oc purlins eiling dii	2x6 33.9.8 0-1-12 L/d 360 240 n/a d sheath	39-5-0 5-7-8 PLAT MT20 Weig	TES) ht: 229 lt	GRIP 244/19
Plate Offsets (X,) Plate Offsets (X,) Position of the control of	2x4 3.00 12 6-8-5	2-0-0 1.25 2 1.25 YES	7-1-4 0] CSI TC 0 BC 0 WB 0	23-6-0 4-6-0 1.44 Verl 1.66 Verl 1.83 Horr	FL t(LL) t(TL) z(TL) ACING P CHOR	in 0.31 -0.56 0.32	(loc) 15-16 15-16 11 Structu 3-0-5 o	l/defl >999 >712 n/a ural wood oc purlins eiling dii	2x6 33.9.8 0-1-12 L/d 360 240 n/a d sheath	39-5-0 5-7-8 PLAT MT20 Weig weig direct	ht: 229 lt ly applied -8-3 oc	GRIP 244/19
Plate Offsets (X,) COADING (psf) CLL 20.0 CDL 7.0 BCLL 10.0 BCDL 5.0 COMBER COP CHORD 2 BOT CHORD 2	2x4 3.00 12 6-8-5	2-0-0 1.25 2 1.25 YES	7-1-4 0] CSI TC 0 BC 0 WB 0	23-6-0 4-6-0 1.44 Veri 1.66 Veri 1.83 Horr	FL t(LL) t(TL) z(TL) ACING P CHOR	in 0.31 -0.56 0.32 D	(loc) 15-16 15-16 11 Structu 3-0-5 c Rigid c bracing T-Brac	l/defl >999 >712 n/a ural wood oc purlins eiling dii g. e:	2x6 33-9-8 0-1-12 L/d 360 240 n/a d sheath s. rectly ap	39-5-0 5-7-8 PLAT MT20 Weig weig direction of 5-2 X 4 4-14,	ht: 229 lt ly applied -8-3 oc SYP No 6-13	GRIP 244/19 d or
Plate Offsets (X,) LOADING (psf) FCLL 20.0 FCDL 7.0 BCLL 10.0 BCDL 5.0 LUMBER FOP CHORD 2 BOT CHORD 2	2x4 3.00 12 6-8-5	2-0-0 1.25 2 1.25 YES	7-1-4 0] CSI TC 0 BC 0 WB 0	23-6-0 4-6-0 1.44 Veri 1.66 Veri 1.83 Horr	FL t(LL) t(TL) z(TL) ACING P CHOR	in 0.31 -0.56 0.32 D	(loc) 15-16 15-16 11 Structu 3-0-5 c Rigid c bracing T-Brac	I/defl >999 >712 n/a aral wood oc purlins eiling dia g. e: T and I	2x6 33-9-8 0-1-12 L/d 360 240 n/a d sheath s. rectly ap	39-5-0 5-7-8 PLAT MT20 Weig plied or 5 2 X 4 4-14, to narrow nails, 9in	ht: 229 lt ly applied -8-3 oc SYP No 6-13 redge of	GRIP 244/19
Plate Offsets (X,) COADING (psf) CLL 20.0 CDL 7.0 BCLL 10.0 BCDL 5.0 CUMBER COP CHORD 2 BOT CHORD 2	2x4 3.00 12 6-8-5	2-0-0 1.25 2 1.25 YES	7-1-4 0] CSI TC 0 BC 0 WB 0	23-6-0 4-6-0 1.44 Veri 1.66 Veri 1.83 Horr	FL t(LL) t(TL) z(TL) ACING P CHOR	in 0.31 -0.56 0.32 D	(loc) 15-16 15-16 11 Structu 3-0-5 o Rigid o bracing T-Brac Fasten with 10 minimu	I/defl >999 >712 n/a Iral wood oc purlins eiling dir g. e: T and I	2x6 33-9-8 0-1-12 L/d 360 240 n/a d sheath s. rectly ap	39-5-0 5-7-8 PLAT MT20 Weig plied or 5 2 X 4 4-14, to narrow nails, 9in	ht: 229 lt ly applied -8-3 oc SYP No 6-13 dedge of o.c., with	GRIP 244/19 d or .3 - web

Max Uplift 2=-331(load case 6), 11=-577(load case 7)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/46, 2-3=-3431/1543, 3-4=-2829/1255, 4-5=-1136/633, 5-6=-945/648,

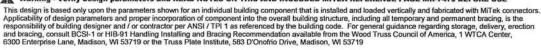
6-7=-949/581, 7-8=-768/281, 8-9=-803/675, 9-10=0/47

BOT CHORD 2-16=-1227/3064, 15-16=-1227/3064, 14-15=-832/2561, 13-14=-82/904,

12-13=-73/693, 11-12=-535/854, 9-11=-535/854

3-16=0/171, 3-15=-502/386, 4-15=-496/1468, 4-14=-1856/869, 5-14=-75/281, 6-14=-189/625, 6-13=-320/85, 7-13=-71/165, 7-12=-572/479, 8-12=-892/1306,

8-11=-1522/1159


Julius Lee Truss Clesign Engineer Florida FE No. 34889 1196 Cinastal Ray Blyd Boynton Beach, Ft. 33435

June 16,2008

WEBS

Job	Truss	Truss Type	Qty	Ply	WOODMAN PARK - JOHN & PAM SMITH J1973322
	T19	SPECIAL	1	1	
		15.5 30.5 0.10			Job Reference (optional)

6.300 s Feb 15 2006 MiTek Industries, Inc. Mon Jun 16 12:56:08 2008 Page 2

JOINT STRESS INDEX

2 = 0.79, 3 = 0.49, 4 = 0.84, 5 = 0.66, 6 = 0.58, 7 = 0.65, 8 = 0.79, 9 = 0.56, 11 = 0.55, 12 = 0.81, 13 = 0.28, 14 = 0.92, 15 = 0.93 and 16 = 0.33

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=14ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS and C-C Exterior(2) zone; cantilever right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide adequate drainage to prevent water ponding.

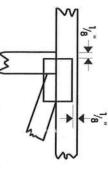
4) *This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 331 lb uplift at joint 2 and 577 lb uplift at joint 11.

LOAD CASE(S) Standard

Julius Les Truss Design Engineer Flonds PE No. 24889 1108 Chastel Rey Alva Bovnton Besch, FL 30435



Symbols

PLATE LOCATION AND ORIENTATION

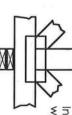
*Center plate on joint unless dimensions indicate otherwise. Dimensions are in inches. Apply plates to both sides of truss and securely seat.

*For 4 x 2 orientation, locate plates 1/8" from outside edge of truss and vertical web.

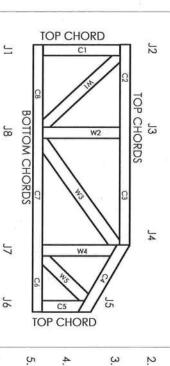
*This symbol indicates the required airection of slots in connector plates.

PLATE SIZE

4 × 4


The first dimension is the width perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING


Indicates location of required continuous lateral bracing.

BEARING

Indicates location of joints at which bearings (supports) occur.

Numbering System

JOINTS AND CHORDS ARE NUMBERED CLOCKWISE AROUND THE TRUSS STARTING AT THE LOWEST JOINT FARTHEST TO THE LEFT.

WEBS ARE NUMBERED FROM LEFT TO RIGHT

CONNECTOR PLATE CODE APPROVALS

ICBO

BOCA

96-31, 96-67

3907, 4922

SBCCI 9667, 9432A

WISC/DILHR 960022-W, 970036-N

NER

561

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Avoid knots and wane at joint locations.
- Unless otherwise noted, locate chord splices at 1/4 panel length (± 6" from adjacent joint.)
- lumber shall not exceed 19% at time of fabrication.

Unless otherwise noted, moisture content of

- Unless expressly noted, this design is not applicable for use with fire retardant or preservative treated lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size and location dimensions shown indicate minimum plating requirements.
 Lumber shall be of the species and size, and

in all respects, equal to or better than the

grade specified.

- Top chords must be sheathed or purlins provided at spacing shown on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Anchorage and / or load transferring connections to trusses are the responsibility of others unless shown.
- Do not overload roof or floor trusses with stacks of construction materials.
- 14. Do not cut or alter truss member or plate without prior approval of a professional engineer.
- 15. Care should be exercised in handling, erection and installation of trusses.
- © 1993 MiTek® Holdings, Inc.

MiTek Engineering Reference Sheet: MII-7473

CE NO. 34869 NO. 34869 NO. 34869 NO. 34869 REPER TO CHART ABOVE REPER TO CHART ABOVE STATE OF CHART ABOVE STATE OF ARCTIONS, WILESS BREAKE LIM, MANSUN, VI SATEN AND VICE OF CHART ABOVE STATE OF ARCTIONS, WILESS BREAKE LIM, MANSUN, VI SATEN AND VITA (VIDIO TRAISS CHARLING AND STATE OF CHART ARCTIONS, WILESS BREAKE LIM, MANSUN, VI SATEN AND VITA (VIDIO TRAISS CHARLING AND STATE) FOR CHART ARCTIONS AND VITA CHARGE PROPERTY ATTACHMENT OF CHART SHALL HAVE PROPERTY ATTACHMENT OF CHAR DIAGONAL BEACE OFTON: VERTICAL LENGTH MAY BE DOUBLED WHEN DIAGONAL HRACE IS USED, COMNECT HRACONAL BEACE FOR BAG# TOTAL LENGTH IS 14. MAX GABLE VERTICAL LENGTH SPACING SPECIES VERTICAL LENGTH SHOWN 12" 16" O.C. O.C. O.C. GABLE VERTICAL HAW MAH SPF SPF SPF DFL DFI SP SP H 国 ASCE STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD **\$1 / #2** CRADE COLLS CUIS STUD BRACE 7-02: #2 GABLE THUSS BHACES 130 ZX4 SP #ZN, DF-L #Z, SP# #L/#Z, OR BETTEH DIAGONAL BRACE; SINGLE OR DOUBLE GROUP A Ξ 6. 10 CUT (AS SHUWN) AT MPH 10 1X4 "L" UPPER END. GROUP BRACE + WIND å 0 6 N Ħ (1) 2X4 GROUP SPEED A "L" BRACE . GROUP B 8. 10. 15 T ADORT 18" 18 (2) 2X4 "L" GROUP 0000 0 0 10 0 0 8' 5" CHART ABOVE FOR MAX GABLE VERTICAL LENGTH MEAN EX4 #EN OR BETTER CONLINIOUS GROUP BRACE ** 6 10' 2" 6 HEIGHT, H SMEVSE CONS. ENGINEERS P.A. Ξ 10 DELRAY HEACH, FL 33444-2161 10. 7 13 12' 6" 10. exe. STATE OF FLORIDA A H. ENCLOSED, GROUP B BRACE * 12 5" 12 6" 13, 19 14 12 10' 3" (Z) GROUP A 12 BXS S H. \vdash MAX MAX BRACE CROUP 11 13 11" 12' 0" 13' 3' 13' 7" TOT. SPACING 1.00, 5 ATIACE EACH "L" BRACE WITH 104 (YALLS. # POR (I) "L" BRACE, SPACE NAILS AT 8" O.C. # POR (I) "L" BRACES; SPACE NAILS AT 3" O.C. ## FUR (2) "L" BRACES; SPACE NAILS AT 3" O.C. IN 18" IND ZONES AND 4" O.C. BITWINN ZONES. CABLE END SUPPORTS LOAD FROM 4' 0" MINBER LENGTH. I" BRACING MUST BE A MINIMUM OF BOX OF WEB PROVIDE UPLANT CONNECTIONS FOR 136 PLF OVER CONTINUOUS BEARING (6 PSF TC DEAD LOAD). LIVE LOAD DEPLECTION CRATERIA IS L/240. PLYWOOD OVERHANG. DOUGLAS FIR-LARCE BRACING EXPOSURE CAHLE 60 GREATER THAN 11' 8' GREATER THAN 11' 8' SOUTHERN PIN ARRINCYT (TRACIH 24.0" PEAK, SPLICE, AND HEEL PLATES. GABLE VERTICAL PLATE SIZES STANDARD WE STANDARD STUD PSF 100 GROUP SPECIES TRUSS DETAIL DRWG DATE REF GROUP GROUP FL & BIE 0 MIEX SID GABLE 15 E HI DOUGLAS FIR-LARCE 11/26/09 ASCET-02-GAB13015 ä A: SOUTHERN PONE NO SPLICE AND STANDARD 2.5X4 NOTES STE 200 STANDARD GRADES:

ASCE 7-02: 130 MPH WIND SPEED, 30' MEAN HEIGHT, ENCLOSED, I 11 1.00, EXPOSURE Ω

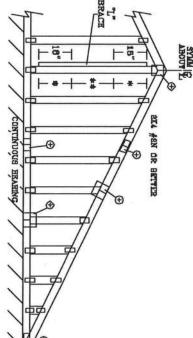
SPRUCE-PINE-INB
#1 / #2 STANDARD
#3 STUD

DOUGLAS FIR-LARCH

SOUTHERN POR

STANDARD

STANDARD


BRACING GROUP SPECIES AND GRADES:

GROUP

A:

HEM-PIR STANDARD

	1	2	93		0	.(3.	85		1	6	3 1		0	.(٦,			2	4	93		O	. (С		SPACING	GARI
		1	7) j	TIT	I I	CIT	クロゴ	ALL CONTRACTOR		1	7	j	TIL	ij	מלק	בדבי			1	υ. Τ)	TIL	I,	OKI	TT.	SPECIES	CABLE VERTICAL
STANDARD	STUD	#3	#22	#1	STANDARD	STUD	£3	£1 / #2	STANDARD	STUD	ż	#23	+1	STANDARD	STUD	#8	£1 / #2	STANDARD	STUD	49	#2	+1	STANDARD	STUD	#8	£1 / #2	CRADE	BRACE
4' 0"	1	4.	4 4	4. 5"	3' 11"			4. 0.	3' 8"	3' 8"	3' 8"	3' 11"	4. 0.	3. 2.	3' 7"	3' 7"	3' 8'	3' 0"	3' 3"	3' 3'	3' 6"	3' 6"	2' 11'	3' 1"	3' 1"	3. 5.	BRACES	3
5 6	8' 4'	8' 6"	8' 11"	6 11	T-	8 3	8 G	6' 11"	4" 9"	5' 6"	5' 7"	8' 4"	6 4	4. 8.	5' 6"	5. 5,	8' 4"	3' 10"	4' 8"	4' 6"	5' 6"	5' 6"	3' 9"	4' 6"	4' 5"	5' 6'	GROUP A	(1) 1X4 T
5, 8,	8, 4,	6, 2,	7, 8,	7' 8"	5' 4"	6' 3'	6. G		4' 9"	5' 8"	6. 4.	8' 10"	6' 10"	4' 8"	6, 2,	5' 5"	8' 6"	3' 10"	4' 6"	4' 6"	5' 11"	5' 11"	3′9"	4' 5"	4' 5"	6′ 8"	GROUP H	BRACE .
7 3	8 3"	e' 3"	B' 3"	8,3			8' 3"	6' 3"	6' 3"	7' 3"	7' 4"	7" 6"	7' 6"	6. 5.	7' 2"	, 5°	7. 8.	5" 1"	5' 11"	6. 0,		8' B"	6′0"	5' 10"	6' 10"	8′ 6"	GROUP A	(1) 2X4 T BRACE
7' 3"		B' 6"	8' 11"	B 11°	7' 1"			8' 6°		7' 3"	7' 4"	8' 1"	B' 1°	Ø. 5.	7: 2*	7' 2"	7. B.	5' 1"	5' 11"	6' 0"	7' 0"	7' 0"		5' 10"	5' 10"	6. 9.	GROUP B	BRACE *
8, 8,	9′ 10″	9' 10"	8' 10"		8, 8,			9, 10,	-		8' 11"	8' 11"		B. 3.	8' 11"	8, 11,	B. 11.	8° 11"	7' 10"	7' 10"		7, 10,	6, 9,	7' 10"		7' 10'	GROUP A	(2) 2X4 "L" BRACE
	10′ 4″	10' 4"	10' 7"		9, 8,	9' 10"	9' 10"	10, 1,	8, 2,	8, 5,	8, 9,	g, 7"	B, 2,	6' 3"	8' 11"		9) 6)	e, 11.	8'0"	8′ 1"	8, 2,	8, 2,	6, 9,	7' 10"	7' 10"	8′ 0"	GROUP B	BRACE **
11' 4"	12' 11"	12' 11"	12' 11"	12' 11"	11' 1"	18, 10,	12' 11"	12' 11"	8, 8,	11' 4"	11. 5.		11' 9"	9' 7"	11, 1,,	11, 5,	11. 9.	B, 0,	8, 3,	9,	10′ 3″	10' 3"	7' 10"	9' 1"		10' 3"	GROUP A	(1) 2X6 (L)
11' 4"	13, 1,	18' 3°	13' 11"	13' 11"	11' 1"	12' 10"		13' 4"	8, 8,	11' 4"	11. 6.	12' B"	12, 8,	8, 4,	11, 1,	11' 2"	12, 1,	8′ 0"	8, 3,	9 4	11, 1,"	11, 1,	7' 10"	9′ 1″	9' 1"	10' 7"		BRACE .
14' 0"	14. Q"	14' 0"	14' 0"	14' O"	14' 0"	14' 0"	14' O°	14. 0.	13' 9"	14' 0"	14. O.	14' 0"	14. 00	18, 11,	14' 0"	14' 00	14. O.	10' 10"	12' 3°	12. 3.		12' 3"	10′ 7″		12' 3"	12, 3,	GROUP B GROUP A GROUP	,T, fixz (2)
14' 0"	14. 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	- 1	13' 3"	14' 0"	14. 0"	14' 0°	7		14' D°	14' 0"	- 7				13' 2"	13' 2"			12' 3"	12' 7"	GROUP B	HRACE **

HRACE IS USED. CONNECT DIAGONAL HEACE FOR SEG# AT EACH END. MAX WEB TOTAL LENGTH IS 14".

VERTICAL LENGTH SHOWN IN TABLE ABOVE.

ZX4 SP OR
TIT-L #2 CH
BETTIE DIAGONAL
BRACE, SINGLE

OR DOUBLE CUT (AS SHOWN) AT UPPER END

DIAGONAL BEACE OFTION:
VERTICAL LENGTE MAY BE
DOUBLED WHEN DIAGONAL

GABLE THUSS

CABLE TRUSS DETAIL NOTES:

SOUTHERN PINE

DOUGLAS FIR-LARCH

HEM-PER GROUP

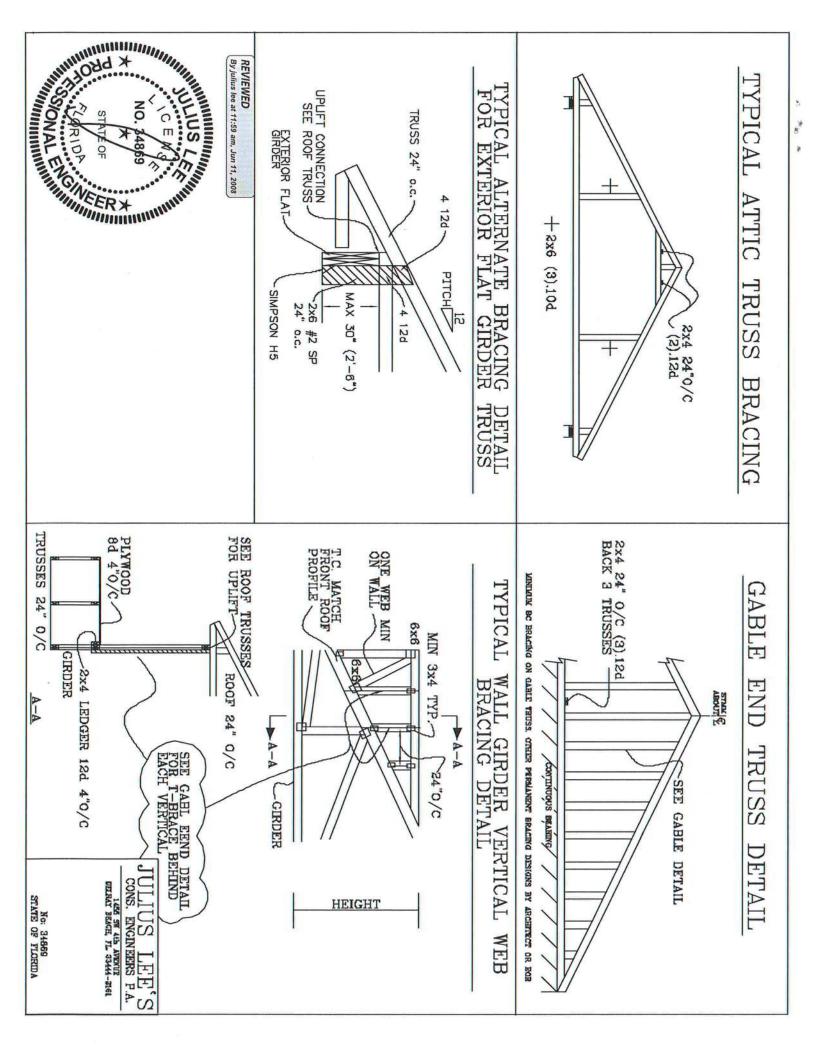
ä

CABLE END SUPPORTS LOAD FROM 4' 0" PROVIDE UPLIT CONNECTIONS FOR 180 FLF OVER CONTINUOUS BEARING (5 PSF %C DEAD LOAD). LIVE LOAD DEPLECTION CHITERIA IS L/240. PLYMOOD OVERHANG.

- ATTACE EACH "L" BRACE WITE 104 NAILS.

 # FOR (1) "L" BRACE, SPACE NAILS AT 8" O.C.

 # FOR (2) "L" BRACES, SPACE NAILS AT 3" O.C.


 EN 18" END ZONES AND 4" O.C. BETWEEN ZONES.

 IN 18" END ZONES AND 4" O.C. BETWEEN ZONES.
- MINBER LENGTH. I" BRACING MUST BE A MINIMUM OF BOX OF WEB

2.5X4	DREATER THAN 11' 6"
23/4	CREATER THAN 4' D', BUT
1X4 OR EXTS	PSS THAN 4' 0"
NO SPLICE	ABBLINCAT CENCLE
E SIZES	GABLE VERTICAL PLATE

CONNECT PLAGONAL AT THE REFER TO CHART	ABOVE FOR MAX GABLE VERTICAL LENGTH.		PEAK, SPLICE, AND HEEL PLATES.
The state of the s			REF ASCE7-02-GAB13030
ANY ARYDRIAN TRUSSES REQUIRE EXTREME CARE IN FARGUATING, HANDLING, INSTALLING AND PACKET, REPER TO BOXI 1-03 GUILLING CONFORME SAFETY (MODRATICO), PUBLISHED BY TPI CHRUSS	CONS. ENGINEERS P.A.		DATE 11/26/09
NO. 34869 STREET, WILLIAM STREET, WAS A STRE	DELBAY BEACH, PL. SSA44-2161		DWG mier sed cable 20, e hi
A SMUGTURAL PANELS AND BUTTON CHORD SHALL HAV			-ENG
REVIEWED		MAX. TOT. LD. 60 PSF	
By julius lee at 12:00 pm, Jun 11, 2008	No. 41890		
THE COUNTY OF THE PARTY OF THE	STATE OF ILORIDA	MAX. SPACING 24.0"	
W. TONAL V.M.			

NO. 4489

BOT CHORD 284 *** 222 BETTER BETTER BETTER

PIGGYBACK

TAPL

SNAGS

녚

3

30′

34

88

58

REFER TO SEALED DESIGN FOR DASHED PLATES.

SPACE PIGGYBACK VERTICALS AT 4' OC MAX. TOP AND BOTTOM CHORD SPLICES MUST BE STAGGERED SO THAT ONE SPLICE IS NOT DIRECTLY OVER ANOTHER.

PIGGYBACK BOTTOM CHORD MAY BE OMITTED. ATTACH VERTICAL WEBS TO ITACH VERTICAL WEBS TO

ATTACH PURLINS TO TOP OF FLAT TOP CHORD. IF PIGGYBACK IS SOLID LUMBER OR THE BOTTOM CHORD IS OMITTED, PURLINS MAY BE APPLIED BENEATH THE TOP CHORD OF SUPPORTING TRUSS.

THIS DETAIL IS APPLICABLE FOR THE FOLLOWING WIND CONDITIONS:

REFER TO ENGINEER'S SEALED DESIGN FOR REQUIRED FURLIN SPACING.

110 MFH WIND, 30' MEAN HGT, ASCE 7-03, CLOSED BLDG, LOCATED ANYWHERE IN ROOF, 1 MI FROM COAST CAT I, EXP C, WIND TC DL=5 PSF, WIND BC DL=5 PSF

110 MPH WIND, 30' MEAN HGT, FBC ENCLOSED BLDG, LOCATED ANYWHERE IN ROOF WIND TO DL-5 PSF WIND BC DL-5 PSF

BLDG, LOCATED WIND TC DL=6 I 30' MEAN BCT, ASCE 7-02, ANYWHERE IN ROOF, CAT II, PSF, WIND BC DL=6 PSF EXP. C.

U

6X6

6X5

5X6

0

EXG.

1.5X4

1.6X4

1.5X4

M

8 5X4

OR SX6 TRULOX AT 4' HOTATED VEHTICALLY

20

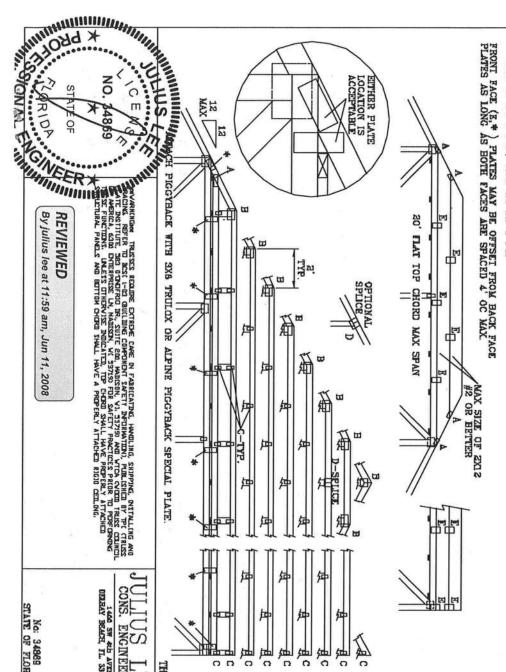
H

4XB

9X9

6X8

5X6


>

284

2.5X4

2.6X4

386

ATTACH THULOX EQUAL, PER FACI BE CONNECTED, INFORMATION.
PLATES PER P REFER
WITH (8) LY (4) TO DRAW
NG 160 NAILS IN
EACH M
NAILS, OR EMBER TO IRULOX
-

10' TO 14'	7'9" TO 10'	0	BTHM	
당	S.	0	E	
14	10'	9.	GTH	
MEN 2x4	WEW WEW	NO		
開	E T	BRAC		WE
OR A	BRA OR	ing		BB
HET)	CE. HETT		R	KACI
H W H BR	SA)		EQU	NG
HA A	H A		TRED	TIAIT
ERAD D 8	RAD Bd B		BR	T
NAILS DE, SPI	NAIC S		ACIN	
ENGT S AT	PEC		ଦ	
NH 4	ZE.			
AS OC	oc SA			
WEB	WEB			

CONS. ENGINEERS P.A.	1 1 1 1 1 1 1 1 1 1	THIS DRAWIN
55 PSF AT	MAX LOADING	THIS DRAWING REPLACES DRAWINGS 634,016 634,017 & 847,045
DATE	REF	634,016
DATE 09/12/07	PIGGYBACK	834,017 & 847,045

C

DENEMA BEARD, IL 33444—2161

No: 34869 STATE OF FLORIDA

SPACING

24.0

1.15	1.25	50	1.33	55	MAX
47 PSF AT 1.15 DUR. FAC	1.25 DUR. FAC.	PSF	DUR.	55 PSF /	MAX LOADING
AT FAC.	FAC.	AT	FAC.	AT	DING
	1	-ENG	DRWG	DATE	XEE.
	i	Ħ	MITEK		PIGG
			STD	09/12/07	PIGGYHACK
			DRWGMITEK STD PIGGY	1.55%	

HAMMAN X

VALLEY TRUSS DETAIL

TOP CHORD CHORD 2X4 SP #2 OR SPF #1/#2 OR BETTER. 2X3(*) OR 2X4 SP #2N OR SPF #1/#2 2X4 SP #3 OR BETTER. OR BETTER

- ZX3 MAY BE RIPPED FROM A ZX6 (PITCHED OR SQUARE).
- ** ATTACH EACH VALLEY TO EVERY SUPPORTING TRUSS WITH: BUILDING, EXP. C. RESIDENTIAL, WIND TC DL=5 FHC 2004 110 MPH, ASCE 7-02 110 MPH WIND ASCE 7-02 130 MPH WIND. 15' MEAN HEIGHT, 16d HOX (0.135" X 3.5") NAILS TOE-NAILED FOR PSF OR (3) 16d ENCLOSED FOR

UNLESS SPECIFIED ON ENGINEER'S SEALED DESIGN, APPLY 1X4 "T"-BRACE, 80% LENGTH OF WEH, VALLEY WEH, SAME SPECIES AND GRADE OR BETTER, ATTACHED WITH 8d BOX (0.113" X 2.5") NAILS AT 6" OC, OR CONTINUOUS LATERAL BRACING, EQUALLY SPACED, FOR VERTICAL VALLEY WEBS GREATER THAN 7'9".

MAXIMUM VALLEY VERTICAL HEIGHT MAY NOT EXCEED 12'0"

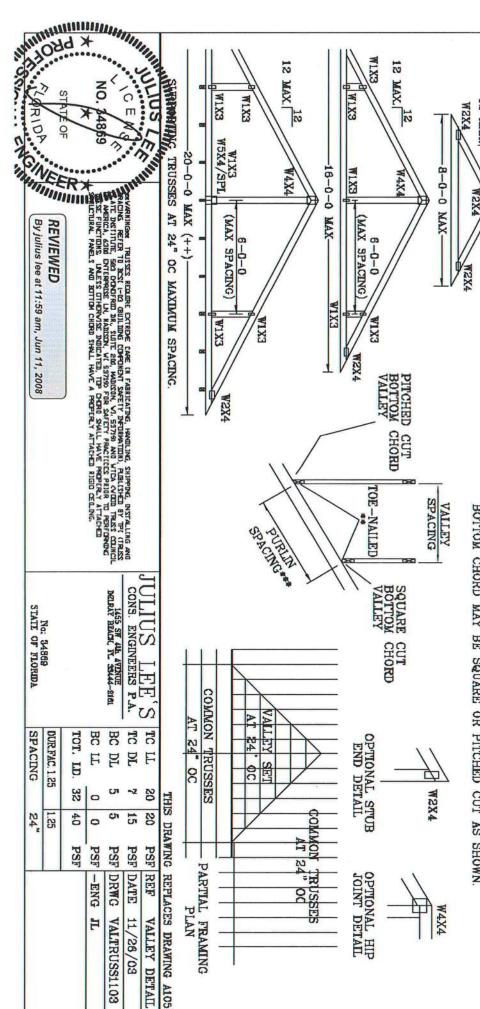
TOP CHORD OF TRUSS BENEATH VALLEY SET MUST BE BRACED WITH: PROPERLY ATTACHED, RATED SHEATHING APPLIED PRIOR TO VALLEY TRUSS INSTALLATION

PURLINS AT 24" 00 OR AS OTHERWISE SPECIFIED ON ENGINEERS' SEALED DESIGN

ENGINEERS' SEALED DESIGN. BY VALLEY TRUSSES USED IN LIEU OF PURLIN SPACING AS SPECIFIED ON

*** NOTE THAT THE PURLIN SPACING FOR BRACING THE TOP CHORD OF THE TRUSS BENEATH THE VALLEY IS MEASURED ALONG THE SLOPE OF THE TOP CHORD. + LARGER SPANS MAY BE NOT EXCEED 12'0". BUILT AS LONG AS THE VERTICAL HEIGHT DOES

LARGER AS REQ'D


12 MAX.

12

4-0-0

XAM

BOTTOM CHORD MAY BE SQUARE OR PITCHED CUT AS SHOWN

CONS. ENGINEERS P.A. DELEAT BEACH, I'L SSAA4-2161

> PL F

11/26/09 VALTRUSS1103

VALLEY DETAIL

P

BC BC TC TC

F

0

-ENG DRWG

32

PSF PSF PSF PSF DATE PSF REF

S

HH

S

20

20

No: 34869 STATE OF FLORIDA

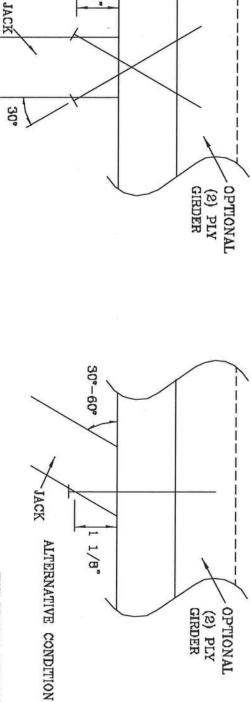
SPACING DUR.FAC. 1.25 TOT. LD

45 1.25 40 0 12 MAX.

12 MAX

TOE-NAIL DETAIL

MEMBER. TOE-NAILS TO BE DRIVEN AT AN ANGLE OF APPROXIMATELY THIRTY DEGREES WITH THE PIECE AND STARTED APPROXIMATELY ONE-THIRD THE LENGTH OF THE NAIL FROM THE END OF THE


PER ANSI/AF&PA NDS-2001 SECTION 12.4.1 END DISTANCE, SPACING: "EDGE DISTANCES, SPACINGS FOR NAILS AND SPIKES SHALL BE PREVENT SPLITTING OF THE WOOD." - EDGE DISTANCE, END DISTANCES AND SUFFICIENT TO

THE NUMBER OF TOE-NAILS TO BE USED IN A SPECIFIC APPLICATION IS DEPENDENT UPON PROPERTIES FOR THE CHORD SIZE, LUMBER SPECIES, AND NAIL TYPE. PROPER CONSTRUCTION PRACTICES AS WELL AS GOOD JUDGEMENT SHOULD DETERMINE THE NUMBER OF NAILS TO BE USED.

THIS DETAIL DISPLAYS A TOE-NAILED CONNECTION FOR JACK FRAMING INTO A SINGLE OR DOUBLE PLY SUPPORTING GIRDER

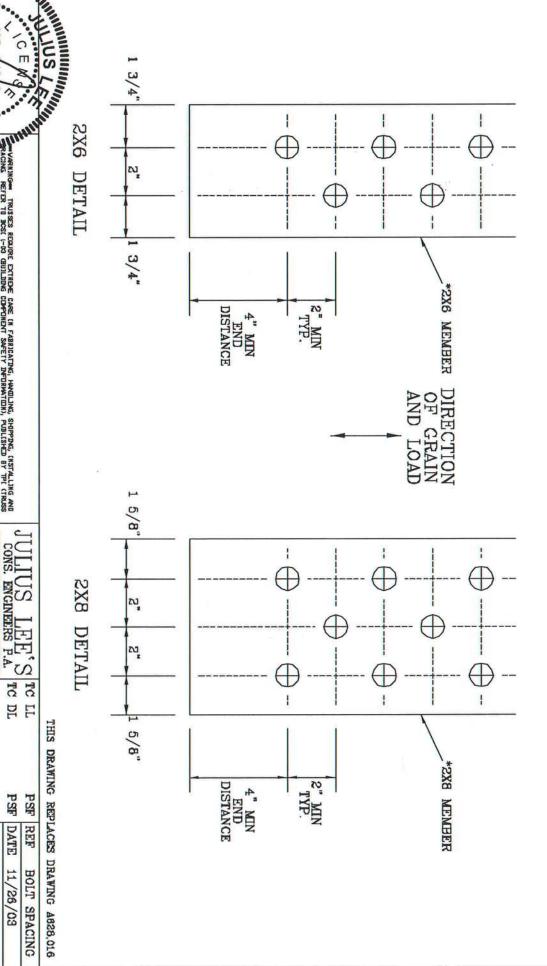
MAXIMUM VERTICAL RESISTANCE OF 16d (0.162"X3.5") COMMON TOE-NAILS

NUMBER OF		SOUTHERN PINE	DOUGLAS	DOUGLAS FIR-LARCH		HEM-FIR	SPRUCE	PINE FIR
TOE-NAILS	1 PLY	2 PLIES 1 PLY	1 PLY	2 PLIES	1 PLY	2 PLIES	1 PLY	2 PLIES
ผ	187#	256#	181#	234#	156#	203#	154#	189#
ယ	296#	383#	271#	351#	234#	304#	230#	298#
4.	394#	511#	361#	468#	312#	406#	307#	397#
Ó	493#	639#	452#	585#	390#	507#	384#	496#
ALL VALUE	ES MAY BE	MULTIPLIE	D BY APP	ROPRIATE	DURATION	ALL VALUES MAY BE MULTIPLIED BY APPROPRIATE DURATION OF LOAD FACTOR	CTOR	

1/8

THIS DRAWING REPLACES DRAWING 784040

			SPACING	STATE OF FLORIDA	
		1.00	DUR. FAC.	No: 34889	By julius lee at 11:59 am, Jun 11, 2008
		PSF	TOT. LD.		REVIEWED
-ENG JL	_	PSF	BC LL		SENICITIZAL PANELS AND BETTEN CHIRO SHALL HAVE A PROPERLY ATTACHED RIGID CELING
G CNTONAIL1103	DRWG	PSF	BC DL	DELRAY SEACH, FL SO444-2161	TE INSTITUTE, 388 TONGEROD DR. SUITE 200, NADISON, WE 33719) AND VTCA (MODD TRUSS COLNCIL) ANDROCA, 6800 ENTERPRISE LN. NADISON, WE 33719) FOR SAFETY PRACTICES PRIOR TO PERCONNING THE FOR ENTERPRISE CHIEF CONTRACTED TO CAPTOR THAT I LIVE BETTOWN TO TATALOGUE.
09/12/07	DATE	PSF	TC DL	CONS. ENGINEERS P.A.	WHARDIGHM TRUSSES REGURE EXTREME CARE IN FABRICATING, HARDLING, SUPPONG, INSTALLING AND BACKIG. RETER TO BOST 1-03 CRUILING COMPONENT SAFETY (NETWANTION), PUBLISHED BY TPY CITALISM
TOE-NAIL	REF	PSF	S IC II	JULIUS LEE'S	


DIAMETER BOLT SPACING FOR LOAD APPLIED PARALLEL TO GRAIN.

* GRADE AND SPECIES AS SPECIFIED ON THE ALPINE DESIGN.

BOLT HOLES SHALL BE A MINIMUM OF 1/32" OF 1/16" LARGER THAN BOLT DIAMETER. TO A MAXIMUM

> TYPICAL LOCATION OF 1/2" DIAMETER THRU BOLTS. QUANTITIES AS NOTED ON SEALED DESIGN MUST BE IN ONE OF THE PATTERNS SHOWN BELOW. APPLIED

WASHERS REQUIRED UNDER BOLT HEAD AND NUT

EOF RESERVICES

By julius lee at 11:59 am, Jun 11, 2008

REVIEWED

DELEAT BEACH, FL 33444-2161

BC LL BC DL

PSF PSF

-ENG

H

PSF PSF

DATE

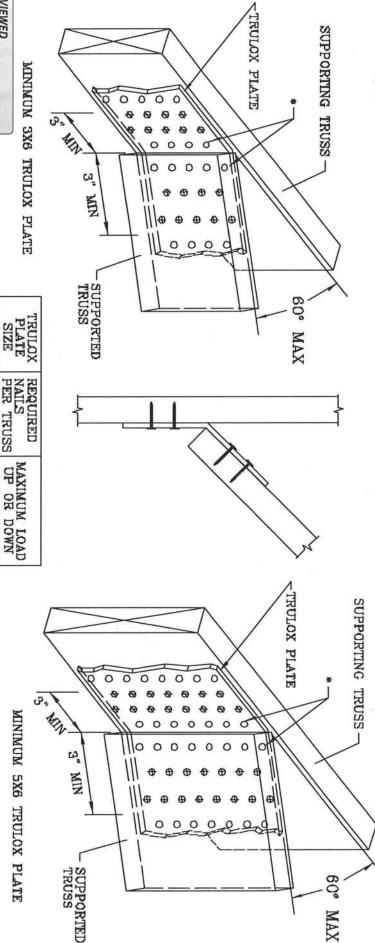
DRWG

CNBOLTSP1103 11/26/03

No: 34869 STATE OF FLORIDA

SPACING DUR. FAC. TOT. LD.

TRULOX CONNECTION DETAIL


SHOWN (+). PLATE ATTACHMENT. FILL ROWS COMPLETELY WHERE

NAILS MAY BE OMITTED FROM THESE ROWS

THIS DETAIL MAY BE USED WITH SO, PINE, DOUGLAS-FIR OR HEM-FIR CHORDS WITH A MINIMUM 1.00 DURATION OF LOAD OR SPRUCE-PINE-FIR CHORDS WITH A MINIMUM 1.15 DURATION OF LOAD. CHORD SIZE OF BOTH TRUSSES MUST EXCEED THE TRULOX PLATE WIDTH.

TRULOX PLATE IS CENTERED ON THE CHORDS AND BENT BETWEEN NAIL ROWS.

THIS DETAIL FOR LUMBER, PLATES, AND OTHER REFER TO ENGINEER'S SEALED DESIGN REFERENCING INFORMATION NOT SHOWN

NO. 648.69 STATE OF S

TRUSSES REQUIRE EXTREME CARE IN FABRICATING, HAMILING, SUPPING, INSTALLING AND DRIED BY ID BEST HOW GUILLING, CHEPINENT SAFETY DEFENMENTEIN, POLILINED BY THE LITERS TIT, 388 DYNIFRED DR, SUITE EDD, MAISSEN, VI. 137159 AND VICA CACIED TRUSS COUNCIL SIGN DRIED BY AND SAFETY PRACTICES ROLE TO FERTIMENT OF CHEPING ALL HAVE GRAPERLY ATTACHED INS. UNLESS THEREVISE MODIFACE, TO CHED SAFETY ATACHED

CONS. ENGINEERS P.A. DELIGAY BELACH, IL. 30444-2161

[王 王 王

S

1,154,844

1,152,217

1,152,017

1,159,154 & 1,151,524

DRWG DATE REF

CNTRULOX1103 11/26/03 TRULOX

-ENG

I

THIS DRAWING REPLACES DRAWINGS 1,158,989 1,158,989/R

MINIMUM 5X6 TRULOX PLATE

No: 34869 STATE OF FLORIDA

REVIEWED

By julius lee at 11:58 am, Jun 11, 2008

3X6

15 9

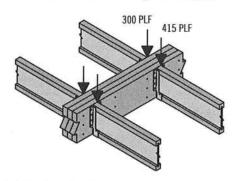
#088 350# NAILS PER TRUSS

MAXIMUM LOAD UP OR DOWN

NO. 24869 NO. 24 By julius lee at 11:58 am, Jun 11, 2008 REVIEWED A TO BEARING TO BEARING ADD 2x4 #2 SP ONE FACE 10'-0" 0/C MAX SYSTEM-42 OR FLAT TRUSS ALTERNATE DETAIL FOR STRONG BACK WITH VERTICAL NOT LINING UP STRONG (3)10d-10'-0" 0/C MAX BACK DETAIL 3 10d 2x6 #2 SP 3 10d SP JULIUS LEE'S CONS. ENGINEERS P.A. DILRAY BEACH, FL. 33444-2161 No: 34869 STATE OF FLORIDA

MULTIPLE-MEMBER CONNECTIONS FOR SIDE-LOADED BEAMS

Maximum Uniform Load Applied to Either Outside Member (PLF)


					Co	onnector Pattern		
Connector Type	Number of Rows	Connector On-Center Spacing	Assembly A 2" 134"	Assembly B	Assembly C	Assembly D	Assembly E 1 2 1 2 1 31/2	Assembly F
			3½" 2-ply	51/4" 3-ply	51/4" 2-ply	7" 3-ply	7" 2-ply	7" 4-ply
10d (0.128" x 3")	2	12"	370	280	280	245		
Nail ⁽¹⁾	3	12"	555	415	415	370		
1/8 4007		24"	505	380	520	465	860	340
1/2" A307 Through Bolts(2)(4)	2	19.2"	635	475	655	580	1,075	425
riii dağlı bolta		16"	760	570	785	695	1,290	505
		24"	680	510	510	455		
SDS 1/4" x 31/2"(4)	2	19.2"	850	640	640	565		
		16"	1,020	765	765	680		
		24"				455	465	455
SDS 1/4" x 6"(3)(4)	2	19.2"				565	580	565
		16"				680	695	680
		24"	480	360	360	320		
USP WS35 (4)	2	19.2"	600	450	450	400		
	SHEET VICTOR	16"	715	540	540	480		
		24"				350	525	350
USP WS6 (3)(4)	2	19.2"				440	660	440
		16"				525	790	525
33/8"		24"	635	475	475	425		
TrussLok(4)	2	19.2"	795	595	595	530		10.5
		16"	955	715	715	635		
5"		24"		500	500	445	480	445
TrussLok(4)	2	19.2"		625	625	555	600	555
		16"		750	750	665	725	665
63/4"		24"				445	620	445
TrussLok(4)	2	19.2"		W. Series		555	770	555
		16"	ELF TO "		NAME OF THE PARTY.	665	925	665

- (1) Nailed connection values may be doubled for 6" on-center or tripled for 4" on-center nail
- (2) Washers required. Bolt holes to be 9/16" maximum.
- (3) 6" SDS or WS screws can be used with Parallam® PSL and Microllam® LVL, but are not recommended for TimberStrand® LSL.
- (4) 24" on-center bolted and screwed connection values may be doubled for 12" on-center spacing.

General Notes

- Connections are based on NDS® 2005 or manufacturer's code report.
- Use specific gravity of 0.5 when designing lateral connections.
- Values listed are for 100% stress level. Increase 15% for snow-loaded roof conditions or 25% for non-snow roof conditions, where code allows.
- Bold Italic cells indicate Connector Pattern must be installed on both sides.
 Stagger fasteners on opposite side of beam by ½ the required Connector Spacing.
- Verify adequacy of beam in allowable load tables on pages 16–33.
- 7" wide beams should be side-loaded only when loads are applied to both sides
 of the members (to minimize rotation).
- Minimum end distance for bolts and screws is 6".
- Beams wider than 7" require special consideration by the design professional.

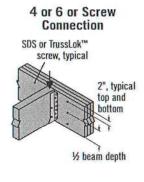
Uniform Load Design Example

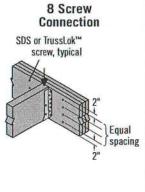
First, check the allowable load tables on pages 16-33 to verify that three pieces can carry the total load of 715 plf with proper live load deflection criteria. Maximum load applied to either outside member is 415 plf. For a 3-ply 13%" assembly, two rows of 10d (0.128" x 3") nails at 12" on-center is good for only 280 plf. Therefore, use three rows of 10d (0.128" x 3") nails at 12" on-center (good for 415 plf).

Alternates:

Two rows of $\frac{1}{2}$ " bolts or SDS $\frac{1}{4}$ " x $3\frac{1}{2}$ " screws at 19.2" on-center.

Point Load—Maximum Point Load Applied to Either Outside Member (lbs)


	United the same			Cor	nector Pattern		
Connector Type	Number of Connectors	Assembly A	Assembly B	Assembly C	Assembly D 134" 31/2" 134"	Assembly E	Assembly F
		3½" 2-ply	51/4" 3-ply	51/4" 2-ply	7" 3-ply	7" 2-ply	7" 4-ply
	6	1,110	835	835	740		
10d (0.128" x 3")	12	2,225	1,670	1,670	1,485		
Nail	18	3,335	2,505	2,505	2,225		
	24	4,450	3,335	3,335	2,965		
SDS Screws	4	1,915	1,435(4)	1,435	1,275	1,860(2)	1,405(2)
/4" x 31/2" or WS35	6	2,870	2,150 (4)	2,150	1,915	2,785(2)	2,110(2)
1/4" x 6" or WS6(1)	8	3,825	2,870 (4)	2,870	2,550	3,715(2)	2,810(2)
02/8 - 50	4	2,545	1,910 (4)	1,910	1,695	1,925(3)	1,775(3)
33/8" or 5" TrussLok™	6	3,815	2,860 (4)	2,860	2,545	2,890(3)	2,665(3)
Hassrak	8	5,090	3,815 (4)	3,815	3,390	3,855(3)	3,550(3)


(1) 6" SDS or WS screws can be used with Parallam® PSL and Microllam® LVL, but are not recommended for TimberStrand® LSL.

See General Notes on page 38


- (2) 6" long screws required.
- (3) 5" long screws required.
- (4) $3 \mbox{$\%''$}$ and $3 \mbox{$\%''$}$ long screws must be installed on both sides.

Connections

Nail Connection 10d (0.128" x 3") nails, typical. Stagger to prevent splitting. -10"spacing, typical minimum spacing, There must be an equal number of

First, verify that a 3-ply 1¾" x 14" beam is capable of supporting the 3,000 lb point load as well as all other loads applied. The 3,000 lb point load is being transferred to the beam with a face mount hanger. For a 3-ply 134" assembly, eight 33/8" TrussLok™ screws are good for 3,815 lbs with a face mount hanger.

MULTIPLE-MEMBER CONNECTIONS FOR TOP-LOADED BEAMS

nails on each side of the connection

134" Wide Pieces

- Minimum of three rows of 10d (0.128" x 3") nails at 12" on-center.
- Minimum of four rows of 10d (0.128" x 3") nails at 12" on-center for 14" or deeper.
- If using 12d-16d (0.148"-0.162" diameter) nails, the number of nailing rows may be reduced by one.
- Minimum of two rows of SDS, WS, or TrussLok™ screws at 16" on-center. Use 33/8" minimum length with two or three plies; 5" minimum for 4-ply members, 6" SDS and WS screws are not recommended for use with TimberStrand® LSL. For 3- or 4-ply members, connectors must be installed
- on both sides. Stagger fasteners on opposite side of beam by ½ of the required connector spacing.
- Load must be applied evenly across entire beam width. Otherwise, use connections for side-loaded

31/2" Wide Pieces

■ Minimum of two rows of SDS, WS, or TrussLok™ screws, 5" minimum length, at 16" on-center. 6" SDS and WS screws are not recommended for use with TimberStrand® LSL. Connectors must be installed on both sides. Stagger fasteners on opposite side of beam by 1/2 of the required connector spacing.

- Load must be applied evenly across entire beam width. Otherwise, use connections for side-loaded heams
- Minimum of two rows of ½" bolts at 24" on-center staggered.

Multiple pieces can be nailed or bolted together to form a header or beam of the required size, up to a maximum width of 7"

