	Building Permit	PERMIT
This Permit Expires One Y APPLICANT SUSAN HOLTON	ear From the Date of Issue PHONE 623-6612	000025153
ADDRESS 258 NW BERT AVE		FL 32055
OWNER TOM EAGLE & SUSAN HOLTON	PHONE 623-6612	
ADDRESS 346 SW TIMBERLAND CT	LAKE CITY	FL 32055
CONTRACTOR JAMES LIPSCOMB	PHONE 719-6960	
LOCATION OF PROPERTY 90 WEST, L TIMBERLANE CC	OURT (EMERALD COVE), AT END OF ST	IREET
ON RIGHT BEFORE CUL-DE-	SAC	······································
TYPE DEVELOPMENT SFD,UTILITY E	STIMATED COST OF CONSTRUCTION	133250.00
HEATED FLOOR AREA 2665.00 TOTAL AF	REA 4382.00 HEIGHT 2	4.00 STORIES 2
FOUNDATION CONCRETE WALLS FRAMED	ROOF PITCH 7/12 FI	LOOR SLAB
LAND USE & ZONING RSF-2	MAX. HEIGHT	35
Minimum Set Back Requirments: STREET-FRONT 25.0	0 REAR 15.00	SIDE 10.00
NO. EX.D.U. 0 FLOOD ZONE XPP	DEVELOPMENT PERMIT NO.	10 ⁻¹⁻¹
PARCEL ID 33-3S-16-02438-187 SUBDIVISI	ON EMERALD COVE	
LOT 87 BLOCK PHASE UNIT	TOTAL ACRES	.50
000001247 CBC1253543	Suga Day	0
Culvert Permit No. Culvert Waiver Contractor's License Nu	umber Applicant/Owner	/Contractor
CULVERT 06-0726-N BK	JH	N
Driveway Connection Septic Tank Number LU & Zon	ing checked by Approved for Issuance	e New Resident
COMMENTS: FLOOR ONE FOOT ABOVE THE ROAD		
	Check # or C	ash 3999/37/
FOR BUILDING & ZONI	Check # or C NG DEPARTMENT ONLY	(footer/Slab)
Temporary Power Foundation	NG DEPARTMENT ONLY Monolithic	(footer/Slab)
Temporary Power Foundation date/app. by	NG DEPARTMENT ONLY Monolithic date/app. by	(footer/Slab) date/app. by
Temporary Power Foundation date/app. by Slab	NG DEPARTMENT ONLY Monolithic date/app. by Sheathing/	(footer/Slab)
Temporary Power Foundation Gate/app. by Under slab rough-in plumbing Slab date/app. by	NG DEPARTMENT ONLY Monolithic date/app. by	(footer/Slab) date/app. by Nailing
Temporary Power Foundation date/app. by Under slab rough-in plumbing Slab date/app. by Framing Rough-in plumbing a date/app. by	NG DEPARTMENT ONLY Monolithic date/app. by Sheathing/ date/app. by	(footer/Slab) date/app. by Nailing
Temporary Power Foundation date/app. by Under slab rough-in plumbing Slab date/app. by Gate/app. by Electrical rough-in Heat & Air Duct	NG DEPARTMENT ONLY Monolithic date/app. by date/app. by above slab and below wood floor Peri. beam (Linte	(footer/Slab) date/app. by Nailing date/app. by date/app. by
Temporary Power Foundation date/app. by Idate/app. by Under slab rough-in plumbing Slab date/app. by Idate/app. by Framing Rough-in plumbing adate/app. by Electrical rough-in Heat & Air Duct date/app. by Idate/app. by	NG DEPARTMENT ONLY Monolithic date/app. by Sheathing/ date/app. by above slab and below wood floor Peri. beam (Linte date/app. by	(footer/Slab) date/app. by Nailing date/app. by date/app. by
Temporary Power Foundation date/app. by Under slab rough-in plumbing Slab date/app. by Gate/app. by Electrical rough-in Heat & Air Duct	NG DEPARTMENT ONLY Monolithic date/app. by date/app. by above slab and below wood floor Peri. beam (Linte	(footer/Slab) date/app. by Nailing date/app. by date/app. by
Temporary Power Foundation date/app. by Under slab rough-in plumbing Slab date/app. by Gate/app. by Framing Rough-in plumbing adate/app. by Electrical rough-in Heat & Air Duct date/app. by Permanent power date/app. by C.O. Final M/H tie downs, blocking, electricity and plumbing	NG DEPARTMENT ONLY Monolithic date/app. by date/app. by above slab and below wood floor date/app. by Culvert date/app. by Pool	(footer/Slab) date/app. by Nailing date/app. by date/app. by el) date/app. by
Temporary Power Foundation date/app. by Under slab rough-in plumbing Slab date/app. by Framing Rough-in plumbing adate/app. by Electrical rough-in Heat & Air Duct date/app. by Permanent power date/app. by C.O. Final M/H tie downs, blocking, electricity and plumbing date/app.	NG DEPARTMENT ONLY Monolithic date/app. by above slab and below wood floor date/app. by culvert date/app. by Pool pp. by	(footer/Slab) date/app. by Nailing date/app. by date/app. by el) date/app. by
Temporary Power Foundation date/app. by Under slab rough-in plumbing Slab date/app. by Framing Rough-in plumbing adate/app. by Electrical rough-in Heat & Air Duct date/app. by Permanent power date/app. by C.O. Final M/H tie downs, blocking, electricity and plumbing date/app. Reconnection Pump pole date/app. by date/app.	NG DEPARTMENT ONLY Monolithic date/app. by Sheathing/ date/app. by above slab and below wood floor date/app. by Culvert date/app. by Dop. by Utility Pole ie/app. by date/app. by	(footer/Slab) date/app. by Nailing date/app. by date/app. by el) date/app. by date/app. by date/app. by
Temporary Power Foundation date/app. by Under slab rough-in plumbing Slab date/app. by Framing Rough-in plumbing adate/app. by Electrical rough-in Heat & Air Duct date/app. by Heat & Air Duct date/app. by C.O. Final date/app. by M/H tie downs, blocking, electricity and plumbing date/app. by date/app. by M/H tie downs, blocking, electricity and plumbing date/app. M/H tie downs, blocking, electricity and plumbing date/app. M/H Pole Travel Trailer	NG DEPARTMENT ONLY Monolithic date/app. by above slab and below wood floor date/app. by culvert date/app. by Dp. by Utility Pole	(footer/Slab) date/app. by Nailing date/app. by date/app. by el) date/app. by date/app. by date/app. by
Temporary Power Foundation date/app. by Under slab rough-in plumbing Slab date/app. by Framing Rough-in plumbing adate/app. by Electrical rough-in Heat & Air Duct date/app. by Permanent power C.O. Final date/app. by M/H tie downs, blocking, electricity and plumbing date/app. by M/H Pole Travel Trailer date/app. by	NG DEPARTMENT ONLY Monolithic date/app. by date/app. by above slab and below wood floor	(footer/Slab) date/app. by Nailing date/app. by date/app. by el) date/app. by date/app. by date/app. by date/app. by
Temporary Power Foundation date/app. by Under slab rough-in plumbing Slab date/app. by Framing Rough-in plumbing and the date/app. by Electrical rough-in Heat & Air Duct date/app. by Heat & Air Duct Permanent power C.O. Final date/app. by M/H tie downs, blocking, electricity and plumbing Reconnection Pump pole date/app. by date/app. M/H Pole Travel Trailer date/app. by BUILDING PERMIT FEE \$	NG DEPARTMENT ONLY Monolithic date/app. by Sheathing/ date/app. by above slab and below wood floor	(footer/Slab) date/app. by /Nailing date/app. by date/app. by el) date/app. by date/app. by date/app. by E FEE \$
Temporary Power Foundation	NG DEPARTMENT ONLY Monolithic date/app. by Sheathing/ date/app. by above slab and below wood floor	(footer/Slab) date/app. by 'Nailing date/app. by date/app. by el)date/app. by date/app. by date/app. by y E FEE \$ 'E FEE \$
Temporary Power Foundation date/app. by Slab Under slab rough-in plumbing Slab date/app. by Rough-in plumbing a framing	NG DEPARTMENT ONLY	(footer/Slab) date/app. by /Nailing date/app. by date/app. by el) date/app. by date/app. by date/app. by E FEE \$
Temporary Power Foundation date/app. by Slab Under slab rough-in plumbing Slab date/app. by Framing Framing	NG DEPARTMENT ONLY Monolithic	(footer/Slab) date/app. by 'Nailing date/app. by date/app. by date/app. by date/app. by date/app. by E FEE \$ TAL FEE STAL FEE B 13.82
Temporary Power Foundation date/app. by Slab Under slab rough-in plumbing Slab date/app. by Rough-in plumbing a framing	NG DEPARTMENT ONLY Monolithic date/app. by above slab and below wood floor	(footer/Slab) date/app. by Nailing date/app. by date/app. by date/app. by date/app. by date/app. by date/app. by E FEE \$ E FEE \$ TAL FEE State FEE \$ E FEE \$ TAL FEE PERMITS REQUIRED

This Permit Must Be Prominently Posted on Premises During Construction PLEASE NOTIFY THE COLUMBIA COUNTY BUILDING DEPARTMENT AT LEAST 24 HOURS IN ADVANCE OF EACH INSPECTION, IN ORDER THAT IT MAY BE MADE WITHOUT DELAY OR INCONVIENCE, PHONE 758-1008. THIS PERMIT IS NOT VALID UNLESS THE WORK AUTHORIZED BY IT IS COMMENCED WITHIN 6 MONTHS AFTER ISSUANCE.

The Issuance of this Permit Does Not Waive Compliance by Permittee with Deed Restrictions.

Columbia County Building Permit Application July Revised 9-23-04
For Office Use Only Application # UU09-40 Date Received 9-11.54 By Permit # 1247/25153
Application Approved by - Zoning Official <u>BLK</u> Date 22 of 06 Plans Examiner 0K JTH Date 10-10-06
Flood Zone Ke flot Development Permit MA Zoning RSF-2 Land Use Plan Map Category RES La Dev
Comments
- NOC A
Applicants Name Susan Holton Phone 1023-6612
Address 258 NW Bert Que Lake City, FZ 32055 719.6460
Owners Name TOM Eache and Sysan Holton Phane 623-6612
911 Address 346 Sie Timber land et dalle city 219. Lot 87
Contractors Name James March Sipeans Phone 386 -719-6960
Address 872 Sev Jaquar Orive Lake City, FE 32025
Fee Simple Owner Name & Address/A
Bonding Co. Name & Address
Architect/Engineer Name & Address Cary Gill GTC Design Group - 130 west Howard Street
Mortgage Lenders Name & Address C. ASh
Circle the correct power company - FL Power & Light Clay Elec Suwannee Valley Elec Progressive Energy
Property ID Number 33-35-16-02438-187 _ Estimated Cost of Construction 189,000
Subdivision Name Emeral Cove Lot 87_ Block Unit Phase 2
Driving Directions 90 W, L on Timberlane Court (of Emerald Cove)
go to lot 87 on the Right end of Street, the kype
Type of Construction Brick + Handy Board Number of Existing Dwellings on Property O
Total Acreage 1/2 Lot Size 5 Do you need a - Cuivert Permit or Cuivert Waiver or Have an Existing Driv
Actual Distance of Structure from Property Lines - Front_30_Side
Total Building Height <u>241</u> Number of Stories <u>A</u> Heated Floor Area <u>3665</u> Roof Pitch <u>7/12</u> totAL 4382

Application is hereby made to obtain a permit to do work and installations as indicated. I certify that no work or installation has commenced prior to the issuance of a permit and that all work be performed to meet the standards of all laws regulating construction in this jurisdiction.

OWNERS AFFIDAVIT: I hereby certify that all the foregoing information is accurate and all work will be done in compliance with all applicable laws and regulating construction and zoning.

Susan L. Holton

Commission #DD431203

WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCMENT MAY RESULT IN YOU PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.

Owner Builder or Agent (Including Contractor)

vorn to (or affirmed) and subscribed

STATE OF FLORIDA COUNTY OF COLUMBIA

N. V	f. R
James mach	Lisscont
Contractor Signature	0

Contractors License Number Competency Card Number NOTARY STAMP/SEAL

Finepires: MAY 19, 2009 WWW.AARONNOTARY.com day of

or Produced Identification___ nally known

Notary Signature

JW IT IT MEJSIGE 10.10.06 for Sugar

Oct. 16. 2006 4:48PMM SITE PLAN 06-0726-N LOT BT EMERALD COVE SID SYDNEY PLAN 1/4"al 6FD 5 6°18'20" W 82.42' S Claring High N TT*42'40" W 202.72' Nell popored DRAINAELD G' Drive S 12°17'20" W 138_92' Timberland Court DECEIVED 10/0/05 Sh

SER MAST ENT-FREE GAS LOG HEATERS

The FMI Ember Master Gas Log Heasers offer you what ordinary gas logs and wood cannot...the warmsh, cleantiness and economy of vent-free space beating combined with the beauty and convenience of gas logs. FMI's unique, clean burning design and precision positioned logs permit vent-free operation with the fireplace damper closed. With no venting required, there is no beat loss up the chimney. Plus they require no electricity so you always have heat - even in the event of power outage.

A Model To Fit Every Need

FROM

EMERALDLAK

FMI's Ember Master Gas Log Heaters are available in two log sizes: 18" and 24", each model is available in propane and natural gas. Choose from two types of controls: Variable Manually Controlled Models - Allow you to choose any heat setting and flame height desired by simply turning the control knob. Remote Cantrol "Ready" Models - Offer you heat at the push of a buttor or the flip of a switch. FMI's Remote Control Ready Heaters offer you the choice of four types of remote controls as well as the ability to operate the log heater with a variable manual control. Optional remore accessories include: the hand held thermostatic remore control, the hand held on/off remote control, the wall mount thermostat control and the wall mount on/off switch.

FMI Vent-Free Gas Logs install in any masonry, manufactured solid fuel burning fireplace, or AGA or UL certified Vent-Free Universal Firebox. All (manual variable) log heaters are also listed to the ANSI Z21.60 Vented Log Decorative Standard.

Safety Features Built Into Every Gas Log Heater

FMI Vent-Free Gas Log Heaters are designed certified by the American Gas Association (ANSI Z21.11.2) and meet or exceed all regulations and safety performance standards for vent-free gas heaters. Additionally, these log heaters perform well within nationally recognized guidelines for indoor air quality.

The dual-purpose safety pilot system protects against oxygen depletion and any interruption in the fuel supply. If either occurs, it shuts off the gas flow to the burner turning the heater off. An internal pressure regulator controls fluctuations in your gas pressure. These features ensure clean and reliable heat without the worry and inconvenience of vented gas logs or burning wood.

Log No. of		Part/Mod	lel Number		Shipping	
Size	Logs Natural Propane			Bra Output	WL	
			Manualty Controlled Mod	iels	MANUTAR	
18"	5	01984/VFN18MV	01985/VFP18MV	16,000 to 26,000	26 Lbs.	
24*	6	01986/VFN24MV	01987/VFP24MV	20,000 to 33,000	28 Lbs.	
		Remote	Control Ready/Alillivolt Al			
18"	5	01988/VFN18R	01989/VPP18R	16,000 to 26,000	32 Lbs.	
24*	6	01990/VFN24R	01991/VFP24R	20.000 rg 33.000	34 Lbs.	
		Remate Control Ac	cessories (Must be purchase	ed Separately)	J' 1 400.	
Paced	odel Nambor		Description			
01994/	FHRCT	Receiver and Hand H	leld Thermostat Remote Co	nurol Kir	3 Lbs.	
01995/	FHRC	Receiver and Hand Held On/Off Remote Coutrol Kit				
01996/	PWMT1	Wall Mount Thermostat Control Kit				
01997/FWM52		Wall Mount - On/Off Switch Kit				
			. Accessories		1I.b.	
01244/HDABK		Hood - Flat Black Enamel - Adjustable 28" to 49"				
01245/	HDABR	Hood - Palished Solid Brass - Adjustable 28" to 49"				

Log Sizing Requirements

	Minimu	0			
Log Size	líeight	Depth	Front Width	Rear Width at H ^a Depth	Gas Connection
18*	17"	147	20"	20°	1/2" NPT
24"	17*	14"	26"	21"	1/2" NPT

A fireplace hood accessory may be required to deflect heat away from the manrel shelf. Firs fireplace openings from 28" to 49" wice. Installs easily with glass doors or to the little of the fireplace opening. Refer to the Ember Master Vent Free Gas Log Owners Maaual for more details.

IMPORTANT Instaliation must be done by qualified service persons

- Read Owners Hannel before using. Cluck local coder and ardinances for parmitted tises.
- Approved for macaincrured (weblie) brane installation. Not for one is recreational vehicles.
- We course the right to unlead product specifications without statice. Use with adequate air (venulation) only, flymidifies while a beaus Provides water supor in the area heated. Refer to Owner's Manual
- for specific
- The processory of the second s
- Please read the warranty for any limitations or disclidences. All processes carry a one year warranty.

For More Information

P.N.#55498 5/99 Printed in U.S.A. http://www.tmionline.com

Call 1-800-888-2050

Asce in U.S.A

PREPARED BY AND RETURN TO:

TERRY MCDAVID POST OFFICE BOX 1328 LAKE CITY, FL 32056-1328

Property Appraiser's

Identification Number R-02438-000

TM File No: 06-12

Inst:2006007450 Date:03/27/2006 Time:15:36 Doc Stamp=Deed : 1260.00 _____DC,P.DeWitt Cason,Columbia County B:1078 P:1607

WARRANTY DEED

This Warranty Deed, made this 2/52 day of March, 2006, BETWEEN D D P CORPORATION, a Florida corporation, whose post office address is 4158 US Highway 90 West, Lake City, Florida 32055, of the County of Columbia, State of Florida, grantor*, and SUSAN HOLTON and THOMAS H. EAGLE, each as to an undivided one-half interest, whose post office address is 258 NW Bert Avenue, Lake City, Florida 32055, grantee*.

(Whenever used herein the terms "grantor" and "grantee" include all the parties to this instrument and the heirs, legal representatives and assigns of individuals, and the successors and assigns of corporations, trusts and trustees)

Witnesseth: that said grantor, for and in consideration of the sum of Ten Dollars (\$10.00), and other good and valuable considerations to said grantor in hand paid by said grantee, the receipt whereof is hereby acknowledged, has granted, bargained and sold to the said grantee, and grantee's heirs and assigns forever, the following described land, situate, lying and being in Columbia County, Florida, to-wit:

Lot 31, 32, 86 and 87, Emerald Cove, Phase 2, a subdivision according to the plat thereof recorded in Plat Book 8, Pages 68-69, public records, Columbia County, Florida.

Together with all the tenements, hereditaments and appurtenances thereto belonging or in anywise appertaining.

To Have and to Hold, the same in fee simple forever.

And subject to taxes for the current year and later years and all valid easements and restrictions of record, if any, which are not hereby reimposed; and also subject to any claim, right, title or interest arising from any recorded instrument reserving, conveying, leasing, or otherwise alienating any interest in the oil, gas and other minerals. And grantor does warrant the title to said land and will defend the same against the lawful claims of all persons whomsoever, subject only to the exceptions set forth herein. (Sign

In Witness Whereof, grantor has hereunto set grantor's hand and seal the day and year first above written.

Signed, sealed and delivered in our presence:

d Name of First Witness)

D D P CORPORATION

BY: (SEAL) O. P. Daughtry, III,

President

(Corporate Seal)

(Typed Name of Second Witness)

of Second With

Inst:2006007450 Date:03/27/2006 Time:15:36 Doc Stamp-Deed : 1260.00 _____DC,P.DeWitt Cason,Columbia County B:1078 P:1508

STATE OF FLORIDA COUNTY OF COLUMBIA

The foregoing instrument was acknowledged before me this 2/5+day of March, 2006, by O. P. Daughtry, III, President of D D P Corporation, a Florida corporation, on behalf of said corporation, who is/are personally known to me or who has/have produced ______ as identification and who did not take an oath.

My Commission Expires:

Notary Public Printed, typed, or stamped name:

Timberland Court

Suson Holh 8/10/06

COLUMBIA COUNTY BUILDING DEPARTMENT

Revised 10-01-05

1

RESIDENTIAL MINIMUM PLAN REQUIREMENTS AND CHECKLIST FOR FLORIDA BUILDING CODE 2004 and FLORIDA RESIDENTIAL CODE 2004 WITH AMENDMENTS ONE (1) AND TWO (2) FAMILY DWELLINGS

ALL REQUIREMENTS ARE SUBJECT TO CHANGE **EFFECTIVE OCTOBER 1, 2005**

ALL BUILDING PLANS MUST INDICATE THE FOLLOWING ITEMS AND INDICATE COMPLIANCE WITH CHAPTER 16 OF THE FLORIDA BUILDING CODE 2004 BY PROVIDING CALCULATIONS AND DETAILS THAT HAVE THE SEAL AND SIGNATURE OF A CERTIFIED ARCHITECT OR ENGINEER REGISTERED IN THE STATE OF FLORIDA, OR ALTERNATE METHODOLOGIES, APPROVED BY THE STATE OF FLORIDA BUILDING COMMISSION FOR ONE-AND-TWO FAMILY DWELLINGS. FOR DESIGN PURPOSES THE FOLLOWING BASIC WIND SPEED AS PER FIGURE 1609 SHALL BE USED.

WIND SPEED LINE SHALL BE DEFINED AS FOLLOWS: THE CENTERLINE OF INTERSTATE 75.

- 1. ALL BUILDINGS CONSTRUCTED EAST OF SAID LINE SHALL BE -----
- 3. NO AREA IN COLUMBIA COUNTY IS IN A WIND BORNE DEBRIS REGION

APPLICANT - PLEASE CHECK ALL APPLICABLE BOXES BEFORE SUBMITTAL

	D	All drawings must be clear, concise and drawn to scale ("Optional "
		uctains that are not used shall be marked void or crossed off. Sauces
1	۵	footage of different areas shall be shown on plans. Designers name and signature on document (FBC 106.1). If licensed architect or engineer, official seal shall be affixed.
5	D	a) Dimensions of lot
		 b) Dimensions of building set backs c) Location of all other buildings on lot, well and septic tank if
/		applicable, and all utility easements.d) Provide a full legal description of property.
₽∕		Wind-load Engineering Summary, calculations and any details required Plans or specifications must state compliance with FBC Section 1609. The following information must be shown as per section 1603.1.4 FBC a. Basic wind speed (3-second gust), miles per hour (km/hr).
		 Wind importance factor, Iw, and building classification from Table 1604.5 or Table 6-1, ASCE 7 and building classification in Table 1-1, ASCE 7.
		 c. Wind exposure, if more than one wind exposure is utilized, the wind exposure and applicable wind direction shall be indicated. d. The applicable enclosure classifications and, if designed with
		 ASCE 7, internal pressure coefficient. components and Cladding. The design wind pressures in terms of psf (kN/m²) to be used for the design of exterior component and cladding materials not specifally designed by the registered design professional.
1		Elevations including: a) All sides
	0 0	b) Roof pitch c) Overhang dimensions and detail with attic ventilation

c) Overhang dimensions and detail with attic ventilation

	0 0 0 0	 d) Location, size and height above roof of chimneys. e) Location and size of skylights f) Building height e) Number of stories
	0 0 0	Floor Plan including: a) Rooms labeled and dimensioned. b) Shear walls identified. c) Show product approval specification as required by Fla. Statute 553.842 and
		 Fla. Administrative Code 9B-72 (see attach forms). d) Show safety glazing of glass, where required by code. e) Identify egress windows in bedrooms, and size. f) Fireplace (gas vented), (gas non-vented) or wood burning with
B	0	hearth, (Please circle applicable type). g) Stairs with dimensions (width, tread and riser) and details of guardrails and handrails.
B	0	h) Must show and identify accessibility requirements (accessible bathroom) <u>Foundation Plan including:</u>
B	0	a) Location of all load-bearing wall with required footings indicated as standard or monolithic and dimensions and reinforcing.
e enter	0 0 0	 b) All posts and/or column footing including size and reinforcing c) Any special support required by soil analysis such as piling d) Location of any vertical steel.
0	D	Roof System: a) Truss package including: 1. Truss layout and truss details signed and sealed by Fl. Pro. Eng.
	*	 Roof assembly (FBC 106.1.1.2)Roofing system, materials, manufacturer, fastening requirements and product evaluation with
		 wind resistance rating) b) Conventional Framing Layout including: Rafter size, species and spacing Attachment to wall and uplift Ridge beam sized and valley framing and support details Roof assembly (FBC 106.1.1.2)Roofing systems, materials, manufacturer, fastening requirements and product evaluation with
		wind resistance rating)
D		<u>Wall Sections including:</u> a) Masonry wall
		 All materials making up wall Block size and mortar type with size and spacing of reinforcement Lintel, tie-beam sizes and reinforcement
		 Gable ends with rake beams showing reinforcement or gable truss and wall bracing details All required connectors with uplift rating and required number and size of fasteners for continuous tie from roof to foundation shall be designed by a Windload engineer using the engineered roof truss plans.
¥	i.	 6. Roof assembly shown here or on roof system detail (FBC 106.1.1.2) Roofing system, materials, manufacturer, fastening requirements and product evaluation with resistance rating)
		7. Fire resistant construction (if required)
	1	8. Fireproofing requirements
		9. Shoe type of termite treatment (termiticide or alternative method)
49 Yari		10. Slab on grade
		a. Vapor retarder (6mil. Polyethylene with joints lapped 6 inches and sealed)
		b. Must show control joints, synthetic fiber reinforcement or
		Welded fire fabric reinforcement and supports
		11. Indicate where pressure treated wood will be placed

• • •

2

11. Indicate where pressure treated wood will be p 12. Provide insulation R value for the following:

2

•

ų,

- a. Attic space
- b. Exterior wall cavity
- C. Crawl space (if applicable)

0

b) Wood frame wall

- 1. All materials making up wall
- 2. Size and species of studs
- Sheathing size, type and nailing schedule 3.
- 4. Headers sized
- Gable end showing balloon framing detail or gable truss and wall 5. hinge bracing detail
- 6. All required fasteners for continuous tie from roof to foundation (truss anchors, straps, anchor bolts and washers) shall be designed by a Windload engineer using the engineered roof truss plans.

7.	Roof assembly shown here or on roof system detail (FBC	
	106.1.1.2) Roofing system, materials, manufacturer, fastening	
	requirements and product evaluation with mind and	

- luation with wind resistance rating) 8. Fire resistant construction (if applicable)
- 9. Fireproofing requirements
- 10. Show type of termite treatment (termiticide or alternative method) 11. Slab on grade
 - a. Vapor retarder (6Mil. Polyethylene with joints lapped 6 inches and sealed
 - b. Must show control joints, synthetic fiber reinforcement or welded wire fabric reinforcement and supports
- 12. Indicate where pressure treated wood will be placed
- 13. Provide insulation R value for the following:
 - a. Attic space
 - b. Exterior wall cavity
 - Crawl space (if applicable) C.
- c) Metal frame wall and roof (designed, signed and sealed by Florida Prof. Ο Engineer or Architect) Floor Framing System: Π a) Floor truss package including layout and details, signed and sealed by Florida **Registered Professional Engineer** П b) Floor joist size and spacing Ο Ο c) Girder size and spacing П d) Attachment of joist to girder D П e) Wind load requirements where applicable Ο Plumbing Fixture layout **Electrical layout including:** a) Switches, outlets/receptacles, lighting and all required GFCI outlets identified 0 D b) Ceiling fans c) Smoke detectors d) Service panel and sub-panel size and location(s) 0 e) Meter location with type of service entrance (overhead or underground) D f) Appliances and HVAC equipment g) Arc Fault Circuits (AFCI) in bedrooms h) Exhaust fans in bathroom **HVAC** information 0 a) Energy Calculations (dimensions shall match plans) ۵ b) Manual J sizing equipment or equivalent computation R c)Gas System Type (LP or Natural) Location and BTU demand of equipment Ο Ο O Disclosure Statement for Owner Builders 0 ***Notice Of Commencement Required Before Any Inspections Will Be Done D Ο Ο Private Potable Water

3

From: The Columbia County Building & Zoning Department Plan Review 135 NE Hernando Av. P.O. Box 1529 Lake City Florida 32056-1529

Reference to a building permit application Number: 0608-40 Contractor James Macks Lipscomb Owner Susan Holton & Tom Eagle property ID# 33-3s-16-02438-187 Lot 87 of Emerald Cove Subdivision

On the date of August 18, 2006 application 0608-40 and plans for construction of a single family dwelling were reviewed and the following information or alteration to the plans will be required to continue processing this application. If you should have any question please contact the above address, or contact phone number (386) 758-1163 or fax any information to (386) 754-7088.

<u>Please include application number 0608-40 and when making</u> <u>reference to this application.</u>

This is a plan review for compliance with the Florida Residential Code 2004 only and doesn't make any consideration toward the land use and zoning requirements.

To help ensure compliance with the Florida Residential Code 2004 the comments below need to be addressed on the plans.

- Please provide a copy of a signed released site plan from the Columbia County Environmental Health Department which confirms approval of the waste water disposal system.
- 2. Please submit a letter form the potable water well contractor which will describe the equipment to be used to supply potable water to this dwelling. Include the size of pump motor, size of pressure tank and cycle stop valve if used.
- 3. Bedroom number two has two windows 2'6"X6'0" please verify that one window will serve as a emergency escape and rescue openings, as required by the 2004 Florida Residential Code section R310.1.1, Grade floor openings shall have a minimum net clear opening of 5 square feet (0.465 m2): R310.1.2 Minimum opening height. The minimum net clear opening height shall be 24 inches (610 mm): R310.1.3 Minimum opening width. The minimum net clear opening width shall be 20 inches (508 mm).
- 4. Please provide for compliance with the FRC-2004 section R322.1.1 All new single-family houses, duplexes, triplexes, condominiums and townhouses shall provide at least one bathroom, located with maximum possible privacy, where bathrooms are provided on habitable grade levels, with a door that has a 29-inch (737 mm) clear opening. However, if only a toilet room is provided at grade level, such toilet rooms shall have a clear opening of not less than 29 inches (737 mm).

2

- 5. The Florida Energy Efficiency Code for Building Construction form is incorrect. Please correct Line six, conditioned area square footage on form 600A-2004 of the Florida Energy Efficiency Code for Building Construction which doesn't concur with the conditioned floor area on the submitted plans. The total conditioned areas on the plans are 2,665 (square feet). Line 6 currently reads that the conditioned floor area equals 2,955 (square feet). *Please resubmit the corrected form to reflect on line* 6 the actual total conditioned area to this department.
 - 6. Show the method which will be used to comply with section R309.1.1 Duct penetration: Ducts in the garage and ducts penetrating the walls or ceilings separating the dwelling from the garage shall be constructed of a minimum No. 26 gage (0.48 mm) sheet steel or other approved material and shall have no openings into the garage.
 - 7. Please verify that section R309.1 of the Florida Residential Building Code will be complied with as this section relates to the garage entry door in to the residence. Opening protection: Openings from a private garage directly into a room used for sleeping purposes shall not be permitted. Other openings between the garage and residence shall be equipped with solid wood doors not less than 13/8 inches (35 mm) in thickness, solid or honeycomb core steel doors not less than 13/8 inches (35 mm) thick, or 20-minute fire-rated doors
 - /8. On the electrical plans identify the electrical service overcurrent protection device for the main electrical service. This device shall be installed on the

3

exterior of structures to serve as a disconnecting means for the utility company electrical service. Conductors used from the exterior disconnecting means to a panel or sub panel shall have four-wire conductors, of which one conductor shall be used as an equipment ground.

- **9.** Submit a detail drawing of the stairway which will provide access from the first floor to the bonus room area. This drawing must be detailed to show compliance with section R311.5 Stairways of the FRC-2004. Include the total height and run of the stairway.
- **10.** Show the subfloor material type, thickness and nailing pattern to be used in the bonus room area.

Joe Haltiwanger

Columbia County Plan Examiner

From: The Columbia County Building & Zoning Department Plan Review 135 NE Hernando Av. P.O. Box 1529 Lake City Florida 32056-1529

Phone Number 386-758-1163 Fax Number 386-754-7088

FAX TRANSMITTAL FORM

To: Susan HoltonFrom: Joe HaltiwangerName:Date Sent: 08/18/06CC: Building permit application 0608-40Phone: Number of Pages: Five pages including the cover pageFax: 719-9586

Message: Reference to building permit application Number: 0608-40

The review of the party to whom it is addressed. It may contain proprietary and/or privileged information

protected by law. If you are not the intended recipient, you may not use, copy or distribute this facsimile

message or its attachments. If you have received this transmission in error, please immediately

telephone the sender above to arrange for its return.

FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION

Florida Department of Community Affairs Residential Whole Building Performance Method A

Project Name: SYDNEY N Address: City, State: , FL	NODEL	Builder: Cipscomb Permitting Office: Cour Permit Number: 25-25- Jurisdiction Number: 25-	MBiz
Owner: Climate Zone: North		Jurisdiction Number:	21000
. New construction or existing	New	12. Cooling systems	And the second
. Single family or multi-family	Single family	a. Central Unit	Cap: 48.0 kBtu/hr
. Number of units, if multi-family	1		SEER: 13.00
. Number of Bedrooms	3	b. N/A	
. Is this a worst case?	Yes	열성 지난 것은 것은 그의 말씀을 가서	
. Conditioned floor area (ft ²)	2955 ft ²	c. N/A	
. Glass type 1 and area: (Label reqd.	by 13-104.4.5 if not default)		
a. U-factor:	Description Area	13. Heating systems	5 N & 6 M & 1
(or Single or Double DEFAULT) b. SHGC:	7a. (Dble Default) 283.3 ft ²	a. Electric Heat Pump	Cap: 48.0 kBtu/hr HSPF: 7.00
(or Clear or Tint DEFAULT)	7b. (Clear) 312.3 ft ²	b. N/A	
Floor types		요즘 승규는 모양은 비행을 다양하는 것이	
a. Slab-On-Grade Edge Insulation	R=0.0, 272.3(p) ft	c. N/A	
b. N/A			
c. N/A		14. Hot water systems	
Wall types		a. Electric Resistance	Cap: 40.0 gallons
a. Frame, Wood, Exterior	R=11.0, 2178.0 ft ²		EF: 0.97
b. N/A		b. N/A	Li. 0.97
c. N/A	너 김 씨에 다 걱정하구요		
d. N/A		c. Conservation credits	-
e. N/A		(HR-Heat recovery, Solar	
. Ceiling types		DHP-Dedicated heat pump)	
a. Under Attic	R=30.0, 2955.0 ft ²	15. HVAC credits	PT,
b. N/A		(CF-Ceiling fan, CV-Cross ventilation,	r1, _
c. N/A	, 24 전 명령 위험 등 프라이	HF-Whole house fan,	
. Ducts		PT-Programmable Thermostat,	
a. Sup: Unc. Ret: Unc. AH: Interior	Sup. R=6.0, 145.0 ft	MZ-C-Multizone cooling,	
b. N/A	Sup. IC 0.0, 145.0 It	MZ-H-Multizone heating)	
	NG-12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	wiz-ri-wiultizone nearing)	

Glass/Floor Area: 0.11 Total as-built points: 33778 Total base points: 40005

PASS

I hereby certify that the plans and specifications covered by this calculation are in compliance with the Florida Energy Code. PREPARED BY:	Review of the plans and specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed this building will be inspected for compliance with Section 553.908 Florida Statutes. BUILDING OFFICIAL:
--	---

1 Predominant glass type. For actual glass type and areas, see Summer & Winter Glass output on pages 2&4. EnergyGauge® (Version: FLRCPB v4.21)

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: , , FL,

	BAS	E			1	AS-	BU	ILT			
GLASS TYPI .18 X Cond Floor	itioned X	BSPM =	Points	Type/SC	Ove Ornt	erhang			SPM	x so	DF = Points
.18 29	955.0	20.04	10659.3	Double, Clear	E	1.0	8.0	90.0	42.06		
				Double, Clear	E	1.0	8.0	36.0	42.00		99 3751.9 99 1500.8
				Double, Clear	Е	1.0	8.0	12.0	42.06	0.	
				Single, Clear	E	1.0	8.0	20.0	47.92	0.9	
				Single, Clear	E	1.0	8.0	9.0	47.92	0.9	
				Double, Clear	w	1.0	8.0	20.0	38.52	0.9	
				Double, Clear	W	1.0	8.0	24.0	38.52	0.9	
	· · · ·			Double, Clear	w	1.0	8.0	23.3	38.52	0.9	
				Double, Clear	w	1.0	8.0	25.0	38.52	0.9	
				Double, Clear	w	1.0	8.0	30.0	38.52	0.9	
				Double, Clear	W	1.0	8.0	7.0	38.52	0.9	
				Double, Clear	N	1.0	8.0	16.0	19.20	0.9	
		1.18.25	136.	As-Built Total:				312.3			12375.1
WALL TYPES	Area 2	X BSPM	= Points	Туре		R-V	alue	Area	X SF	PM =	= Points
Adjacent Exterior	0.0 2178.0	0.00 1.70	0.0 3702.6	Frame, Wood, Exterior		1	1.0	2178.0	1.7	0	3702.6
Base Total:	2178.0		3702.6	As-Built Total:				2178.0			3702.6
DOOR TYPES	Area X	BSPM	= Points	Туре		S.C.		Area	X SF	M =	Points
djacent	0.0	0.00	0.0	Exterior Wood			-	40.0	6.1	2	244.0
xterior	240.0	4.10	984.0	Exterior Wood				40.0	6.1		244.0
				Exterior Wood				160.0	6.10		244.0 976.0
ase Total:	240.0		984.0	As-Built Total:				240.0			1464.0
EILING TYPE	S Area X	BSPM	= Points	Туре	R	Value	Ar	ea X SF	MXS	CM =	
nder Attic	2955.0	1.73	5112.1	Under Attic		30		955.0 1.7	_	_	5112.1
ase Total:	2955.0		5112.1	As-Built Total:			2	955.0			5112.1
OOR TYPES	Area X	BSPM	= Points	Туре		R-Va		Area	X SPI	/ =	Points
ab ; ised	272.3(p) 0.0	-37.0 0.00	-10073.3 0.0	Slab-On-Grade Edge Insulation			0 27.		-41.20	-	-11216.7
se Total:			-10073.3	As-Built Total:			2	72.3			-11216.7

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: , , FL,

BASE	AS-BUILT
INFILTRATION Area X BSPM = P	oints Area X SPM = Points
2955.0 10.21 30	170.6 2955.0 10.21 30170.6
Summer Base Points: 40555.3	Summer As-Built Points: 41607.7
Total Summer X System = Coolin Points Multiplier Points	g Total X Cap X Duct X System X Credit = Cooling
40555.3 0.4266 1730	(sys 1: Central Unit 48000 btuh ,SEER/EFF(13.0) Ducts:Unc(S),Unc(R),Int(AH),R6.0(INS) 41608 1.00 (1.09 x 1.147 x 0.91) 0.263 0.950 11806.5 41607.7 1.00 1.138 0.263 0.950 11806.5

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: , , FL,

BASE		1	AS-E	ЗU	ILT		7		4.3
GLASS TYPES .18 X Conditioned X BWPM = Points Floor Area	Type/SC (Overh Ornt L	•	-Igt	Area X	WPN	ı x	wo	F = Poin
.18 2955.0 12.74 6776.4	Double, Clear	E	1.0	8.0	90.0	18.79		1.01	1705.
이 가슴 위에 있는 것이 같이 많다. 바람이는	Double, Clear			8.0	36.0	18.79		1.01	682.2
	Double, Clear	E 1		8.0	12.0	18.79		1.01	227.4
	Single, Clear	E 1	.0 1	B.0	20.0	26.41		1.01	532.6
	Single, Clear	E 1	.0 8	B.O	9.0	26.41		1.01	239.7
	Double, Clear	W 1	.0 8	3.0	20.0	20.73		1.00	415.6
	Double, Clear	W 1	.0 8	3.0	24.0	20.73		1.00	498.7
	Double, Clear	W 1	.0 8	3.0	23.3	20.73		1.00	484.2
	Double, Clear	W 1	.0 8	3.0	25.0	20.73		1.00	519.5
	Double, Clear	W 1	.0 8	3.0	30.0	20.73		1.00	623.4
	Double, Clear	W 1	.0 8	3.0	7.0	20.73		1.00	145.5
	Double, Clear	N 1	.0 8	8.0	16.0	24.58		1.00	393.2
	As-Built Total:				312.3				6467.3
WALL TYPES Area X BWPM = Points	Туре	1.00	R-Va	alue	Area	x w	PM	(° =)	Points
Adjacent 0.0 0.00 0.0 Exterior 2178.0 3.70 8058.6	Frame, Wood, Exterior		11	.0	2178.0	3.	70		8058.6
Base Total: 2178.0 8058.6	As-Built Total:				2178.0				8058.6
DOOR TYPES Area X BWPM = Points	Туре				Area	x w	PM	-	Points
Adjacent 0.0 0.00 0.0	Exterior Wood				40.0	12.	30	-	492.0
Exterior 240.0 8.40 2016.0	Exterior Wood				40.0	12.			492.0
	Exterior Wood				160.0	12.3			1968.0
Base Total: 240.0 2016.0	As-Built Total:				240.0				2952.0
CEILING TYPES Area X BWPM = Points	Туре	R-Va	lue	Are	a X WP	MXV	VCN	∕I =	Points
Under Attic 2955.0 2.05 6057.8	Under Attic		30.0	0 2	2955.0 2.0	05 X 1.0	00	22	6057.8
Base Total: 2955.0 6057.8	As-Built Total:	•		2	2955.0				6057.8
FLOOR TYPES Area X BWPM = Points	Туре		R-Val	ue	Area >	K WF	PM	=	Points
Slab 272.3(p) 8.9 2423.0 Raised 0.0 0.00 0.0	Slab-On-Grade Edge Insulation		0.0) 27	72.3(p	18.8	0		5118.3
Base Total: 2423.0	As-Built Total:				272.3				5118.3

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: , , FL,

	BASE	AS-BUILT					
INFILTRATION	Area X BWPM = Points	Area X WPM = Points					
	2955.0 -0.59 -1743.4	2955.0 -0.59 -1743.4					
Winter Base	Points: 23588.3	Winter As-Built Points: 26910.5					
Total Winter X Points	System = Heating Multiplier Points	TotalXCapXDuctXSystemXCredit=HeatingComponentRatioMultiplierMultiplierMultiplierMultiplierPoints(System - Points)(DM x DSM x AHU)					
23588.3	0.6274 14799.3	(sys 1: Electric Heat Pump 48000 btuh ,EFF(7.0) Ducts:Unc(S),Unc(R),Int(AH),R6.026910.51.000(1.069 x 1.169 x 0.93)0.4870.95014473.626910.51.001.1620.4870.95014473.6					

WATER HEATING & CODE COMPLIANCE STATUS

Residential Whole Building Performance Method A - Details

ADDRESS: , , FL,

	E	BASE		전신	1.23	-		A	S-BUI	LT	1. C	t t
WATER HEA Number of Bedrooms	X X	Multiplier	=	Total	Tank Volume	EF	Number of Bedrooms	x	Tank X Ratio	Multiplier	X Credit = Multiplier	Total
3		2635.00		7905.0	40.0	0.97	3	8	1.00	2499.18	1.00	7497.5
	1214	1.11 1.12	9 E.	81672	As-Built To	otal:						7497.5

CODE COMPLIANCE STATUS												
BASE				AS-BUILT								
Cooling + Points	Heating Points	+	Hot Water Points	=	Total Points	Cooling Points	+	Heating Points	+	Hot Water Points	=	Total Points
17301	14799		7905		40005	11807		14474		7498	rê, j	33778

Code Compliance Checklist

Residential Whole Building Performance Method A - Details

ADDRESS: , , FL,

PERMIT #:

6A-21 INFILTRATION REDUCTION COMPLIANCE CHECKLIST

COMPONENTS	SECTION	REQUIREMENTS FOR EACH PRACTICE	1
Exterior Windows & Doors	606.1.ABC.1.1	Maximum:.3 cfm/sq.ft. window area; .5 cfm/sq.ft. door area.	CHECK
Exterior & Adjacent Walls	606.1.ABC.1.2.1	Caulk, gasket, weatherstrip or seal between: windows/doors & frames, surrounding wall; foundation & wall sole or sill plate; joints between exterior wall panels at corners; utility penetrations; between wall panels & top/bottom plates; between walls and floor. EXCEPTION: Frame walls where a continuous infiltration barrier is installed that extends from, and is sealed to, the foundation to the top plate.	
Floors	606.1.ABC.1.2.2	Penetrations/openings >1/8" sealed unless backed by truss or joint members. EXCEPTION: Frame floors where a continuous infiltration barrier is installed that is sealed to the perimeter, penetrations and seams.	
Ceilings	606.1.ABC.1.2.3	Between walls & ceilings; penetrations of ceiling plane of top floor; around shafts, chases, soffits, chimneys, cabinets sealed to continuous air barrier; gaps in gyp board & top plate; attic access. EXCEPTION: Frame ceilings where a continuous infiltration barrier is installed that is sealed at the perimeter, at penetrations and seams.	
Recessed Lighting Fixtures	606.1.ABC.1.2.4	Type IC rated with no penetrations, sealed; or Type IC or non-IC rated, installed inside a sealed box with 1/2" clearance & 3" from insulation; or Type IC rated with < 2.0 cfm from conditioned space, tested.	
Multi-story Houses	606.1.ABC.1.2.5	Air barrier on perimeter of floor cavity between floors.	
Additional Infiltration regts	606.1.ABC.1.3	Exhaust fans vented to outdoors, dampers; combustion space heaters comply with NFPA, have combustion air.	

6A-22 OTHER PRESCRIPTIVE MEASURES (must be met or exceeded by all residences.)

COMPONENTS	SECTION	REQUIREMENTS	OUTOU
Water Heaters	612.1	Comply with efficiency requirements in Table 612.1.ABC.3.2. Switch or clearly marked cir breaker (electric) or cutoff (gas) must be provided. External or built-in heat trap required.	CHECK
Swimming Pools & Spas	612.1	Spas & heated pools must have covers (except solar heated). Non-commercial pools must have a pump timer. Gas spa & pool heaters must have a minimum thermal efficiency of 78%.	
Shower heads	612.1	Water flow must be restricted to no more than 2.5 gallons per minute at 80 PSIG.	-
Air Distribution Systems	610.1	All ducts, fittings, mechanical equipment and plenum chambers shall be mechanically attached, sealed, insulated, and installed in accordance with the criteria of Section 610. Ducts in unconditioned attics: R-6 min. insulation.	
HVAC Controls	607.1	Separate readily accessible manual or automatic thermostat for each system.	
Insulation	604.1, 602.1	Ceilings-Min. R-19. Common walls-Frame R-11 or CBS R-3 both sides. Common ceiling & floors R-11.	1734

HALLS

Lot 8-7 HALL'S PUMP & WELL SERVICE, INC.

SPECIALIZING IN 4"-6" WELLS

DONALD AND MARY HALL OWNERS

June 12, 2002

NOTICE TO ALL CONTRACTORS

Please be advised that due to the new building codes we will use a large capacity diaphram tank on all new wells. This will insure a minimum of one (1) minute draw down or one (1) minute refill. If a smaller diaphram tank is used then we will install a cycle stop valve which will produce the same results.

If you have any questions please feel free to call our office anytime.

Thank, you, Donald Ha1

DDH/jk

PROJECT NAME: GATEWAY DEVELOPEMT PROJECT NUMBER: PF05-034

WIND LOAD AND STRUCTURAL CALCULATIONS FOR

GATEWAY DEVELOPMENT, LLC "SYDNEY" MODEL HOME LOT 45 EMERALD COVE INDEX

SENERAL INFORMATION		i ta su su porte i
	DESIGN BASIS	PAGE 2
	CALCULATION / DESIGN SUMMARY	PAGE 3
	DESIGN LOADS	PAGE 4
ROOF COMPONENTS		Figure & Brins of States
	TRUSS / RAFTER	PAGE 5 -6
n and think after this is a fille	DIAPHRAGM	PAGE 7
WALL COMPONENTS		
	SHEARWALL DESIGN – N/S	PAGE 8 - 10
	SHEARWALL DESIGN – E/W	PAGE 10 - 13
STRUCTURAL ITEMS		all all the series
	WIND LOADS – ASCE 7-98	PAGE 14 - 25

GARY GILL, PE GTC DESIGN GROUP, LLC P.O. BOX 187 LIVE OAK, FL 32064 386-362-3678 386-362-6133 (FAX) AUTH. # 9461

SYDNEY MODEL
PF05-034
GATEWAY
Gary Gill, PE
5/26/2006

Design Basis

Design Loads		
	Wind Load 110	
	Floor Live Load	
	Sleep Areas =	30 psf
	All Others =	40 psf
	Floor Dead Load	10 psf
	Wall Dead Load	10 psf
	Roof Live Load	20 psf
	Roof Dead Load	10 psf

Load Combinations

DL + LL(floor) + LL (roof) DL + LL(floor) +WL DL + WL Wind load

Exposure B

Building Information

Shape	Rectangle
Length	84.625 ft
Width	56.25 ft
Туре	1 storey sog

References

2004 Florida Building Code ASCE 7-98 Minimum Design Loads for Buildings and Other Structures AITC Timber Construction Manual

WIND98 v3-02 Wind Load Design per ASCE 7-98

User Input I	Data		Calcu	lated Parameter
Structure Type	Building	n manifester so	Importance Factor	or 1
Basic Wind Speed (V)	110	mph	Hurricane P	Prone Region (V>100 n
Structural Category	11		Tab	ble C6-4 Values
Exposure	В		Alpha =	7.000
Struc Nat Frequency (n1)	1	Hz	zg =	1200.000
Slope of Roof (Theta)	30.26	Deg		
Type of Roof	Gabled			
Kd (Directonality Factor)	0.85			
Eave Height (Eht)	10.00	ft		
Ridge Height (RHt)	18.90	ft		
Mean Roof Height (Ht)	14.45	ft		8
Width Perp. To Wind Dir (B)	84.63	ft	At =	0.143
Width Paral. To Wind Dir (L)	56.25	ft	Bt =	0.840
Damping Ratio (beta)	0.02		Am =	0.250
Red values should be changed only th	hrough "Mair	n Menu"	Bm =	0.450
Calculated Para	ameters		Cc =	0.300
Type of Struc	cture		I =	320.00 ff
Height/Least Horizontal Dim		0.26	Epsilon =	0.333
Flexible Structure		No	Zmin =	30.00 ft
			tructures - Simplified Me	
Gust1 For rigid structures (0.85
	ctor Categ	jory II: Rigid S	tructures - Complete An	alysis
Zm Zmin		<u>47</u>		30.00 f
0 + (00/)40 /07				

Gι Zm Cc * (33/z)^0.167 lzm 0.3048 I*(zm/33)^Epsilon Lzm 309.99 ft (1/(1+0.63*((Min(B,L)+Ht)/Lzm)^0.63))^0.5 0.925*((1+1.7*lzm*3.4*Q)/(1+1.7*3.4*lzm)) Q 0.8950 Gust2 0.8631 **Gust Factor Summary** G Since this is not a flexible structure the lessor of Gust1 or Gust2 are used 0.85

WIND98 v3-02

Wind Load Design per ASCE 7-98 6.5.12.2.1 Design Wind Pressure - Buildings of All Heights (Non-flexible)

Elev	Kz	Kzt	qz	Pressure (lb/ft^		
- 14 B				Windwa	rd Wall*	
ft		1.1	lb/ft^2	+GCpi	-GCpi	
18.9	0.61	1.00	16.17	8.27	13.72	
15	0.57	1.00	15.13	7.57	13.01	

Table 6-7 Internal Pressure Coefficients for Buildings, Gcpi

Condition	Go	icpi	
	Max +	Max -	
Open Buildings	0.00	0.00	
Partially Enclosed Buildings	0.55	-0.55	
Enclosed Buildings	0.18	-0.18	
Enclosed Buildings	0.18	-0.18	

Variable	Formula	Value	Units
Kh	2.01*(15/zg)^(2/Alpha)	0.57	
Kht	Topographic factor (Fig 6-2)	1.00	
Qh	.00256*(V)^2*I*Kh*Kht*Kd	15.13	psf
Khcc	Comp & Clad: Table 6-5 Case 2	0.70	
Qhcc	.00256*V^2*I*Khcc*Kht*Kd	18.45	psf

Wall Pressure Coefficients, Cp	
Surface	Ср
Windward Wall (See Figure 6.5.12.2.1 for Pressures)	0.8

Roof Pressure Coefficients, Cp	
Roof Area (sq. ft.)	2. y 2. v
Reduction Factor	1.00

Calculations for Wind Normal to 84.625 ft Face	Ср	Pressur	e (psf)
Additional Runs may be req'd for other wind directions	100	+GCpi	-GCpi
Leeward Walls (Wind Dir Normal to 84.625 ft wall)	-0.50	-9.15	-3.71
Side Walls	-0.70	-11.73	-6.28
Roof - Wind Normal to Ridge (Theta>=10) - for V	Wind Norma	I to 84.625 ft	face
Windward - Max Negative	-0.19	-5.17	0.28
Windward - Max Positive	0.30	1.17	6.61
Leeward Normal to Ridge	-0.60	-10.44	-4.99
Overhang Top (Windward)	-0.19	-2.44	-2.44
Overhang Top (Leeward)	-0.60	-7.72	-7.72
Overhang Bottom (Applicable on Windward only)	0.80	10.29	10.29
Roof - Wind Parallel to Ridge (All Theta) - for W	Vind Normal	to 84.625 ft f	
Dist from Windward Edge: 0 ft to 7.225 ft	-0.90	-14.30	-8.85
Dist from Windward Edge: 7.225 ft to 14.45 ft	-0.90	-14.30	-8.85
Dist from Windward Edge: 14.45 ft to 28.9 ft	-0.50	-9.15	-3.71
Dist from Windward Edge: > 28.9 ft	-0.30	-6.58	-1.13

* Horizontal distance from windward edge

WIND98 v3-02

Wind Load Design per ASCE 7-98

Figure 6-4 - External Pressure Coefficients, GCpf Loads on Main Wind-Force Resisting Systems w/ Ht <= 60 ft

Kh =	2.01*(15/zg)^(2/Alpha)	 4 = 8 0 % 	0.57
Kht =	Topographic factor (Fig 6-2)		1.00
Qh =	0.00256*(V)^2*impFac*Kh*Kht*Kd	=	15.13

Case A								
Surface	GCpf	+GCpi	-GCpi	qh (psf)	Min P (psf)	Max P (psf)		
1	0.56	0.18	-0.18	15.13	5.75	11.20		
2	0.21	0.18	-0.18	15.13	0.45	5.90		
3	-0.43	0.18	-0.18	15.13	-9.23	-3.78		
4	-0.37	0.18	-0.18	15.13	-8.32	-2.88		
5	0.00	0.18	-0.18	15.13	-2.72	2.72		
6	0.00	0.18	-0.18	15.13	-2.72	2.72		
1E	0.69	0.18	-0.18	15.13	7.72	13.16		
2E	0.27	0.18	-0.18	15.13	1.36	6.81		
3E	-0.53	0.18	-0.18	15.13	-10.74	-5.30		
4E	-0.48	0.18	-0.18	15.13	-9.99	-4.54		
5E	0.00	0.18	-0.18	15.13	-2.72	2.72		
6E	0.00	0.18	-0.18	15.13	-2.72	2.72		

* p = qh * (GCpf - GCpi)

WIND98 v3-02

Wind Load Design per ASCE 7-98

Figure 6-4 - External Pressure Coefficients, GCpf

Loads on Main Wind-Force Resisting Systems w/ Ht <= 60 ft

Kh =	2.01*(15/zg)^(2/Alpha)	=	0.57
Kht =	Topographic factor (Fig 6-2)	= 1	1.00
Qh =	0.00256*(V)^2*ImpFac*Kh*Kht*Kd	an i = 11.2°	15.13

Case B								
Surface	GCpf	+GCpi	-GCpi	qh (psf)	Min P (psf)	Max P (psf)		
1	-0.45	0.18	-0.18	15.13	-9.53	-4.09		
2	-0.69	0.18	-0.18	15.13	-13.16	-7.72		
3	-0.37	0.18	-0.18	15.13	-8.32	-2.88		
4	-0.45	0.18	-0.18	15.13	-9.53	-4.09		
5	0.40	0.18	-0.18	15.13	3.33	8.78		
6	-0.29	0.18	-0.18	15.13	-7.11	-1.66		
1E	-0.48	0.18	-0.18	15.13	-9.99	-4.54		
2E	-1.07	0.18	-0.18	15.13	-18.92	-13.47		
3E	-0.53	0.18	-0.18	15.13	-10.74	-5.30		
4E	-0.48	0.18	-0.18	15.13	-9.99	-4.54		
5E	0.61	0.18	-0.18	15.13	6.51	11.95		
6E	-0.43	0.18	-0.18	15.13	-9.23	-3.78		

* p = qh * (GCpf - GCpi)

WIND98 v3-02 Wind Load Design per ASCE 7-98

 Figure 6-5 - External Pressure Coefficients, GCp

 Loads on Components and Cladding for Buildings w/ Ht <= 60 ft</td>

 Image: Coefficients, GCp

 Loads on Components and Cladding for Buildings w/ Ht <= 60 ft</td>

a = 5.625

5.63 ft

Component	Width	Span	Area	Area Zone		Ср	Wind Pres	ss (lb/ft^2)
	(ft)	(ft) =	(ft^2)	지 말 가 있는	Max	Min	Max	Min
ROOF	10	1 1 5	10.00	- 1 · · · ·	0.90	-1.00	19.92	-21.77
Walls	10	SI -1 (* 5	10.00	4	1.00	-1.10	21.77	-23.61
roof edge	10	16 5	10.00	2	0.90	-1.20	19.92	-25.46
Wall edge	10	1	10.00	5	1.00	-1.40	21.77	-29.15
Roof overhang	10	1	10.00	2H	0.90	-2.00	16.60	-36.89

Note: * Enter Zone 1 through 5, or 1H through 3H for overhangs.

==>

Shearwall Design - N/S Direction

Rigid Diaphragm Analysis

Wind load acting on building

General Data			
Roof Pitch (x:12)		7 Roof Dia	13.89
		Length of	
Vertical Roof height		16.41 Building	84.625
		Width of	
2nd Floor height	0	Building	56.25
1st Floor height	10		

Wind Pressure per ASCE 7- Normal to surface Case A

Windward Roof - Surface 2	0.45	psf	Wall -	5.75 psf
			Leeward	
			Wall -	
Leeward Roof - Surface 3	-9.23	psf	Surface 4	-8.32 psf
			Total Wall	14.07 psf

Horizontal loads from wind perpendicular to ridge (N / S)

Roof Pressure (interior)

Roof shear values	4379.97
Tributary area (roof)	898.00
Total	4.88
Leeward Roof Horz.(psf)	-4.65
Windward Roof Horz.(psf)	0.23

Wall Pressure - 2nd Floor

Sum. of wind. & lee. (psf)	14.07
Tributary area to each Shearwall	
(sf)	0.00
Wall shear values to each	
shearwall	0.00

Wall Pressure - 1st Floor

shearwall	4813.07
Wall shear values to each	540 C
(sf)	342.08
Tributary area to each Shearwall	
Sum. of wind. & lee. (psf)	14.07

Total shear to top of 2nd floor (lb)	使的论语于她的
per wall (actual)	0.00
Total shear to top of 1st floor (lb)	22 PERCENT
per wall (actual)	9193.04

김 씨는 것 같은 것 같아요. 것 같아요. 것	Shearwall column #		
2nd Floor shearwalls	1	2	3
Number of shearwall segments in			
each column	and Bern in		
Shearwall #1 length			
Shearwall #2 length	1. S. S. 1		
Shearwall #3 length			301
Lateral load on shear wall column			
(lbs)			
Percent Full-Height Sheathing			-
Shear capacity adjustment		ingen in States	3 S
Shearwall rating (plf) w/ 1.4			a
Design Shear Capacity	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Sec. of the	
Stress Ratio	ij višivu		
uplift at shear ends	~ .		
shear and uplift between holddown,			
v and u			

1st Floor shearwall (ft)

shear and uplift between holddown, v and u	171.26	176.47	114.51
uplift at shear ends	1712.64	1764.72	1145.12
Stress Ratio	0.35	0.37	0.24
Design Shear Capacity	10746.75	14731.50	4308.36
Shearwall rating (plf) w/ 1.4 increase for wind	483	483	483
Shear capacity adjustment	1	1	1
Percent Full-Height Sheathing Shearwall #1	49.17%	100.83%	100.00
Lateral load on shearwall column (lbs) based on rigidity	3810.63	5382.40	1021.45
Rigidities of shearwalls	6.95	9.81	2.10
Wall height ratio (h/b)	0.45	0.33	1.12
Shearwall #2 length	0	0	C
Shearwall #1 length	22.25	30.5	8.92
Full wall length	45.25	30.25	13.92
each column	1	1	1
Number of shearwall segments in		- 6. Tom 6	

Anchor Bolt Shear Capacity	plf		4
Bolt size / spacing	24"	36"	48"
1/2" dia	422.5	281.67	211.25
5/8" dia	660	440.00	
3/4" dia	930		The second se

Shearwall Design - E/W Direction

Rigid Diaphragm Analysis

Wind load acting on building

General Data			
Roof Pitch (x:12)		6 Roof Dia	13.42
		Length of	
Vertical Roof height		14.06 Building	84.625
		Width of	
2nd Floor height	0	Building	56.25
1st Floor height	8		

Wind Pressure per ASCE 7- Normal to surface Case B

Windward Wall - Surface 5 Leeward Wall - Surface 6	3.33 -7.11	psf
	-7.11	psf
Total Wall	-1	0.44

Horizontal loads from parallel to ridge (N/S)

Roof Pressure (interior)	
Windward Roof Horz.(psf)	3.33
Leeward Roof Horz.(psf)	-7.11
Total	10.44
Tributary area (roof) to each	
shearwall (sf)	356.00
Roof shear values to each	19 (Sec. 1997)
shearwall	3716.64

Wall Pressure - 2nd Floor

0	Sum. of wind. & lee. (psf)
	Tributary area to each Shearwall
0.00	(sf)
	Wall shear values to each
0.00	shearwall
Wall Pressure - 1st Floor

347.00
347.00
10.44

Total shear to top of 2nd floor (lb)	
per wall (actual)	0.00
Total shear to top of 1st floor (lb)	
per wall (actual)	7339.32

	Shearw	all column	# 10000 10
2nd Floor shearwalls	Α	В	С
Number of shearwall segments in			
each column		tin a si a	전 김 씨는 것이 많이 많이 많이 했다.
Full wall length		10 2 2	
Shearwall #1 length			
Shearwall #2 length			4
Shearwall #3 length			
Lateral load on shear wall column			
(lbs)			
Percent Full-Height Sheathing			
Shear capacity adjustment		3 - 8	$\xi^{+} = -\theta$
Shearwall rating (plf) w/ 1.4			
Design Shear Capacity		· · · · ·	
Stress Ratio			
uplift at shear ends			
shear and uplift between holddown,	2.2	1 1 2 3	1.2
v and u		: П. П. П	

1st Floor shearwall (ft)

imber of shearwall segments in			
each column	A	в	С
Full wall length	54.66	29	84.62
Shearwall #1 length	24.19	20.67	49.79
Shearwall #2 length	0	0	(
Wall height ratio (h/b)	0.33	0.39	0.16
Rigidities of shearwalls	9.72	8.20	20.5
teral load on shearwall column			
(lbs) based on rigidity	1854.00	1563.88	3921.44
Percent Full-Height Sheathing	2 2 2		
Shearwall #1	0.44	0.71	0.59
Shear capacity adjustment	1	0.85	0.85
Shearwall rating (plf) w/ 1.4	and the second second		
increase for wind	483	483	483
Design Shear Capacity	11683.77	8486.07	20441.28
Stress Ratio	0.16	0.18	0.19
uplift at shear ends	613.15	712.09	741.27
and uplift between holddown,			
v and u	76.64	89.01	92.66

Anchor Bolt Shear Capacity plf	-8 - 1 la la		
Bolt size / spacing	24"	36"	48"
1/2" dia	422.5		
5/8" dia	660		
3/4" dia	930		and the second sec

Project Information for: L166847

Builder: Address:

County:

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

J1690058

J1690059

J1690060

J1690061

J1690062

J1690063

J1690064

J1690065

J1690066

J1690067

J1690068

J1690069

J1690070

J1690071

J1690072

J1690073

J1690074

J1690075

J1690076

J1690077 | T16

T02

T03

T04

T05

T05A

T05G

T06

T07

T08

T09

T10

T11

T12

T13

T12G

T13G

T14

T15

T02G

LIPSCOMB EAGLE 45 SW FIELDSTONE CT. LAKE CITY, FL 32055 COLUMBIA

Truss Count: 34 Design Program: MiTek 20/20 6.2 Building Code: FBC2004/TPI2002

Truss Design Load Information: Wind: Gravity:

Roof (psf): 42.0

Floor (psf): 55.0

Wind Standard: ASCE 7-02

Wind Speed (mph): 110

Wind Exposure: B

Note: See the individual truss drawings for special loading conditions.

Contractor of Record, responsible for structural engineering: JAMES MACK Florida License No. CBC1253543 Address: 255 SE WOODS TERRACE, LAKE CITY, FL

Truss Design Engineer: Lawrence A. Paine, PE Florida P.E. License No. 21475

Company: Builders FirstSource - Florida, LLC Address: 6550 Roosevelt Blvd. Jacksonville, FL 32244 Notes:

- 1. Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1-2002 Section 2.2
- 2. The seal date shown on the individual truss component drawings must match the seal date on this index sheet.
- 3. The Truss Design Engineer's responsibility relative to this structure consists solely of the design of the individual truss components and does not include the design of any additional structural elements including but not limited to continuous lateral bracing elements in the web and chord planes. See Florida Administrative Code 61G15-31.003 sections 3 c) & 5 and Chapter 2 of the National Design Standard for Metal Plate Connected* Wood Truss Construction ANSI/TPI 1-2002 for additional information on the responsibilities of the delegated "Truss Design Engineer". Builders FirstSource and Lawerence A. Paine, PE do not accept any additional delegations beyond the scope of work described in the referenced documents above.

No.	Drwg. #	Truss ID	Date	No.	Drwg. #	Truss ID	Date
1	J1690050	PB05	7/17/06	29	J1690078	T17G	7/17/06
2	J1690051	PB122	7/17/06	30	J1690079	T18	7/17/06
3	J1690052	PB12G	7/17/06	31	J1690080	T20	7/17/06
4	J1690053	PB24	7/17/06	32	J1690081	T20G	7/17/06
5	J1690054	PB24A	7/17/06	33	J1690051A	PB122G	7/17/06
6	J1690055	PB24G	7/17/06	34	J1690079A	T18A	7/17/06
7	J1690056	T01	7/17/06	1			
8	J1690057	T01G	7/17/06				

7/17/06

7/17/06

7/17/06 7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

Project Information for: L166847

Builder: Address:

County:

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

J1690057

J1690058

J1690059

J1690060

J1690061

J1690062

J1690063

J1690064

J1690065

J1690066

J1690067

J1690068

J1690069

J1690070

J1690071

J1690072

J1690073

J1690074

J1690075

J1690076

J1690077

T01G

T02G

T02

T03

T04

T05

T05A

T05G

T06

T07

T08

T09

T10

T11

T12

T13

T14

T15

T16

T12G

T13G

Truss Count:

LIPSCOMB EAGLE 45 SW FIELDSTONE CT. LAKE CITY, FL 32055 **COLUMBIA** 34

Design Program: MiTek 20/20 6.2 Building Code: FBC2004/TPI2002

Truss Design Load Information: Gravity: Wind:

Roof (psf): 42.0

Wind Standard: ASCE 7-02

Floor (psf): 55.0 Wind Speed (mph): 110

Note: See the individual truss drawings for special loading conditions.

Contractor of Record, responsible for structural engineering: JAMES MACK Florida License No. CBC1253543 Address: 255 SE WOODS TERRACE, LAKE CITY, FL

Truss Design Engineer: Lawrence A. Paine, PE Florida P.E. License No. 21475

Company: Builders FirstSource - Florida, LLC Address: 6550 Roosevelt Blvd. Jacksonville. FL 32244 Notes:

- 1. Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1-2002 Section 2.2
- 2. The seal date shown on the individual truss component drawings must match the seal date on this index sheet.
- 3. The Truss Design Engineer's responsibility relative to this structure consists solely of the design of the individual truss components and does not include the design of any additional structural elements including but not limited to continuous lateral bracing elelments in the web and chord planes. See Florida Administrative Code 61G15-31.003 sections 3 c) & 5 and Chapter 2 of the National Design Standard for Metal Plate Connected Wood Truss Construction ANSI/TPI 1-2002 for additional information on the responsibilities of the delegated "Truss Design Engineer". Builders FirstSource and Lawerence A. Paine, PE do not accept any additional delegations beyond the scope of work described in the referenced documents above.

No.	Drwg. #	Truss ID	Date	No.	Drwg. #	Truss ID	Date
1	J1690050	PB05	7/17/06	29	J1690078	T17G	7/17/06
2	J1690051	PB122	7/17/06	30	J1690079	T18	7/17/06
3	J1690052	PB12G	7/17/06	31	J1690080	T20	7/17/06
4	J1690053	PB24	7/17/06	32	J1690081	T20G	7/17/06
5	J1690054	PB24A	7/17/06	33	J1690051A	PB122G	7/17/06
6	J1690055	PB24G	7/17/06	34	J1690079A	T18A	7/17/06
7	J1690056	T01	7/17/06				

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

7/17/06

July 21,2006

Wind Exposure: B

	Truss	Truss Type		Qty	Ply	GA	LEWAYL	EVELOP	MENT-SYDNE	/ MODEL J1690050
.166081	PB05	PIGGYBACK		2		1	D-f	1	n	5100000
Builders FirstSource	e, Lake City, FI 3205	5	6.20	00 s Jul 13 200	5 MiTek	Job Industi	Referenc ies, Inc.	e (optiona Wed Jul 1	al) 12 15:45:54 2006	Page 1
	-, , ,						,			, ugo .
	ļ	2-11-3 2-11-3					10-5			
Refer to Drawing	PIGBACKB1001 for		a	4x6 =		2.	11-3			Scale = 1:12.6
Note: A single ply	Piggyback must be multi ply supporting	attached to a		3						
			1							
	7.00	0 12								
		/								
1.8-8			/							
1		/ /						4		
	2						<u> </u>		5	
	1 / /									
		3 =	-	\square			3x6	<u> </u>	0-1-12	
	\times			6			0.00		°	
				\square						
				2x4						
				5-10-5 5-10-5						
	SDACING	200		DEEL		()>	11-1-11	1.7.1		<u> </u>
OADING (psf) CLL 20.0	SPACING Plates Increase	2-0-0 C: 1.25 T(SI C 0.06	DEFL Vert(LL)	in 0.00-	(loc) 4	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
CDL 7.0	Lumber Increase	1.25 B	C 0.06	Vert(TL)	-0.00	4	>999	180		
BCLL 10.0 BCDL 5.0	Rep Stress Incr Code FBC2004/	YES W	/B 0.04 Aatrix)	Horz(TL)	0.00	5	n/a	n/a	Woight: 19 /	le la
JODE 3.0	Code T BC2004/	(1)							Weight: 18 I	······
LUMBER				BRACING TOP CHO		Ctructu			a a dina atha ann 11	- 4 - 4
BOT CHORD 2X					κυ		oc purlir		ng directly appli	ed or
OTHERS 2 X	4 SYP No.3			BOT CHO	RD	Rigid o	eiling dir		lied or 6-0-0 oc	
						bracin	g.			
•	size)		53/0-4-0							
Max	x Uplift 1=-19(load o	ase 5), 5=-28(lo								
Max	x Grav 1=58(load ca	ase 9), 5=58(load	1 case 10),	6=353(load ca	ase 1)					
ORCES (Ib) - M	aximum Compressio	on/Maximum Ter	nsion							
	-2=-47/53, 2-3=-42/), 4-5=-25/1	8						
	-6=-89/79, 4-6=-89/7 -6=-248/139	19								
JOINT STRESS IN 2 = 0 15 3 = 0		= 0.09								
	IDEX).15, 4 = 0.15 and 6	= 0.09								
2 = 0.15, 3 = 0 IOTES).15, 4 = 0.15 and 6		athia daaja	_						
2 = 0.15, 3 = 0 IOTES) Unbalanced roo	0.15, 4 = 0.15 and 6 f live loads have be	en considered fo)psf; Ca	ategory	II; Exp			
2 = 0.15, 3 = 0 IOTES) Unbalanced roo) Wind: ASCE 7-0 B; enclosed; MV	0.15, 4 = 0.15 and 6 f live loads have be 02; 110mph (3-seco VFRS gable end zon	en considered fo nd gust); h=20ft; ne and C-C Exte	TCDL=4.2p rior(2) zone	osf; BCDL=3.0 ; Lumber DOI	=1.60	plate gr	ip			
2 = 0.15, 3 = 0 IOTES) Unbalanced roo 2) Wind: ASCE 7-0 B; enclosed; MV DOL=1.60. This	0.15, 4 = 0.15 and 6 f live loads have be 02; 110mph (3-seco	en considered fo nd gust); h=20ft; ne and C-C Exte	TCDL=4.2p rior(2) zone	osf; BCDL=3.0 ; Lumber DOI	=1.60	plate gr	ip tions			
2 = 0.15, 3 = 0 NOTES) Unbalanced roo 2) Wind: ASCE 7-0 B; enclosed; MV DOL=1.60. This specified. 2) All bearings are	0.15, 4 = 0.15 and 6 f live loads have be 02; 110mph (3-second VFRS gable end zond truss is designed for assumed to be SYF	en considered fo nd gust); h=20ft; ne and C-C Exte or C-C for member 2 No.2 crushing o	TCDL=4.2p rior(2) zone ers and forc capacity of {	osf; BCDL=3.0 c; Lumber DOI ces, and for M 565.00 psi	_=1.60 WFRS	plate gr for reac	ip tions Tra Flor	_	Engineer: Lawrence 21475	A. Paine, PE
2 = 0.15, 3 = 0 NOTES I) Unbalanced roo 2) Wind: ASCE 7-0 B; enclosed; MV DOL=1.60. This specified. 3) All bearings are 4) Bearing at joint(0.15, 4 = 0.15 and 6 f live loads have be 02; 110mph (3-second VFRS gable end zond truss is designed for assumed to be SYF s) 1, 5 considers pa	en considered fo nd gust); h=20ft; ne and C-C Exte or C-C for membe P No.2 crushing o rallel to grain val	TCDL=4.2p rior(2) zone ers and forc capacity of s ue using At	osf; BCDL=3.0 c; Lumber DOI ces, and for M 565.00 psi	_=1.60 WFRS	plate gr for reac	ip stions Tra Flor nula. Bui l	rida PE No Iders FirstSo	. 21475 ource - Florida, LLO	5
2 = 0.15, 3 = 0 NOTES I) Unbalanced roo 2) Wind: ASCE 7-0 B; enclosed; MV DOL=1.60. This specified. 3) All bearings are 4) Bearing at joint(0.15, 4 = 0.15 and 6 f live loads have be 02; 110mph (3-second VFRS gable end zond truss is designed for assumed to be SYF	en considered fo nd gust); h=20ft; ne and C-C Exte or C-C for membe P No.2 crushing o rallel to grain val	TCDL=4.2p rior(2) zone ers and forc capacity of s ue using At	osf; BCDL=3.0 c; Lumber DOI ces, and for M 565.00 psi	_=1.60 WFRS	plate gr for reac	ip stions Tra Flor nula. Bui l	rida PE No Iders FirstSo	. 21475	e, FL 32244
2 = 0.15, 3 = 0 NOTES I) Unbalanced roo 2) Wind: ASCE 7-0 B; enclosed; MV DOL=1.60. This specified. 3) All bearings are 4) Bearing at joint(0.15, 4 = 0.15 and 6 of live loads have bee 02; 110mph (3-second VFRS gable end zond truss is designed for assumed to be SYF s) 1, 5 considers pa er should verify capa	en considered fo nd gust); h=20ft; ne and C-C Exte or C-C for membe P No.2 crushing o rallel to grain val	TCDL=4.2p rior(2) zone ers and forc capacity of s ue using At	osf; BCDL=3.0 c; Lumber DOI ces, and for M 565.00 psi	_=1.60 WFRS	plate gr for reac	ip stions Tra Flor nula. Bui l	rida PE No Iders FirstSo	. 21475 ource - Florida, LLO	5
2 = 0.15, 3 = 0 NOTES 1) Unbalanced roo 2) Wind: ASCE 7-0 B; enclosed; MV DOL=1.60. This specified. 3) All bearings are 4) Bearing at joint(Building designe	0.15, 4 = 0.15 and 6 of live loads have bee 02; 110mph (3-second VFRS gable end zond truss is designed for assumed to be SYF s) 1, 5 considers pa er should verify capa	en considered fo nd gust); h=20ft; ne and C-C Exte or C-C for membe P No.2 crushing o rallel to grain val acity of bearing s	TCDL=4.2p rior(2) zone ers and forc capacity of t ue using AN urface.	osf; BCDL=3.(b; Lumber DOI ces, and for M 565.00 psi NSI/TPI 1 ang	_=1.60 WFRS	plate gr for reac	ip stions Tra Flor nula. Bui l	rida PE No Iders FirstSo	. 21475 ource - Florida, LLO	e, FL 32244

K/					
Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690050
L166081	PB05	PIGGYBACK	2	1	
					Job Reference (optional)
Builders First	Source, Lake City, FI 3	2055 6.	200 s Jul 13 2005	MiTek Iı	ndustries, Inc. Wed Jul 12 15:45:54 2006 Page 2

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 1, 28 lb uplift at joint 5 and 110 lb uplift at joint 6.

LOAD CASE(S) Standard

Tross Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstScurce - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 8300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job * *	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	PB122	PIGGYBACK	8	1	J1690051
			-		Job Reference (optional)
Builders FirstSource	6.1	200 s Jul 13 2005 l	MiTek Ir	dustries, Inc. Thu Jul 13 10:22:30 2006 Page 1	

BOT CHORD

TOP CHORD	2 X 4 SYP No.2
BOT CHORD	2 X 4 SYP No.2
WEBS	2 X 4 SYP No.3

REACTIONS (lb/size) 1=36/0-3-8, 5=36/0-3-8, 7=568/0-3-8, 8=163/0-3-8, 6=163/0-3-8 Max Horz 1=120(load case 4) Max Uplift 1=-17(load case 10), 5=-34(load case 3), 7=-252(load case 5), 8=-49(load case 5), 6=-46(load case 6)Max Grav 1=70(load case 9), 5=70(load case 10), 7=568(load case 1), 8=183(load case 9), 6=183(load case 10)

FORCES (Ib) - Maximum Compression/Maximum Tension

- TOP CHORD 1-2=-111/112, 2-3=-149/349, 3-4=-149/349, 4-5=-30/21
- **BOT CHORD** 2-8=-232/203, 7-8=-232/203, 6-7=-232/203, 4-6=-232/203
- WEBS 3-7=-586/356

JOINT STRESS INDEX

2 = 0.85, 3 = 0.70, 4 = 0.85 and 7 = 0.21

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; Truss Design Engineer: Lawrence A. Paine, PE enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. Florida PE No. 21475 Builders FirstSource - Florida, LLC This truss is designed for C-C for members and forces, and for MWFRS for reactions specified. 6550 Roosevelt Blvd. Jacksonville, FL 32244
- 3) Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Continued on page 2

 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connector Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling intalling and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Rigid ceiling directly applied or 6-0-0 oc bracing.

Job 🌒 👘	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	PB122	PIGGYBACK	8	1	J1690051
					Job Reference (optional)
Builders FirstSource, Lake City, FI 32055			6.200 s Jul 13 2005 M	ViTek In	dustries, Inc. Thu Jul 13 10:22:30 2006 Page 2

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 1, 34 lb uplift at joint 5, 252 lb uplift at joint 7, 49 lb uplift at joint 8 and 46 lb uplift at joint 6.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 65SO Roosevalt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent braceing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

	Truss	Truss Type	Qty	Ply	GATEWAY [DEVELOP	MENT-SYDNE	Y MODEL J1690052
.166081	PB12G	PIGGYBACK	1	1	Job Deference	o (antiona	-1)	51090052
Builders FirstSource	e, Lake City, Fl 32055		6.200 s Jul 13 200	5 MiTek In	Job Referenc dustries, Inc.	Wed Jul 1	12 15:45:55 200	6 Page 1
	5	-9-3	10005 T100		11-6-5			5
		-9-3			5-9-3			Scale = 1:21.5
			4x6 ==	Refer to	Drawing PIG	BACKB1	001 for piggyb	
	7.00 12	2x4	3	sing	single ply Pig le ply of a mu	igyback n Iti ply sup	nust be attache oporting truss.	d to a
2 1	4x6 =	8 2x4	2x4		x4		4 5 4x6 =	0-1-12 0-1-12
1.00 mm	4-0-0	2.44 11	7-6-5	4	X4 11	11-6-5		
	4-0-0		3-6-5			4-0-0		
Plate Offsets (X,Y)	: [2:0-1-14,0-0-11],	[4:0-1-14,0-0-11]					1	
OADING (psf) CLL 20.0 CDL 7.0 CLL 10.0 CCL 5.0	SPACING Plates Increase Lumber Increase Rep Stress Incr Code FBC2004/TI	2-0-0 CSI 1.25 TC 0.3 1.25 BC 0.5 NO WB 0.0 Pl2002 (Matrix)	3 Vert(TL)	in (0.03 -0.04 0.04	loc) I/defl 2-8 >999 4-6 >999 5 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 43	GRIP 244/190
UMBER TOP CHORD 2 X BOT CHORD 2 X DTHERS 2 X			BRACING TOP CHOP BOT CHOP	6- RD R	0-0 oc purlins	; .	ng directly appli lied or 10-0-0 c	
Ma Ma F ORCES (Ib) - M FOP CHORD 1	x Horz 1=-114(load c x Uplift 1=-122(load c 8=-112(load c x Grav 1=288(load c case 1), 6=28 aximum Compression -2=-131/108, 2-3=-42	ase 5), 5=-127(load ca ase 5), 6=-103(load ca ase 1), 5=288(load cas 8(load case 1) n/Maximum Tension 6/235, 3-4=-426/235, 4	se 6), 7=-122(loa se 6) e 1), 7=97(load ca -5=-131/73	d case 1),				
OINT STRESS IN	IDEX	9/309, 6-7=-119/309, 4 0, 7 = 0.00, 8 = 0.00, 9		0.00				
NOTES) Unbalanced roc) Wind: ASCE 7-(B; enclosed; M\	of live loads have bee 02; 110mph (3-secon VFRS gable end zon	n considered for this de d gust); h=20ft; TCDL= e and C-C Exterior(2) z C-C for members and	esign. 4.2psf; BCDL=3.0 one; Lumber DOI)psf; Cate _=1.60 pla	reactions Flor Built	ida PE No. ders FirstSc	ingineer: Lawrence . 21475 2uce - Florida, LL It Blvd. Jacksonvil	c

		Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	PB12G	PIGGYBACK	1	1	J1690052
					Job Reference (optional)

- 4) Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 1, 127 lb uplift at joint 5, 122 lb uplift at joint 7, 112 lb uplift at joint 8 and 103 lb uplift at joint 6.
- 6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

7) The building designer is responsible for the design of the roof and ceiling diaphragms, gable and shear walls, and supporting shear walls. Shear walls must provide continuous lateral restraint to the gable end. All connections to be specified by the building designer. Bottom chord must be laterally braced for horizontal wind loads. Bottom chord bracing and its connections to be specified by the building designer.

8) Truss designed for wind loads in plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail".

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=-75(F=-10), 2-3=-64(F=-10), 3-4=-64(F=-10), 4-5=-75(F=-10), 2-4=-30

Tross Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling intalling and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 8300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

lob	Truss	Truss Type	Qty	Ply	GATEWAY DEV	ELOPMENT- SYDNEY	-
_166081	PB24	PIGGYBACK	18	-	1		1690053
.100001	1 024	TIOOTDACK	10		Job Reference (o	ptional)	
Builders First	Source, Lake City, FI 32	:055	6.200 s Jul 13 200	05 MiTek		d Jul 12 15:45:56 2006	Page 1
				7-	7-0		
-		11-10-12	1		23-9-7	ĩ	
		11-10-12	4x6 =		11-10-12		Scale = 1:44.1
			5		-2-7 ofer to Drowing PIC	BACKB1001 for piggy	hook do
	7.00	112 2x4 II		No	ote: A single ply Pig single ply of a mi 2x4 II	ggyback must be attack Iti ply supporting truss	hed to a
		4			6		
6-11-4	275						
ġ	2x4					2x4 7	
	3					18	
1	2				8	89	2
	3x6 =	X	Ø		X	3x6 = 🕅	0-1-12
	' 14 2x4 ∦	13 2x4	12 5x6 =		11 2x4	10 2x4	
0-2- 건 0-2-							
Plate Offsets	(X,Y): [12:0-3-0,0-3-	0]					
LOADING (p	sf) SPACING	2-0-0 CSI	DEFL	in	(loc) I/defi	L/d PLATES	GRIP
	0.0 Plates Increas		15 Vert(LL)	-0.01	8-10 >999 2	40 MT20	244/19
	7.0 Lumber Increa 0.0 Rep Stress Inc		10 Vert(TL) 20 Horz(TL)	-0.01 0.00		80 n/a	
	5.0 Code FBC200		20 11012(12)	0.00	5 II/a	Weight: 99 lb	
LUMBER			BRACING				
TOP CHORE	2 X 4 SYP No.2		TOP CHO	RD :		eathing directly applied	lor
BOT CHORD OTHERS	2 X 4 SYP No.2 2 X 4 SYP No.3		BOT CHO	RD I	6-0-0 oc purlins. Rigid ceiling directl bracing.	y applied or 6-0-0 oc	
REACTIONS	10=355/0 Max Horz 14=-238(I Max Uplift 9=-11(loa 11=-195(I Max Grav 9=92(load	d case 5), 13=-196(load ca oad case 6), 10=-183(load d case 10), 12=397(load ca oad case 1), 11=342(load ca	ase 5), 14=-180(lo J case 6), 1=-21(lo ase 1), 13=342(loa	ad case ad case d case 9	5), 3))),		
) - Maximum Compres	ssion/Maximum Tension	=-11/164, 5-6=-11/	161, 6-7		esign Engineer: Lawrence A	. Paine, P
FORCES (IL FOP CHORD	<i>,</i> ,						
•	1-2=-40/15, 2-3=-1 7-8=-110/116, 8-9 2-14=-111/169, 13		42, 11-12=-68/142	2, 10-11=	-00/144	PE No. 21475 FirstSource - Florida, LLC	
OP CHORD	1-2=-40/15, 2-3=-1 7-8=-110/116, 8-9 2-14=-111/169, 13 8-10=-68/142	=-40/10		-	Builders		FL 32244
OP CHORD	1-2=-40/15, 2-3=-1 7-8=-110/116, 8-9 2-14=-111/169, 13 8-10=-68/142 5-12=-275/0, 4-13	=-40/10 -14=-68/142, 12-13=-68/14		-	Builders	FirstSource - Florida, LLC	FL 32244

Continued on page 2

July 17,2006

Warning - Verify dealgn parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-9N Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Builders FirstSource

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690053
L166081	PB24	PIGGYBACK	18	1	
					Job Reference (optional)
Builders First	Source, Lake City, FI	32055	6.200 s Jul 13 2005	MiTek In	ndustries, Inc. Wed Jul 12 15:45:56 2006 Page 2

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Bearing at joint(s) 9, 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 9, 196 lb uplift at joint 13, 180 lb uplift at joint 14, 195 lb uplift at joint 11, 183 lb uplift at joint 10 and 21 lb uplift at joint 1.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6500 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690054
L166081	PB24A	PIGGYBACK	2	1	
					Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Wed Jul 12 15:45:56 2006 Page 1

LUMBER		BRACING	
TOP CHORD	2 X 4 SYP No.2	TOP CHORD	Structural wood sheathing directly applied or
BOT CHORD	2 X 4 SYP No.2		6-0-0 oc purlins.
OTHERS	2 X 4 SYP No.3	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
			bracing.

1=93/0-4-0, 20=422/0-4-0, 25=406/0-4-0, 22=352/0-4-0, 15=406/0-4-0, **REACTIONS** (lb/size) 18=352/0-4-0, 13=93/0-4-0 Max Horz 1=232(load case 4) Max Uplift 1=-64(load case 3), 20=-16(load case 4), 25=-214(load case 5), 22=-196(load case 5), 15=-207(load case 6), 18=-197(load case 6), 13=-12(load case 6) Max Grav 1=101(load case 9), 20=422(load case 1), 25=406(load case 9),

- 22=360(load case 9), 15=406(load case 10), 18=360(load case 10), 13=101(load case 10)
- FORCES (Ib) Maximum Compression/Maximum Tension TOP CHORD 1-2=-241/239, 2-3=-201/167, 3-4=-138/149, 4-5=-107/149, 5-6=-56/138, 6-7=-20/170, 7-8=0/160, 8-9=0/112, 9-10=0/134, 10-11=-13/96, 11-12=-105/150, 12 - 13 = -44/9BOT CHORD 2-26=-76/138, 25-26=-76/138, 24-25=-76/138, 23-24=-76/138, 22-23=-76/138, 21-22=-76/138, 20-21=-76/138, 19-20=-76/138, 18-19=-76/138, 17-18=-76/138, 16-17=-76/138, 15-16=-76/138, 14-15=-76/138, 12-14=-76/138 WEBS 7-20=-256/22, 6-21=-89/87, 5-23=-179/145, 4-24=-65/76, 3-26=-220/171,
 - 8-19=-89/86, 9-17=-179/146, 10-16=-65/75, 11-14=-220/168

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Continued on page 2

TCLL

TCDL

BCLL

BCDL

🛦 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL J169005
L166081	PB24A	PIGGYBACK	2	1	0109005
					Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Wed Jul 12 15:45:56 2006 Page 2

JOINT STRESS INDEX

2 = 0.23, 3 = 0.33, 4 = 0.33, 5 = 0.33, 6 = 0.33, 7 = 0.26, 8 = 0.33, 9 = 0.33, 10 = 0.33, 11 = 0.33, 12 = 0.23, 14 = 0.33, 16 = 0.33, 17 = 0.33, 19 = 0.33, 20 = 0.19, 21 = 0.33, 23 = 0.33, 24 = 0.33 and 26 = 0.33

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 5) Bearing at joint(s) 1, 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 1, 16 lb uplift at joint 20, 214 lb uplift at joint 25, 196 lb uplift at joint 22, 207 lb uplift at joint 15, 197 lb uplift at joint 18 and 12 lb uplift at joint 13.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- 8) The building designer is responsible for the design of the roof and ceiling diaphragms, gable and shear walls, and supporting shear walls. Shear walls must provide continuous lateral restraint to the gable end. All connections to be specified by the building designer. Bottom chord must be laterally braced for horizontal wind loads. Bottom chord bracing and its connections to be specified by the building designer.
- 9) Truss designed for wind loads in plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail".

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=-75(F=-10), 2-7=-64(F=-10), 7-12=-64(F=-10), 12-13=-75(F=-10), 2-12=-30

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent brancing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Medison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Typ	e	Qty	Ply	G/	TEWAY	DEVELOP	PMENT- SYDNE	Y MODEL J1690055
L166081	PB24G	VALLEY		1		1	Deferen	ee (enting	-15	31030035
Builders FirstSourc	ce, Lake City, Fl 32055	1	6.20	00 s Jul 13 200	5 MiTe	k Indust	ries, Inc.	ce (option Thu Jul 1	3 10:27:40 2006	Page 1
		11-1	0-11				19-3	-1		
		11-1					7-4-			
	Refer to Drawing PIG				4x6 ==					Scale = 1:40.9
	Note: A single ply Pig single ply of a mul			a	4					
	5 1 7 4 4	1.7			怜					
		7.00 12								
			3					5		
	1									
	6-11-4								6	
	2								B	
		4								
	1	_						0		
0-1:12 0-1:12		12			9			8	0-1-12 0-1-12	
0	3x10 MT20H ∕∕	12	11 10 3x6 =		9			8	P 0	
	0 ₁ 3 ₁ 3 3-8-1	7-8-1		12-0-13		16-0	-14	19	-1-3 19-3-3	
	0-3-3 3-4-14	4-0-9)	4-4-3		4-0	-1	3-	0-5 0-2-0	
Plate Offsets (X,Y): [1:0-8-3,Edge]			ľ.						
.OADING (psf) ICLL 20.0	SPACING Distant Increase	2-0-0	CSI	DEFL	in		l/defi	L/d	PLATES	GRIP
FCLL 20.0 FCDL 7.0	Plates Increase Lumber Increase	1.25 1.25	TC 0.11 BC 0.09	Vert(LL) Vert(TL)	-0.00 -0.01		>999 >999	240 180	MT20 MT20H	244/190 187/143
3CLL 10.0 3CDL 5.0	Rep Stress Incr Code FBC2004/T	YES	WB 0.14 (Matrix)	Horz(TL)	-0.00	1	n/a	n/a	Weight: 87 It	
	00001 002004/1	12002	(Maulin)							,
LUMBER	X 4 SYP No.2			BRACING TOP CHOI	RD	Struct	ural wood	l sheathin	g directly applied	l or 6-0-0
	X 4 SYP No.2 X 4 SYP No.3			DOT OUO	חר	oc pur	lins, exc	ept end ve	erticals.	
VED5 27	4 5 TP NO.3			BOT CHO	N	Rigia	ening air	ectly appl	ied or 10-0-0 oc	oracing.
,	, ,		7=132/0-4-0, 8=	315/0-4-0, 10=	332/0-	4-0, 12=	=351/0-4-	0		
	ax Horz 10=216(load c ax Uplift 1=-53(load cas		load case 4) 7=-	65(load case (6) 8=-1	188(load	1 case 6)			
	10=-192(load of	case 5), 12=	-186(load case 5)		·	•			
Ma	ax Grav 1=122(load ca , 10=343(load		(load case 1), 7= 351(load case 1)		∋ 1), 8= ິ	328(loa	d case 1	0)		
	Aaximum Compression		•							
TOP CHORD	1-2=-217/175, 2-3=-149)/171, 3-4=-7	78/194, 4-5=-79/ ⁻							
	1-12=-151/212, 11-12= 4-9=-194/52, 5-8=-216/				=-9/21,	7-8=-9/	/21			
		210, 0-102	201210, 2-12-2	20/100						
IOINT STRESS II	NDEX 0.34, 3 = 0.34, 4 = 0.3{	5. 5 = 0.34. 6	6 = 0.34. 7 = 0.34	. 8 = 0.34. 9 =	0.34. 1	10 = 0.3	4. 11 = 0	15 and 1	2 = 0.34	
1 = 0.20, 2 = 1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, • • • • • • • • •	0.01,		.,		2 0.04	
		considered	for this design.							
NOTES	of live loads have been		ion and addigin	DODI -2 06	Cateo	ory II; E	xp B;			
NOTES I) Unbalanced roc 2) Wind: ASCE 7-	of live loads have been 02; 110mph (3-second	aust): h=20	ft; TCDL=4.2psf;	BCDL=3.0psr;	Oateg					
NOTES I) Unbalanced roc 2) Wind: ASCE 7- enclosed; MWF	02; 110mph (3-second RS gable end zone an	gust); h=20i d C-C Exteri	ior(2) zone; Lum	ber DOL=1.60	plate g	rip DOL ecified				A. Paine, PE
NOTES 1) Unbalanced roc 2) Wind: ASCE 7- enclosed; MWF This truss is de 3) All plates are M	02; 110mph (3-second FRS gable end zone an signed for C-C for men IT20 plates unless othe	gust); h=20 d C-C Exteri bers and fo rwise indica	ior(2) zone; Lum rces, and for MW ted.	ber DOL=1.60	plate g	rip DOL ecified.	Fk	onda PE No		
NOTES 1) Unbalanced rod 2) Wind: ASCE 7- enclosed; MWF This truss is de 3) All plates are M	02; 110mph (3-second FRS gable end zone an signed for C-C for men	gust); h=20 d C-C Exteri bers and fo rwise indica	ior(2) zone; Lum rces, and for MW ted.	ber DOL=1.60	plate g	rip DOL ecified.	Fk Bu	orida PE No ilders FirstS	. 21475	2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job '	Truss	Truss Type	Qty	Piy	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690055
L166081	PB24G	VALLEY	1	1	
					Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Thu Jul 13 10:27:40 2006 Page 2

NOTES

- 5) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 1, 29 lb uplift at joint 9, 65 lb uplift at joint 7, 188 lb uplift at joint 8, 192 lb uplift at joint 10 and 186 lb uplift at joint 12.

LOAD CASE(S) Standard

6

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI/ TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

ob	Truss	Truss Type		Qty	Ply	GATEWAY DEV	ELOPMENT- S	SYDNEY MODEL
166081	T01	SPECIAL		4	1			J1690056
			000 1140	0005	A	Job Reference (
Sunders FirstSour	ce, Lake City, FI 3205	ю.	.200 s Jul 13	2005	MITEK In	dustries, Inc. We	d Jul 12 15:45:	:57 2006 Page 1
- 1-6-0	7-3-11 14	-5-13 20-6-7	26-7-1		32-6-3	38-5-5	44-6-0	46-0-0
1-6-0	7-3-11 7	-2-2 6-0-10	6-0-10		5-11-2	5-11-2	6-0-11	1-6-0 Scale = 1:85.7
		5x8 ∽ 2x4	a	5x6 🗢				00216 - 1.00.1
	7.00 12	4 5 6		7				
000 00 07 1 0 3x8	5x8 = 3 19 2x4			E 14	4 13	5x6 >	2x4 // 9	
 		2x4 3x6 4-7-0 15-1-0 20-6-7 /-3-5 0-6-0 5-5-7	26-7-1	3x8 =	35-	3x6 =	44-6-0	
Plate Offsets (X, Y		[3:0-4-0,0-3-0], [8:0-3-0,0-3	6-0-10 3-01 [10:0-3-	8 54-		0-11)-2-8 0-4-01	9-0-4	
iate Olisets (A,	i). [2.0-5-6,Euge],	[5.0-4-0,0-5-0], [6.0-5-0,0-0	5-0], [10.0-5-	-0, Eul	e], [10.	J-2-8,0-4-0]		
OADING (psf) CLL 20.0 CDL 7.0 CLL 10.0 CCLL 5.0	SPACING Plates Increase Lumber Increase Rep Stress Incr Code FBC2004/	YES WB 0.78	Vert(TI	Lý -	in (0.16 10 0.26 10 0.02	-12 >999	L/d PLA 240 MT20 180 n/a Weig	
2- VEBS 2 VEDGE	X 4 SYP No.2 *Exce), 5-16 2 X 4 SYP No.1D	BRACI TOP C BOT C WEBS	HORI	4- 2- D R bi 1	tructural wood sh 8-14 oc purlins, 0-0 oc purlins (6 igid ceiling direct acing. Except: Row at midpt Row at midpt	except -0-0 max.): 4-1 Ily applied or 6 5-18	7. 3-0-0 oc , 6-18, 7-14, 8-14
								0
REACTIONS (IL M M	ax Horz 2=-367(load ax Uplift 2=-382(load	D, 18=2388/0-4-0, 10=1137 J case 3) J case 5), 18=-863(load cas case 9), 18=2388(load cas	se 5), 10=-4					
REACTIONS (II M M GORCES (Ib) - I OP CHORD	ax Horz 2=-367(load ax Uplift 2=-382(load ax Grav 2=467(load Maximum Compress 1-2=0/32, 2-3=-333/ 7-8=-724/387, 8-9=- 2-19=-376/287, 18-1	d case 3) d case 5), 18=-863(load cas case 9), 18=2388(load cas ion/Maximum Tension 326, 3-4=-157/689, 4-5=-73 1405/552, 9-10=-1590/562 9=-372/290, 16-18=0/95, 5	se 5), 10=-4 se 1), 10=11 3/564, 5-6=- 2, 10-11=0/32 5-18=-261/26	61 (loa 76/56 2	ad case 8, 6-7=- -17=0/0	10) 556/400,		
REACTIONS (III M M M ORCES (III) - I OP CHORD OT CHORD VEBS	ax Horz 2=-367(load ax Uplift 2=-382(load ax Grav 2=467(load Maximum Compress 1-2=0/32, 2-3=-333/3 7-8=-724/387, 8-9=- 2-19=-376/287, 18-1 15-16=-35/78, 14-15 3-19=-299/265, 3-18	d case 3) d case 5), 18=-863(load cas case 9), 18=2388(load cas ion/Maximum Tension 326, 3-4=-157/689, 4-5=-73	se 5), 10=-4 se 1), 10=11 3/564, 5-6=- 2, 10-11=0/32 5-18=-261/26 7, 12-13=-13 88, 6-18=-13	61(loa 76/56 2 61, 16 5/947, 18/61	ad case 8, 6-7=- -17=0/0 10-12= 0, 6-15=	10) 556/400, -336/1296 Florida -57/105, Builder)esign Engineer: 1 PE No. 21475 5 FirstSource - Flo	Lawrence A. Paine, PE orida, LLC acksonville, FL 32244
REACTIONS (III M M FORCES (Ib) - I TOP CHORD BOT CHORD WEBS IOINT STRESS 2 = 0.52, 2 =	ax Horz 2=-367(load ax Uplift 2=-382(load ax Grav 2=467(load Maximum Compress 1-2=0/32, 2-3=-333/3 7-8=-724/387, 8-9=- 2-19=-376/287, 18-1 15-16=-35/78, 14-15 3-19=-299/265, 3-18 6-14=-298/821, 7-14 4-18=-542/333 INDEX 0.00, 3 = 0.66, 4 = 0	d case 3) d case 5), 18=-863(load cas case 9), 18=2388(load cas ion/Maximum Tension 326, 3-4=-157/689, 4-5=-73 1405/552, 9-10=-1590/562 9=-372/290, 16-18=0/95, 5 i=-52/271, 13-14=-135/947 i=-678/676, 15-18=-108/23	se 5), 10=-4 se 1), 10=11 3/564, 5-6=- 2, 10-11=0/32 5-18=-261/26 7, 12-13=-13 8, 6-18=-13 8-12=-154/5 = 0.48, 8 = 0	76/56 2 61, 16 5/947, 18/61 523, 9	ad case 3, 6-7=- -17=0/0 10-12= 0, 6-15= 12=-24	10) 556/400, -336/1296 Florida -57/105, Builder 5/255, 6550 F)esign Engineer: 1 PE No. 21475 s FirstSouce - Flo loosevelt Blvd. Ja	orida, LLC eksonville, FL 32244
EACTIONS (II M M CORCES (Ib) - I OP CHORD SOT CHORD VEBS OINT STRESS 2 = 0.52, 2 =	ax Horz 2=-367(load ax Uplift 2=-382(load ax Grav 2=467(load Maximum Compress 1-2=0/32, 2-3=-333/3 7-8=-724/387, 8-9=- 2-19=-376/287, 18-1 15-16=-35/78, 14-15 3-19=-299/265, 3-18 6-14=-298/821, 7-14 4-18=-542/333 INDEX 0.00, 3 = 0.66, 4 = 0 88, 15 = 0.34, 16 = 0	d case 3) d case 5), 18=-863(load cas case 9), 18=2388(load cas ion/Maximum Tension 326, 3-4=-157/689, 4-5=-73 1405/552, 9-10=-1590/562 9=-372/290, 16-18=0/95, 5 i=-52/271, 13-14=-135/947 i=-678/676, 15-18=-108/23 i=-32/104, 8-14=-603/386, i 0.60, 5 = 0.33, 6 = 0.88, 7 =	se 5), 10=-4 se 1), 10=11 3/564, 5-6=- 2, 10-11=0/32 5-18=-261/26 7, 12-13=-13 8, 6-18=-13 8-12=-154/5 = 0.48, 8 = 0	76/56 2 61, 16 5/947, 18/61 523, 9	ad case 3, 6-7=- -17=0/0 10-12= 0, 6-15= 12=-24	10) 556/400, -336/1296 Florida -57/105, Builder 5/255, 6550 F)esign Engineer: 1 PE No. 21475 s FirstSouce - Flo loosevelt Blvd. Ja	orida, LLC eksonville, FL 32244

Marning - Verry design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MIT-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building structure, including all temporary and permanent bracing, is the and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690056
L166081	T01	SPECIAL	4	1	
					Job Reference (optional)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 382 lb uplift at joint 2, 863 lb uplift at joint 18 and 470 lb uplift at joint 10.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

e) (*					
Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
		i.			J1690057
L166081	T01G	SPECIAL	1	1	
					Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Wed Jul 12 15:45:58 2006 Page 1

7-3-11	14-7-0	15-1-0	20-6-7	26-7-1	35-5-12	44-6-0	4
7-3-11	7-3-5	0-6-0	5-5-7	6-0-10	8-10-11	9-0-4	5

Plate Offsets (X,Y): [2:0-3-8,Edge], [3:0-4-0,0-3-0], [8:0-3-0,0-3-0], [13:0-2-0,0-1-8], [18:0-2-8,0-4-0], [28:0-1-12,0-1-0], [31:0-1-0, 0-0-12]

LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	ı (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.58	Vert(LL)	-0.17	' 10-12	>999	240	MT20	244/19
TCDL	7.0	Lumber Increase	1.25	BC	0.62	Vert(TL)	-0.28	0.28 10-12 >999 180				
BCLL	10.0	Rep Stress Incr	NO	WB	1.00	Horz(TL)	0.02	. 10	n/a	n/a		
BCDL	3CDL 5.0 Code FBC2004/TPI2002 (Matrix		rix)	. ,					Weight: 466 I	b		
LUMBER	2					BRACING	i					
TOP CHO	ORD 2X	4 SYP No.2				TOP CHO	RD	Structu	iral wood	sheathin	ng directly applie	d or
вот сно	ORD 2X	4 SYP No.2 *Except	*					4-5-3 c	oc purlins	, except	• • • • •	
	2-1	8 2 X 4 SYP No.1D, 5	5-16 2 X 4	SYP No	.1D			2-0-0 0	, por purlins	(6-0-0 m	ax.): 4-7.	
WEBS	2 X	4 SYP No.3				BOT CHO	RD	Rigid o	eiling dir	ectly app	lied or 6-0-0 oc	
OTHERS	2 X	4 SYP No.3						bracin	g. Excep	t: , , , , ,		
WEDGE								1 Row	at midpt		5-18	
Left: 2 X	4 SYP No	.3, Right: 2 X 4 SYP	No.3			WEBS		1 Row	at midpt		3-18, 6-18, 7-	-14, 8-14
		-									. 4-18	

REACTIONS (lb/size) 2=438/0-4-0, 18=2667/0-4-0, 10=1279/0-4-0 Max Horz 2=-367(load case 3) Max Uplift 2=-418(load case 5), 18=-1052(load case 5), 10=-566(load case 6) Max Grav 2=521(load case 9), 18=2667(load case 1), 10=1303(load case 10)

TOP CHORD 1-2=-0/38, 2-3=-363/320, 3-4=-201/773, 4-5=-127/629, 5-6=-130/633, 6-7=-617/448, 7-8=-811/433, 8-9=-1566/645, 9-10=-1786/685, 10-11=-0/38 BOT CHORD 2-19=-384/279, 18-19=-380/282, 16-18=0/95, 5-18=-275/273, 16-17=0/0, 15-16=-36/79, 14-15=-65/260, 13-14=-228/1058, 12-13=-228/1058,

WEBS 10-12=-454/1450 3-19=-302/268, 3-18=-756/745, 15-18=-123/240, 6-18=-1475/747, 6-15=-53/98, 6-14=-380/915, 7-14=-56/125, 8-14=-679/437, 8-12=-180/562, 9-12=-290/285, 4-18=-628/392

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent brancing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 8300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

FORCES (lb) - Maximum Compression/Maximum Tension

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T01G	SPECIAL	1		J1690057
					Job Reference (optional)

JOINT STRESS INDEX

2 = 0.52, 2 = 0.00, 3 = 0.77, 4 = 0.70, 5 = 0.33, 6 = 0.46, 7 = 0.57, 8 = 0.59, 9 = 0.33, 10 = 0.66, 10 = 0.00, 12 = 0.48, 13 = 0.58, 14 = 0.46, 15 = 0.34, 16 = 0.50, 18 = 0.35, 19 = 0.33, 20 = 0.33, 20 = 0.33, 21 = 0.33, 22 = 0.33, 23 = 0.33, 23 = 0.33, 24 = 0.33, 25 = 0.33, 26 = 0.33, 26 = 0.33, 27 = 0.33, 28 = 0.39, 28 = 0.33, 29 = 0.33, 30 = 0.33, 31 = 0.63, 32 = 0.33, 32 = 0.33, 33 = 0.33, 34 = 0.33, 35 = 0.33, 35 = 0.33, 36 = 0.33, 37 = 0.33, 38 = 0.33, 39 = 0.33, 40 = 0.33, 41 = 0.33, 42 = 0.33, 43 = 0.33, 44 = 0.33, 45 = 0.33, 46 = 0.33, 47 = 0.33, 48 = 0.33, 48 = 0.33, 49 = 0.33, 50 = 0.33, 51 = 0.33, 52 = 0.33, 53 = 0.33, 54 = 0.33, 55 = 0.33, 56 = 0.33, 57 = 0.33, 58 = 0.33, 59 = 0.33, 59 = 0.33, 60 = 0.33, 61 = 0.33, 62 = 0.33, 63 = 0.33, 64 = 0.33, 65 = 0.33, 66 = 0.33

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 418 lb uplift at joint 2, 1052 lb uplift at joint 18 and 566 lb uplift at joint 10.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- 10) The building designer is responsible for the design of the roof and ceiling diaphragms, gable and shear walls, and supporting shear walls. Shear walls must provide continuous lateral restraint to the gable end. All connections to be specified by the building designer. Bottom chord must be laterally braced for horizontal wind loads. Bottom chord bracing and its connections to be specified by the building designer.

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-64(F=-10), 4-7=-64(F=-10), 7-11=-64(F=-10), 2-18=-30, 16-17=-30, 10-16=-30

Tross Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstScurce - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

-1-6-0 7-3-11 1-6-0 7-3-11	T02 Lake City, FI 32055			Qty	Ply	GATEWAY DEVELOPM		J1690058
-1-6-0 7-3-11 1-6-0 7-3-11	Lake City, FI 32055	HIP		3	1			J 1090020
1-6-0 7-3-11			6.20	00 s Jul 13 2005	MiTek I	Job Reference (optional ndustries, Inc. Wed Jul 12		6 Page 1
	14-5-13	22-5	5-8	30-3-8	38-3-3	44-4-0	52-9-0	54-3-0
WARNING: This tri	7-2-2	7-11	-12	7-10-0	7-11-12	6-0-13	8-5-0	1-6-0 Scale = 1:94.9
and must be install	uss is not symmetric	cal						0000 110110
and must be instan	7.00 12		5x8 —	7x10 =		7x10 ≈		
Ē	7.00112	5x8 -	5	6		7		ī
	7x10 //	Le.				7x10	×	
2	3				//	8	2.4	c
		°				8	2x4 9	
e, 2			1					
9 1 2 4x6 =	b	গ্র	9		65	(D) (D)		4x6 =
440	19 2x4	18 17 6x8 = 4x6	16 = 2x4	15 5x8 =	14 4x6			440 -
7-3-11	14-5-13	22-5		30-3-8	38-3-3	44-4-0	52-9-0	
7-3-11	7-2-2	7-11		7-10-0	7-11-12		8-5-0	
Plate Offsets (X,Y):	[3:0-5-0,0-4-8], [6	:0-5-0,0-4-8	8], [8:0-5-0,0-4-8	8]				
LOADING (psf)	SPACING	2-0-0	CSI	DEFL		(loc) I/defl L/d	PLATES	GRIP
TCLL 20.0 TCDL 7.0	Plates Increase Lumber Increase	1.25 1.25	TC 0.17 BC 0.14		-0.05 1 -0.08 1		MT20	244/1
BCLL 10.0	Rep Stress Incr	YES	WB 0.85		0.02	10 n/a n/a	M	
BCDL 5.0	Code FBC2004/T	P12002	(Matrix)				Weight: 406	5 ID
LUMBER TOP CHORD 2 X (6 SYP No.1D			BRACING TOP CHORI	D S	tructural wood sheathin	a directly appl	ied or
BOT CHORD 2X	6 SYP No.1D				6	-0-0 oc purlins, except		
WEBS 2X4	4 SYP No.3			BOT CHOR		-0-0 oc purlins (6-0-0 m Rigid ceiling directly appl		c
				WEBS		racing. Row at midpt	3-18, 4-18,	5-18, 6-15
					•		, 7-13	0 10, 0 10

July 17,2006

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 8300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
1 400004	700				J169005
L166081	T02	HIP	3	1	Job Reference (optional)

JOINT STRESS INDEX

2 = 0.23, 3 = 0.24, 4 = 0.77, 5 = 0.33, 6 = 0.23, 7 = 0.35, 8 = 0.28, 9 = 0.33, 10 = 0.54, 12 = 0.28, 13 = 0.34, 14 = 0.28, 15 = 0.27, 16 = 0.33, 17 = 0.22, 18 = 0.26 and 19 = 0.33

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide adequate drainage to prevent water ponding.

- 4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 378 lb uplift at joint 2, 1127 lb uplift at joint 18, 637 lb uplift at joint 12 and 309 lb uplift at joint 10.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 8300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job '	' Tru	SS	Truss Type		Qty	Ply	GATEWAY DEVELOPME	ENT- SYDNE	MODEL J1690059
L166081	T02	2G	HIP		1	1	Job Reference (optional)		
Builders Fir	stSource, Lake	e City, FI 32055		6.200 s Jul 1	3 2005	MiTek Ir	idustries, Inc. Thu Jul 13 10	0:45:23 2006	Page 1
-1-6-0	7-3-11	14-5-13	22-3-3	29-10-14		37-8-4	44-10-6	52-9-0	54-3-0
1-6-0	7-3-11	7-2-2	7-9-6	7-7-10	1	7-9-6	7-2-2	7-10-10	1-6-0 Scale = 1:90.8

1	7-3-11	14-5-	0 14-5-13	22-3-3		29-10-14	37	-8-4	- 1	44-10-6	52-9-0	
1	7-3-11	7-1-{	0-0-13	7- 9 -6	555	7-7-10	7	9-6		7-2-2	7-10-10	1
Plate Offsets	(X,Y):	[3:0-5-0,0-4-8]	[6:0-5-0,0-4	1-8], [9:0-1-	8,0-2-0],	[10:0-5-8,Edge	9], [22:0-	3-8,0-4	-0]			
L OADING (ps TCLL 20 TCDL 7 BCLL 10).0 '.0	SPACING Plates Increas Lumber Incre Rep Stress In	ase 1.25	TC BC	0.26 0.24 0.87	DEFL Vert(LL) Vert(TL) Horz(TL)	0.12	(loc) 19-20 19-20 16	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
	5.0	Code FBC20		(Ma			0.02	10	n/a	n/a	Weight: 535	lb
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	9-11 2 2 X 6 2 X 4	SYP No.1D *E 2 X 4 SYP No.1 SYP No.1D SYP No.3 SYP No.3	•	1		BRACING TOP CHC BOT CHC WEBS	RD	oc purl 2-0-0 c Rigid c	lins, exce oc purlins	pt (6-0-0 m	ng directly applied nax.): 4-7. lied or 6-0-0 oc b 3-22, 4-22, 4- 6-20, 6-17, 7-	oracing. 20, 5-20,
REACTIONS	Max U	14=110/8- lorz 2=302(loa plift 10=-156(lo case 3), 1 12=-187(lo Grav 10=257(lo case 10),	7-0, 13=-37/ d case 4) bad case 6), 6=-459(load bad case 6) ad case 10),	/8-7-0, 12=: 2=-390(loa case 3), 14 2=568(loa	348/8-7-(Id case 5 I=-27(loa d case 9	0, 15=1601/8-7)), 22=-1763(loa id case 3), 13=), 22=2400(loa iad case 10), 13	ad case 4 -37(load d case 1	4), 15=- case 10), 15=10	1047(loa 0), 611(load	d		
F ORCES (Ib TOP CHORD			/364, 3-4=-*	192/304, 4-	59=-105	9/1023, 5-59=- ⁻ , 8-9=-175/336						
BOT CHORD	2-23 18-1	=-295/364, 22	17-18=-114	3/1495, 16	-17=-143		2, 19-20 43/259,	=-1143/ 14-15=	-143/259	nss Design i rida PE No	Engineer: Lawrence 5. 21475	A. Paine, PE
WEBS	3-23 6-20	=-260/226, 3-2	2=-617/629	, 4-22=-183	4/1408,	4-20=-1490/17 17=-95/38, 8-17			10.		Source - Florida, LL alt Blvd. Jacksonvil	
Continued on												July 17,200
This design is based of Applicability of design responsibility of buildir and bracing, consult B	parameters ng designer a SCSI-1 or HIE	 parameters shown for and proper incorporation and / or contractor per a 	an individual buildi n of component int NSI / TPI 1 as refe and Bracing Reco	ng component the o the overall build renced by the bu mmendation avail	at is installed a ling structure, ilding code. F able from the	REFERENCE PAGE M and loaded vertically an- including all temporary or general guidance re Wood Truss Council of 719	d fabricated v and permane parding stora	vith MiTek c int bracing, i ge, delivery,	onnectors. is the erection		Bui First	ders Source

Job '	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T02G	HIP	1	1	J1690059
				·	Job Reference (optional)
Builders FirstS	Source, Lake City, FI 3	32055	6.200 s Jul 13 2005 l	MiTek Ir	dustries, Inc. Thu Jul 13 10:45:23 2006 Page 2

JOINT STRESS INDEX

2 = 0.27, 3 = 0.25, 4 = 0.71, 5 = 0.34, 6 = 0.34, 7 = 0.74, 8 = 0.71, 9 = 0.00, 9 = 0.39, 9 = 0.39, 10 = 0.50, 12 = 0.34, 13 = 0.34, 14 = 0.34, 15 = 0.53, 16 = 0.34, 17 = 0.64, 18 = 0.45, 19 = 0.34, 20 = 0.86, 21 = 0.16, 22 = 0.28, 23 = 0.34, 24 = 0.45, 25 = 0.34, 26 = 0.34, 27 = 0.45, 28 = 0.34, 29 = 0.34, 30 = 0.45, 31 = 0.34, 32 = 0.34, 33 = 0.34, 34 = 0.34, 35 = 0.45, 36 = 0.34, 37 = 0.34, 38 = 0.34, 39 = 0.34, 40 = 0.45, 41 = 0.34, 42 = 0.34, 43 = 0.45, 44 = 0.34, 45 = 0.34, 46 = 0.45, 47 = 0.34, 48 = 0.34, 49 = 0.34, 50 = 0.34, 51 = 0.58, 52 = 0.34, 54 = 0.58, 55 = 0.34, 56 = 0.34, 57 = 0.34 and 58 = 0.34

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 156 lb uplift at joint 10, 390 lb uplift at joint 2, 1763 lb uplift at joint 22, 1047 lb uplift at joint 15, 459 lb uplift at joint 16, 27 lb uplift at joint 14, 37 lb uplift at joint 13 and 187 lb uplift at joint 12.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- 9) The building designer is responsible for the design of the roof and ceiling diaphragms, gable and shear walls, and supporting shear walls. Shear walls must provide continuous lateral restraint to the gable end. All connections to be specified by the building designer. Bottom chord must be laterally braced for horizontal wind loads. Bottom chord bracing and its connections to be specified by the building designer.

LOAD CASE(S) Standard

- 1) Regular: Lumber Increase=1.25, Plate Increase=1.25
 - Uniform Loads (plf)

Vert: 1-4=-54, 4-59=-54, 7-59=-91(F=-37), 7-11=-91(F=-37), 2-10=-30

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent brancing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building codes. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690060
L166081	T03	SPECIAL	9	1	
					Job Reference (optional)
Builders FirstS	ource, Lake City, Fl 3	32055 6	5.200 s Jul 13 2005 l	MiTek In	dustries, Inc. Thu Jul 13 12:57:14 2006 Page 1

7-3-1	1 14-5-0	14-7-0 22-	-4-15	29-4-8	38-3-3	44-2-0 44-4	-0 52-9-0	
7-3-1			9-15	6-11-9	8-10-11	5-10-13 0-2-	-0 8-5-0	
Plate Offsets (X,Y)): [3:0-5-0,0-4-8], [5	:0-5-0,0-4-8],	, [8:0-5-0,0-4-8]	1			1	
L OADING (psf) TCLL 20.0 TCDL 7.0 BCLL 10.0	SPACING Plates Increase Lumber Increase Rep Stress Incr	NO	CSI TC 0.46 BC 0.17 WB 0.84	DEFL Vert(LL) Vert(TL) Horz(TL)	in (loc) -0.11 13-14 -0.19 13-14 0.08 12	l/defi L/d >999 240 >999 180 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code FBC2004/	TPI2002	(Matrix)				Weight: 386	lb
LUMBER TOP CHORD 2 > BOT CHORD 2 > WEBS 2 >				BRACING TOP CHO BOT CHO	RD Structur oc purlin 2-0-0 oc RD Rigid ce Except:		ax.): 4-7. lied or 6-0-0 oc b	
				WEBS		oc bracing: 14-15 at midpt	,13-14. 3-16, 4-16, 4-	15 8 12
	x Uplift 2=-280(load case 4) x Grav 2=111(load c case 1)		•		,.	•		
TOP CHORD 1	aximum Compressio -2=0/40, 2-3=-424/8 2-18=-1333/791, 7-8=	58, 3-4=-711/	′1338, 4-5=-183	•	•	•	Engineer: Lawrence	A Dame DF
BOT CHORD 2	-17=-707/576, 16-17 2-13=-859/471, 10-1	=-708/578, 1 2=-664/389	5-16=-1176/752	2, 14-15=-91/280), 13-14=-433/86	64, Florida PE No Builders First	o. 21475 Source - Florida, L.L.	C
5	-17=-292/233, 3-16= -14=-631/1272, 6-14 -12=-2677/1387, 9-1	=-443/387, 7					elt Blvd. Jacksonvill	e, FL 32244
JOINT STRESS IN								
2 = 0.27, 3 = (0.94 and 17 =	0.39, 4 = 0.97, 5 = 0.2 0.34	29, 6 = 0.34,	7 = 0.68, 8 = 0.5	56, 9 = 0.34, 10	= 0.57, 12 = 0.9	8, 13 = 0.70, 14 =	= 0.31, 15 = 0.68,	16 = July 17,200
Continued on page	2							20.9 17,200
This design is based only up Applicability of design parameters esponsibility of building design and bracing, consult BCSI-1	gn parameters and READ N on the parameters shown for an in ters and proper incorporation of gner and / or contractor per ANSI or HIB-91 Handling Installing and on, WI 53719 or the Truss Plate	ndividual building con component into the / TPI 1 as reference Bracing Recommen	mponent that is installed overall building structure ad by the building code. Idation available from the	and loaded vertically and , including all temporary a For general guidance reg Wood Truss Council of A	fabricated with MITek cound permanent bracing, is arding storage, delivery, e	the arection	Bui Firsts	ders Source

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	тоз	SPECIAL	9	1	J1690060
					Job Reference (optional)
Builders FirstSc	ource, Lake City, FI 3	2055	6.200 s Jul 13 2005 M	/iTek In	dustries, Inc. Thu Jul 13 12:57:14 2006 Page 2

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide adequate drainage to prevent water ponding.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 280 lb uplift at joint 2, 1670 lb uplift at joint 12, 276 lb uplift at joint 10 and 1531 lb uplift at joint 16.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard Except:

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-54, 4-18=-54, 8-11=-54, 2-16=-30, 14-16=-30, 12-14=-30, 10-12=-30 Trapezoidal Loads (plf)

11apezoidal Loads (pii)

Vert: 18=-197(F=-143)-to-7=-216(F=-162), 7=-216(F=-162)-to-8=-266(F=-212)

Tross Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

	Truss	Truss Type	Qt	y Ply		GATEWAY	DEVELOPME	NT- SYDNEY	MODEL J1690061
.166081	T04	SPECIAL	2		2	lab Defe	- / 1		31030001
Builders FirstSourc	ce, Lake City, Fl 32055	6.20	00 s Jul 13 20	05 MiTe	_	Job Referenc ustries, Inc.		:14:53 2006	Page 1
-1-6-0 4-11-0	9-8-6 14-5-13	19-2-14 23-11-15	29-4-8	33-6-2	38	-3-3 41-2-10	44-2-0 48-4	4-11 52-9-0	54-3-0
1-6-0 4-11-0	4-9-6 4-9-6	4-9-1 4-9-1	5-4-9 4	\$-1-10	4	9-1 2-11-6	2-11-6 4-2	-11 4-4-5	1-6-0 Scale = 1:92.2
									JUAIO - 1.92.2
	7.00 40	7x10 =				7x10 =			
	7.00 12	7x10 = 5 6 7	= 2x4 8	9		27 10			
	7x10 //				.63	A Re	11		
	4				- 8		2 12		
0-0-6	and the second sec							7x10 <>	0-0-6
d 3	3		21	4				13	
2 4		22	7x10 =	20				4	14
1		23				19	8		15
	26 25 2x4	24 3.50 12 6x8 =					17 7x10 ==	16 2x4 ∐	
							44-4-0	2.44	
4-11-0	9-8-6 14-5-0	14-7-0 19-2-14 23-11-15	29-4-8	33-6-2	38	-3-3 41-2-10	44-2-0 48-	4-11 52-9-0	
4-11-0	4-9-6 4-8-10	0-2-0 4-7-14 4-9-1	5-4-9 4	-1-10	4.	9-1 2-11-6	2-11-6 4-0 0-2-0	-11 4-4-5	
Plate Offsets (X,Y)): [4:0-5-0,0-4-8], [7:0	-5-0,0-4-8], [13:0-5-0,0-4-8]					0-2-0		
OADING (psf)	SPACING S	ee Note 8 CSI	DEFL	in	(lc	c) l/defl	L/d F	PLATES	GRIP
TCLL 20.0	Plates Increase	1.25 TC 0.14	Vert(LL)	0.06		21 >999	240	MT20	244/190
FCDL 7.0 BCLL 10.0	Lumber Increase Rep Stress Incr	1.25 BC 0.11 NO WB 0.64	Vert(TL) Horz(TL)	-0.10 0.05		21 >999 17 n/a	180 n/a		
3CDL 5.0	Code FBC2004/TF		,					Neight: 883 I	b
UMBER			BRACING	-					
	X 6 SYP No.1D X 6 SYP No.1D		TOP CHO	RD		-0 oc purlins /itched from s		cing > 2-0-0).	
	X 4 SYP No.3		BOT CHO JOINTS	RD	Rig	id ceiling dire	ctly applied o	or 6-0-0 oc br	
VEBS 2>			301113		ID	race at Jt(s):	5, 10		
REACTIONS (Ib/	/size) 2=-78/0-4-0, 17 ax Horz 2=-325(load ca	/=3717/0-4-0, 14=-114/0-4-0, se 2)	, 24=3448/0-4	-0					
REACTIONS (ib/ Ma	ax Horz 2=-325(load ca ax Uplift 2=-399(load ca				8), 2	4=-1925(load	j		
REACTIONS (Ib/ Ma Ma	ax Horz 2=-325(load ca ax Uplift 2=-399(load ca case 3)	se 2)	?), 14=-345(loa	ad case			i		
REACTIONS (Ib/ Ma Ma	ax Horz 2=-325(load ca ax Uplift 2=-399(load ca case 3)	se 2) se 9), 17=-2055(load case 2)	?), 14=-345(loa	ad case			1		
REACTIONS (Ib/ Ma Ma Ma FORCES (Ib) - M	ax Horz 2=-325(load ca ax Uplift 2=-399(load ca case 3) ax Grav 2=209(load cas case 1) faximum Compression/l	se 2) se 9), 17=-2055(load case 2) e 2), 17=3717(load case 1), Maximum Tension	2), 14=-345(loa 14=237(load	ad case case 3),	24=	3448(load	1		
REACTIONS (Ib/ Ma Ma Ma CORCES (Ib) - M TOP CHORD 1 7	ax Horz 2=-325(load ca ax Uplift 2=-399(load ca case 3) ax Grav 2=209(load cas case 1) faximum Compression/f 1-2=0/43, 2-3=-544/100 7-8=-1685/1045, 8-9=-1	se 2) se 9), 17=-2055(load case 2) e 2), 17=3717(load case 1), Maximum Tension 1, 3-4=-747/1265, 4-5=-931/ 685/1045, 9-27=-1637/1118,	2), 14=-345(loa 14=237(load 1653, 5-6=-31 , 10-27=-1639	ad case case 3), 14/538, 0	24= 5-7=	3448(load 511/393,			
REACTIONS (Ib/ Ma Ma Ma CORCES (Ib) - M OP CHORD 1 7 1	ax Horz 2=-325(load ca ax Uplift 2=-399(load ca case 3) ax Grav 2=209(load cas case 1) faximum Compression/f 1-2=0/43, 2-3=-544/100 7-8=-1685/1045, 8-9=-1 11-12=-554/477, 12-13=	se 2) se 9), 17=-2055(load case 2) e 2), 17=3717(load case 1), Maximum Tension 1, 3-4=-747/1265, 4-5=-931/ 685/1045, 9-27=-1637/1118, :-580/1140, 13-14=-540/885,	2), 14=-345(loa 14=237(load 1653, 5-6=-31 , 10-27=-1639 , 14-15=0/43	ad case case 3); (4/538, 0 (/1119, /	24= 5-7= 10-1	3448(load 511/393, I=-1251/850,			
REACTIONS (Ib/ Ma Ma FORCES (Ib) - M FOP CHORD 1 7 30T CHORD 2 2	ax Horz 2=-325(load ca ax Uplift 2=-399(load ca case 3) ax Grav 2=209(load cas case 1) faximum Compression/f 1-2=0/43, 2-3=-544/100 7-8=-1685/1045, 8-9=-1 11-12=-554/477, 12-13= 2-26=-833/739, 25-26=- 21-22=-271/580, 20-21=	se 2) se 9), 17=-2055(load case 2) e 2), 17=3717(load case 1), Maximum Tension 1, 3-4=-747/1265, 4-5=-931/ 685/1045, 9-27=-1637/1118, i-580/1140, 13-14=-540/885, 833/739, 24-25=-1077/803, 2 i-1017/1719, 19-20=-536/976	2), 14=-345(loa 14=237(load 1653, 5-6=-31 , 10-27=-1639 , 14-15=0/43 23-24=-1488/4	ad case case 3); 14/538, (9/1119, ⁻ 898, 22-	24= 5-7= 10-1 23=-	3448(load 511/393, I=-1251/850, 571/527,			
REACTIONS (Ib/ Ma Ma GORCES (Ib) - M OP CHORD 1 7 30T CHORD 2 2 1	ax Horz 2=-325(load ca ax Uplift 2=-399(load ca case 3) ax Grav 2=209(load cas case 1) 4aximum Compression// 1-2=0/43, 2-3=-544/100 7-8=-1685/1045, 8-9=-1 11-12=-554/477, 12-13= 2-26=-833/739, 25-26=- 21-22=-271/580, 20-21= 16-17=-733/461, 14-16=	se 2) se 9), 17=-2055(load case 2) e 2), 17=3717(load case 1), Maximum Tension 1, 3-4=-747/1265, 4-5=-931/ 685/1045, 9-27=-1637/1118, i-580/1140, 13-14=-540/885, 833/739, 24-25=-1077/803, 2 i-1017/1719, 19-20=-536/976 i-732/460	2), 14=-345(loa 14=237(load 1653, 5-6=-31 , 10-27=-1639 , 14-15=0/43 23-24=-1488/4 6, 18-19=-144	ad case case 3), 14/538, ()/1119, ^ 898, 22- //325, 17	24= 6-7= 10-1 23=- 7-18:	3448(load 511/393, 1=-1251/850, 571/527, =-1086/681, Tm	ss Design Engin	eer: Lawrence .	A. Paine, PE
REACTIONS (Ib/ Ma Ma FORCES (Ib) - M FOP CHORD 1 7 30T CHORD 2 2 1 VEBS 3 5	ax Horz 2=-325(load ca ax Uplift 2=-399(load ca case 3) ax Grav 2=209(load cas case 1) 4aximum Compression// 1-2=0/43, 2-3=-544/100 7-8=-1685/1045, 8-9=-1 11-12=-554/477, 12-13= 2-26=-833/739, 25-26=- 21-22=-271/580, 20-21= 16-17=-733/461, 14-16= 3-26=-143/187, 3-25=-4 5-23=-809/1549, 6-23=-	se 2) se 9), 17=-2055(load case 2) e 2), 17=3717(load case 1), Maximum Tension 1, 3-4=-747/1265, 4-5=-931/ 685/1045, 9-27=-1637/1118, i-580/1140, 13-14=-540/885, 833/739, 24-25=-1077/803, 2 i-1017/1719, 19-20=-536/976 i-732/460 76/376, 4-25=-285/356, 4-24 1456/880, 6-22=-836/1538, 7	2), 14=-345(loa 14=237(load 1653, 5-6=-31 , 10-27=-1639 , 14-15=0/43 23-24=-1488/4 6, 18-19=-144 4=-563/503, 5- 7-22=-1280/82	ad case case 3), (4/538, ()/1119, ^ 898, 22- (/325, 17 -24=-23 21, 7-21	24= 6-7= 10-1 23= 73/1 =-88	3448(load 511/393, I=-1251/850, 571/527, =-1086/681, Tro 318, Flor 0/1528, Buil	ss Design Engin rida PE No. 214 Iders FirstSource	75 - Florida, LLC	
EACTIONS (Ib/ Ma Ma Ma OP CHORD 1 FOT CHORD 2 EOT CHORD 2 1 VEBS 3 5 8	ax Horz 2=-325(load ca: ax Uplift 2=-399(load ca: case 3) ax Grav 2=209(load cas case 1) 4aximum Compression// 1-2=0/43, 2-3=-544/100 7-8=-1685/1045, 8-9=-1 11-12=-554/477, 12-13= 2-26=-833/739, 25-26=- 21-22=-271/580, 20-21= 16-17=-733/461, 14-16= 3-26=-143/187, 3-25=-4 5-23=-809/1549, 6-23=- 3-21=-239/209, 9-21=0/3	se 2) se 9), 17=-2055(load case 2) e 2), 17=3717(load case 1), Maximum Tension 1, 3-4=-747/1265, 4-5=-931/ 685/1045, 9-27=-1637/1118, i-580/1140, 13-14=-540/885, 833/739, 24-25=-1077/803, 2 i-1017/1719, 19-20=-536/976 i-732/460 76/376, 4-25=-285/356, 4-24	2), 14=-345(loa 14=237(load 1653, 5-6=-31 , 10-27=-1639 , 14-15=0/43 23-24=-1488/4 6, 18-19=-144 4=-563/503, 5- 7-22=-1280/82 -699/1140, 10	ad case case 3), (4/538, ()/1119, ^ 898, 22- (/325, 17 -24=-23 21, 7-21 1-19=-11	24= 5-7= 10-1 23= 73/1 =-88 03/7	3448(load 511/393, I=-1251/850, 571/527, =-1086/681, Tro 318, Flor 0/1528, Buil	ss Design Engin rida PE No. 214 Iders FirstSource	75	
REACTIONS (Ib/ Ma Ma GORCES (Ib) - M OP CHORD 1 7 30T CHORD 2 1 80T CHORD 2 1 VEBS 3 5 8 1	ax Horz 2=-325(load ca: ax Uplift 2=-399(load ca: case 3) ax Grav 2=209(load cas case 1) 4aximum Compression// 1-2=0/43, 2-3=-544/100 7-8=-1685/1045, 8-9=-1 11-12=-554/477, 12-13= 2-26=-833/739, 25-26=- 21-22=-271/580, 20-21= 16-17=-733/461, 14-16= 3-26=-143/187, 3-25=-4 5-23=-809/1549, 6-23=- 3-21=-239/209, 9-21=0/3	se 2) se 9), 17=-2055(load case 2) e 2), 17=3717(load case 1), Maximum Tension 1, 3-4=-747/1265, 4-5=-931/ 685/1045, 9-27=-1637/1118, i-580/1140, 13-14=-540/885, 833/739, 24-25=-1077/803, 2 i-1017/1719, 19-20=-536/976 i-732/460 76/376, 4-25=-285/356, 4-24 1456/880, 6-22=-836/1538, 7 272, 9-20=-413/260, 10-20=- i=-2113/1195, 12-18=-1140/2	2), 14=-345(loa 14=237(load 1653, 5-6=-31 , 10-27=-1639 , 14-15=0/43 23-24=-1488/4 6, 18-19=-144 4=-563/503, 5- 7-22=-1280/82 -699/1140, 10	ad case case 3), (4/538, ()/1119, ^ 898, 22- (/325, 17 -24=-23 21, 7-21 1-19=-11	24= 5-7= 10-1 23= 73/1 =-88 03/7	3448(load 511/393, I=-1251/850, 571/527, =-1086/681, Tro 318, Flor 0/1528, Buil	ss Design Engin rida PE No. 214 Iders FirstSource	75 - Florida, LLC	
REACTIONS (Ib/ Ma Ma FORCES (Ib) - M TOP CHORD 1 7 1 3OT CHORD 2 1 1 VEBS 3 5 8 1 1 VEBS 3 1 1 VEBS 1 1 1 1	ax Horz 2=-325(load ca: ax Uplift 2=-399(load ca: case 3) ax Grav 2=209(load cas case 1) Aaximum Compression// 1-2=0/43, 2-3=-544/100 7-8=-1685/1045, 8-9=-1 11-12=-554/477, 12-13= 2-26=-833/739, 25-26=- 21-22=-271/580, 20-21= 16-17=-733/461, 14-16= 3-26=-143/187, 3-25=-4 5-23=-809/1549, 6-23=- 3-21=-239/209, 9-21=0// 11-19=-750/1258, 11-18 13-17=-345/291, 13-16= NDEX	se 2) se 9), 17=-2055(load case 2) se 9), 17=3717(load case 1), Maximum Tension 1, 3-4=-747/1265, 4-5=-931/ 685/1045, 9-27=-1637/1118, s-580/1140, 13-14=-540/885, 833/739, 24-25=-1077/803, 2 s-1017/1719, 19-20=-536/976 -732/460 76/376, 4-25=-285/356, 4-24 1456/880, 6-22=-836/1538, 7 272, 9-20=-413/260, 10-20=- s=-2113/1195, 12-18=-1140/2 s-92/105	2), 14=-345(loa 14=237(load 1653, 5-6=-31 , 10-27=-1639 , 14-15=0/43 23-24=-1488/4 6, 18-19=-144 4=-563/503, 5 7-22=-1280/8/ -699/1140, 10 2149, 12-17=-	ad case case 3), 14/538, ()/1119, 7 898, 22- //325, 17 -24=-23 21, 7-21 -19=-11 -2995/16	24= 10-1 23= 73/1: =-88 03/7 522,	3448(load -511/393, I=-1251/850, 571/527, -1086/681, Tro 318, Flor 0/1528, Buil 63, 655	ss Design Engin ida PE No. 214 ders FirstSource O Roosevelt Bh	175 2 - Florida, LLC vd. Jacksonville	, FL 32244
REACTIONS (lb/Ma Ma Ma Ma Ma CORCES (lb) - M TOP CHORD 1 TOP CHORD 1 SOT CHORD 2 WEBS 3 SOT 5 8 1 1 1 OINT STRESS IN 2 = 0.18, 3 = 0	ax Horz 2=-325(load ca: ax Uplift 2=-399(load ca: case 3) ax Grav 2=209(load cas case 1) Aaximum Compression// 1-2=0/43, 2-3=-544/100 7-8=-1685/1045, 8-9=-1 11-12=-554/477, 12-13= 2-26=-833/739, 25-26=- 21-22=-271/580, 20-21= 16-17=-733/461, 14-16= 3-26=-143/187, 3-25=-4 5-23=-809/1549, 6-23=- 3-21=-239/209, 9-21=0// 11-19=-750/1258, 11-18 13-17=-345/291, 13-16= NDEX 0.31, 4 = 0.20, 5 = 0.52	se 2) se 9), 17=-2055(load case 2) e 2), 17=3717(load case 1), Maximum Tension 1, 3-4=-747/1265, 4-5=-931/ 685/1045, 9-27=-1637/1118, i-580/1140, 13-14=-540/885, 833/739, 24-25=-1077/803, 2 i-1017/1719, 19-20=-536/976 i-732/460 76/376, 4-25=-285/356, 4-24 1456/880, 6-22=-836/1538, 7 272, 9-20=-413/260, 10-20=- i=-2113/1195, 12-18=-1140/2	t), 14=-345(loa 14=237(load 1653, 5-6=-31 , 10-27=-1639 , 14-15=0/43 23-24=-1488/4 6, 18-19=-144 4=-563/503, 5- 7-22=-1280/8: -699/1140, 10 2149, 12-17=-	ad case case 3), (4/538, ()/1119, ' 898, 22- (/325, 17 -24=-23 21, 7-21 -19=-11 -2995/16 = 0.37,	24= 6-7= 10-1 23= 73/13 =-88 03/7 522, 111 =	3448(load -511/393, I=-1251/850, 571/527, =-1086/681, Tru 318, Flor 0/1528, Buil 63, 655	ss Design Engin ida PE No. 214 ders FirstSource O Roosevelt Bh .58, 13 = 0.11	175 2 - Florida, LLC vd. Jacksonville	, FL 32244

This design is based only upon the parameters show for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690061
L166081	T04	SPECIAL	2	2	
					Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Thu Jul 13 13:14:53 2006 Page 2

NOTES

- 1) 2-ply truss to be connected together with 0.131"x3" Nails as follows:
- Top chords connected as follows: 2 X 6 2 rows at 0-9-0 oc. Bottom chords connected as follows: 2 X 6 - 2 rows at 0-9-0 oc.
- Webs connected as follows: 2 X 4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 4x6 MT20 unless otherwise indicated.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 399 lb uplift at joint 2, 2055 lb uplift at joint 17, 345 lb uplift at joint 14 and 1925 lb uplift at joint 24.
- 8) This truss has been designed to support 24" o.c. loading from one side and 28" o.c. spacing from the opposite side. The building designer is responsible for verifiying the capability of the roof sheathing and ceiling materials to work structurally under these odd space intsallation conditions. Loading has been calculated by the truss manufacturer. It is the responsibility
 - of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard Except:

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-5=-59, 5-27=-59, 12-15=-58, 2-24=-33, 21-24=-33, 17-21=-32, 14-17=-32

Concentrated Loads (lb)

Vert: 20=-519(F)

Trapezoidal Loads (plf)

Vert: 27=-202(F=-143)-to-10=-221(F=-162), 10=-221(F=-162)-to-12=-269(F=-210)

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevalt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent brancing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Jop ∙	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL J1690062
L166081	T05	SPECIAL	1	1	5109002
					Job Reference (optional)

L	7-3-11	14-5-0	14 ₁ 7-0	21-11-12	29-4-8	33-9-0	
1	7-3-11	7-1-5	0-2-0	7-4-12	7-4-12	4-4-8	
Plate Offsets (X,Y):	[2:0-3-8,Edge], [3:0-4	-0,0-3-0], [6:0-	3-0,0-3-0]				

LOADING	(nef)	SPACING S	ee Note 4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.76	Vert(LL)	0.16	• •	>999	240	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.52	Vert(TL)	-0.16		>999	180	11120	244/100
BCLL	10.0	Rep Stress Incr	NO	WB	0.80	Horz(TL)	0.03	2-12	n/a	n/a		
BCDL	5.0	Code FBC2004/TF		(Mat			0.00	Ū			Weight: 199 I	b
LUMBER						BRACING					6	
TOP CHO	RD 2X	4 SYP No.2				TOP CHO	RD	2-0-0 c	c purlins	(6-0-0 m	ax.), except end	verticals
BOT CHO	RD 2X	4 SYP No.2						(Switch	ned from	sheeted:	Spacing > 2-0-0)	
WEBS	2 X	4 SYP No.3				BOT CHO	RD	Rigid c	eiling dire	ectly appli	ied or 6-0-0 oc br	acing.
WEDGE						WEBS		1 Row	at midpt		3-11, 4-11, 6-1	0
Left: 2 X 4 SYP No.3				JOINTS		1 Brac	e at Jt(s):	: 4, 7				

REACTIONS (lb/size) 8=699/Mechanical, 2=539/0-4-0, 11=1902/0-4-0 Max Horz 2=480(load case 5) Max Uplift 8=-367(load case 3), 2=-335(load case 5), 11=-899(load case 5)

FORCES (Ib) - Maximum Compression/Maximum Tension

1-2=0/35, 2-3=-415/191, 3-4=-334/468, 4-5=-394/266, 5-6=-327/203, 6-7=-490/240, TOP CHORD 7-8=-651/374 BOT CHORD 2-12=-461/268, 11-12=-455/263, 10-11=-380/209, 9-10=-349/604, 8-9=-22/52

WEBS 3-12=-354/267, 3-11=-688/753, 4-11=-1205/676, 4-10=-475/961, 5-10=-361/344, 6-10=-360/232, 6-9=-132/193, 7-9=-315/666

JOINT STRESS INDEX

2 = 0.54, 2 = 0.00, 3 = 0.70, 4 = 0.84, 5 = 0.34, 6 = 0.56, 7 = 0.82, 8 = 0.54, 9 = 0.71, 10 = 0.99, 11 = 0.87 and 12 = 0.34

NOTES

1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

2) Provide adequate drainage to prevent water ponding.

Continued on page 2

🛦 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and factored MMTek conner Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 v. erection

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690062
L166081	T05	SPECIAL	1	1	
					Job Reference (optional)
Builders FirstS	ource, Lake City, FI 3	32055	6.200 s Jul 13 2005 l	MiTek In	dustries, Inc. Thu Jul 13 13:08:23 2006 Page 2

- 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 367 lb uplift at joint 8, 335 lb uplift at joint 2 and 899 lb uplift at joint 11.
- 4) This truss has been designed to support 24" o.c. loading from one side and 28" o.c. spacing from the opposite side. The building designer is responsible for verifiying the capability of the roof sheathing and ceiling materials to work structurally under these odd space intsallation conditions. Loading has been calculated by the truss manufacturer. It is the responsibility

of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent brancing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult 8CS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T05A	MONO TRUSS	1	1	J1690063
1100001					Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Wed Jul 12 15:46:04 2006 Page 1

6-0-0 oc purlins, except end verticals.

bracing.

Rigid ceiling directly applied or 10-0-0 oc

GRIP

244/190

8-7-0

BOT CHORD

	-	4 SYP No.2				BRACING TOP CHO		Structu	urol wood	choothir	ng directly appli	od or
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)						Weight: 45 I	b
BCLL	10.0	Rep Stress Incr	YES	WB	0.11	Horz(TL)	-0.00	6	n/a	n/a		
TCDL	7.0	Lumber Increase	1.25	BC	0.25	Vert(TL)	0.24	2-6	>402	180		
TCLL	20.0	Plates Increase	1.25	TC	0.63	Vert(LL)	0.28	2-6	>343	240	MT20	244
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GR

TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 WEBS 2 X 4 SYP No.3 WEDGE Left: 2 X 4 SYP No.3

REACTIONS (lb/size) 6=336/0-4-0, 2=440/0-4-0 Max Horz 2=282(load case 5) Max Uplift 6=-306(load case 5), 2=-258(load case 5)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/32, 2-3=-316/124, 3-4=-104/34, 4-5=-2/0, 4-6=-88/101

BOT CHORD 2-6=-308/242 **WEBS** 3-6=-242/292

JOINT STRESS INDEX

2 = 0.67, 2 = 0.00, 3 = 0.15, 4 = 0.30 and 6 = 0.75

NOTES

1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

2) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi

3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 306 Ib uplift at joint 6 and 258 lb uplift at joint 2.

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Continued on page 2

🎪 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only design parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connecton Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult 8CSI-1 or HIB-91 Handing Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690063
L166081	T05A	MONO TRUSS	1	1	
					Job Reference (optional)
Builders FirstS	ource, Lake City, FI	32055 6.20	00 s Jul 13 2005	MiTek Ir	ndustries, Inc. Wed Jul 12 15:46:04 2006 Page 2

LOAD CASE(S) Standard

Tross Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consuit BCS-11 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

	Truss	Truss Type	Qt	/ Ply	GATEWAYI	DEVELOP	MENT- SYDNE	Y MODEL J1690064
.166081	T05G	SPECIAL	1	2	Job Deferre	a (anti		0100004
Builders FirstSource	Lake City, Fl 32055		6.200 s Jul 13 200	l	Job Reference dustries, Inc.			Page 1
		4x6	= 4-4-0	2x4				
		1	4-4-0	2				0
		85514 		85-14				Scale = 1:39.0
	Simpson H	IHUS26-2 4 2x4	4 ⁵ 4-0 4-4-0	3	Simpson	HHUS26	-2	
L OADING (psf) ITCLL 20.0 ITCDL 7.0 BCLL 10.0 BCDL 5.0	SPACING Plates Increase Lumber Increase Rep Stress Incr Code FBC2004/TP	1.25 BC 0. NO WB 0.	04 Vert(LL) 28 Vert(TL) 00 Horz(TL)	-0.02	oc) l/defl 3-4 >999 3-4 >999 3 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 111	GRIP 244/190 Ib
BOT CHORD 2 X 6 WEBS 2 X 4 REACTIONS (lb/si	4 SYP No.3	al, 3=519/Mechanica e 2), 3=-196(load cas		RD Stu oc RD Rig	purlins, exce	ept end ve	g directly applied articals. ied or 10-0-0 oc 1-4, 2-3	
F ORCES (Ib) - Ma TOP CHORD 1-4 BOT CHORD 4-{	ximum Compression/N 4=-109/76, 1-2=0/0, 2- 5=-0/0, 3-5=-0/0 3=-0/0	faximum Tension	,					
	DEX	00						
JOINT STRESS INE 1 = 0.01, 2 = 0.0	03, 3 = 0.01 and 4 = 0	02						
1 = 0.01, 2 = 0. NOTES 1) 2-ply truss to be of Top chords come Bottom chords come Webs connected 2) All loads are cons LOAD CASE(S) s or (B), unless oth 3) Wind: ASCE 7-02 enclosed; MWFR 4) Provide adequate 5) Provide mechanic	connected together wit acted as follows: 2 X 4 annected as follows: 2 as follows: 2 X 4 - 1 ro sidered equally applied action. Ply to ply conn erwise indicated. t; 110mph (3-second g S gable end zone; Lur o drainage to prevent v cal connection (by othe	h 0.131"x3" Nails as f - 1 row at 0-9-0 oc, 2 X 6 - 2 rows at 0-9-0 oc w at 0-9-0 oc. to all plies, except if ections have been pro ust); h=20ft; TCDL=4 nber DOL=1.60 plate vater ponding.	X 6 - 2 rows at 0-9- bc. noted as front (F) of ovided to distribute .2psf; BCDL=3.0psf grip DOL=1.60.	r back (B) fa only loads r ; Category	noted as (F) II; Exp B; Tro Flo 196 lb upli	rida PE No Iders FirstS		C
1 = 0.01, 2 = 0. NOTES 1) 2-ply truss to be of Top chords come Bottom chords come Webs connected 2) All loads are cons LOAD CASE(S) s or (B), unless oth 3) Wind: ASCE 7-02 enclosed; MWFR 4) Provide adequate	connected together wit acted as follows: 2 X 4 annected as follows: 2 as follows: 2 X 4 - 1 ro sidered equally applied action. Ply to ply conn erwise indicated. t; 110mph (3-second g S gable end zone; Lur o drainage to prevent v cal connection (by othe	h 0.131"x3" Nails as f - 1 row at 0-9-0 oc, 2 X 6 - 2 rows at 0-9-0 oc w at 0-9-0 oc. to all plies, except if ections have been pro ust); h=20ft; TCDL=4 nber DOL=1.60 plate vater ponding.	X 6 - 2 rows at 0-9- bc. noted as front (F) of ovided to distribute .2psf; BCDL=3.0psf grip DOL=1.60.	r back (B) fa only loads r ; Category	noted as (F) II; Exp B; Tro Flo 196 lb upli	rida PE No Iders FirstS	. 21475 ource - Florida, LL	C

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of building designer and / or contractor per ANSI / TPI 1 as referenced by the building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building structure, including all dance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 **Builders** FirstSource

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T05G	SPECIAL	1	2	J1690064
				–	Job Reference (optional)
Builders FirstSour	ce, Lake City, FI 3205	5	6.200 s Jul 13 2005 l	MiTek In	dustries, Inc. Thu Jul 13 13:09:05 2006 Page 2

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-2=-54, 3-4=-30 Concentrated Loads (lb) Vert: 5=-699(F)

> Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

> > July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

6.200 s Jul 13 2005 MiTek Industries, Inc. Wed Jul 12 15:46:05 2006 Page 1

	3-11-8 7-7-8				11-3-8		14-	4-12		17- 9 -8	40
3-11-8 3		3-8-0	-0		3-8-0		3-1-4			3-4-12	
LOADING(psf)TCLL20.0TCDL7.0BCLL10.0BCDL5.0	SPACING Plates Increase Lumber Increase Rep Stress Incr Code FBC2004/T	2-0-0 1.25 1.25 NO PI2002	BC C).14).20).20).20	DEFL Vert(LL) Vert(TL) Horz(TL)		(loc) 10-11 10-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 525 lk	GRIP 244/190
LUMBER TOP CHORD 2 BOT CHORD 2 WEBS 2			BRACING TOP CHO BOT CHO	RD	6-0-0 (oc purlins ceiling dir	, except	ng directly applied end verticals. lied or 10-0-0 oc			

REACTIONS	(lb/size)	12=5441/0-4-0, 7=2972/0-4-0, 9=9017/0-4-0
	Max Uplift	12=-2057(load case 2), 7=-1126(load case 2), 9=-3398(load case 2)

FORCES (Ib) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-12=-219/108, 1-2=-113/42, 2-3=-3264/1234, 3-4=-3264/1234, 4-5=-1072/406, 5-6=-1072/406, 6-7=-1454/574

 BOT CHORD
 11-12=-1329/3509, 10-11=-1329/3509, 9-10=-124/307, 8-9=-124/307, 7-8=-25/66

 WEBS
 2-12=-4933/1869, 2-11=-1347/3751, 2-10=-363/141, 3-10=0/118, 4-10=-1646/438

/EBS 2-12=-4933/1869, 2-11=-1347/3751, 2-10=-363/141, 3-10=0/118, 4-10=-1646/4386, 4-9=-4919/1904, 4-8=-460/1251, 5-8=-30/227, 6-8=-605/1599

JOINT STRESS INDEX

1 = 0.18, 2 = 0.23, 3 = 0.12, 4 = 0.30, 5 = 0.12, 6 = 0.19, 7 = 0.17, 8 = 0.12, 9 = 0.26, 10 = 0.30, 11 = 0.39 and 12 = 0.33

NOTES

 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads 	Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244
Continued on page 2	July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690065
L166081	T06	SPECIAL	1	2	25 (201
				J	Job Reference (optional)
Builders FirstS	Source, Lake City, FI	32055	6.200 s Jul 13 2005	MiTek I	ndustries, Inc. Wed Jul 12 15:46:05 2006 Page 2

- 3) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone; Lumber DOL=1.60 plate grip DOL=1.60.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2057 lb uplift at joint 12, 1126 lb uplift at joint 7 and 3398 lb uplift at joint 9.

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-6=-54, 7-12=-942(F=-912)

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-31 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 8300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690066
L166081	T07	SPECIAL	2	1	
					Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Wed Jul 12 15:46:05 2006 Page 1

REACTIONS (lb/size) 11=152/0-3-8 or Simpson HTU26, 10=855/0-4-0, 7=726/0-4-0, 5=347/0-4-0 Max Horz 11=-535(load case 6) Max Uplift 11=-116(load case 3), 10=-356(load case 6), 7=-123(load case 6), 5=-174(load case 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-11=-76/154, 1-2=-7/40, 2-3=-57/109, 3-4=-282/33, 4-5=-134/52, 5-6=0/32

BOT CHORD 10-11=-37/533, 9-10=0/285, 8-9=0/285, 7-8=0/147, 5-7=0/150

WEBS 1-10=-82/29, 2-10=-364/266, 3-10=-302/320, 3-8=-66/62, 4-8=0/173, 4-7=-515/143

JOINT STRESS INDEX

1 = 0.49, 2 = 0.59, 3 = 0.40, 4 = 0.67, 5 = 0.52, 5 = 0.00, 7 = 0.33, 8 = 0.34, 9 = 0.15, 10 = 0.59 and 11 = 0.44

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevalt Blvd. Jacksonville, FL 32244

July 17,2006

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent brancing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-811 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
			_		J169006
L166081	T07	SPECIAL	2	1	
		and a second			Job Reference (optional)

NOTES

- 1) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 2) Provide adequate drainage to prevent water ponding.
- 3) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 116 lb uplift at joint 11, 356 lb uplift at joint 10, 123 lb uplift at joint 7 and 174 lb uplift at joint 5.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrance A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	то8	SPECIAL	1	1	J1690067
2100001	100				Job Reference (optional)

Builders FirstSource, Lake City, FI 32055 6.200 s Jul 13 2005 MiTek Industries, Inc. Thu Jul 13 13:19:41 2006 Page 1

REACTIONS (lb/size) 2=535/0-4-0, 22=1281/0-4-0, 15=878/0-4-0, 14=1079/6-7-0, 18=825/0-4-0, 10=431/6-7-0, 13=-378/6-7-0, 12=241/6-7-0

Max Horz 2=-367(load case 3)

Max Uplift 2=-386(load case 5), 22=-773(load case 4), 15=-443(load case 6), 14=-415(load case 6), 18=-354(load case 3), 10=-272(load case 6), 13=-379(load case 10), 12=-69(load case 6)

Max Grav 2=543(load case 9), 22=1285(load case 9), 15=884(load case 10), 14=1097(load case 10), 18=849(load case 10), 10=437(load case 10), 13=55(load case 6), 12=242(load case 10)

Tross Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent brancing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690067
L166081	T08	SPECIAL	1	1	
					Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Thu Jul 13 13:19:41 2006 Page 2

FORCES (Ib) - Maximum Compression/Maximum Tension

- TOP CHORD 1-2=0/32, 2-3=-470/379, 3-4=-238/365, 4-54=-137/245, 5-54=-137/245, 5-6=-24/187, 6-7=-352/332, 7-8=-236/171, 8-9=-36/29, 9-10=-157/65, 10-11=-14/53
- BOT CHORD 2-25=-287/320, 24-25=-284/317, 22-24=-284/317, 21-22=-97/356, 20-21=-97/356, 19-23=0/0, 18-19=0/0, 17-18=-50/29, 16-17=-36/192, 15-16=-36/192, 14-15=-21/120, 13-14=-21/120, 12-13=-21/120, 10-12=-21/120
- WEBS 3-25=-301/250, 3-22=-638/664, 6-20=-458/330, 6-17=-75/118, 7-17=-64/194, 7-15=-739/484, 8-15=-23/79, 8-14=-666/454, 18-20=-695/388, 5-20=-256/235, 17-20=-108/250, 4-22=-486/319, 5-22=-277/225, 19-21=0/105

JOINT STRESS INDEX

2 = 0.54, 2 = 0.00, 3 = 0.57, 4 = 0.60, 5 = 0.42, 6 = 0.40, 7 = 0.73, 8 = 0.42, 9 = 0.00, 9 = 0.43, 9 = 0.43, 10 = 0.49, 12 = 0.34, 13 = 0.34, 14 = 0.16, 15 = 0.35, 16 = 0.31, 17 = 0.57, 18 = 0.34, 19 = 0.34, 20 = 0.27, 21 = 0.34, 22 = 0.28, 24 = 0.22, 25 = 0.34, 26 = 0.46, 26 = 0.34, 27 = 0.34, 28 = 0.34, 29 = 0.34, 29 = 0.34, 30 = 0.34, 31 = 0.40, 31 = 0.34, 32 = 0.34, 33 = 0.34, 34 = 0.34, 35 = 0.34, 35 = 0.34, 36 = 0.34, 37 = 0.00, 38 = 0.34, 39 = 0.34, 40 = 0.34, 40 = 0.34, 41 = 0.34, 42 = 0.34, 43 = 0.34, 43 = 0.34, 44 = 0.34, 45 = 0.40, 46 = 0.34, 47 = 0.34, 48 = 0.34, 48 = 0.34, 49 = 0.34, 50 = 0.34, 51 = 0.34, 51 = 0.34, 52 = 0.34 and 53 = 0.34

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 386 lb uplift at joint 2, 773 lb uplift at joint 22, 443 lb uplift at joint 15, 415 lb uplift at joint 14, 354 lb uplift at joint 18, 272 lb uplift at joint 10, 379 lb uplift at joint 13 and 69 lb uplift at joint 12.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- 9) The building designer is responsible for the design of the roof and ceiling diaphragms, gable and shear walls, and supporting shear walls. Shear walls must provide continuous lateral restraint to the gable end. All connections to be specified by the building designer. Bottom chord must be laterally braced for horizontal wind loads. Bottom chord bracing and its connections to be specified by the building designer.

LOAD CASE(S) Standard 1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-4=-54, 4-54=-54, 6-54=-91(F=-37), 6-11=-91(F=-37), 2-21=-30, 10-23=-30

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent braceing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 Dionofho Drive, Madison, WI 53719

JOINT STRESS INDEX

2 = 0.60, 2 = 0.00, 3 = 0.87, 4 = 0.97, 5 = 0.70, 6 = 0.67, 7 = 0.79, 8 = 0.44, 9 = 0.58, 9 = 0.00, 11 = 0.71, 12 = 0.48, 14 = 0.47, 15 = 0.81, 16 = 0.80, 17 = 0.69, 18 = 0.95, 18 = 0.00, 19 = 0.00, 19 = 0.00 and 20 = 0.33

Continued on page 2

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of building designer and / or contractor per ANSI / TPI 1 as referenced by the building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	F	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	Т09	SPECIAL	1		1	J1690068
2.00001	100	0. 20. 4				Job Reference (optional)
Builders FirstSo	ource, Lake City, FI	32055	6.200 s Jul 13 2005	Mi	Tek In	dustries, Inc. Wed Jul 12 15:46:07 2006 Page 2

NOTES

- 1) 2 X 4 SYP No.2 bearing block 12" long at jt. 18 attached to front face with 2 rows of 0.131"x3" Nails spaced 3" o.c. 8 Total fasteners. Bearing Fc perp is assumed to be 565 psi.
- 2) Unbalanced roof live loads have been considered for this design.

3) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 833 lb uplift at joint 2, 415 lb uplift at joint 18.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 DOnofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T10	SPECIAL	1	1	J1690069
					Job Reference (optional)
Builders FirstS	ource, Lake City, Fl 3	2055 6	6.200 s Jul 13 2005	MiTek In	dustries, Inc. Thu Jul 13 13:23:14 2006 Page 1

3.50 12

13

2x4 ||

12

3x8 =

4x6

	0-2-0	7-3-1	1	13-2-7	14-7-0	20-6-	7	26-7-1	29-4-8	3 32-6	-0 36	6-6-0	44-6-0	
	0-2-0	7-1-1	1	5-10-13	1-4-8	5-11-	7	6-0-10	2-9-7	3-1-	8 4	-0-0	8-0-0	
Plate	Offset	s (X,Y):	[3:0-4-0,0-3	8-4], [3:4-	1-5,8-6-14	, [6:0-5-	1,Edge]	, [9:0-5-0,0-6-0], [12:0-	3-8,0-1	-8]			
LOAD	ING ((psf)	SPACING		2-0-0	CSI		DEFL	in	(loc)	l/defi	L/d	PLATES	GRIP
TCLL		20.0	Plates Inc	rease	1.25	TC	0.78	Vert(LL)	-0.32	10-12	>999	240	MT20	244/190
TCDL		7.0	Lumber In	crease	1.25	BC	0.68	Vert(TL)	-0.51	10-12	>723	180		
BCLL		10.0	Rep Stres	s Incr	YES	WB	0.93	Horz(TL)	0.29	11	n/a	n/a		
BCDL		5.0	Code FBC	2004/TP	12002	(Mati	ix)						Weight: 295	lb
LUMB	ER							BRACING						
TOP C	HOR	D 2X4	SYP No.2 *	Except*				TOP CHO	RD	Structu	iral wood	d sheathin	g directly applied	l or 6-0-0
		6-9 2	X 8 SYP 24	00F 2.0E						oc pur	ins, exce	ept	• • • •	
		9-11	2 X 8 SYP 2	400F 2.0	E							s (6-0-0 m	ax.): 4-6.	
BOT C	HOR	D 2X4	SYP No.1D	*Except	•			BOT CHO	RD	Rigid c	eiling di	ectly appl	lied or 4-7-3 oc b	racing.
		8-13	2 X 4 SYP N	10.3				WEBS		2 Row	s at 1/3	ots	4-19	2
WEBS	;	2 X 4	SYP No.3 *	Except*							-			
		12-14	4 2 X 4 SYP	No.2										
WEDO	θE													

Left: 2 X 4 SYP No.3

REACTIONS (lb/size) 2=-690/0-4-0, 19=3777/0-7-3, 11=648/0-4-0 Max Horz 2=-350(load case 3) Max Uplift 2=-1010(load case 10), 19=-1145(load case 6), 11=-281(load case 6) Max Grav 2=124(load case 3), 19=3777(load case 1), 11=655(load case 10)

20

2x4 ||

19 18

5x6 =

6x8 =

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/32, 2-3=-363/2217, 3-4=-688/2616, 4-5=-160/951, 5-6=-85/215, 6-7=-581/198, 7-8=-560/219, 8-9=-1929/452, 9-10=-1304/504, 10-11=-294/155 **BOT CHORD** 2-20=-1847/636, 19-20=-1850/638, 18-19=-1848/854, 17-18=-1931/892, 16-17=-1020/678, 15-16=-267/496, 14-15=-182/1633, 13-14=0/47, 8-14=-222/895, 12-13=-2/22, 10-12=-360/1277 WEBS 3-20=-266/223, 3-19=-667/633, 4-18=-97/372, 4-17=-427/1381, 5-17=-1083/434, 5-16=-256/1114, 6-16=-860/263, 6-15=-144/1032, 8-15=-1110/461, 12-14=-484/1696, 9-14=-168/309, 9-12=-949/327, 4-19=-3039/937, 7-15=-195/164

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Continued on page 2

A Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded verticely and fabricated with MITek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
				J169006
T10	SPECIAL	1	1	
				Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Thu Jul 13 13:23:14 2006 Page 2

JOINT STRESS INDEX

2 = 0.73, 2 = 0.00, 3 = 0.88, 3 = 0.00, 4 = 0.79, 5 = 0.69, 6 = 0.27, 7 = 0.16, 8 = 0.27, 9 = 0.22, 10 = 0.56, 12 = 0.94, 13 = 0.37, 14 = 0.45, 15 = 0.52, 16 = 0.78, 17 = 0.73, 18 = 0.29, 19 = 0.42 and 20 = 0.34

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1010 lb uplift at joint 2, 1145 lb uplift at joint 19 and 281 lb uplift at joint 11.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 8550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including at temporary and parameters and contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719

lob	Truss	Truss Type	Qty	Ply	GATEWA	Y DEVELO	PMENT- SYDNE	Y MODEL J1690070
.166081	T11	SPECIAL	2	1		·		31090070
Builders FirstSo	ource, Lake City, FI 32055	6	.200 s Jul 13 2005	MiTek lı		ence (option c. Thu Jul 1		Page 1
-1-6-0 1-6-0	7-3-11 14-5 7-3-11 7-2		26-7-1 6-0-10		-6-0 0-15	36-6-0	44-6-0 8-0-0	46-0-0 1-6-0
1-0-0	1-5-11 1-2	-2 0-0-10	0-0-10	5-10	0-15	4-0-0	0-0-0	Scale = 1:78.5
		5x14 ==						
	7.00 12		X0	2 =				
9 1 2 5x6	5x8 =	21 2019 18	5 5 6 3 3 6 3 5 3 5 12	3x6	7 6x8 5 14 5x14 14 13	8x10 9 12	10 5x8 =	11 4.3-12
	2x4	6x8 = 5x6 =			2x4	4x6 =		
0-2-0	7-3-11 11-9-0	14-7-0 20-6-7	26-7-1	29-4-8	32-6-0	36-6-0	44-6-0	
0-2-0	7-1-11 4-5-5	2-10-0 5-11-7	6-0-10	2- 9 -7	3-1-8	4-0-0	8-0-0	
late Offsets (2	(,Y): [3:0-4-0,0-3-4], [3:	4-1-0,8-7-9], [6:0-5-1,Edge]	, [9:0-5-0,0-6-0]					
OADING (psi "CLL 20.1 "CDL 7.1 "CLL 10.1 "CLL 10.1 "CCL 5.1	 Plates Increase Lumber Increase Rep Stress Incr 	2-0-0 CSI 1.25 TC 0.86 1.25 BC 0.80 YES WB 0.94 'PI2002 (Matrix)	DEFL Vert(LL) Vert(TL) Horz(TL)	in -0.38 -0.60 0.37	(loc) l/def 13 >999 13 >642 11 n/s	9 240 2 180	PLATES MT20 Weight: 295	GRIP 244/190
	2 X 4 SYP No.2 *Except 6-9 2 X 8 SYP 2400F 2.0 9-11 2 X 8 SYP 2400F 2 2 X 4 SYP No.1D *Except 8-13 2 X 4 SYP No.3 2 X 4 SYP No.3 *Except 12-14 2 X 4 SYP No.2, 4 No.3	DE .0E 	BRACING TOP CHOR BOT CHOR WEBS	0 2 D R	c purlins, ex -0-0 oc purl	cept ins (6-0-0 m directly appl	g directly applied ax.): 4-6. ied or 4-3-10 oc 4-20	
REACTIONS	Max Horz 2=-350(load c Max Uplift 2=-1253(load	20=3973/0-4-11 (0-4-0 + be ase 3) case 10), 20=-1169(load ca ise 3), 20=3973(load case 1	ise 6), 11=-304(lo	ad case				
ORCES (Ib) OP CHORD	7-8=-1066/271, 8-9=-2 2-22=-2230/731, 21-22 17-18=-1640/786, 16-1	//Maximum Tension 70, 3-4=-820/3041, 4-5=-83 578/698, 9-10=-1559/597, 7 !=-2233/733, 20-21=-2233/7 7=-733/597, 15-16=-296/4 !=-4/28, 10-12=-453/1524	10-11=-330/166 733, 19-20=-1566/	752, 18-	-19=-1566/7	52,		
WEBS	3-22=-257/222, 3-20=- 5-16=-261/1127, 6-16=	=-4/28, 10-12=-453/1524 659/604, 4-18=-168/540, 4- -862/264, 6-15=-259/1337, 1161/407, 4-20=-3528/1144	8-15=-1228/496,		607/2021,	Florida PE No Builders FirstS	ource - Florida, L.L.	с
	8					6550 Roosew	alt Blvd. Jacksonvil	le, FL 32244

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
	5				J1690070
L166081	T11	SPECIAL	2	1	
					Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Thu Jul 13 13:24:22 2006 Page 2

JOINT STRESS INDEX

2 = 0.92, 2 = 0.00, 3 = 0.99, 3 = 0.00, 4 = 0.97, 5 = 0.69, 6 = 0.32, 7 = 0.16, 8 = 0.31, 9 = 0.23, 10 = 0.66, 12 = 0.87, 13 = 0.43, 14 = 0.40.61, 15 = 0.70, 16 = 0.79, 17 = 0.72, 18 = 0.23, 19 = 0.00, 19 = 0.00, 20 = 0.50, 20 = 0.00, 21 = 0.00, 21 = 0.00 and 22 = 0.34

NOTES

- 1) 2 X 4 SYP No.2 bearing block 12" long at jt. 20 attached to front face with 2 rows of 0.131"x3" Nails spaced 3" o.c. 8 Total fasteners. Bearing Fc perp is assumed to be 565 psi.
- 2) Unbalanced roof live loads have been considered for this design.
- 3) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Provide adequate drainage to prevent water ponding.
- 5) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1253 lb uplift at joint 2, 1169 lb uplift at joint 20 and 304 lb uplift at joint 11.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6SSO Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J1690071 2006 Page 1 54-3-0 1-6-0 Scale: 1/8"=1'
Builders FirstSource, Lake City, FI 32055 6.200 s Jul 13 2005 MiTek Industries, Inc. Wed Jul 12 15:46:10 20 6.200 s Jul 13 2005 MiTek Industries, Inc. Wed Jul 12 15:46:10 20 160 7.3:11 122 65:14 26:5:15 32:60 38:33 44:40 52:90 160 7.3:11 7:2:2 60:1 60:1 5:93 60:13 8:50 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10	54-3-0 1-6-0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54-3-0 1-6-0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-6-0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Vance of the second sec
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parallel Andread
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\frac{2x4}{4x6} = 23 22 21 3.50 12 3.50 $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-0-6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4-3-12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4x6 =
60-5 11-11-0 14-7-0 21-11-12 29-4-8 32-6-0 38-3-3 44-4-0 52-9-0 60-5 5-10-11 2-8-0 7-4-12 7-4-12 3-1-8 5-9-3 60-13 8-5-0 Plate Offsets (X,Y): [3:0-5-0,0-4-8], [6:0-5-0,0-4-8], [10:0-5-0,0-4-8] DEFL in (loc) I/defl L/d PLATES CADING (psf) SPACING 2-0-0 CSi DEFL in (loc) I/defl L/d PLATES CDL 7.0 Lumber Increase 1.25 BC 0.30 Vert(TL) -0.16 19-20 >999 180	
60-5 5-10-11 28-0 7-4-12 7-4-12 3-1-8 5-9-3 6-0-13 8-5-0 Plate Offsets (X,Y): [3:0-5-0,0-4-8], [6:0-5-0,0-4-8], [10:0-5-0,0-4-8] DEFL in (loc) I/defl L/d PLATES OADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES CLL 20.0 Plates Increase 1.25 TC 0.21 Vert(LL) -0.10 19-20 >999 240 MT20 CDL 7.0 Lumber Increase 1.25 BC 0.30 Vert(TL) -0.16 19-20 >999 180	
60-5 5-10-11 28-0 7-4-12 7-4-12 3-1-8 5-9-3 6-0-13 8-5-0 Plate Offsets (X,Y): [3:0-5-0,0-4-8], [6:0-5-0,0-4-8], [10:0-5-0,0-4-8] DEFL in (loc) I/defl L/d PLATES OADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES CLL 20.0 Plates Increase 1.25 TC 0.21 Vert(LL) -0.10 19-20 >999 240 MT20 CDL 7.0 Lumber Increase 1.25 BC 0.30 Vert(TL) -0.16 19-20 >999 180	
60-5 5-10-11 2-8-0 7-4-12 3-1-8 5-9-3 6-0-13 8-5-0 Plate Offsets (X,Y): [3:0-5-0,0-4-8], [6:0-5-0,0-4-8], [10:0-5-0,0-4-8] DEFL in (loc) I/defl L/d PLATES OADING (psf) SPACING 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES CLL 20.0 Plates Increase 1.25 TC 0.21 Vert(LL) -0.10 19-20 >999 240 MT20 CDL 7.0 Lumber Increase 1.25 BC 0.30 Vert(TL) -0.16 19-20 >999 180	
OADING (psf) SPACING 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES CLL 20.0 Plates Increase 1.25 TC 0.21 Vert(LL) -0.10 19-20 >999 240 MT20 CDL 7.0 Lumber Increase 1.25 BC 0.30 Vert(TL) -0.16 19-20 >999 180	-
CLL 20.0 Plates Increase 1.25 TC 0.21 Vert(LL) -0.10 19-20 >999 240 MT20 CDL 7.0 Lumber Increase 1.25 BC 0.30 Vert(TL) -0.16 19-20 >999 180	
CLL 20.0 Plates Increase 1.25 TC 0.21 Vert(LL) -0.10 19-20 >999 240 MT20 CDL 7.0 Lumber Increase 1.25 BC 0.30 Vert(TL) -0.16 19-20 >999 180	GRIP
	244/19
CLL 10.0 Rep Stress Incr YES WB 0.98 Horz(TL) 0.08 14 n/a n/a	
BCDL 5.0 Code FBC2004/TPI2002 (Matrix) Weight: 4	430 lb
UMBER BRACING	
TOP CHORD 2 X 6 SYP No.1D TOP CHORD Structural wood sheathing directly ap	pplied or
OT CHORD 2 X 6 SYP No.1D *Except* 6-0-0 oc purlins, except 8-17 2 X 4 SYP No.3 2-0-0 oc purlins (6-0-0 max.): 4-9.	
VEBS 2 X 4 SYP No.3 BOT CHORD Rigid ceiling directly applied or 6-0-0) oc
bracing.	10
WEBS 1 Row at midpt 9-15, 4-2	2
EACTIONS (lb/size) 2=85/0-4-0, 14=2114/0-4-0, 22=2415/0-4-0, 12=-31/0-4-0 Max Horz 2=300(load case 4)	
Max Uplift 2=-295(load case 5), 14=-849(load case 3), 22=-1155(load case 4),	
12=-289(load case 6) Max Grav 2=106(load case 9), 14=2117(load case 10), 22=2415(load case 1),	
12=139(load case 4)	
ORCES (Ib) - Maximum Compression/Maximum Tension	
OP CHORD 1-2=0/40, 2-3=-351/718, 3-4=-504/1055, 4-5=-775/466, 5-6=-690/390,	
6-7=-1464/655, 7-8=-1462/652, 8-9=-1153/570, 9-10=-459/325, 10-11=-384/896, 11-12=-401/736, 12-13=0/40	
OT CHORD 2-23=-584/440, 22-23=-585/441, 21-22=-274/315, 20-21=-302/333,	
19-20=-565/1259, 18-19=-482/1195, 17-18=0/78, 8-18=-684/423, 16-17=-3/18, 15-16=-3/18, 14-15=-706/358, 12-14=-593/328	
/EBS 4-21=-22/163, 4-20=-611/1360, 5-20=-345/313, 6-20=-866/416, 6-19=-115/497, Florida PF No. 21475	
8-19=-207/497, 15-18=-64/350, 9-18=-550/1115, 9-15=-870/422, 10-15=-506/1321, Builders FirstSource - Florida.	, LLC
10-14=-1732/658, 11-14=-273/243, 7-19=-64/71, 4-22=-1938/837, 3-23=-232/181, 6550 Roosevelt Blvd. Jackson 3-22=-555/564	
ontinued on page 2	July 17,2
Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE	
design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors.	and state in the second state
Installing of design parameters and procent contractor per ANSI / TP1 is referenced by the building scode. For general guidance regarding storage, delivery, seedon bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, D Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719	ilder

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690071
L166081	T12	SPECIAL	2	1	
					Job Reference (optional)
Builders First S	Source, Lake City, FI	32055	6.200 s Jul 13 2005	MiTek I	ndustries, Inc. Wed Jul 12 15:46:10 2006 Page 2

JOINT STRESS INDEX

2 = 0.31, 3 = 0.37, 4 = 0.84, 5 = 0.33, 6 = 0.21, 7 = 0.33, 8 = 0.20, 9 = 0.69, 10 = 0.45, 11 = 0.33, 12 = 0.55, 14 = 0.39, 15 = 0.60, 16 = 0.11, 17 = 0.15, 18 = 0.67, 19 = 0.20, 20 = 0.65, 21 = 0.19, 22 = 0.38 and 23 = 0.33

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.

3) Provide adequate drainage to prevent water ponding.

- 4) All bearings are assumed to be SYP No.2 crushing capacity of 565.00 psi
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 295 lb uplift at joint 2, 849 lb uplift at joint 14, 1155 lb uplift at joint 22 and 289 lb uplift at joint 12.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an Individual building component that is installed and leaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI/ TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T12G	SPECIAL	1	1	J1690072
2.00000		0. 20. 12			Job Reference (optional)

Builders FirstSource, Lake City, FI 32055 6.200 s Jul 13 2005 MiTek Industries, Inc. Thu Jul 13 13:29:28 2006 Page 1

F.	6-0-5	11-11-0 14-7	-0 2	1-11-12	29	-4-8 32-6	-0	37-8-4	44	-10-6	52-9-0	
	6-0-5	5-10-11 2-8-	-0	7-4-12	7	4-12 3-1	-8	5-2-4	7	-2-2	7-10-10	
Plate Of	ffsets (X,Y):	[3:0-5-0,0-4-8], [6:0)-5-0,0-4-6	8]							· · · · · · · · · · · · · · · · · · ·	
LOADIN	IG (psf)	SPACING	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC	0.25	Vert(LL)	0.23	23-24	>999	240	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.29	Vert(TL)	0.19	23-24	>999	180		
BCLL	10.0	Rep Stress Incr	NO	WB	1.00	Horz(TL)	-0.10	18	n/a	n/a		
BCDL	5.0	Code FBC2004/T	PI2002	(Mati	rix)						Weight: 428	lb
LUMBE	R					BRACING					1	
TOP CH	IORD 2X	6 SYP No.1D *Excep	t*			TOP CHO	RD	Structu	iral wood	sheathin	a directly applied	d or 6-0-0
	13-1	5 2 X 4 SYP No.2						oc pur	ins.			
BOT CH	IORD 2X	6 SYP No.1D *Excep	t*			BOT CHO	RD	Rigid o	eiling dir	ectly appl	ied or 6-0-0 oc b	racing.
	8-21	2 X 4 SYP No.3				WEBS		-	at midpt		4-26, 4-24, 9-	•
WEBS	2 X	4 SYP No.3									· · = · · ·	• • • • •

REACTIONS (Ib/size) 14=-41/8-7-0, 2=50/0-4-0, 26=2507/0-4-0, 18=1971/8-7-0, 17=-62/8-7-0, 16=260/8-7-0 Max Horz 2=627(load case 4) Max Uplift 14=-190(load case 9), 2=-233(load case 10), 26=-1952(load case 4), 18=-1367(load case 3), 17=-62(load case 1), 16=-135(load case 6) Max Grav 14=285(load case 4), 2=298(load case 3), 26=2507(load case 1), 18=1973(load case 10), 17=84(load case 6), 16=261(load case 10)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/40, 2-3=-984/778, 3-4=-1223/1124, 4-5=-802/1132, 5-6=-717/1081, 6-7=-1605/2060, 7-8=-1602/2059, 8-9=-1306/1576, 9-28=-676/720, 10-28=-688/692, 10-11=-867/805, 11-12=-899/778, 12-13=-929/765, 13-14=-923/726, 14-15=-3/42 BOT CHORD 2-27=-636/561, 26-27=-637/562, 25-26=-303/180, 24-25=-333/218, 23-24=-1577/1346, 22-23=-1431/1352, 21-22=-55/63, 8-22=-639/763, 20-21=0/103, 19-20=0/103, 18-19=-647/921, 17-18=-647/921, 16-17=-647/921, 14-16=-647/921 **WEBS** 4-26=-2033/2463, 4-25=-338/167, 4-24=-1792/1435, 5-24=-344/309, 6-24=-965/1007, Florida PE No. 21475 6-23=-711/597, 8-23=-768/476, 19-22=-459/593, 9-22=-1239/1131, 9-19=-848/759, 10-19=-1392/1315, 10-18=-1685/1746, 3-26=-556/561, 3-27=-200/177, 7-23=-79/64, 11-17=-75/84, 12-16=-122/137

Truss Design Engineer: Lawrence A. Paine, PE Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Continued on page 2

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracking, is the responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, erec and bracing, consult BCS1 or HB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T12G	SPECIAL	1	1	J169007
2.0000.	1120				Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Thu Jul 13 13:29:28 2006 Page 2

JOINT STRESS INDEX

2 = 0.36, 3 = 0.38, 4 = 0.91, 5 = 0.34, 6 = 0.34, 7 = 0.34, 8 = 0.22, 9 = 0.73, 10 = 0.76, 11 = 0.34, 12 = 0.34, 13 = 0.00, 13 = 0.13 0.12, 14 = 0.60, 14 = 0.15, 16 = 0.34, 17 = 0.34, 18 = 0.57, 19 = 0.60, 20 = 0.11, 21 = 0.15, 22 = 0.45, 23 = 0.23, 24 = 0.70, 25 = 0.20, 20 = 0.11, 21 = 0.15, 22 = 0.45, 23 = 0.23, 24 = 0.70, 25 = 0.20, 20 = 0.11, 21 = 0.15, 22 = 0.45, 23 = 0.23, 24 = 0.70, 25 = 0.20, 20 = 0.11, 21 = 0.15, 22 = 0.45, 23 = 0.23, 24 = 0.70, 25 = 0.20, 20 = 0.11, 21 = 0.15, 22 = 0.45, 23 = 0.23, 24 = 0.70, 25 = 0.20, 20 = 0.11, 21 = 0.15, 22 = 0.45, 23 = 0.23, 24 = 0.70, 25 = 0.20, 20 = 0.11, 21 = 0.15, 22 = 0.45, 23 = 0.23, 24 = 0.70, 25 = 0.20, 20 = 0.11, 21 = 0.15, 22 = 0.45, 23 = 0.23, 24 = 0.70, 25 = 0.20, 20 = 0.11, 21 = 0.15, 22 = 0.45, 23 = 0.23, 24 = 0.70, 25 = 0.20, 20 = 0.11, 21 = 0.15, 22 = 0.45, 23 = 0.23, 24 = 0.70, 25 = 0.20, 20 = 0.11, 21 = 0.15, 22 = 0.45, 23 = 0.23, 24 = 0.70, 25 = 0.20, 20 = 0.11, 2026 = 0.44 and 27 = 0.34

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Provide adequate drainage to prevent water ponding.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 190 lb uplift at joint 14, 233 lb uplift at joint 2 1952 lb uplift at joint 26, 1367 lb uplift at joint 18, 62 lb uplift at joint 17 and 135 lb uplift at joint 16.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- 6) The building designer is responsible for the design of the roof and ceiling diaphragms, gable and shear walls, and supporting shear walls. Shear walls must provide continuous lateral restraint to the gable end. All connections to be specified by the building designer. Bottom chord must be laterally braced for horizontal wind loads. Bottom chord bracing and its connections to be specified by the building designer.
- 7) Truss designed for wind loads in plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail".

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-4=-54, 4-9=-54, 9-28=-54, 15-28=-64(F=-10), 2-25=-30, 23-25=-30, 22-23=-30, 14-21=-30

> Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

> > July 17,2006

🛦 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handing installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T13	ATTIC	1	1	J1690073
2.00001	110		•	· ·	Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Thu Jul 13 13:33:17 2006 Page 1

LOADING (psf) SPACING 2-0-0 CS	l DEFL	in (loc) i/defi	L/d	PLATES	GRIP
TCLL 20.0 Plates Increase 1.25 TC	0.95 Vert(LL)	-0.61 12-14 >486	360	MT20	244/190
TCDL 7.0 Lumber Increase 1.25 BC	0.87 Vert(TL)	-0.98 12-14 >301	240		
BCLL 10.0 Rep Stress Incr YES WE	0.66 Horz(TL)	0.02 11 n/a	n/a		
BCDL 5.0 Code FBC2004/TPI2002 (Mi	atrix) Wind(LL)	0.24 12-14 >999	240	Weight: 215 lb	

LUMBER

TOP CHORD	2 X 6 SYP No.1D
BOT CHORD	2 X 8 SYP 2400F 2.0E
WEBS	2 X 4 SYP No.3 *Except*
	2-15 2 X 6 SYP No.1D, 9-11 2 X 6 SYP No.1D

BRACING TOP CHORD BOT CHORD JOINTS

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied or 3-11-3 oc bracing. 1 Brace at Jt(s): 16

REACTIONS (lb/size) 15=1920/0-3-8, 11=1748/0-3-8 Max Horz 15=-445(load case 3) Max Uplift 15=-177(load case 5), 11=-256(load case 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

- TOP CHORD 1-2=0/47, 2-3=-1619/197, 3-4=-1352/306, 4-5=0/441, 5-6=-0/469, 6-7=-1345/293, 7-8=-1737/152, 8-9=-96/167, 9-10=0/47, 2-15=-2704/231, 9-11=-29/206
- **BOT CHORD** 14-15=-352/431, 13-14=0/1291, 12-13=0/1291, 11-12=-2/1018
- WEBS 4-16=-1714/252, 6-16=-1714/252, 3-14=0/505, 7-12=-3/631, 2-14=-77/2048, 8-12=-122/346, 5-16=0/110, 8-11=-1811/55

JOINT STRESS INDEX

2 = 0.81, 3 = 0.21, 4 = 0.54, 5 = 0.76, 6 = 0.54, 7 = 0.26, 8 = 0.48, 9 = 0.25, 11 = 0.60, 12 = 0.15, 13 = 0.38, 14 = 0.33, 15 = 0.75 and 16 = 0.16

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; Florida PE No. 21475 enclosed; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber FirstSource - Florida, LLC DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS 50 Roosevelt Blvd. Jacksonville, FL 32244 for reactions specified. July 17,2006

Continued on page 2

🏔 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Truss Design Engineer: Lawrence A. Paine, PE

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690073
L166081	T13	ATTIC	1	1	
					Job Reference (optional)
Builders FirstSou	rce, Lake City, FI 3	2055	6.200 s Jul 13 2005 M	liTek In	dustries, Inc. Thu Jul 13 13:33:17 2006 Page 2

NOTES

- 3) Ceiling dead load (5.0 psf) on member(s). 3-4, 6-7, 4-16, 6-16; Wall dead load (5.0 psf) on member(s).3-14, 7-12
- 4) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 177 lb uplift at joint 15 and 256 lb uplift at joint 11.

LOAD CASE(S) Standard

Trass Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component Into the overall building structure, including all temporary and permanent bracends, is the responsibility of building designer and / or contractor per ANSI/ TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T13G	ATTIC	1	1	J1690074
2.0000.				·	Job Reference (optional)
Builders FirstS	Source, Lake City, FI 3	2055 6	.200 s Jul 13 2005	MiTek In	dustries, Inc. Thu Jul 13 13:36:39 2006 Page 1

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 10.0 BCDL 5.0	SPACING Plates Increase Lumber Increase Rep Stress Incr Code FBC2004/T	2-0-0 1.25 1.25 NO	CSI TC BC WB	0.62 0.64 0.30	DEFL Vert(LL) Vert(TL) Horz(TL)	-0.42 0.01	12-14 12-14 11	l/defl >643 >412 n/a	L/d 360 240 n/a	PLATES MT20 MT18H	GRIP 244/190 244/190
LUMBER TOP CHORD 2 × 1-3 BOT CHORD 2 × WEBS 2 ×	6 SYP No.1D *Excep 2 X 4 SYP No.1D, 10 8 SYP 2400F 2.0E 4 SYP No.3 4 SYP No.3	t*	(Matr YP No.1		Wind(LL) BRACING TOP CHOF BOT CHOF JOINTS	RD	oc pur Rigid c	lins, exc	ept end ve ectly appli	Weight: 257 lb g directly applied o articals. ied or 6-0-0 oc brad	

REACTION	ize) 15=704/0-3-8, 14=1119/0-3-8, 12=1499/0-3-8, 11	=517/0-3-8
	Horz 15=-413(load case 3)	
	Uplift 15=-358(load case 6), 14=-167(load case 4), 12= case 5)	166(load case 6), 11=-181(load
	Grav 15=704(load case 1), 14=1348(load case 10), 12	=1552(load case 11),
	11=517(load case 1)	
FORCES	ximum Compression/Maximum Tension	
TOP CHOP	2=0/46, 2-3=-637/212, 3-4=-540/219, 4-5=-720/318, 5-6	=-289/93, 6-7=-271/96,
	8=-748/315, 8-9=-672/164, 9-10=-5/134, 2-15=-1127/29	3, 10-11=-12/65
BOT CHOR	-15=-327/358 13-14=-104/537 12-13=-104/537 11-12	

 BOT CHORD
 14-15=-327/358, 13-14=-104/537, 12-13=-104/537, 11-12=-81/369
 Truss Design Engineer: Lawrence A. Paine, PE

 WEBS
 5-16=-317/276, 7-16=-317/276, 4-14=-478/164, 8-12=-532/271, 9-12=-39/197, 6-16=0/4 Borida PE No. 21475
 Painleer: Lawrence A. Paine, PE

 2-14=-182/860, 9-11=-779/140
 Builders FirstSource - Florida, LLC
 6550 Roosevelt Blvd. Jacksonville, FL 32244

JOINT STRESS INDEX

2 = 0.26, 3 = 0.00, 3 = 0.28, 3 = 0.28, 4 = 0.34, 5 = 0.15, 6 = 0.20, 7 = 0.15, 8 = 0.16, 9 = 0.37, 9 = 0.15, 9 = 0.00, 10 = 0.13, 11 = 0.74, 12 = 0.25, 12 = 0.40, 13 = 0.37, 14 = 0.39, 15 = 0.21, 16 = 0.16, 18 = 0.16, 19 = 0.34, 20 = 0.34, 20 = 0.34, 21 = 0.34, 22 = 0.16, 23 = 0.16, 24 = 0.00, 25 = 0.16, 26 = 0.34, 27 = 0.34, 28 = 0.34, 29 = 0.16, 30 = 0.34, 30 = 0.34, 31 = 0.16, 32 = 0.34 and 33 = 0.34

Continued on page 2

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an Individual building component that is installed and baded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all demorary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
1400004	T420	ATTIO			J1690074
L166081	T13G	ATTIC	1	1	Job Reference (optional)
Ruildore FiretS	ource Lake City EL 3	2055	200 a Jul 12 2005 I	MiTok	dustrice Inc. Thu Jul 12 12:26:40 2006 Dage 2

6.200 s Jul 13 2005 Millek Industries, Inc. Thu Jul 13 13:36:40 2006 Page 2

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All plates are 3x6 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) Ceiling dead load (5.0 psf) on member(s). 4-5, 7-8, 5-16, 7-16; Wall dead load (5.0 psf) on member(s).4-14, 8-12
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 358 lb uplift at joint 15, 167 lb uplift at joint 14, 166 lb uplift at joint 12 and 181 lb uplift at joint 11.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- 11) The building designer is responsible for the design of the roof and ceiling diaphragms, gable and shear walls, and supporting shear walls. Shear walls must provide continuous lateral restraint to the gable end. All connections to be specified by the building designer. Bottom chord must be laterally braced for horizontal wind loads. Bottom chord bracing and its connections to be specified by the building designer.

LOAD CASE(S) Standard

- 1) Regular: Lumber Increase=1.25, Plate Increase=1.25
- Uniform Loads (plf)
 - Vert: 14-15=-30, 12-14=-110, 11-12=-30, 1-2=-64(F=-10), 2-4=-64(F=-10), 4-5=-76(F=-10), 5-6=-64(F=-10), 6-7=-64(F=-10), 6-7=-6 7-8=-76(F=-10), 8-10=-64(F=-10), 5-7=-10 Drag: 4-14=-10, 8-12=-10

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 **Builders FirstSource - Florida, LLC** 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MTek connect Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erecti and bracing, consult BCS-1 or HIB-91 Handting installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 ry erection

L166081 T14 ATTIC	J1690075
	Job Reference (optional)

LUMBER

TOP CHORD	2 X 6 SYP No.1D
BOT CHORD	2 X 8 SYP 2400F 2.0E
WEBS	2 X 4 SYP No.3 *Except*
	1-15 2 X 6 SYP No.1D, 9-11 2 X 6 SYP No.1D

BRACING TOP CHORD BOT CHORD JOINTS

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied or 3-11-10 oc bracing. 1 Brace at Jt(s): 16

REACTIONS (Ib/size) 15=1824/Mechanical, 11=1751/0-3-8 Max Horz 11=-364(load case 3) Max Uplift 15=-96(load case 6), 11=-243(load case 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=-1622/117, 2-3=-1356/274, 3-4=0/444, 4-5=-6/472, 5-6=-1351/252, 6-7=-1622/102, 7-8=-1742/83, 8-9=-85/171, 9-10=0/47, 1-15=-2597/167, 9-11=-10/209

 BOT CHORD
 14-15=-24/53, 13-14=-89/1296, 12-13=-89/1296, 11-12=-292/995

 WEBS
 3-16=-1728/184, 5-16=-1728/184, 2-14=-9/505, 6-12=0/624, 1-14=-160/2036, 8-12=-101/373, 4-16=0/110, 8-11=-1820/18

JOINT STRESS INDEX

1 = 0.81, 2 = 0.48, 3 = 0.55, 4 = 0.76, 5 = 0.55, 6 = 0.58, 7 = 0.57, 8 = 0.50, 9 = 0.28, 11 = 0.55, 12 = 0.15, 13 = 0.38, 14 = 0.32, 15 = 0.74 and 16 = 0.34

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; Florida PE No. 21475 enclosed; MWFRS gable end zone and C-C Exterior(2) zone; end vertical right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS⁵⁰ Roosevelt Blvd. Jacksonville, FL 32244 for reactions specified. July 17,2006

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIG-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 DOnofrio Drive, Madison, WI 53719

Truss Design Engineer: Lawrence A. Paine, PE

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T14	ATTIC	9	1	J1690075
					Job Reference (optional)
Builders FirstSc	ource, Lake City, FI 3	32055 6	.200 s Jul 13 2005 M	MiTek In	dustries, Inc. Thu Jul 13 13:38:23 2006 Page 2

NOTES

- 3) Ceiling dead load (5.0 psf) on member(s). 2-3, 5-6, 3-16, 5-16; Wall dead load (5.0 psf) on member(s).2-14, 6-12
- 4) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 15 and 243 lb uplift at joint 11.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-31 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T15	ATTIC	1	1	J1690076
					Job Reference (optional)
Builders FirstSe	Builders FirstSource, Lake City, FI 32055			ViTek In	dustries, Inc. Thu Jul 13 13:40:30 2006 Page 1

Plate Offsets (X,Y): [7:0-5-0,0-4-8], [8:0-3-14,0-0-1], [13:0-3-8,0-6-0]

0-5-8

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 10.0 BCDL 5.0	Plates Increase 1 Lumber Increase 1	0-0 CSI .25 TC .25 BC NO WB 02 (Mat	0.95 0.96 0.76	DEFL Vert(LL) Vert(TL) Horz(TL) Wind(LL)		(loc) 11-13 11-13 10 11	l/defl >558 >341 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 216 lb	GRIP 244/190
BCDL 5.0	Code FBC2004/TPI20	02 (Mat	rix)	Wind(LL)	0.26	11	>999	240	Weight: 216 lb	

TOP CHORD

BOT CHORD

JOINTS

TOP CHORD	2 X 6 SYP No.1D
BOT CHORD	2 X 8 SYP 2400F 2.0E
WEBS	2 X 4 SYP No.3 *Except*
	1-14 2 X 8 SYP 2400F 2.0E, 8-10 2 X 4 SYP No.1D

Structural wood sheathing directly applied or 4-3-8 oc purlins, except end verticals. Rigid ceiling directly applied or 3-9-12 oc bracing. 1 Brace at Jt(s): 15

REACTIONS (lb/size) 14=1908/0-7-3, 10=1650/0-3-8 Max Horz 14=-362(load case 3) Max Uplift 14=-143(load case 6), 10=-250(load case 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=-1505/112, 2-3=-1306/266, 3-4=0/330, 4-5=-15/392, 5-6=-1234/250, 6-7=-1632/123, 7-8=-74/164, 8-9=0/45, 1-14=-2843/221, 8-10=-72/212

 BOT CHORD
 13-14=-324/390, 12-13=0/1219, 11-12=0/1219, 10-11=-4/1060

 WEBS
 3-15=-1531/184, 5-15=-1531/184, 2-13=-32/391, 6-11=0/574, 1-13=-188/2371, 7-11=-98/278, 4-15=0/102, 7-10=-1696/50

JOINT STRESS INDEX

1 = 0.61, 2 = 0.17, 3 = 0.48, 4 = 0.77, 5 = 0.48, 6 = 0.24, 7 = 0.41, 8 = 0.17, 10 = 0.47, 11 = 0.33, 12 = 0.44, 13 = 0.35, 14 = 0.68 and 15 = 0.16

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; end vertical right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS⁵⁰ Roosevelt Blvd. Jacksonville, FL 32244 for reactions specified.

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Truss Design Engineer: Lawrence A. Paine, PE

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T15	ATTIC	1	1	J1690076
				· ·	Job Reference (optional)

6.200 s Jul 13 2005 Millek Industries, Inc. Thu Jul 13 13:40:30 2006 Page 2

NOTES

- 3) Ceiling dead load (5.0 psf) on member(s). 2-3, 5-6, 3-15, 5-15; Wall dead load (5.0 psf) on member(s).2-13, 6-11
- 4) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 11-13

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 143 lb uplift at joint 14 and 250 lb uplift at ioint 10.

6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 13-14=-30, 11-13=-110, 10-11=-30, 1-2=-54, 2-3=-66, 3-4=-54, 4-5=-54, 5-6=-66, 6-8=-54, 8-9=-54, 3-5=-10 Drag: 2-13=-10, 6-11=-10

Concentrated Loads (lb)

Vert: 14=-30(F) 1=-54(F)

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

A Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connector Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T16	ATTIC	1	1	J1690077
					Job Reference (optional)
Builders FirstS	Builders FirstSource, Lake City, FI 32055			MiTek In	dustries, Inc. Mon Jul 17 11:14:47 2006 Page 1

Plate Offsets (X,Y): [7:0-5-0,0-4-8]

LUMBEI	-	6 SYP No 1D						Structu	rol wood	choothin	a directly applied o	_
BCDL	5.0	Code FBC2004/TI	PI2002	(Mati	rix)						Weight: 213 lb	
BCLL	10.0	Rep Stress Incr	NO	WB	0.99	Horz(TL)	0.00	10	n/a	n/a		
TCDL	7.0	Lumber Increase	1.25	BC	0.33	Vert(TL)	-0.00	9	n/r	90		
TCLL	20.0	Plates Increase	1.25	TC	0.97	Vert(LL)	-0.00	9	n/r	120	MT20	244/190
LOADIN	G (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP

IOP CHURD	2 X 6 STP NO. ID
BOT CHORD	2 X 8 SYP 2400F 2.0E
WEBS	2 X 4 SYP No.3 *Except*
	1-14 2 X 8 SYP 2400F 2.0E, 8-10 2 X 4 SYP No.1D

```
TOP CHORD
BOT CHORD
JOINTS
```

Structural wood sheathing directly applied or 2-10-13 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Brace at Jt(s): 15

REACTIONS (lb/size) 13=1672/22-4-8, 11=1030/22-4-8, 10=400/22-4-8 Max Horz 13=-303(load case 3) Max Uplift 13=-680(load case 5), 11=-518(load case 6), 10=-137(load case 4)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-78/115, 2-3=-607/350, 3-4=-1261/628, 4-5=-1193/579, 5-6=-485/316, 6-7=-229/220, 7-8=-117/130, 8-9=0/45, 1-14=-296/80, 8-10=-291/247 BOT CHORD 13-14=-128/49, 12-13=-170/255, 11-12=-170/255, 10-11=-69/136 WEBS 3-15=-381/976, 5-15=-381/976, 2-13=-1397/740, 6-11=-850/584, 1-13=-181/539, 7-11=-121/191, 4-15=-45/18, 7-10=-254/126

JOINT STRESS INDEX

1 = 0.71, 2 = 0.41, 3 = 0.25, 4 = 0.82, 5 = 0.25, 6 = 0.25, 7 = 0.19, 8 = 0.16, 10 = 0.22, 11 = 0.25, 12 = 0.29, 13 = 0.32, 14 = 0.76 and 15 = 0.16

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; Truss Design Engineer: Lawrence A. Paine, PE enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. Florida PE No. 21475 This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- Builders FirstSource Florida, LLC 3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 680 lb uplits 50 Roosevelt Blvd. Jacksonville, FL 32244
- at joint 13, 518 lb uplift at joint 11 and 137 lb uplift at joint 10.

July 17,2006

Continued on page 2

Â Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connect Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erectic and bracing, consult BCS-1 or HiB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 ry, erection

Job	Truss	Truss Type	Qty	Ply	'	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T16	ATTIC	1		1	J1690077
				-		Job Reference (optional)
Builders FirstSo	urce, Lake City, FI 3	32055	6.200 s Jul 13 2005 N	/iTel	k In	dustries, Inc. Mon Jul 17 11:14:47 2006 Page 2

NOTES

4) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 10-14=-30, 1-4=-100(F=-46), 4-8=-54, 8-9=-54 Concentrated Loads (lb) Vert: 14=-30(F) 1=-54(F) 4=-408(F)

> Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

> > July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI 1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onotrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
1400004	7470	ATTIO			J1690078
L166081	T17G	ATTIC	1	1	Job Reference (optional)

^{2-20=-546/180, 12-14=-196/264} BOT CHORD 19-20=-339/360, 18-19=-180/328, 17-18=-79/534, 16-17=-79/534, 15-16=-61/386, 14-15=-61/386 WEBS 6-21=-311/252, 8-21=-311/252, 5-18=-472/289, 9-16=-488/298, 4-18=-32/247, 7-21=-11/62, 4-19=-507/161, 2-19=-104/351, 10-16=-26/217, 10-41=-770/59,

14-41=-588/68, 15-41=-242/0

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Continued on page 2

TCLL

TCDL

BCLL

BCDL

WEBS

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters show for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Јор	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T17G	ATTIC	1	1	J1690078
					Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Thu Jul 13 14:14:50 2006 Page 2

JOINT STRESS INDEX

2 = 0.88, 3 = 0.00, 3 = 0.16, 3 = 0.15, 4 = 0.31, 5 = 0.16, 6 = 0.15, 7 = 0.16, 8 = 0.15, 9 = 0.16, 10 = 0.31, 11 = 0.00, 11 = 0.16, 0.16, 12 = 0.51, 14 = 0.55, 15 = 0.16, 16 = 0.25, 17 = 0.41, 18 = 0.25, 19 = 0.25, 19 = 0.45, 20 = 0.18, 21 = 0.34, 22 = 0.16, 23 = 0.16, 23 = 0.16, 24 = 0.25, 15 = 0 24 = 0.16, 25 = 0.16, 26 = 0.34, 27 = 0.16, 28 = 0.34, 28 = 0.34, 29 = 0.16, 30 = 0.16, 31 = 0.16, 32 = 0.16, 33 = 0.16, 34 = 0.16, 35 = 0.16, 3 0.16, 36 = 0.34, 37 = 0.16, 38 = 0.16, 39 = 0.16, 40 = 0.34, 40 = 0.34 and 41 = 0.34

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"
- 4) All plates are 3x6 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) Ceiling dead load (5.0 psf) on member(s). 5-6, 8-9, 6-21, 8-21; Wall dead load (5.0 psf) on member(s). 5-18, 9-16
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 16-18
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 20, 58 lb uplift at joint 18 162 lb uplift at joint 16, 244 lb uplift at joint 14 and 383 lb uplift at joint 19.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
- 10) The building designer is responsible for the design of the roof and ceiling diaphragms, gable and shear walls, and supporting shear walls. Shear walls must provide continuous lateral restraint to the gable end. All connections to be specified by the building designer. Bottom chord must be laterally braced for horizontal wind loads. Bottom chord bracing and its connections to be specified by the building designer.

LOAD CASE(S) Standard

- 1) Regular: Lumber increase=1.25, Plate Increase=1.25
- Uniform Loads (plf)
 - Vert: 18-20=-30, 16-18=-110, 14-16=-30, 1-2=-54, 2-5=-64(F=-10), 5-6=-76(F=-10), 6-7=-64(F=-10), 7-8=-64(F=-10), 8-9=-76(F=-10), 9-12=-64(F=-10), 12-13=-64(F=-10), 6-8=-10 Drag: 5-18=-10, 9-16=-10

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-31 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
1 400004	740		0		J1690079
L166081	T18	ATTIC	8	1	Job Reference (optional)
					Job Reference (optional)

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
L166081	T18	ATTIC	8	1	J1690079
					Job Reference (optional)
Builders FirstSc	ource Lake City EL 3	2055 6	200 c bil 12 2005 M	diTok Ind	dustrias Inc. Man Jul 17 11:12:55 2006 Dags 2

6.200 s Jul 13 2005 MiTek Industries, Inc. Mon Jul 17 11:12:55 2006 Page 2

NOTES

- 4) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 193 lb uplift at joint 16 and 270 lb uplift at joint 11.

LOAD CASE(S) Standard

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

🛦 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters show for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

		<u> </u>	2-6	6-0				5-0-0			1	
		,	6-0		,							
LOADIN	IG (psf)	SPACING	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	тс	0.16	Vert(LL)	-0.00	` 6	>999	240	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC	0.07	Vert(TL)	-0.01	6	>999	180		
BCLL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(TL)	0.01	4	n/a	n/a		
BCDL	5.0	Code FBC2004/TI	PI2002	(Mat	rix)						Weight: 23	lb
LUMBE	R	A				BRACING						
TOP CH	IORD 2X	4 SYP No.2				TOP CHO	RD	Structu	iral wood	sheathin	g directly applie	d or 5-0-0
BOT CH	IORD 2 X	4 SYP No.2						oc purl	ins.			
WEBS	2 X	4 SYP No.3				BOT CHO	RD	Rigid o	eiling dir	ectly appl	ied or 10-0-0 oc	bracing.
								-	-			•

REACTIONS (Ib/size) 2=287/0-3-8, 4=287/0-3-8 Max Horz 2=-58(load case 3) Max Uplift 2=-169(load case 5), 4=-169(load case 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/39, 2-3=-275/0, 3-4=-275/0, 4-5=0/39

BOT CHORD 2-6=0/203, 4-6=0/203

WEBS 3-6=0/180

JOINT STRESS INDEX

LOAD CASE(S) Standard

2 = 0.13, 3 = 0.09, 4 = 0.13 and 6 = 0.10

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60.
- This truss is designed for C-C for members and forces, and for MWFRS for reactions specified. 3) Bearing at joint(s) 2, 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula.
- Building designer should verify capacity of bearing surface. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 169 lb upliftering PE No. 21475 at joint 2 and 169 lb uplift at joint 4. Builders FirstSource - Florida LLC

Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCSI-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, SS3 D'Onofrio Drive, Madison, WI 53719

			2-0	6-0		+		5-0-0			í.	
		1		1								
LOADING TCLL TCDL BCLL	(psf) 20.0 7.0 10.0	SPACING Plates Increase Lumber Increase Rep Stress Incr	2-0-0 1.25 1.25 NO	CSI TC BC WB	0.16 0.05 0.02	DEFL Vert(LL) Vert(TL)	in -0.01 -0.02	(loc) 5 5	l/defl n/r n/r	L/d 120 90	PLATES MT20	GRIP 244/190
BCDL	5.0	Code FBC2004/TI		(Mat		Horz(TL)	0.00	4	n/a	n/a	Weight: 23	b
LUMBER TOP CHORD 2 X 4 SYP No.2 BOT CHORD 2 X 4 SYP No.2 WEBS 2 X 4 SYP No.3						BRACING TOP CHO BOT CHO	RD	oc purl	ins.		g directly applie ied or 10-0-0 oc	

REACTIONS (lb/size) 2=243/5-0-0, 6=177/5-0-0, 4=243/5-0-0 Max Horz 2=59(load case 4) Max Uplift 2=-180(load case 5), 4=-202(load case 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

- TOP CHORD 1-2=0/42, 2-3=-60/57, 3-4=-60/57, 4-5=0/42
- BOT CHORD 2-6=-7/72, 4-6=-7/72

WEBS 3-6=-101/25

JOINT STRESS INDEX

2 = 0.08, 3 = 0.03, 4 = 0.08 and 6 = 0.08

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; enclosed; MWFRS gable end zone and C-C Exterior(2) zone; Lumber DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFRS for reactions specified.
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail"
- Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 180 lb uplits 50 Roosevelt Blvd. Jacksonville, FL 32244 at joint 2 and 202 lb uplift at joint 4.

Continued on page 2

Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with NITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC

July 17,2006

				J1691786
L166081 T20G	SCISSOR	3	1	
				Job Reference (optional)

6.200 s Jul 13 2005 Mi l ek Industries, Inc. Mon Jul 17 09:24:08 2006 Page 2

NOTES

.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

8) The building designer is responsible for the design of the roof and ceiling diaphragms, gable and shear walls, and supporting shear walls. Shear walls must provide continuous lateral restraint to the gable end. All connections to be specified by the building designer. Bottom chord must be laterally braced for horizontal wind loads. Bottom chord bracing and its connections to be specified by the building designer.

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-3=-64(F=-10), 3-5=-64(F=-10), 2-6=-30, 4-6=-30

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

🎪 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MITek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

	Truss	Truss Type	Qty	Ply	GATEWAY DEVELO	PMENT- SYDNE	
166081	PB122G	PIGGYBACK	1	1			J1690051/
					Job Reference (optio		
Builders FirstSourc	ce, Lake City, FI 32055	6.	.200 s Jul 13 2005	MiTek Ir	idustries, Inc. Thu Jul	13 10:20:55 2006	Page 1
1	6-0-11				12-1-5		1
14	6-0-11				6-0-11		Scale = 1:19.8
Note: A sing	wing PIGBACKB1001 le ply Piggyback must y of a multi ply support	be attached to a	5x6 =				
3-6-6	7.00 12	B			R .		
2	5						4 5
3×6	6 ==	8	\square		5	3x6	
\boxtimes	3-10-4	6-0-11	8-			12-1-5	
	3-10-4	2-2-7	2-2	2-7		3-10-4	
late Offsets (X,Y): [2:0-0-14,0-0-7], [4:	0-0-14,0-0-7]					
OADING (psf) CLL 20.0 CDL 7.0 CLL 10.0 CDL 5.0	SPACING Plates Increase Lumber Increase Rep Stress Incr Code FBC2004/Tf	2-0-0 CSI 1.25 TC 0.34 1.25 BC 0.27 NO WB 0.15 D2002 (Matrix)	Vert(TL)	0.02	loc) I/defl L/d 2-8 >999 240 2-8 >999 180 5 n/a n/a	PLATES MT20	GRIP 244/190
	COUE PBC2004/11	Pl2002 (Matrix)				Weight: 50	D
			BRACING TOP CHORE BOT CHORE	00	ructural wood sheathi purlins. gid ceiling directly app		
Ma Ma	ax Horz 1=-120(load ca ax Uplift 1=-13(load cas 6=-51(load cas	e 10), 5=-35(load case 3), 3 e 6) e 9), 5=75(load case 10), 7=	7=-284(load case	5), 8=-54	•		
DRCES (Ib) - M OP CHORD 1 OT CHORD 2	-	Maximum Tension /401, 3-4=-159/401, 4-5=-3 /216, 6-7=-264/216, 4-6=-2					
DRCES (Ib) - M DP CHORD 1 DT CHORD 2 EBS 3 DINT STRESS IN	-2=-111/111, 2-3=-159, 2-8=-264/216, 7-8=-264, 3-7=-681/392 NDEX	/401, 3-4=-159/401, 4-5=-3	264/216	s = 0.00,	14 = 0.00, 15 = 0.00	and 16 = 0.00	
ORCES (Ib) - M OP CHORD 1 OT CHORD 2 /EBS 3 OINT STRESS IN 2 = 0.90, 3 = (OTES) Unbalanced roo) Wind: ASCE 7-(enclosed; MWF This truss is des	2-2=-111/111, 2-3=-159, 2-8=-264/216, 7-8=-264, 3-7=-681/392 NDEX 0.66, 4 = 0.90, 7 = 0.25 of live loads have been o 02; 110mph (3-second s RS gable end zone and	/401, 3-4=-159/401, 4-5=-3 /216, 6-7=-264/216, 4-6=-2 , 9 = 0.00, 10 = 0.00, 11 = 0 considered for this design. gust); h=20ft; TCDL=4.2pst J C-C Exterior(2) zone; Lun bers and forces, and for M ³	264/216 0.00, 12 = 0.00, 13 f; BCDL=3.0psf; C nber DOL=1.60 pla	ategory ate grip	II; Exp B; Truss Design DOL=1.60. Florida PE N ied. Builders First	Furinaay I maana	.C Ile, FL 32244
ORCES (Ib) - M OP CHORD 1 OT CHORD 2 /EBS 3 OINT STRESS IN 2 = 0.90, 3 = (OTES) Unbalanced roo) Wind: ASCE 7-(enclosed; MWF This truss is des	1-2=-111/111, 2-3=-159, 2-8=-264/216, 7-8=-264, 3-7=-681/392 NDEX 0.66, 4 = 0.90, 7 = 0.25 of live loads have been of 02; 110mph (3-second of RS gable end zone and signed for C-C for mem 4 MT20 unless otherwi	/401, 3-4=-159/401, 4-5=-3 /216, 6-7=-264/216, 4-6=-2 , 9 = 0.00, 10 = 0.00, 11 = 0 considered for this design. gust); h=20ft; TCDL=4.2pst J C-C Exterior(2) zone; Lun bers and forces, and for M ³	264/216 0.00, 12 = 0.00, 13 f; BCDL=3.0psf; C nber DOL=1.60 pla	ategory ate grip	II; Exp B; Truss Design DOL=1.60. Florida PE N ied. Builders First	Engineer: Lavrance o. 21475 Source - Florida, Ll	.c

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
1466094	DB1000	DICCYPACK			J1690051
L166081	PB122G	PIGGYBACK	1	1	Job Reference (optional)

NOTES

- 4) Bearing at joint(s) 1, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 1, 35 lb uplift at joint 5, 284 lb uplift at joint 7, 54 lb uplift at joint 8 and 51 lb uplift at joint 6.
- 6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

7) The building designer is responsible for the design of the roof and ceiling diaphragms, gable and shear walls, and supporting shear walls. Shear walls must provide continuous lateral restraint to the gable end. All connections to be specified by the building designer. Bottom chord must be laterally braced for horizontal wind loads. Bottom chord bracing and its connections to be specified by the building designer.

8) Truss designed for wind loads in plane of the truss only. For studs exposed to wind (normal to the face), see MiTek "Standard Gable End Detail".

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 1-2=-75(F=-10), 2-3=-64(F=-10), 3-4=-64(F=-10), 4-5=-75(F=-10), 2-4=-30

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

A Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE

This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANS/ / TP1 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-1 or HIB-91 Handling Installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
T18A	ATTIC	1	1	J1690079
		•		Job Reference (optional)
	T18A	T18A ATTIC	T18A ATTIC 1	T18A ATTIC 1 1

		ł			1						
LOADIN	G (psf)	SPACING	2-0-0	CSI	DEFL	in	ı (loc)	l/defi	L/d	PLATES	GRIP
TCLL	20.0	Plates Increase	1.25	TC 0.76	Vert(LL)	-0.61	12-14	>568	360	MT20	244/190
TCDL	7.0	Lumber Increase	1.25	BC 0.74	Vert(TL)	-1.01	12-14	>342	240		
BCLL	10.0	Rep Stress Incr	NO	WB 0.81	Horz(TL)	0.04	11	n/a	n/a		
BCDL	5.0	Code FBC2004/TF	912002	(Matrix)	Wind(LL)		12-14	>999	240	Weight: 260 ll	b
LUMBER	ર				BRACING	}					
TOP CH		8 SYP 2400F 2.0E 8 SYP 2400F 2.0E			TOP CHC	RD				g directly applied	or
WEBS		4 SYP No.3			BOT OUC					t end verticals.	
VVED3	2 ٨	4 5 TP IN0.5			BOT CHC	IRD	÷		ectly appl	ied or 10-0-0 oc b	pracing,
							Excep				
									ng: 11-12	•	
					JOINTS		1 Brac	e at Jt(s)	: 17		
DEAOTI											

REACTIONS (lb/size) 16=2923/0-3-8, 11=2739/0-3-8 Max Horz 16=-370(load case 3) Max Uplift 16=-704(load case 5), 11=-620(load case 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-2316/618, 2-3=-3465/681, 3-18=-2630/696, 4-18=-2439/687, 4-5=0/603, 5-6=0/521, 6-7=-2691/709, 7-8=-3322/621, 8-9=-9/171, 9-10=0/45, 1-16=-2615/720, 9-11=-9/228 BOT CHORD 15-16=-314/362, 14-15=-583/2078, 13-14=-377/2624, 12-13=-377/2624, 11-12=-232/1763 WEBS 4-17=-3315/632, 6-17=-3315/632, 3-14=0/1178, 7-12=0/1082, 2-14=-178/781,

8-12=-251/1034, 5-17=-34/329, 8-11=-3334/479, 2-15=-1933/316, 1-15=-660/2512

JOINT STRESS INDEX

Continued on page 2

1 = 0.80, 2 = 0.54, 3 = 0.35, 4 = 0.69, 5 = 0.92, 6 = 0.69, 7 = 0.32, 8 = 0.67, 9 = 0.32, 11 = 0.61, 12 = 0.21, 13 = 0.90, 14 = 0.24, 15 = 0.24, 0.81, 16 = 0.55 and 17 = 0.34

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Truss Design Engineer: Lawrence A. Paine, PE 2) Wind: ASCE 7-02; 110mph (3-second gust); h=20ft; TCDL=4.2psf; BCDL=3.0psf; Category II; Exp B; Florida PE No. 21475 enclosed; MWFRS gable end zone and C-C Exterior(2) zone; end vertical right exposed; Lumber Builders FirstSource - Florida, LLC DOL=1.60 plate grip DOL=1.60. This truss is designed for C-C for members and forces, and for MWFR 50 Roosevelt Blvd. Jacksonville, FL 32244 for reactions specified.

July 17,2006

🛦 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connec Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erect and bracing, consut BCS-1 or HIB-31 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719 nectors ection

Job	Truss	Truss Type	Qty	Ply	GATEWAY DEVELOPMENT- SYDNEY MODEL
					J1690079
L166081	T18A	ATTIC	1	1	
					Job Reference (optional)

6.200 s Jul 13 2005 MiTek Industries, Inc. Mon Jul 17 11:12:09 2006 Page 2

NOTES

- 3) Ceiling dead load (5.0 psf) on member(s). 3-4, 6-7, 4-17, 6-17; Wall dead load (5.0 psf) on member(s).3-14, 7-12
- 4) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 704 lb uplift at joint 16 and 620 lb uplift at joint 11.

6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). Loading has been calculated by the truss manufacturer. It is the responsibility of the Architect/Engineer of Record to verify and approve the loading.

LOAD CASE(S) Standard

1) Regular: Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf)

Vert: 14-16=-56(F=-26), 12-14=-136(F=-26), 11-12=-56(F=-26), 1-3=-100(F=-46), 3-18=-112(F=-46), 5-6=-54, 6-7=-66, 7-9=-54, 7-9=-56, 7-9=-56, 7-7=-5 9-10=-54, 4-6=-10 Drag: 3-14=-10, 7-12=-10

Concentrated Loads (lb)

Vert: 5=-408(F)

Trapezoidal Loads (plf)

Vert: 18=-112(F=-46)-to-4=-105(F=-39), 4=-93(F=-39)-to-5=-54

Truss Design Engineer: Lawrence A. Paine, PE Florida PE No. 21475 Builders FirstSource - Florida, LLC 6550 Roosevelt Blvd. Jacksonville, FL 32244

July 17,2006

🛕 Warning - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 BEFORE USE This design is based only upon the parameters shown for an individual building component that is installed and loaded vertically and fabricated with MiTek connectors. Applicability of design parameters and proper incorporation of component into the overall building structure, including all temporary and permanent bracing, is the responsibility of building designer and / or contractor per ANSI / TPI 1 as referenced by the building code. For general guidance regarding storage, delivery, erection and bracing, consult BCS-11 or HIB-91 Handling installing and Bracing Recommendation available from the Wood Truss Council of America, 1 WTCA Center, 6300 Enterprise Lane, Madison, WI 53719 or the Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719

	Indicates location of joints at which bearings (supports) occur.	READING	continuous lateral bracing.	LATERAL BRACING		4 X 4 The first dimension is the width perpendicular to slots. Second dimension is the length parallel to slots.	PLATE SIZE	required direction of slots in connector plates.	of truss and vertical web.	*For 4 x 2 orientation, locate plates 1/8" from outside edge				Dimensions indicate otherwise. Dimensions are in inches. Apply plates to both sides of truss and securely seat.	PLATE LOCATION AND ORIENTATION	Symbols
MiTek Engineering Reference Sheet: MII-7473	Mitek State		NER 561	SBCCI 9667, 9432A WISC/DILHR 960022-W, 970036-N	BOCA 96-31, 96-67 ICBO 3907, 4922	CONNECTOR PLATE CODE APPROVALS	WEBS ARE NUMBERED FROM LEFT TO RIGHT	JOINTS AND CHORDS ARE NUMBERED CLOCKWISE AROUND THE TRUSS STARTING AT THE LOWEST JOINT FARTHEST TO THE LEFT.		BOTTOM CHORDS JI J8 J7 J6			J2 J3 J4 TOP CHORDS			Numbering System
© 1993 MiTek® Holdings, Inc.	 14. Do not cut or alter truss member or plate without prior approval of a professional engineer. 15. Care should be exercised in handling, erection and installation of trusses. 	 Do not overload roof or floor trusses with stacks of construction materials. 	 Anchorage and / or load transferring connections to trusses are the responsibility of others unless shown. 	 Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted. 	 Top chords must be sheathed or purlins provided at spacing shown on design. 	 Lumber shall be of the species and size, and in all respects, equal to or better than the grade specified. 	8. Plate type, size and location dimensions shown indicate minimum plating requirements.	 Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection. 	 Unless expressly noted, this design is not applicable for use with fire retardant or preservative treated lumber. 	5. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.	 Unless otherwise noted, locate chord splices at ¼ panel length (± 6" from adjacent joint.) 	 Place plates on each face of truss at each joint and embed fully. Avoid knots and wane at joint locations. 	Cut members to bear tightly against each other.	 Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties. 	Failure to Follow Could Cause Property Damage or Personal Injury	General Safety Notes

** F

4
FORM 600A-2004

0608-40

EnergyGauge® 4.21

1

FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION

Florida Department of Community Affairs Residential Whole Building Performance Method A

Project Name:SYDNEY MODELAddress:.City, State:, FLOwner:.Climate Zone:North	Builder: Permitting Office: Permit Number: Jurisdiction Number:
I. New construction or existing New 2. Single family or multi-family Single family 3. Number of units, if multi-family 1 4. Number of Bedrooms 3	12. Cooling systems a. Central Unit Cap: 60.0 kBtu/hr b. N/A SEER: 16.00
5. Is this a worst case? Yes 6. Conditioned floor area (ft²) 2655 ft² 7. Glass type l*and area: (Label reqd. by 13-104.4.5 if not default) a. U-factor: Description	c. N/A
 (or Single or Double DEFAULT) 7a. (Dble Default) 283.3 ft² b. SHGC: (or Clear or Tint DEFAULT) 7b. (Clear) 312.3 ft² 	a. Electric Heat Pump Cap: 60.0 kBtu/hr HSPF: 7.30
8. Floor types a. Slab-On-Grade Edge Insulation R=19.0, 272.3(p) ft b. N/A c. N/A	c. N/A
9. Wall types a. Frame, Wood, Exterior R=19.0, 2178.0 ft ² b. N/A	a. Electric Resistance Cap: 40.0 gallons EF: 0.97 b. N/A
d. N/A	c. Conservation credits (HR-Heat recovery, Solar DHP-Dedicated heat pump) 15. HVAC credits PT,
b. N/A	(CF-Ceiling fan, CV-Cross ventilation, HF-Whole house fan, PT-Programmable Thermostat,
a. Sup: Unc. Ret: Unc. AH: Interior Sup. R=6.0, 125.0 ft b. N/A	MZ-C-Multizone cooling, MZ-H-Multizone heating)
Glass/Floor Area: 0.12 Total as-built p Total base p	oints: 26956 PASS oints: 37309
I hereby certify that the plans and specifications covered by this calculation are in compliance with the Florida Energy Code.	Review of the plans and specifications covered by this calculation indicates compliance with the Florida Energy Code. Before

DATE:

I hereby certify that this building, as designed, is in compliance with the Florida Energy Code.

OWNER/AGENT: ___

DATE:

specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed this building will be inspected for compliance with Section 553.908 Florida Statutes. **BUILDING OFFICIAL: DATE:**

1 Predominant glass type. For actual glass type and areas, see Summer & Winter Glass output on pages 2&4. EnergyGauge® (Version: FLRCPB v4.21)

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: , , FL,

PERMIT #:

BASE		AS	BU	ILT				
GLASS TYPES .18 X Conditioned X BSPM = Points Floor Area		Overhang rnt Len		Area X	SPM	x	SOF	= Points
.18 2655.0 20.04 9577.1	Double, Clear	E 1.0	8.0	90.0	42.06	3	0.99	3751.9
	Double, Clear	E 1.0	8.0	36.0	42.06		0.99	1500.8
	Double, Clear	E 1.0	8.0	12.0	42.06	3	0.99	500.3
	Single, Clear	E 1.0	8.0	20.0	47.92	2	0.99	949.8
	Single, Clear	E 1.0	8.0	9.0	47.92	2	0.99	427.4
	Double, Clear	W 1.0	8.0	20.0	38.52	2	0.99	764.3
	Double, Clear	W 1.0	8.0	24.0	38.52	2	0.99	917.
	Double, Clear	W 1.0	8.0	23.3	38.52	2	0.99	890.3
	Double, Clear	W 1.0	8.0	25.0	38.52	2	0.99	955.2
	Double, Clear	W 1.0	8.0	30.0	38.52	2	0.99	1146.3
	Double, Clear	W 1.0	8.0	7.0	38.52	2	0.99	267.5
	Double, Clear	N 1.0	8.0	16.0	19.20)	0.99	304.8
	As-Built Total:			312.3				12375.1
WALL TYPES Area X BSPM = Points	Туре	R	Value	e Area	х	SPN	= N	Points
Adjacent 0.0 0.00 0.0 Exterior 2178.0 1.70 3702.0			19.0	2178.0		0.90		1960.2
Base Total: 2178.0 3702.	As-Built Total:			2178.0				1960.2
DOOR TYPES Area X BSPM = Points	Туре			Area	x	SPN	/ =	Points
Adjacent 0.0 0.00 0.0	Exterior Wood	1.5	1	40.0	99-92 1	6.10	in er	244.0
Exterior 240.0 4.10 984.0	Exterior Wood			40.0		6.10		244.0
	Exterior Wood			160.0		6.10		976.0
Base Total: 240.0 984.	As-Built Total:			240.0				1464.(
CEILING TYPES Area X BSPM = Points	Туре	R-Valu	le l	Area X S	SPM	x so	CM =	Points
Under Attic 2655.0 1.73 4593.	Under Attic	3-6.75	30.0	2955.0	1.73 X	1.00		5112.1
Base Total: 2655.0 4593.	As-Built Total:			2955.0	N.C.	un.		5112.
FLOOR TYPES Area X BSPM = Points	Туре	R-	Value	e Area	x	SPN	л =	Points
Slab 272.3(p) -37.0 -10073.3 Raised 0.0 0.00 0.0			19.0	272.3(p	-3	5.70		-9719.3
Base Total: -10073.	As-Built Total:			272.3				-9719.

2

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: , , FL,

PERMIT #:

BASE	AS-BUILT
INFILTRATION Area X BSPM = Point	ts Area X SPM = Points
2655.0 10.21 2710	.6 2655.0 10.21 27107.6
Summer Base Points: 35891.2	Summer As-Built Points: 38299.7
Total Summer X System = Cooling Points Multiplier Points	TotalXCapXDuctXSystemXCredit=CoolingComponentRatioMultiplierMultiplierMultiplierMultiplierPoints(System - Points)(DM x DSM x AHU)
	(sys 1: Central Unit 60000 btuh ,SEER/EFF(16.0) Ducts:Unc(S),Unc(R),Int(AH),R6.0(INS) 38300 1.00 (1.09 x 1.147 x 0.91) 0.213 0.950 8830.1
35891.2 0.4266 15311	

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: , , FL,

PERMIT #:

BASE			AS-	BU	LT						
GLASS TYPES .18 X Conditioned X E Floor Area	SWPM =	Points	Type/SC	Ove Ornt	erhang Len	Hgt	Area X	WPN	лх	WOF	= Point
.18 2655.0	12.74	6088.4	Double, Clear	Е	1.0	8.0	90.0	18.79)	1.01	1705.5
	15.6		Double, Clear	E	1.0	8.0	36.0	18.79		1.01	682.2
			Double, Clear	E	1.0	8.0	12.0	18.79)	1.01	227.4
			Single, Clear	Е	1.0	8.0	20.0	26.41		1.01	532.6
			Single, Clear	Е	1.0	8.0	9.0	26.41		1.01	239.7
			Double, Clear	W	1.0	8.0	20.0	20.73	3	1.00	415.6
			Double, Clear	W	1.0	8.0	24.0	20.73	1	1.00	498.7
			Double, Clear	W	1.0	8.0	23.3	20.73	3	1.00	484.2
			Double, Clear	W	1.0	8.0	25.0	20.73	10.83	1.00	519.5
			Double, Clear	W	1.0	8.0	30.0	20.73	1	1.00	623.4
			Double, Clear	W	1.0	8.0	7.0	20.73		1.00	145.5
			Double, Clear	N	1.0	8.0	16.0	24.58		1.00	393.2
	36 5		As-Built Total:	180		č.,	312.3				6467.3
WALL TYPES Area >	BWPM	= Points	Туре	5. st -	R-	Value	e Area	×ι	NPN	1 =	Points
Adjacent0.0Exterior2178.0	0.00 3.70	0.0 8058.6	Frame, Wood, Exterior		1	19.0	2178.0		2.20		4791.6
Base Total: 2178.0		8058.6	As-Built Total:				2178.0				4791.6
DOOR TYPES Area >	(BWPM	= Points	Туре	1-43			Area	×۱	NPN	1 =	Points
Adjacent 0.0	0.00	0.0	Exterior Wood	12.54		. L () X	40.0	1	2.30		492.0
Exterior 240.0	8.40	2016.0	Exterior Wood				40.0	1	2.30		492.0
			Exterior Wood				160.0	1	2.30	1 1 S	1968.0
Base Total: 240.0		2016.0	As-Built Total:		£11		240.0				2952.0
CEILING TYPES Area >	BWPM	= Points	Туре	R	-Value	A	rea X W	PM X	WC	= M	Points
Under Attic 2655.0	2.05	5442.8	Under Attic			30.0	2955.0	2.05 X	1.00		6057.8
Base Total: 2655.0		5442.8	As-Built Total:		18	1=2	2955.0				6057.8
FLOOR TYPES Area >	BWPM	= Points	Туре		R-	Value	Area	×۱	VPN	=	Points
Slab 272.3(p) Raised 0.0	8.9 0.00	2423.0 0.0	Slab-On-Grade Edge Inst	ulation		19.0	272.3(p		7.00		1905.8
Base Total:		2423.0	As-Built Total:				272.3				1905.8

4

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: , , FL,

PERMIT #:

BASE	AS-BUILT
INFILTRATION Area X BWPM = Points	Area X WPM = Points
2655.0 -0.59 -1566.4	2655.0 -0.59 -1566.4
Winter Base Points: 22462.4	Winter As-Built Points:20607.9
Total Winter X System = Heating Points Multiplier Points	TotalXCapXDuctXSystemXCredit=HeatingComponentRatioMultiplierMultiplierMultiplierMultiplierPoints(System - Points)(DM x DSM x AHU)
22462.4 0.6274 14092.9	(sys 1: Electric Heat Pump 60000 btuh ,EFF(7.3) Ducts:Unc(S),Unc(R),Int(AH),R6.0 20607.9 1.000 (1.069 x 1.169 x 0.93) 0.467 0.950 10628.3 20607.9 1.00 1.162 0.467 0.950 10628.3

WATER HEATING & CODE COMPLIANCE STATUS

Residential Whole Building Performance Method A - Details

ADDRESS: , , FL,

.

PERMIT #:

	В	ASE					A	S-BUI	LT			
WATER HEA Number of Bedrooms	TING X	Multiplier	Total	Tank Volume	EF	Number of Bedrooms	x	Tank X Ratio	Multiplier	x	Credit Multiplier	otal
3		2635.00	7905.0	40.0 As-Built T o	0.97 otal:	3		1.00	2499.18	Service -	1.00	497.8 497.8

				CODE	CC	OMPLI	ANCE	S 1	ATUS	5		• * *	
BASE							303		AS	BUILT			
Cooling Points	+	Heating Points	+	Hot Water Points	Ŧ	Total Points	Cooling Points	+	Heating Points	+	Hot Water Points	=	Total Points
15311		14093		7905		37309	8830	-61	10628		7498		26956

Code Compliance Checklist

Residential Whole Building Performance Method A - Details

provide the second s	
ADDRESS: , , FL,	PERMIT #:

6A-21 INFILTRATION REDUCTION COMPLIANCE CHECKLIST

COMPONENTS	SECTION	REQUIREMENTS FOR EACH PRACTICE	CHECK
Exterior Windows & Doors	606.1.ABC.1.1	Maximum:.3 cfm/sq.ft. window area; .5 cfm/sq.ft. door area.	1.1118
Exterior & Adjacent Walls	606.1.ABC.1.2.1	Caulk, gasket, weatherstrip or seal between: windows/doors & frames, surrounding wall; foundation & wall sole or sill plate; joints between exterior wall panels at corners; utility penetrations; between wall panels & top/bottom plates; between walls and floor. EXCEPTION: Frame walls where a continuous infiltration barrier is installed that extends from, and is sealed to, the foundation to the top plate.	
Floors	606.1.ABC.1.2.2	Penetrations/openings >1/8" sealed unless backed by truss or joint members. EXCEPTION: Frame floors where a continuous infiltration barrier is installed that is sealed to the perimeter, penetrations and seams.	
Ceilings	606.1.ABC.1.2.3	Between walls & ceilings; penetrations of ceiling plane of top floor; around shafts, chases, soffits, chimneys, cabinets sealed to continuous air barrier; gaps in gyp board & top plate; attic access. EXCEPTION: Frame ceilings where a continuous infiltration barrier is installed that is sealed at the perimeter, at penetrations and seams.	
Recessed Lighting Fixtures	606.1.ABC.1.2.4	Type IC rated with no penetrations, sealed; or Type IC or non-IC rated, installed inside a sealed box with 1/2" clearance & 3" from insulation; or Type IC rated with < 2.0 cfm from conditioned space, tested.	
Multi-story Houses	606.1.ABC.1.2.5	Air barrier on perimeter of floor cavity between floors.	12222
Additional Infiltration reqts	606.1.ABC.1.3	Exhaust fans vented to outdoors, dampers; combustion space heaters comply with NFPA, have combustion air.	

6A-22 OTHER PRESCRIPTIVE MEASURES (must be met or exceeded by all residences.)

COMPONENTS	SECTION	REQUIREMENTS	CHECK
Water Heaters	612.1	Comply with efficiency requirements in Table 612.1.ABC.3.2. Switch or clearly marked circ breaker (electric) or cutoff (gas) must be provided. External or built-in heat trap required.	
Swimming Pools & Spas	612.1	Spas & heated pools must have covers (except solar heated). Non-commercial pools must have a pump timer. Gas spa & pool heaters must have a minimum thermal efficiency of 78%.	
Shower heads	612.1	Water flow must be restricted to no more than 2.5 gallons per minute at 80 PSIG.	1.50
Air Distribution Systems	610.1	All ducts, fittings, mechanical equipment and plenum chambers shall be mechanically attached, sealed, insulated, and installed in accordance with the criteria of Section 610. Ducts in unconditioned attics: R-6 min. insulation.	
HVAC Controls	607.1	Separate readily accessible manual or automatic thermostat for each system.	-49. A.
Insulation	604.1, 602.1	Ceilings-Min. R-19. Common walls-Frame R-11 or CBS R-3 both sides. Common ceiling & floors R-11.	

Columbia County Building Department Culvert Permit

Culvert Permit No. 000001247

DATE 10/23	9/2006 PARCEL ID # 33-3S-1	6-02438-187		
APPLICANT	SUSAN HOLTON	PHONE	623-6612	
ADDRESS _2	58 NW BERT AVE	LAKE CITY	FI	. 32055
OWNER TO	M EAGLE & SUSAN HOLTON	PHONE	623-6612	
ADDRESS 34	6 SW TIMBERLAND CT	LAKE CITY	F	32055
CONTRACTOF	A JAMES LIPSCOMB	PHONE	719-6960	
LOCATION OF ON RIGHT BEFOI	· · · · · · · · · · · · · · · · · · ·	(EMERALD COV	E), AT END OF S	TREET
SUBDIVISION/	LOT/BLOCK/PHASE/UNIT EMERALD COVE		87	
SIGNATURE	Subar Holf			
	 INSTALLATION REQUIREMENTS Culvert size will be 18 inches in diameter with driving surface. Both ends will be mitered 4 for thick reinforced concrete slab. INSTALLATION NOTE: Turnouts will be recailed a majority of the current and existing drive b) the driveway to be served will be paved on Turnouts shall be concrete or paved a minic concrete or paved driveway, whichever is a current and existing paved or concreted ture. Culvert installation shall conform to the approximation permit installation. 	oot with a 4 : 1 s quired as follow eway turnouts a r formed with co mum of 12 feet greater. The wic nouts. ved site plan sta on approved sta	lope and poured s: re paved, or; oncrete. wide or the wid th shall conform ndards.	I with a 4 inch
	Other			<u></u>
ALL PROPER SA	FETY REQUIREMENTS SHOULD BE FOLLOWED	e.		MBA CO

DURING THE INSTALATION OF THE CULVERT.

135 NE Hernando Ave., Suite B-21 Lake City, FL 32055 Phone: 386-758-1008 Fax: 386-758-2160

Amount Paid 25.00

25195

New Construction Subterranean Termite Soil Treatment Record

This form is completed by the licensed Pest Control Company. Public reporting burden for this collection of information is estimated to average 15 minutes per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. This information is mandatory and is required to obtain benefits. HUD may not collect this information, and you are not required to complete this form, unless it displays a currently valid OMB control number. Section 24 CFR 200.926d(b)(3) requires that the sites for HUD insured structures must be free of termite hazards. This information collection requires the builder to certify that an authorized Pest Control company performed all required treatment for termites, and that the builder guarantees the treated area against infestation for one year. Builders, pest control companies, mortgage lenders, homebuyers, and HUD as a record of treatment for specific homes will use the information collected. The information is not considered confidential. This report is submitted for informational purposes to the builder on proposed (new) construction cases when soil treatment for prevention of subterranean termite infestation is specified by the builder, architect, or required by the lender, architect, FHA, or VA. All contracts for services are between the Pest Control Operator and builder, unless stated otherwise. Section 1: General Information (Treating Company Information) Company Name: Aspen Rest Control Inc. Company Address: _ 321 N.W. Cole Terrace, Sulto 107 City __Lsko City State __ FL Zip __ 32055 Company Business License No. ______ Company Phone No. 323-735-3611 • 352-494-5751 FHA/VA Case No. (if any) _____ Section 2: Builder Information

Section 3: Property Information

Location of Structure(s) Treated (Street Address or Legal Description, City, State and Zip)	346 5.41 Timber land TY Fales Zil. F.

Company Name: _______ Company Phone No. ______

Type of Construction (More than one box may be checked)	🗹 Slab	Basement	Crawl	Other
Approximate Depth of Footing: Outside/ 2		Inside4 G	-	Type of Fill

tion 4[.] Treatment Information

Name of Product(s) Used orgistration No536663-9	¥.C Z		
gistration No	Z		
mate Final Mix Solution %			201
	ma no a	Linear ft. of Masonry Voids	309
atment completed on exterior?	⊠-No		
Agreement Available?	No		
nents (List)			
nts_Trotal Alainho.	1. porugo po	ve her i	
plicator(s) Stava Brea	Certificatio	n No. (if required by State law)	
		i i to (ii i oquirou by otato iaiti)	
	mate Total Gallons of Solution Applied eatment completed on exterior? Agreement Available? Some state laws require service agreements nents (List) ents	mate Total Gallons of Solution Applied patment completed on exterior? ☐ Yes ☐ No Agreement Available? ☐ Yes ☐ No Some state laws require service agreements to be issued. This form does not nents (List) ents	mate Total Gallons of Solution Applied

Authorized Signature	10 herring	Date 3 - G . C Y	

Warning: HUD will prosecute false claims and statements. Conviction may result in criminal and/or civil penalties. (18 U.S.C. 1001, 1010. 1012; 31 U.S.C. 3729, 3802)

Form NPCA-99-B may still be used

NOTICE OF COMMENCEMENT

STATE OF FLORIDA COUNTY OF COLUMBIA

25153

The undersigned hereby gives notice that improvement will be made to certain real property, and in accordance with Chapter 713, Florida Statutes, the following information is provided in the Notice of Commencement.

- 1. Description of property: Lot 87 Emerald Cove Subdivision
- 2. General description of improvement: Construction of Dwelling
- 3. Owner information:

a. Name and address: Susan Holton Thomas Eagle 258 NW Bert Ave Lake City, FL 32055

- b. Interest in property: Fee Simple
- c. Name and address of fee simple title holder (if other than Owner): None
- 4. Contractor: James Mack Lipscomb
- 5. Surety n/a
 - a. Name and address:

b. Amount of bond:

Inst:2006027715 Date:11/22/2006 Time:13:29 _____DC,P.DeWitt Cason,Columbia County B:1102 P:2201

- 6. Lender: Cash
- Persons within the State of Florida designated by Owner upon whom notices or other documents may be served as provided by Section 713.13(1)(a)7., Florida Statutes: None
- 9. Expiration date of notice of commencement (the expiration date is 1 year from the date of recording unless a different date is specified).

Signature of Owner

The foregoing instrument was acknowledged before me this 21 day of November, 2006

by Tom Eagle, who are personally known/to me and who did not take an oath. Notary Public My commission expires: Susan L. Holton Commission #DD431203 pires: MAY 19, 2009 WWW. AARONNOTARY.com

	5/2		~~~				
POST IN A CONSPICUOUS PLACE (Business Places Only)	Date: 10/29/2007	Owner of Building TOM EAGLE & SUSAN HOLTON Location: 346 SW TIMBERLAND CT, LAKE CITY, FL	Permit Holder JAMES LIPSCOMB	Use Classification SFD,UTILITY	COLUMBIA COUNTY, FLORIDA Department of Building and Zoning Inspection This Certificate of Occupancy is issued to the below named permit holder for the building and premises at the below named location, and certifies that the work has been completed in accordance with the Columbia County Building Code. Parcel Number 33-3S-16-02438-187 Building permit No. 000025153		
uous PLACE es Only)	my Dicke Building Inspector	Total: 278.00	Waste: 201.00	Fire: 77.00	IV, FLORIDA Ind Zoning Inspection Now named permit holder for the building rtifies that the work has been completed in ode. Building permit No. 000025153	ANCY	

5YDNEY	r				đ	V S	
GATEWAY DEVELOPMENT GATEWAY DEVELOPMENT LOT WS EMERALD COVE SYDNEY KILE NTS MILE 1000000 MILE 1000000 MILE 1000000	Builders Bunnell PHONE: 904-437-3349 FAX: 904-437-3949 PHONE: 904-772-6100 PHONE: 904-772-6100 FAX: 904-772-1973 Lake City PHONE: 904-755-6894 FAX: 904-755-7973 Sanford PHONE: 407-322-0059 FAX: 407-322-5553	THIS LAYOUT IS THE SOLE SOURCE FOR FADRICATION OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURE. OR OTHER TRUSS LAYOUTS, REVIEW AND APROVIAL OF THIS LAYOUT MUST DE RECEIVED DEFORE ANY TRUSSES WILL DE DULLT. VERIFY ALL CONDITIONS TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXITA CHARGES TO YOU. Devined Deforty Data Approved Deforty Data	 WITH THE TOP DERK UP. 7) ALL ROOF TRUSS HANGERS TO BE SIMPSON 8) ALL ROOF TRUSS HANGERS TO BE SIMPSON 8) DEAMHEADERI, INTEL (HOR) TO BE 8) DEAMHEADERI, INTEL (HOR) TO BE 9 FURNSHED BY BUILDER 	 4) ALL TRYPE FOR MISSION FOR CONFERENCE OF THE WORK OF THE WORK OF THE WORK OF THE WORK ON THE WORK ON THE WORK ON THE WORK ON THE ALL TRANSES ARE DESIGNED FOR 2' 0.0. 5) ALL VALLEYS ARE TO BE CONVENTIONALLY FRAMED BY DULDER. 4) ALL TRUSSES ARE DESIGNED FOR 2' 0.0. 5) ALL WALLS SHOWN ON FLACEMENT FLAM ARE CONSIDERED TO BE LOAD DEARING, UNLESS OTHERWISE NOTED. 6) SYAT TRUSSES MIST DE INSTALLED 6) SYAT TRUSSES MIST DE NOTALLED 	NOTES: NOTES: 1) REFER TO HID 91 (RECOMMENDATIONS FOR HANDING INSTALLATION AND TENPORARY BRACING) REFER TO EMAINERED DRAWINGS FOR PERMANENT BRACING REGULATION TO INCLUDE TO INCLUDE	7/12 7/12	BEARING HEIGHT SCHEDULE