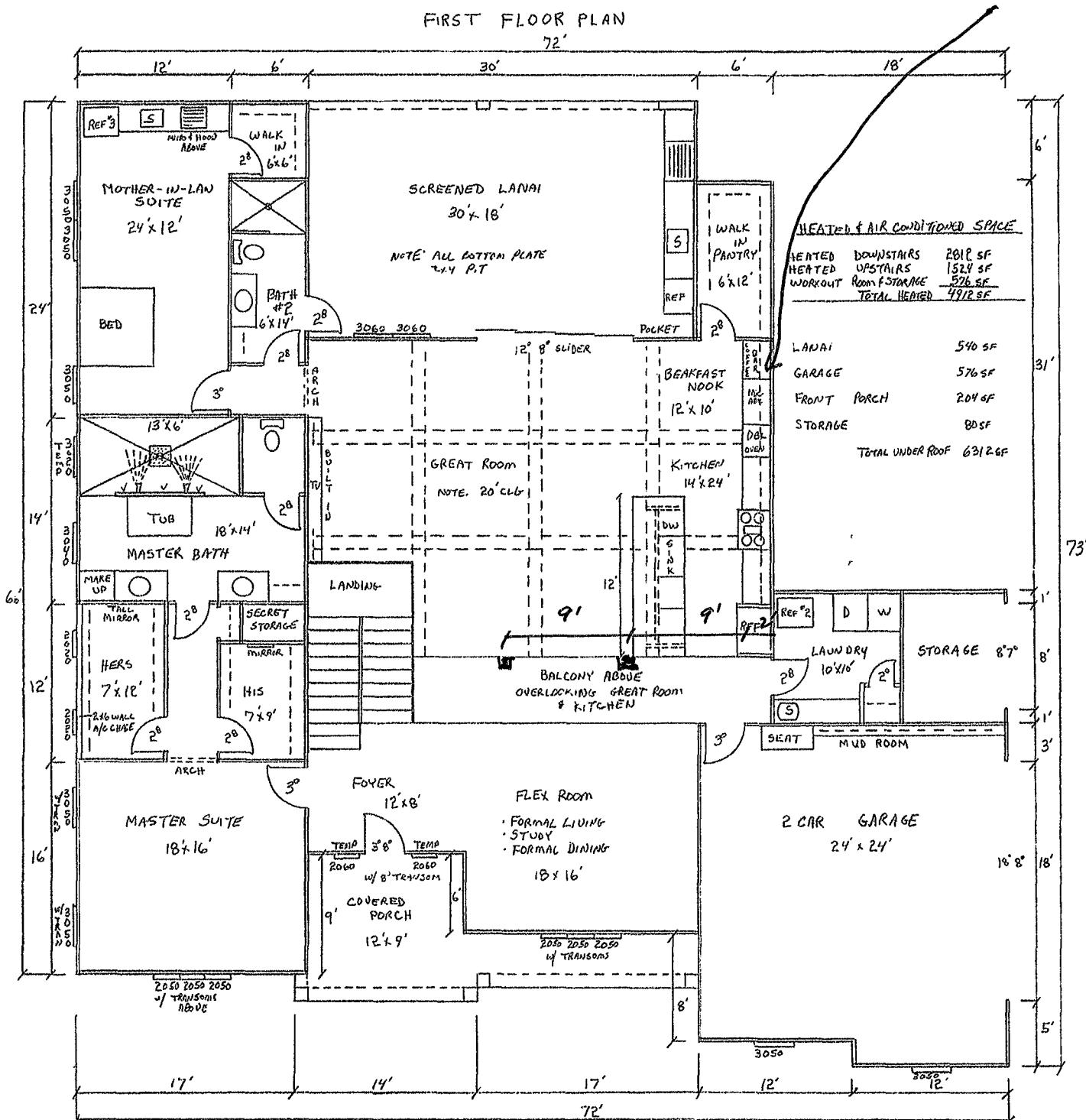



 10/22/25




LERNER Page 1

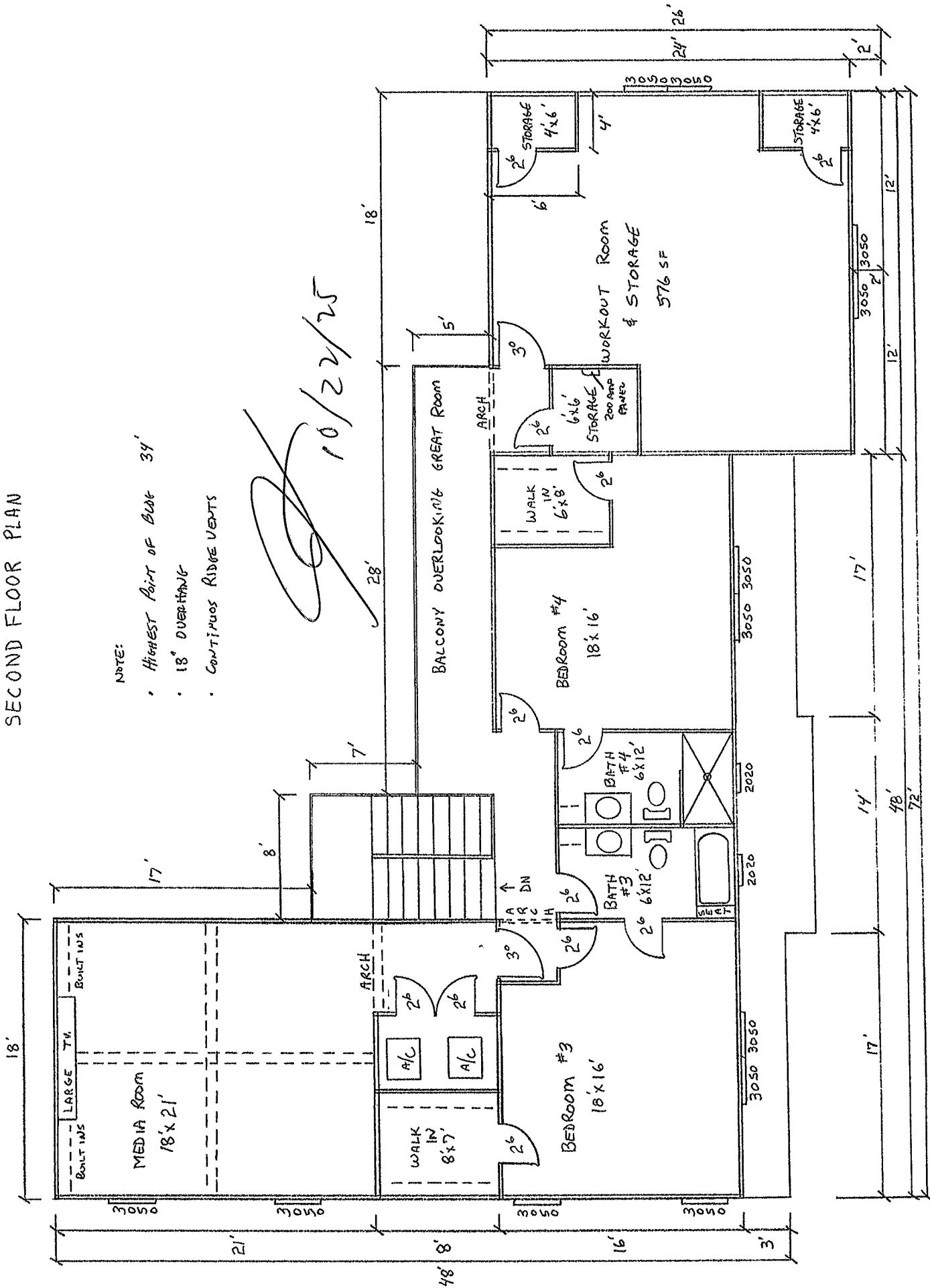


NOTE: 20' TALL WALL  
W/ 2X6 PINE R 12" O. O.

FIRST FLOOR PLAN



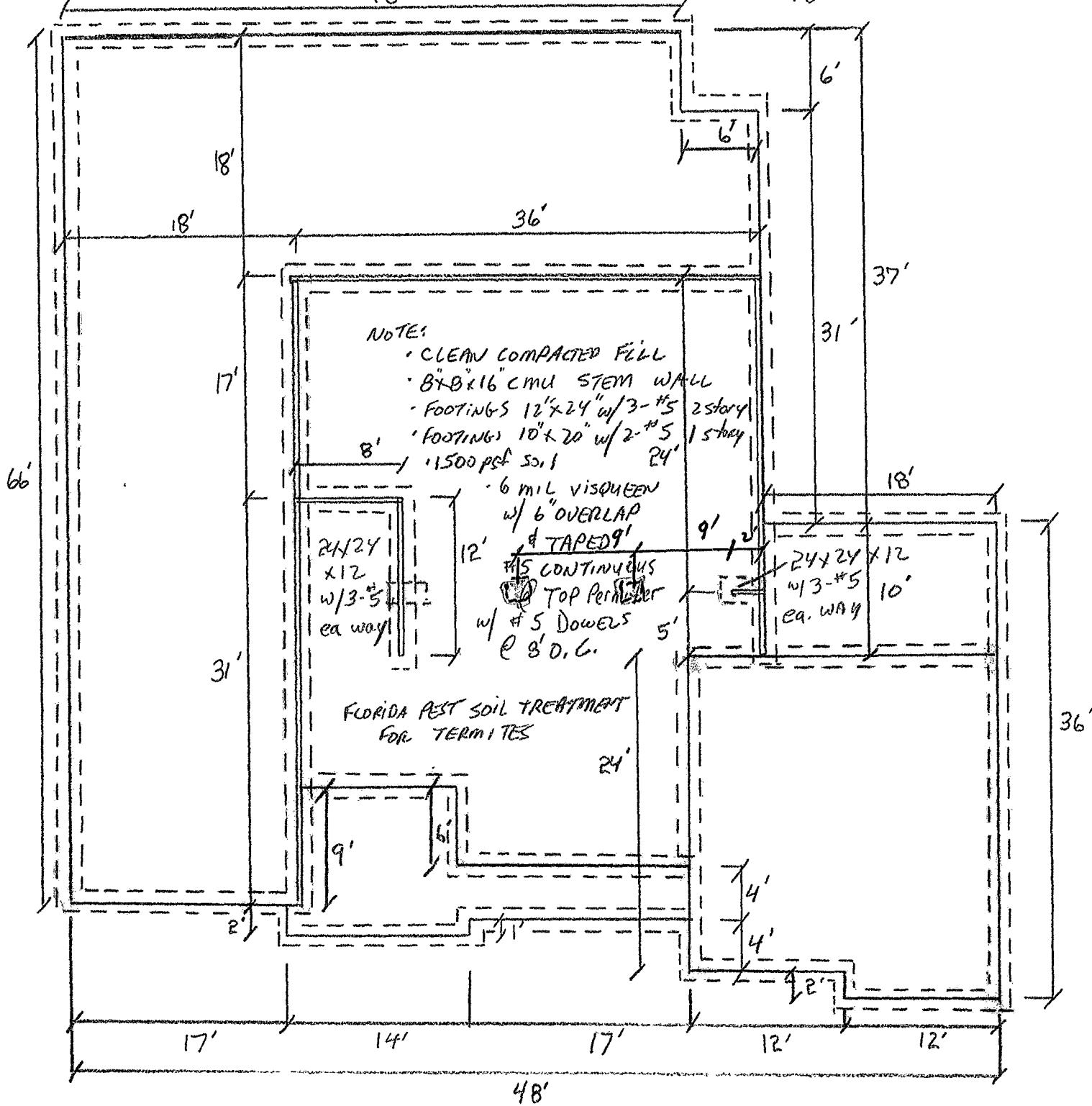
NOTE: BEAM @ Balcony 2-16" x 1 $\frac{1}{4}$ " LVL  
NAILED @ 16" O.C.  
Rows of 5 w/ 16D NAIL  
SUPPORTED w/ 6x6 POSTS  
@ 9' O.C.  
125


10/22/25

## SECOND FLOOR PLAN

NOTE:

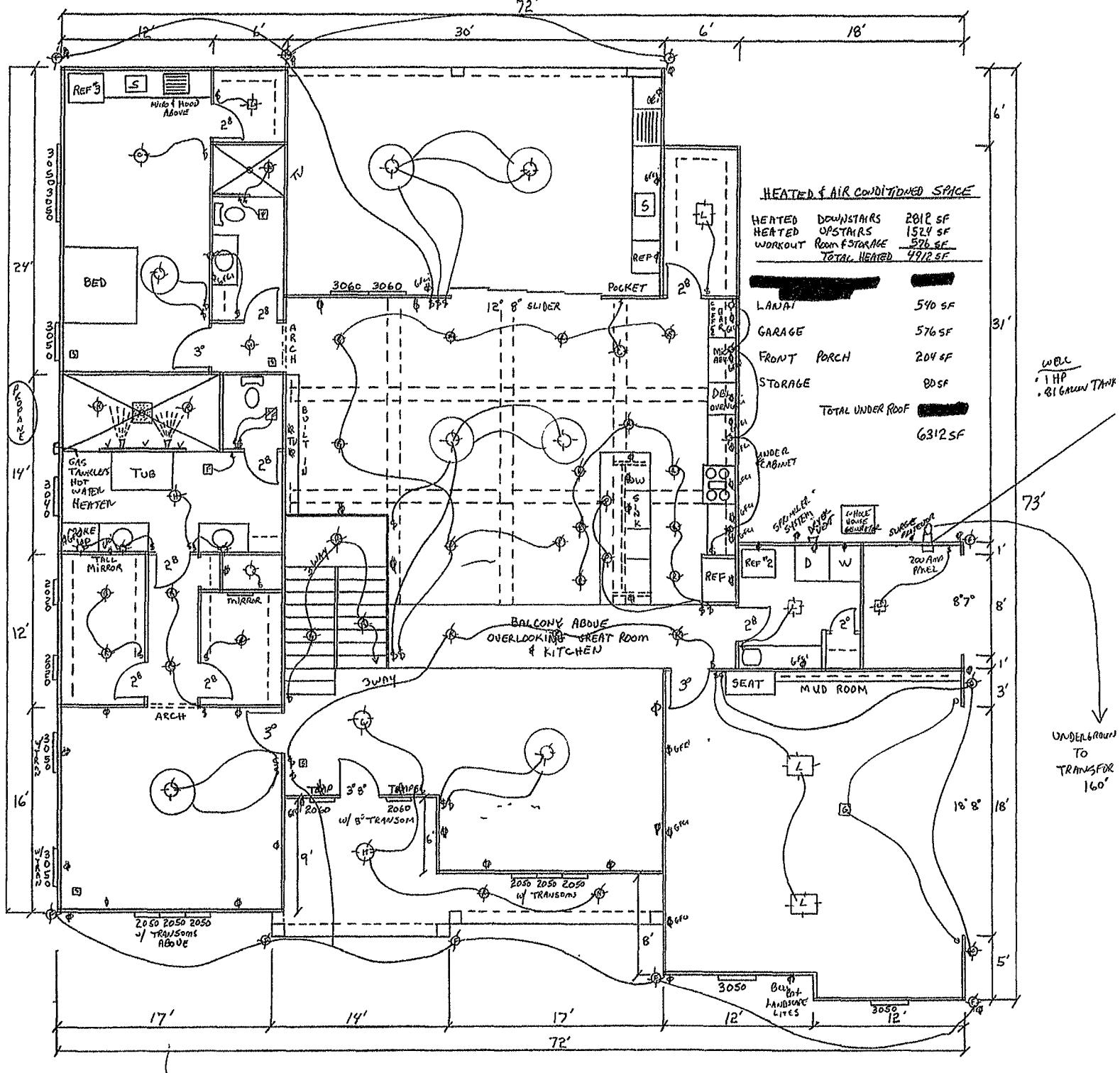
- Highest point of Bear 34'
- 18" overhang
- Continuous ridge vents


10/22/25

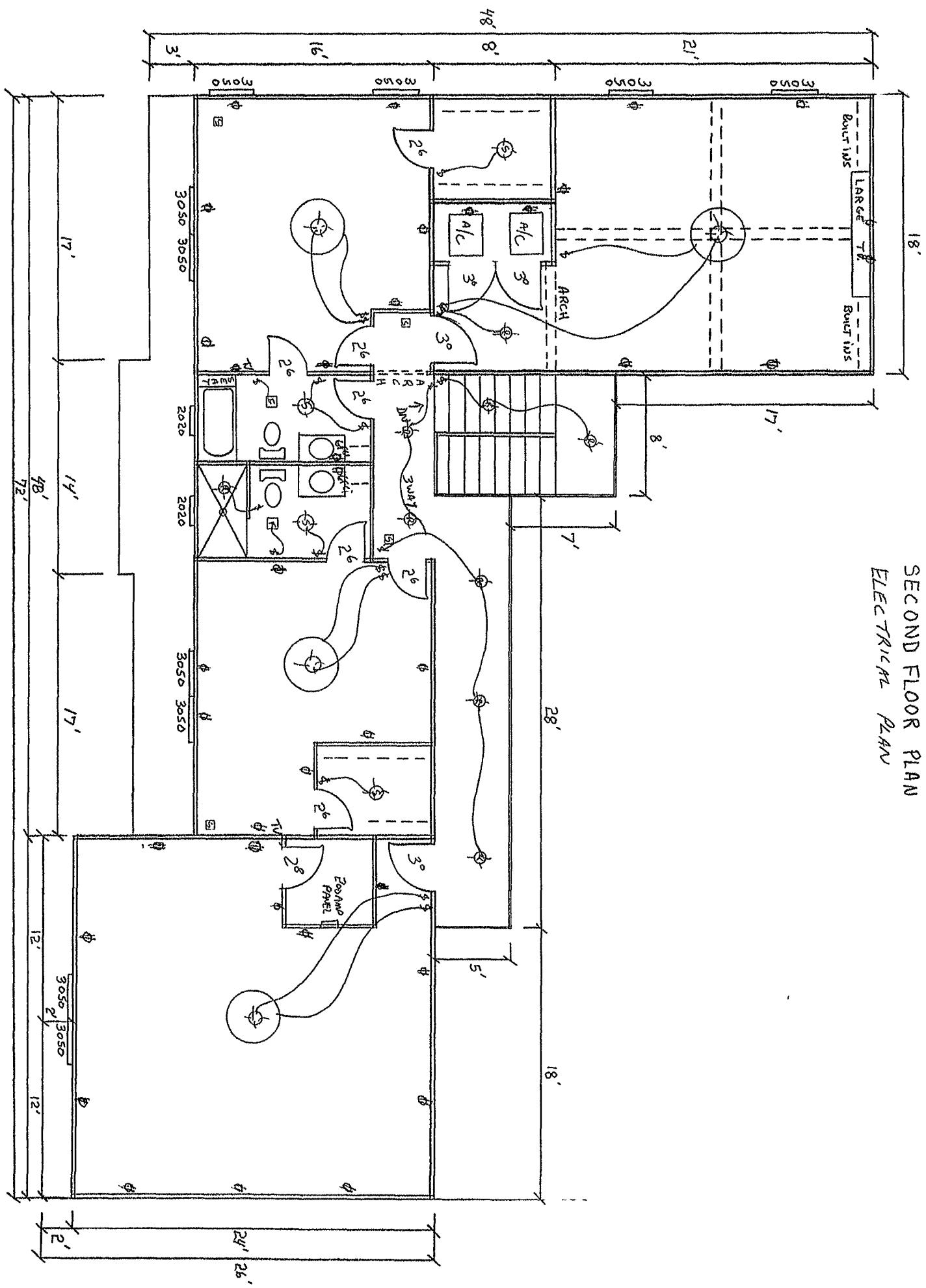


# FOUNDATION PLAN

48'


1/8" = 1'




DENOTES 2 STORY SECTION  
12" x 24" w/ 3-#5 REBAR

ALL OTHER FOOTINGS TO BE  
10" x 20" w/ 2-#5 REBAR

FIRST FLOOR PLAN ELECTRICAL



SECOND FLOOR PLAN  
ELECTRICAL PLAN



As required by Florida Statute 553.842 and Florida Administrative Code 9B-72, please provide the information and approval numbers on the building components listed below if they will be utilized on the construction project for which you are applying for a building permit. We recommend you contact your local product supplier should you not know the product approval number for any of the applicable listed products. Statewide approved products are listed online @ [www.floridabuilding.org](http://www.floridabuilding.org)

| Category/Subcategory                         | Manufacturer     | Product Description      | Approval Number(s) |
|----------------------------------------------|------------------|--------------------------|--------------------|
| <b>1. EXTERIOR DOORS</b>                     |                  |                          |                    |
| A. SWINGING                                  | PLASTARO         | FIBERGLASS               | FL-17347.1         |
| B. SLIDING                                   |                  |                          |                    |
| C. SECTIONAL/ROLL UP                         |                  |                          |                    |
| D. OTHER                                     |                  |                          |                    |
| <b>2. WINDOWS</b>                            |                  |                          |                    |
| A. SINGLE/DOUBLE HUNG                        | YKK              | VINYL LOW E              | FL B114            |
| B. HORIZONTAL SLIDER                         | SIMONTON         | VINYL 12' 0" POCKET DOOR | 41795              |
| C. CASEMENT                                  |                  |                          |                    |
| D. FIXED                                     |                  |                          |                    |
| E. MULLION                                   |                  |                          |                    |
| F. SKYLIGHTS                                 |                  |                          |                    |
| G. OTHER                                     |                  |                          |                    |
| <b>3. PANEL WALL</b>                         |                  |                          |                    |
| A. SIDING                                    | HARDIPLANK       | BOARD & BATTEN           | FL 13192           |
| B. SOFFITS                                   |                  | ALUMINUM                 | 12198.1            |
| C. STOREFRONTS                               |                  |                          |                    |
| D. GLASS BLOCK                               |                  |                          |                    |
| E. OTHER                                     |                  |                          |                    |
| <b>4. ROOFING PRODUCTS</b>                   |                  |                          |                    |
| A. ASPHALT SHINGLES                          | IKO              | FIBERGLASS LIFETIME      | FL 30310-R1        |
| B. NON-STRUCT METAL                          |                  |                          |                    |
| C. ROOFING TILES                             |                  |                          |                    |
| D. SINGLE PLY ROOF                           |                  |                          |                    |
| E. OTHER                                     | UNDERLAYMENT ABC | SYNTHETIC PROGUARD       | FL 15216-R5        |
| <b>5. STRUCT COMPONENTS</b>                  |                  |                          |                    |
| A. WOOD CONNECTORS                           |                  |                          |                    |
| B. WOOD ANCHORS                              | SIMPSON          | HURRICANE CUPS + STRAPS  | 10956.7            |
| C. TRUSS PLATES                              |                  |                          |                    |
| D. INSULATION FORMS                          |                  |                          |                    |
| E. LINTELS                                   |                  |                          |                    |
| F. OTHERS                                    |                  |                          |                    |
| <b>6. NEW EXTERIOR<br/>ENVELOPE PRODUCTS</b> |                  |                          |                    |

The products listed below did not demonstrate product approval at plan review. I understand that at the time of inspection of these products, the following information must be available to the Inspector on the jobsite; 1) copy of the product approval, 2) performance characteristics which the product was tested and certified to comply with, 3) copy of the applicable manufacturers installation requirements.

Further, I understand these products may have to be removed if approval cannot be demonstrated during inspection.



Contractor or Owner Signature

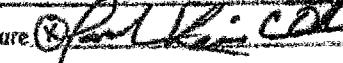
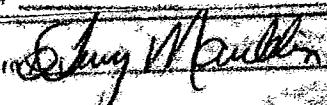
NOTES: \_\_\_\_\_

\_\_\_\_\_

### SUBCONTRACTOR VERIFICATION

TOP NAME: **TERRY MULDIN'S SPECIALTY**  
 242 116th, n/a, FL 32166

**THIS FORM MUST BE SUBMITTED BEFORE A PERMIT WILL BE ISSUED**




Columbia County issues combination permits. One permit will cover all trades doing work at the permitted site. It is required that we have a record of the subcontractors who actually did the trade specific work under the general contractor's permit.

**NOTE:** It shall be the responsibility of the general contractor to make sure that all of the subcontractors are licensed with the Columbia County Building Department.

Use website to confirm licenses: <http://www.columbiacountyfla.com/PermitSearch/ContractorSearch.aspx>

**NOTE:** If the subcontractor changes prior to completion of the project, it is your responsibility to have a corrected form submitted to our office, before that work has begun.

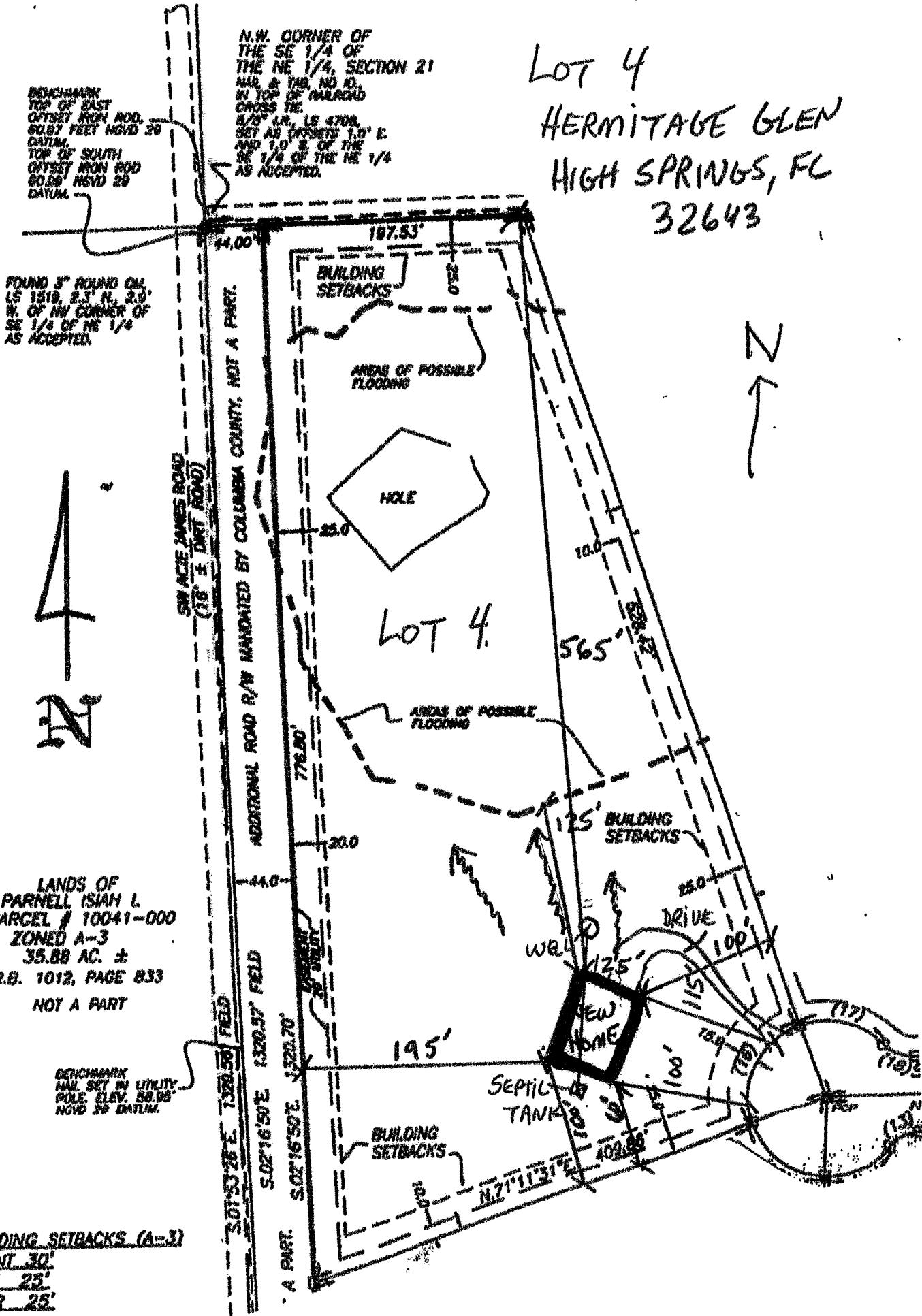
Violation will result in stop work orders and/or fines.

|              |                                                                                                                                                                                                                                                            |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ELECTRICAL   | Print Name: <u>Ryan Beville</u> Signature: <br><input type="checkbox"/><br>Company Name: <u>RBT</u>                                                                      |
| CCB          | License #: <u>11777</u> Phone #: <u>352-514-0428</u>                                                                                                                                                                                                       |
| MECHANICAL   | Print Name: <u>Robert Bounds</u> Signature: <br><input type="checkbox"/><br>Company Name: <u>Bounds AC</u><br>license #: <u>CAC057642</u> Phone #: <u>(352) 472-2761</u> |
| PLUMBING/    | Print Name: <u>KEVIN COLEMAN</u> Signature: <br><input type="checkbox"/><br>Company Name: <u>COLEMANS PLUMBING</u>                                                     |
| GAS          | CCB: <u>CCCL14256024</u> Phone #: <u>352-472-4114</u>                                                                                                                                                                                                      |
| ROOFING      | Print Name: <u>BEN KEELER</u> Signature: <br><input type="checkbox"/><br>Company Name: <u>KEELER ROOFING</u><br>CCB: <u>CCCL1330509</u> Phone #: <u>352-514-8930</u>   |
| SHEET METAL  | Print Name: _____ Signature: _____<br><input type="checkbox"/><br>Company Name: <u>N/A</u><br>CCB: _____ Phone #: _____                                                                                                                                    |
| CCB          | Print Name: _____ Signature: _____<br>Company Name: _____<br>CCB: _____ Phone #: _____                                                                                                                                                                     |
| FIRE SYSTEM/ | Print Name: _____ Signature: _____<br>Company Name: _____<br>CCB: _____ Phone #: _____                                                                                                                                                                     |
| SPRINKLER    | Print Name: _____ Signature: _____<br>Company Name: <u>N/A</u><br>CCB: _____ Phone #: _____                                                                                                                                                                |
| SOLAR        | Print Name: _____ Signature: _____<br>Company Name: <u>N/A</u><br>CCB: _____ Phone #: _____                                                                                                                                                                |
| CCB          | Print Name: _____ Signature: _____<br>Company Name: _____<br>CCB: _____ Phone #: _____                                                                                                                                                                     |
| STATE        | Print Name: <u>TERRY MULDIN</u> Signature: <br><input type="checkbox"/><br>Company Name: <u>MULDIN'S GAS</u><br>CCB: <u>①</u> Phone #: _____                           |
| SPECIALTY    | Print Name: _____ Signature: _____<br>Company Name: _____<br>CCB: _____ Phone #: _____                                                                                                                                                                     |
| CCB          | Print Name: _____ Signature: _____<br>Company Name: _____<br>CCB: _____ Phone #: _____                                                                                                                                                                     |

## SITE PLAN

Lot 4

HERMITAGE GLEN  
HIGH SPRINGS, FL  
32643

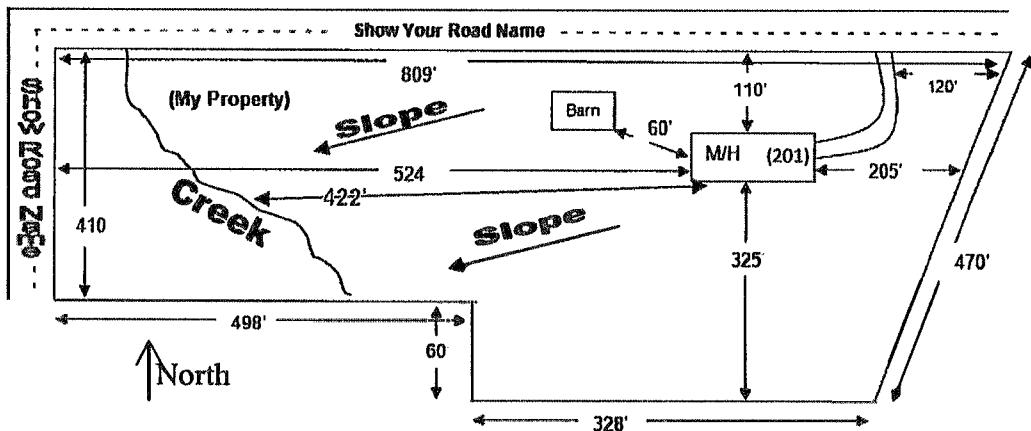

N  
↑

4 N

LANDS OF  
PARMELL, ISIAH L  
PARCEL # 10041-000  
ZONED A-3  
35.88 AC. ±  
O.R.B. 1012, PAGE 833  
NOT A PART

**BENCHMARK  
NAIL SET IN UTILITY  
POLE. ELEV. 59.95'  
NGVD 20 DATUM.**

WILDING SETBACKS (A-J)  
FRONT 30'  
DF 25'  
EAR 25'

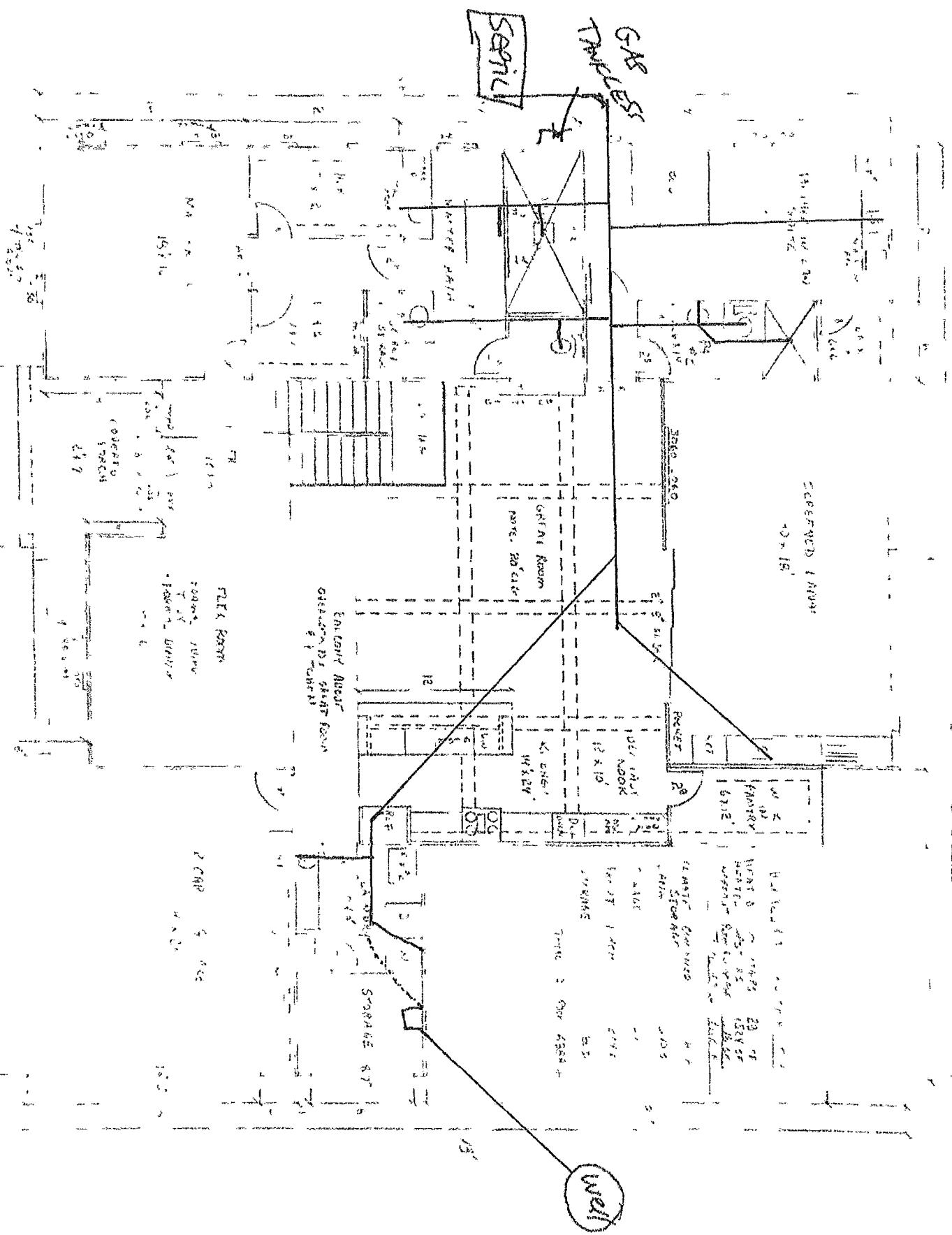



## SITE PLAN CHECKLIST

- 1) Property Dimensions
- 2) Footprint of proposed and existing structures (including decks), label these with existing addresses
- 3) Distance from structures to all property lines
- 4) Location and size of easements
- 5) Driveway path and distance at the entrance to the nearest property line
- 6) Location and distance from any waters; sink holes; wetlands; and etc.
- 7) Show slopes and or drainage paths
- 8) Arrow showing North direction

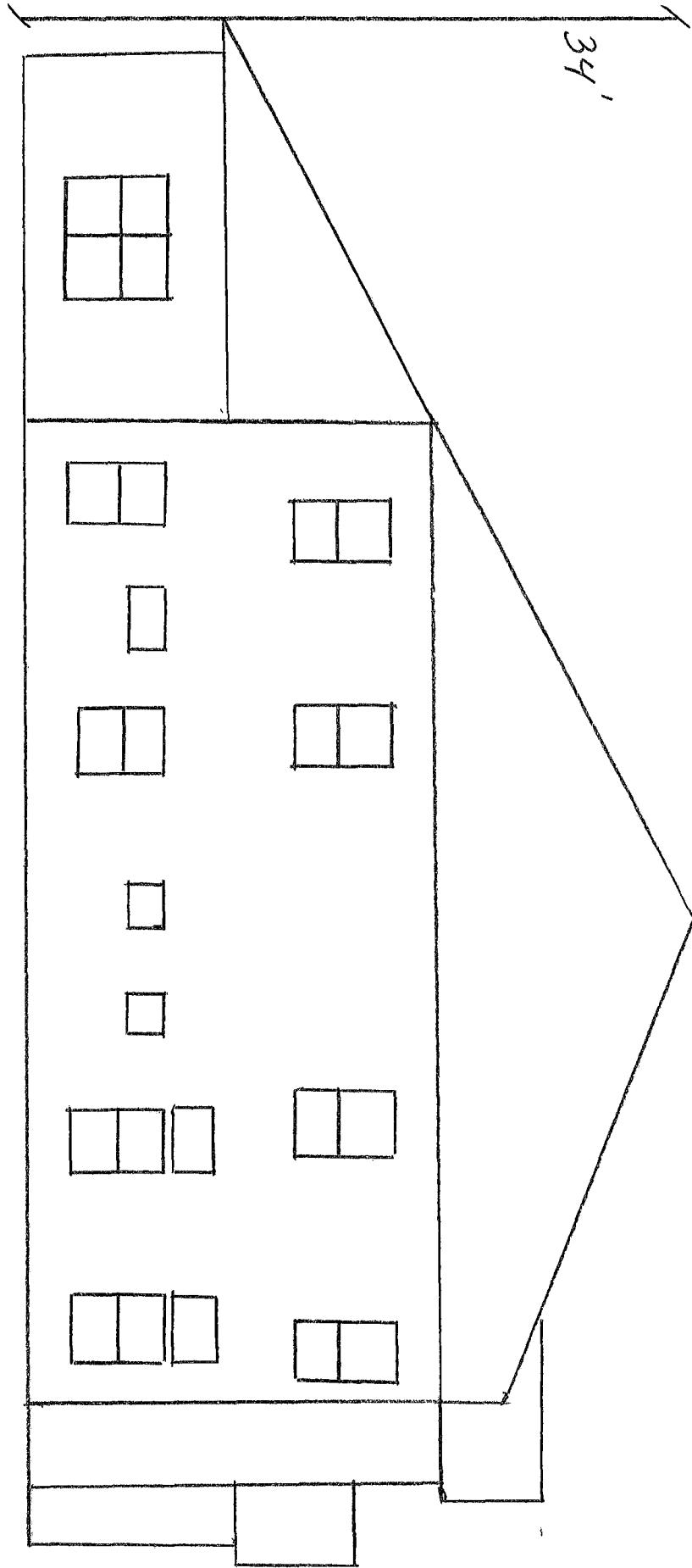
## SITE PLAN EXAMPLE

Revised 7/1/15

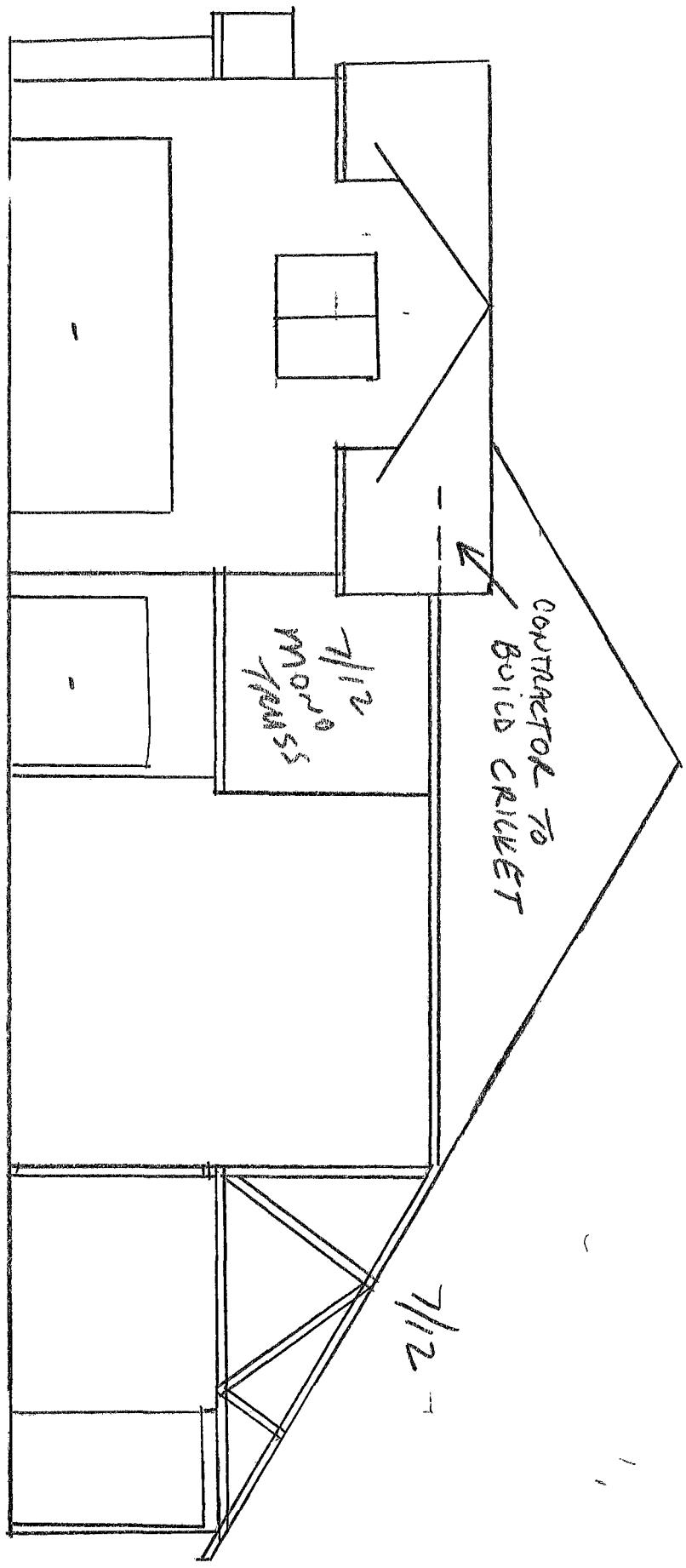



### NOTE:

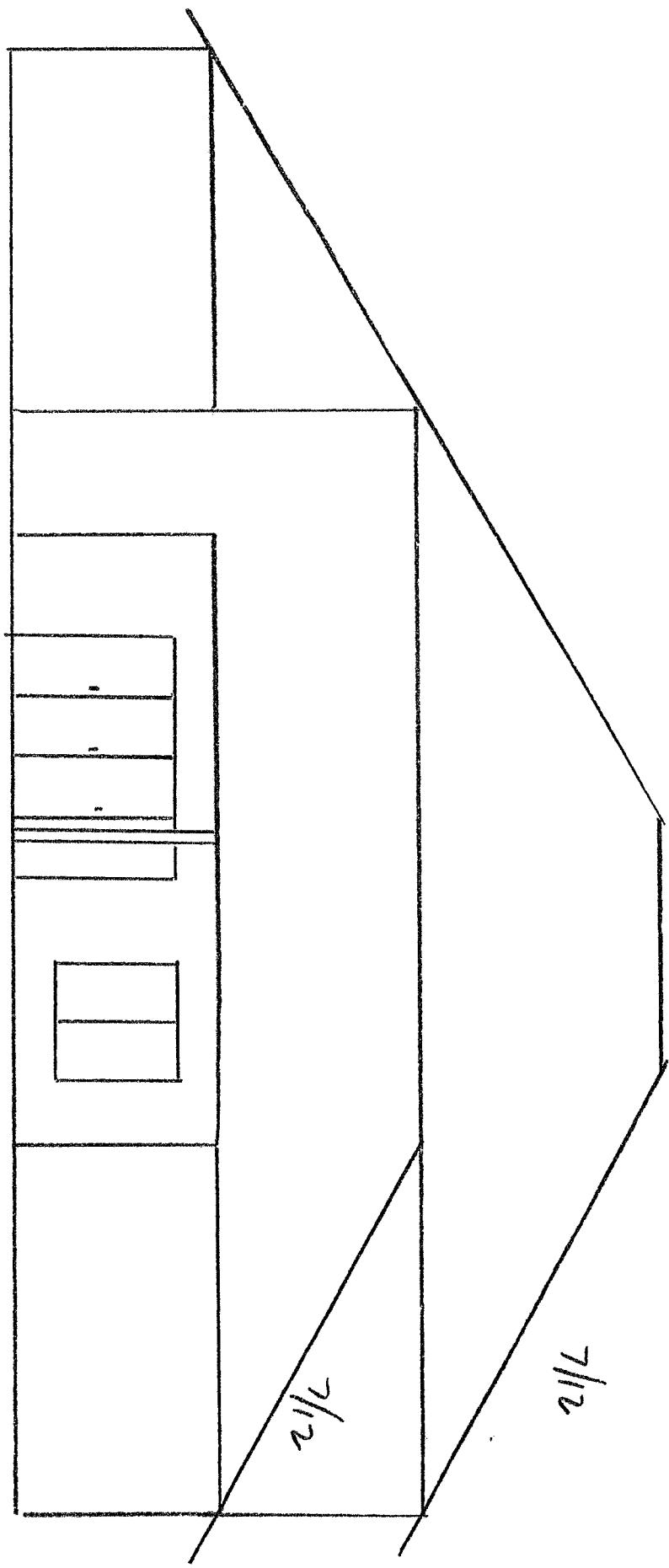
This site plan can be copied and used with the 911 Addressing Dept. application forms.


卷之三

## RAMBLES IN THE WILDERNESS




$$1/8'' = 1'$$


LEFT SIDE ELEVATION



RIGHT SIDE ELEVATION



REAR ELEVATION  
 $1/8" = 1'$



LERNER

1972/25

KIZ PINE  
RIDGE

7/2

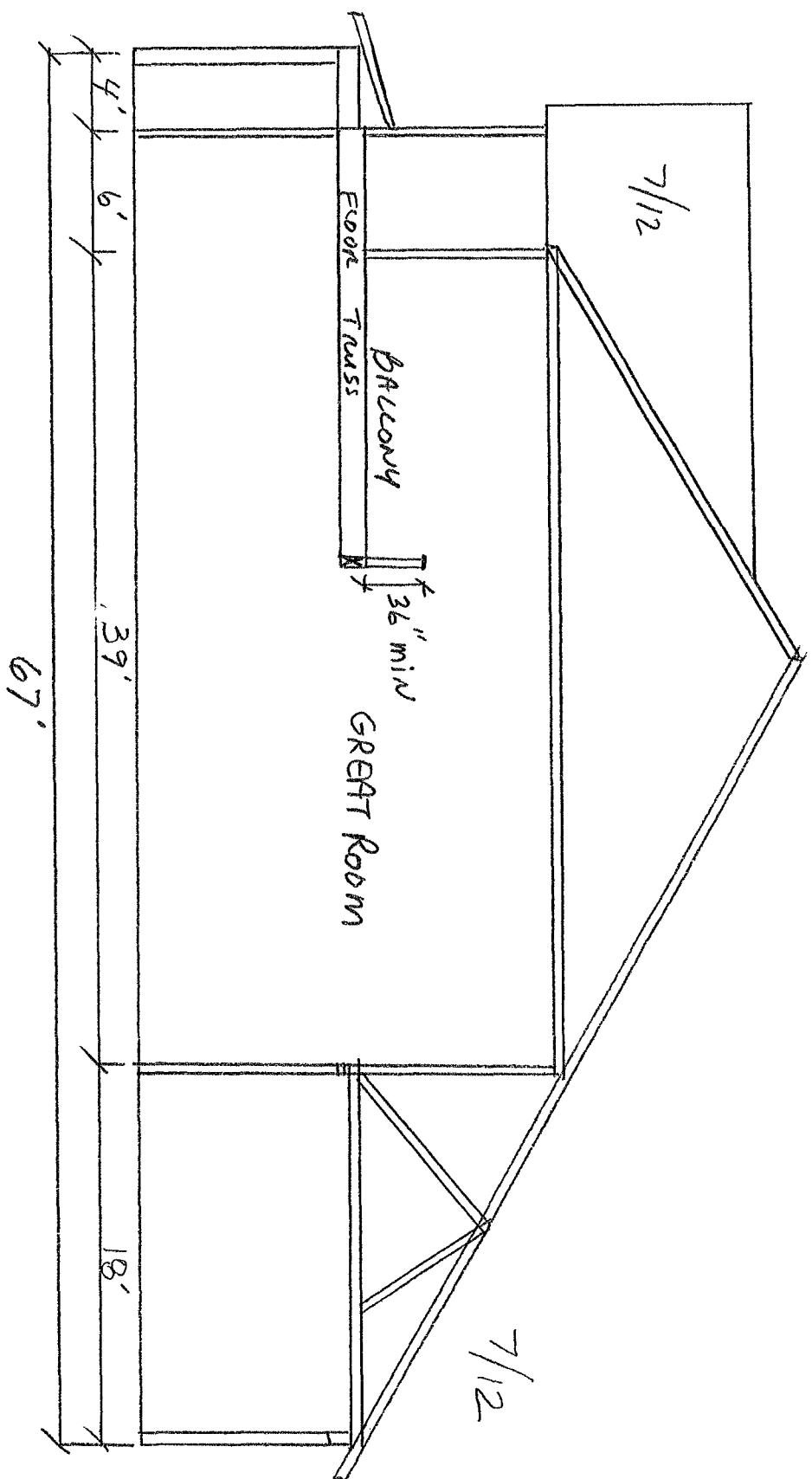
2x6 pine  
valley  
fram  
w/  
2x6 sent  
w/stokes

2.0.C.

25.

NOTE:

BOOM FRAME  
TABLE ENDS w/ 2X4  
SPINE @ 16" O.C.


Floor Truss

10

## GARAGE

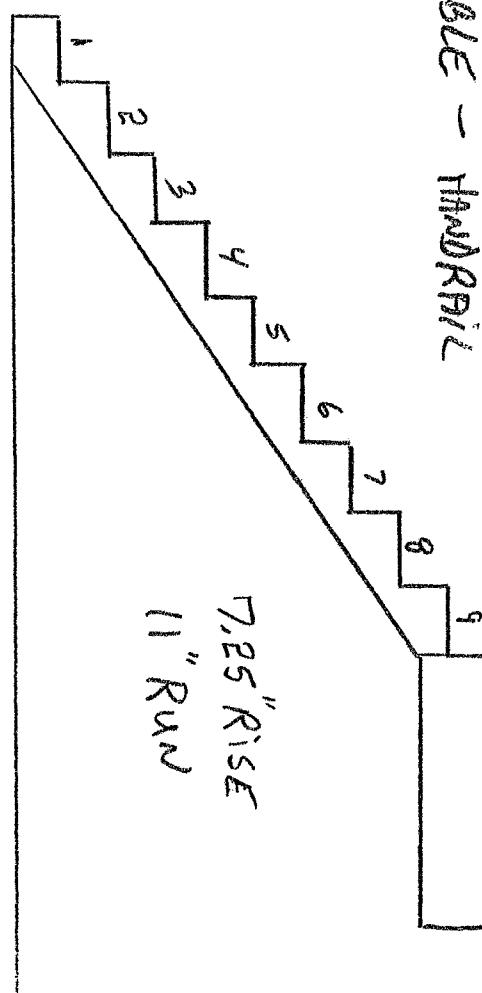
Bonus Room over Garage

CROSS SECTION THRU GREAT ROOM



# STAIRS

USE 2x12 PINE STRAIGHT


2" X 2" SPINDLES LESS THAN 4" O.C.

8 STEPS THAN  
2<sup>nd</sup> FLOOR @ 11'

MIN 36" HT  
GRASPABLE - HANDRAIL  
10 LOW DINT

STAIR WIDTH  
44"

7.25" RISE  
11" RUN



2421 NW 49 Ave., Gainesville, FL 32605

dayayan85arch@gmail.com

# Windload Calculations Summary

**A New Residence for Ryan Beville, by Lerner Luxury Properties****Parcel #R10039-104 (Hermitage Glen) - High Springs, Florida****CRITERIA:**

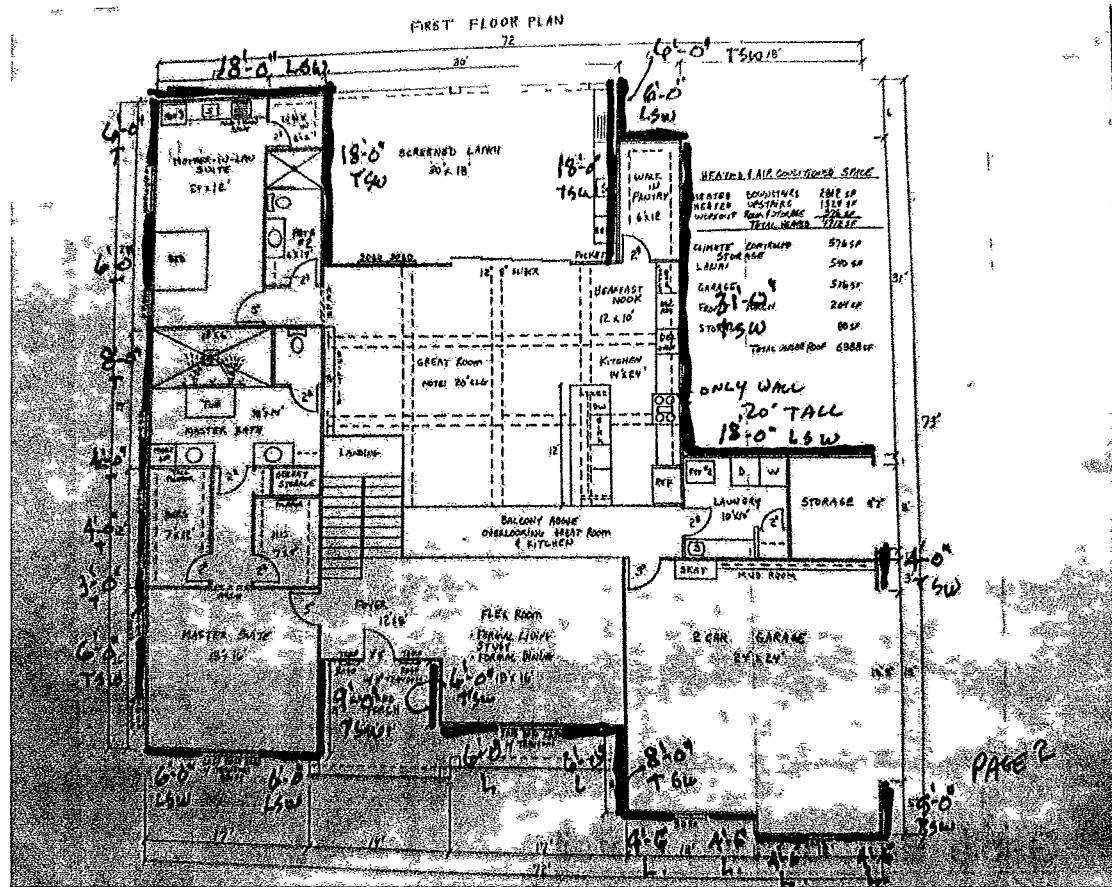
|                                                                             |                                              |
|-----------------------------------------------------------------------------|----------------------------------------------|
| Code Reference:                                                             | 2023 Florida Building Code 8th Edition, Res. |
| Location:                                                                   | High Springs, Florida                        |
| Ultimate Design Wind Speed:                                                 | 130 MPH                                      |
| Mean Roof Height:                                                           | Less than 30'-0"                             |
| Building Risk Category:                                                     | II                                           |
| Building Exposure Factor:                                                   | Exposure B                                   |
| Building Enclosure:                                                         | Building Is Enclosed                         |
| Internal Pressure Coefficient:                                              | ± 0.18                                       |
| Roof Component & Cladding Design Wind Pressure:                             | Zone 1: +10.0 psf, -15.0 psf                 |
| As per 2023 Florida Building Code 8th Edition, Residential, Table R301.2(1) | Zone 2: +10.0 psf, -21.0 psf                 |
|                                                                             | Zone 3: +10.0 psf, -33.0 psf                 |
| Wall Component & Cladding Design Wind Pressure:                             | Zone 4: +15.5 psf, -17.0 psf                 |
| As per 2023 Florida Building Code 8th Edition, Residential, Table R301.2(1) | Zone 5: +15.5 psf, -19.0 psf                 |

**BUILDING DATA:**

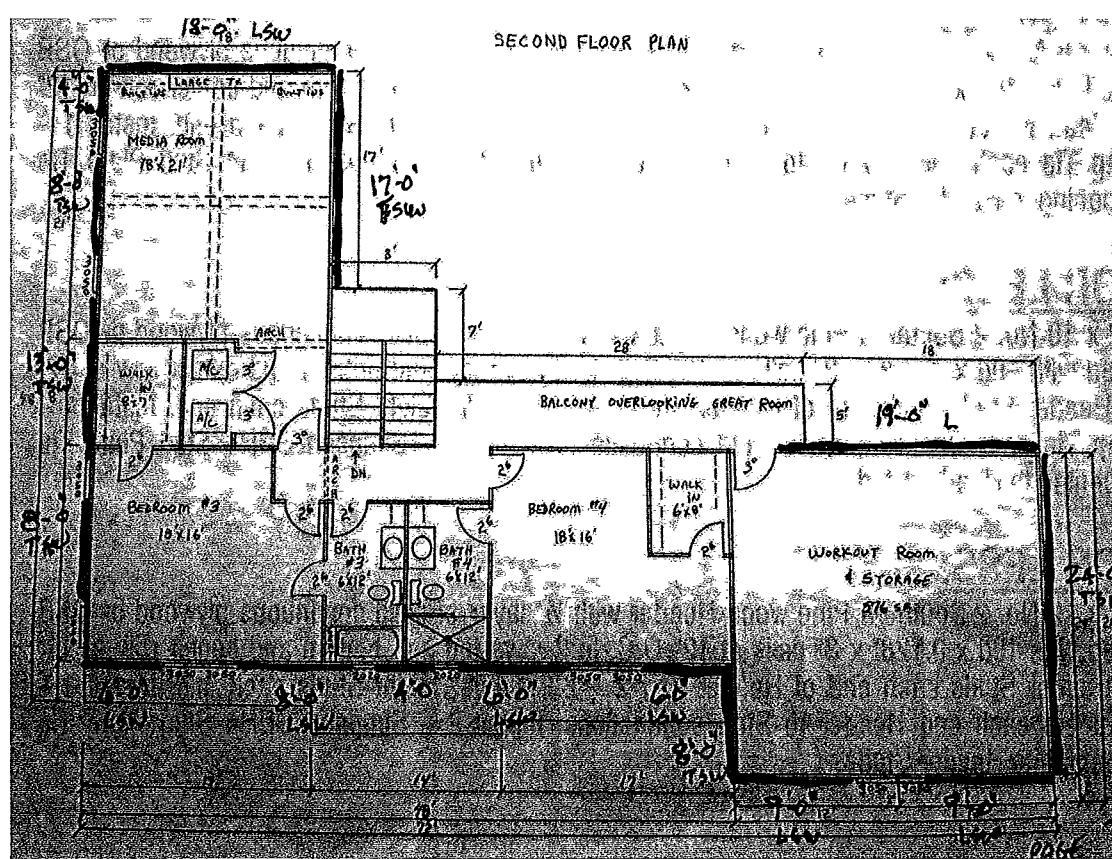
|                                  |                                 |
|----------------------------------|---------------------------------|
| One Story 2 x 4 Frame Residence: | ± 9'-0" Top of Plate & ± 10'-0" |
| Roof Pitch:                      | 8 / 12 Main (33.69°)            |
| Gable / Hip Roof Overhang:       | ± 1'-6"                         |
| Assumed Soil Bearing Value       | 1,500 PSF                       |

**FOOTINGS:**

Perimeter Stem Wall Footing at Walls at Two Story & Porches: 12" Deep x 24" Wide with 3 - #5 continuous and 1 - #5 tie at 48' O.C.. Provide 4" thick concrete slab with Heavy Duty Fibermesh reinforcement on 6 mil vapor barrier over 95% density clean compacted fill.


See Drawings for other footing detail types.

All concrete in footings & slabs shall be 3000 psi. All reinforcement shall be 60 ksi.


**ANCHOR BOLTS:**

Provide 1/2" A307 anchor bolts with 2" round or square plate washers at 24" O.C. maximum. Place Anchor Bolts at the end of all shearwall segments. Net uplift at corner holdown and shearwall ends is 2,987#, 1 anchor bolt is OK, 3268#. Bottom wood plate shall be P.T. 2 x 6 Southern Pine.

±9'-0" High First Level Walls- use 2 x 4 Spruce-Pine-Fir No. 2 at 1'-4" O.C. at exterior 10'-0" walls exposed to wind.



## **First Level**



## Second Level

Donald A. Yanskey, Architect  
10/16/2025  
FL AR 11010  
3 of 4

## **18' OPENINGS OR LESS @ REAR PORCH:**

Provide minimum 3 Ply 1 $\frac{3}{4}$ " x 11 $\frac{1}{4}$ " 2/0E Microlam LVL glued and nailed with 10d x 0.128" x 3" nails at 12" O.C. in 2 rows top and bottom Each Face Of Beam. Install 3 – 2 x 6 Header Studs each end of Header and 2 – 2 x 6 Full Height Studs each end. Install 2 – Simpson MSTA24 Strap Tie each end Header to Stud connections. Install 3 – Simpson SPH6 Stud Plate Tie (Center) each side of opening to Header Studs.

## **18' GARAGE DOOR OPENING:**

Provide minimum 2 Ply 1 $\frac{3}{4}$ " x 11 $\frac{1}{4}$ " 2/0E Microlam LVL glued and nailed with 10d x 0.128" x 3" nails at 12" O.C. in 2 rows top and bottom Each Face Of Beam. Install 3 – 2 x 4 Header Studs each end of Header and 2 – 2 x 4 Full Height Studs each end. Install 2 – Simpson MSTA24 Strap Tie each end Header to Stud connections. Install 3 – Simpson SPH4 Stud Plate Tie (Center) each side of opening to Header Studs.

## **14' FRONT PORCH OUTER OPENING:**

Provide minimum 2 Ply 2 x 12 No. 2 Southern Pine with 1/2" plywood spacer glued and nailed with 10d x 0.128" x 3" nails at 12" O.C. In 2 rows top and bottom. Install 3 – 2 x 4 Header Studs each end of Header and 2 – 2 x 4 Full Height Studs each end. Install 2 – Simpson MSTA24 Strap Tie each end Header to Stud connections. Install 3 – Simpson SPH4 Stud Plate Tie (Center) each side of opening to Header Studs.

## **15' REAR PORCH OUTER OPENING:**

Provide minimum 2 Ply 1 $\frac{3}{4}$ " x 11 $\frac{1}{4}$ " 2/0E Microlam LVL glued and nailed with 10d x 0.128" x 3" nails at 12" O.C. In 2 rows top and bottom Each Face Of Beam. Install 3 – 2 x 4 Header Studs each end of Header and 2 – 2 x 4 Full Height Studs each end. Install 2 – Simpson MSTA24 Strap Tie each end Header to Stud connections. Install 3 – Simpson SPH4 Stud Plate Tie (Center) each side of opening to Header Studs.

## **ROOF SHEATHING:**

Use 7/16" thick OSB sheathing minimum with 8d Ring Shank Nails (0.113" Shank diameter) at 4" O.C. along sheet edges and 8" O.C. in sheet field. No intermediate blocking is required between trusses. Maximum force applied at top of Transverse Shear Walls is 39,858 per 142'-0" = 280.7 # per lineal foot. Provide 8d Ring Shank Nails at 4" O.C. along sheet edges and 8" O.C. in sheet field. **OK**

STATE OF FLORIDA  
DONALD A. YANSKEY  
YANKEY  
REGISTERED ARCHITECT  
DN: c=US, o=Unaffiliated,  
dnQualifier=A01410D0000019  
5861D9DFD0017588B,  
cp=Donald A Yanskey  
0011 Date: 2025.10.16 13:10:08  
-04'00'

Donald A. Yanskey, Architect

10/16/2025

FL AR 11010

# DONALD A. YANSKEY ▼ ARCHITECT

FL Registration FL AR 0011010  
352.278.7872

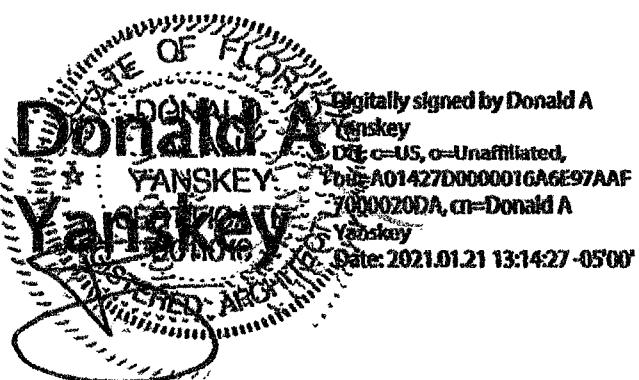
2421 NW 49 Ave., Gainesville, FL 32605  
dayayan85arch@gmail.com

January 21, 2021

Mr. Jerry Lerner  
Lerner Enterprises  
292 Hermitage Glen  
High Springs, Florida

RE: Window Installation Procedure Details for Lerner Luxury Properties, LLC.

Dear Mr. Jerry Lerner,


I have reviewed Mr. Lerner's Installation Procedures and acknowledge that they are a sound installation. I do like this set of installation procedures and when I install new windows in my own home, I will utilize this procedure.

I highly recommend that this procedure be adopted as a typical installation procedure for new and retrofit window installations.

See attached Documentation as furnished by Lerner Luxury Properties, LLC.

If you have any questions, please do not hesitate to call. Thank you for the opportunity to provide you with this service.

Thank You,

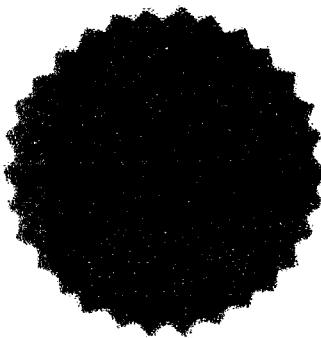


Donald Alan Yanskey, Architect FL AR 0011010

File: Jerry Lerner - Window Installation Det - 01.doc

# *LEMER LUXURY PROPERTIES, LLC.*

## **Window specs**


**The following window installation procedure shall be warrantied by Lemer Luxury Properties.**

**A lifetime guarantee will be provided to the homeowners at**

---

- Hold back OSB sheathing  $1\frac{1}{2}$ " to allow window to be recessed in exterior wall.
- Attach window directly to wood framing with  $1\frac{1}{4}$ " pan head screws & caulk.
- Install house wrap over the window flange. Cut house wrap back  $\frac{1}{2}$ " from window so that window tape can bond to window & house wrap.
- Apply window tape to bottom of window first, then sides, than top.
- Use hardiplank exterior trim with installation of Z-flashing on top of trim.
- Caulk all connections of window to hardi trim.

# NOTICE OF PRODUCT CERTIFICATION



|                               |                       |
|-------------------------------|-----------------------|
| <b>CERTIFICATION NO:</b>      | <u>N1006554.02-R5</u> |
| <b>DATE:</b>                  | <u>01/04/2008</u>     |
| <b>CERTIFICATION PROGRAM:</b> | <u>Structural</u>     |
| <b>COMPANY:</b>               | <u>YKK</u>            |
| <b>CODE:</b>                  | <u>860-1</u>          |
| <b>REVISION DATE:</b>         | <u>08/27/2020</u>     |

To verify that the "Notice of Product Certification" is valid, please visit [www.NAMICertification.com](http://www.NAMICertification.com) to assure that the product is active and currently listed. This certification represents product conformity to the applicable specification and that certification criteria has been satisfied. A NAMI approved certification label must be applied to the product to claim certification status. Please review and advise NAMI if any corrections are required to this document.

| COMPANY NAME AND ADDRESS                                                               | PRODUCT DESCRIPTION                                                                                                                                                                            |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>YKK AP America, Inc.</b><br><b>4234 Ocmulgee E. Blvd.</b><br><b>Macon, GA 31217</b> | <b>YKK AP America StyleView™</b><br><b>Vinyl Fixed Window</b><br><br><b>Configuration: O</b><br><b>Glazing: Insulating Glass (Tempered)</b><br><br><b>Frame: W-1829mm (72") H-2426mm (96")</b> |

| SPECIFICATION                                                                                 | PRODUCT RATING                                                                            |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| <b>ASTM E283-04(12)/E330-02/<br/>F588-04/E547-00</b><br><b>AAMA/WDMA/CSA 101/LS.2.A440-17</b> | <b>Design Pressure: ±2400 Pa (50 psf)</b><br><b>Class R-PG35 1829 x 2426 (72 x 96)-FW</b> |

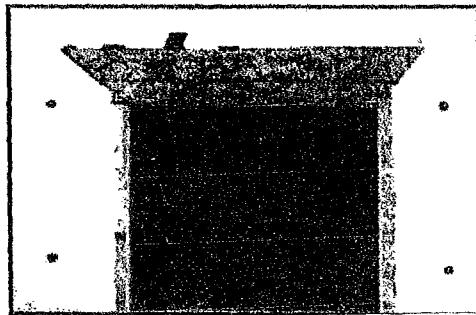
Product Tested By: Hurricane Test Laboratory, LLC  
Report No: 0231-0703-05/G231-1102-07/W-1954  
Expiration Date: November 30, 2023

Administrator's Signature: \_\_\_\_\_ 

**NATIONAL ACCREDITATION AND  
MANAGEMENT INSTITUTE, INC.**  
4794 George Washington Memorial Highway  
Hayes, VA 23072  
Tel: (804) 684-5124  
Fax: (804) 684-5122



CERTIFIED  
INSTALLER  
PROGRAM


## A1 Method

### Quick Reference Guide

For the use of the Quad Window & Door System



- 1 **Cut 45-degree angle at the head and side jamb joints on each side and temporarily fasten the top flap with a piece of tape. Cut the WRB a minimum of 1 to 1-1/4" away from the rough opening sides to expose the sheathing.**





# Project Summary

## Entire House

### Bounds Heating and Air

Job:  
Date: Oct 20, 2026  
By:

Email: jlegler@boundshvac.com

## Project Information

For Spec House, Lerner

Notes

## Design Information

Weather Gainesville Regional, FL, US

### Winter Design Conditions

|            |       |
|------------|-------|
| Outside db | 33 °F |
| Inside db  | 68 °F |
| Design TD  | 35 °F |

Ventilation Method

|                     |          |
|---------------------|----------|
| Outside db          | 92 °F    |
| Inside db           | 75 °F    |
| Design TD           | 17 °F    |
| Daily range         | M        |
| Relative humidity   | 50 %     |
| Moisture difference | 44 gr/lb |

### Heating Summary

|                      |            |
|----------------------|------------|
| Structure            | 51784 Btuh |
| Ducts (R-6 0)        | 18184 Btuh |
| Central vent (0 cfm) | 0 Btuh     |
| Humidification       | 0 Btuh     |
| Piping               | 0 Btuh     |
| Equipment load       | 69968 Btuh |

### Sensible Cooling Equipment Load Sizing

|                         |            |
|-------------------------|------------|
| Structure               | 35507 Btuh |
| Ducts (R-6 0)           | 21984 Btuh |
| Central vent (0 cfm)    | 0 Btuh     |
| Blower                  | 0 Btuh     |
| Use manufacturer's data | n          |
| Rate/swing multiplier   | 0.97       |
| Equipment sensible load | 55881 Btuh |

### Infiltration

|                           |            |         |
|---------------------------|------------|---------|
| Method                    | Simplified |         |
| Construction quality      | Average    |         |
| Fireplaces                | 0          |         |
| Area (ft <sup>2</sup> )   | Heating    | Cooling |
| Volume (ft <sup>3</sup> ) | 4912       | 4912    |
| Air changes/hour          | 63305      | 63305   |
| Equiv AVF (cfm)           | 0.28       | 0.15    |
|                           | 295        | 158     |

### Latent Cooling Equipment Load Sizing

|                                       |            |
|---------------------------------------|------------|
| Structure                             | 5693 Btuh  |
| Ducts                                 | 4478 Btuh  |
| Central vent (0 cfm)                  | 0 Btuh     |
| Equipment latent load                 | 10171 Btuh |
| <b>Equipment Total Load (Sen+Lat)</b> | 66052 Btuh |
| Req total capacity at 0.70 SHR        | 6.7 ton    |

### Heating Equipment Summary

|                  |            |
|------------------|------------|
| Make             | n/a        |
| Trade            | n/a        |
| Model            | n/a        |
| AHRI ref         | n/a        |
| Efficiency       | n/a        |
| Heating input    |            |
| Heating output   | 0 Btuh     |
| Temperature rise | 0 °F       |
| Actual air flow  | 0 cfm      |
| Air flow factor  | 0 cfm/Btuh |
| Static pressure  | 0 in H2O   |
| Space thermostat | n/a        |

### Cooling Equipment Summary

|                          |            |
|--------------------------|------------|
| Make                     | n/a        |
| Trade                    | n/a        |
| Cond                     | n/a        |
| Coil                     | n/a        |
| AHRI ref                 | n/a        |
| Efficiency               | n/a        |
| Sensible cooling         | 0 Btuh     |
| Latent cooling           | 0 Btuh     |
| Total cooling            | 0 Btuh     |
| Actual air flow          | 0 cfm      |
| Air flow factor          | 0 cfm/Btuh |
| Static pressure          | 0 in H2O   |
| Load sensible heat ratio | 0          |

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed



wrightsoft

Right-Suite® Universal 2025 25 0.01 RSU57217

plans & J&D (2025)\Lerner\Spec house\Lerner rup Calc = MJ8 Front Door faces E

2025-Oct-21 15:07 48

Page 1



# Project Summary

## (Rest of House)

### Bounds Heating and Air

Job:  
Date: Oct 20, 2025  
By:

Email: jlegler@boundshvac.com

## Project Information

For: Spec House, Lerner

Notes

## Design Information

Weather: Gainesville Regional, FL, US

### Winter Design Conditions

|            |       |
|------------|-------|
| Outside db | 33 °F |
| Inside db  | 68 °F |
| Design TD  | 35 °F |

Ventilation Method: MJ8

### Summer Design Conditions

|                     |          |
|---------------------|----------|
| Outside db          | 92 °F    |
| Inside db           | 75 °F    |
| Design TD           | 17 °F    |
| Daily range         | M        |
| Relative humidity   | 50 %     |
| Moisture difference | 44 gr/lb |

### Heating Summary

|                      |            |
|----------------------|------------|
| Structure            | 36409 Btuh |
| Ducts (R-6 0)        | 11017 Btuh |
| Central vent (0 cfm) | 0 Btuh     |
| Humidification       | 0 Btuh     |
| Piping               | 0 Btuh     |
| Equipment load       | 47426 Btuh |

### Sensible Cooling Equipment Load Sizing

|                         |            |
|-------------------------|------------|
| Structure               | 20055 Btuh |
| Ducts (R-6 0)           | 13640 Btuh |
| Central vent (0 cfm)    | 0 Btuh     |
| Blower                  | 0 Btuh     |
| Use manufacturer's data | n          |
| Rate/swing multiplier   | 0.97       |
| Equipment sensible load | 32751 Btuh |

### Infiltration

|                           |              |              |
|---------------------------|--------------|--------------|
| Method                    | Simplified   |              |
| Construction quality      | Average      |              |
| Fireplaces                | 0            |              |
| Area (ft <sup>2</sup> )   | Heating 2812 | Cooling 2812 |
| Volume (ft <sup>3</sup> ) | 44504        | 44504        |
| Air changes/hour          | 0.27         | 0.14         |
| Equiv AVF (cfm)           | 200          | 107          |

### Latent Cooling Equipment Load Sizing

|                                       |                   |
|---------------------------------------|-------------------|
| Structure                             | 3784 Btuh         |
| Ducts                                 | 2702 Btuh         |
| Central vent (0 cfm)                  | 0 Btuh            |
| Equipment latent load                 | 6486 Btuh         |
| <b>Equipment Total Load (Sen+Lat)</b> | <b>39237 Btuh</b> |
| Req total capacity at 0.70 SHR        | 3.9 ton           |

### Heating Equipment Summary

|                        |                   |
|------------------------|-------------------|
| Make                   | Carrier           |
| Trade                  | 15 SEER2 HP       |
| Model                  | GH5SAN54800AA0    |
| AHRI ref               | 214101900         |
| Efficiency             | 7.5 HSPF2         |
| Heating input          |                   |
| Heating output         | 47500 Btuh @ 47°F |
| Temperature rise       | 28 °F             |
| Actual air flow        | 1567 cfm          |
| Air flow factor        | 0.033 cfm/Btuh    |
| Static pressure        | 0.50 in H2O       |
| Space thermostat       |                   |
| Capacity balance point | = 34 °F           |

### Cooling Equipment Summary

|                          |                     |
|--------------------------|---------------------|
| Make                     | Carrier             |
| Trade                    | 15 SEER2 HP         |
| Cond                     | GH5SAN54800AA0      |
| Coil                     | FJ5ANXC48L00        |
| AHRI ref                 | 214101900           |
| Efficiency               | 12.0 EER2, 15 SEER2 |
| Sensible cooling         | 32900 Btuh          |
| Latent cooling           | 14100 Btuh          |
| Total cooling            | 47000 Btuh          |
| Actual air flow          | 1567 cfm            |
| Air flow factor          | 0.047 cfm/Btuh      |
| Static pressure          | 0.50 in H2O         |
| Load sensible heat ratio | 0.84                |

Backup: n/a n/a  
Input = 0 kW, Output = 0 Btuh, 100 AFUE

*Bold/italic values have been manually overridden*

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.



wrightsoft

Right-Suite® Universal 2025 25 0 01 RSU57217  
plans & J&D (2025) Lerner Spec house Lerner rup Calc = MJ8 Front Door faces E

2025-Oct-21 15:07:48  
Page 2



# Project Summary

## upstairs ah

### Bounds Heating and Air

Job:  
Date: Oct 20, 2025  
By:

Email: jlegler@boundshvac.com

## Project Information

For: Spec House, Lerner

Notes

## Design Information

Weather Gainesville Regional, FL, US

### Winter Design Conditions

|                    |       |
|--------------------|-------|
| Outside db         | 33 °F |
| Inside db          | 68 °F |
| Design TD          | 35 °F |
|                    |       |
| Ventilation Method | MJ8   |

### Summer Design Conditions

|                     |          |
|---------------------|----------|
| Outside db          | 92 °F    |
| Inside db           | 75 °F    |
| Design TD           | 17 °F    |
| Daily range         | M        |
| Relative humidity   | 50 %     |
| Moisture difference | 44 gr/lb |

### Heating Summary

|                      |            |
|----------------------|------------|
| Structure            | 15375 Btuh |
| Ducts (R-6 0)        | 7167 Btuh  |
| Central vent (0 cfm) | 0 Btuh     |
|                      |            |
| Humidification       | 0 Btuh     |
| Piping               | 0 Btuh     |
| Equipment load       | 22542 Btuh |

### Sensible Cooling Equipment Load Sizing

|                         |            |
|-------------------------|------------|
| Structure               | 16386 Btuh |
| Ducts (R-6 0)           | 8922 Btuh  |
| Central vent (0 cfm)    | 0 Btuh     |
|                         |            |
| Blower                  | 0 Btuh     |
| Use manufacturer's data | n          |
| Rate/swing multiplier   | 0.97       |
| Equipment sensible load | 24600 Btuh |

### Infiltration

|                           |            |
|---------------------------|------------|
| Method                    | Simplified |
| Construction quality      | Average    |
| Fireplaces                | 0          |
|                           |            |
| Area (ft <sup>2</sup> )   | Heating    |
| Volume (ft <sup>3</sup> ) | 2100       |
| Air changes/hour          | 18801      |
| Equiv AVF (cfm)           | 0.30       |
|                           | 0.16       |
|                           | 95         |
|                           | 51         |

### Latent Cooling Equipment Load Sizing

|                                       |            |
|---------------------------------------|------------|
| Structure                             | 1909 Btuh  |
| Ducts                                 | 1776 Btuh  |
| Central vent (0 cfm)                  | 0 Btuh     |
|                                       |            |
| Equipment latent load                 | 3685 Btuh  |
| <b>Equipment Total Load (Sen+Lat)</b> | 28284 Btuh |
| Req. total capacity at 0.70 SHR       | 2.9 ton    |

### Heating Equipment Summary

|                        |                          |
|------------------------|--------------------------|
| Make                   | Carrier                  |
| Trade                  | 15 SEER2 HP              |
| Model                  | GH5SAN53600AA0           |
| AHRI ref               | 214101828                |
|                        |                          |
| Efficiency             | 7.5 HSPF2                |
| Heating input          |                          |
| Heating output         | 35600 Btuh @ 47°F        |
| Temperature rise       | 28 °F                    |
| Actual air flow        | 1167 cfm                 |
| Air flow factor        | 0.052 cfm/Btuh           |
| Static pressure        | 0.50 in H <sub>2</sub> O |
| Space thermostat       |                          |
| Capacity balance point | = 23 °F                  |

### Cooling Equipment Summary

|                          |                          |
|--------------------------|--------------------------|
| Make                     | Carrier                  |
| Trade                    | 15 SEER2 HP              |
| Cond                     | GH5SAN53600AA0           |
| Coil                     | FJ5ANXB36L00             |
| AHRI ref                 | 214101828                |
| Efficiency               | 12.0 EER2, 14.5 SEER2    |
| Sensible cooling         | 24500 Btuh               |
| Latent cooling           | 10500 Btuh               |
| Total cooling            | 35000 Btuh               |
| Actual air flow          | 1167 cfm                 |
| Air flow factor          | 0.046 cfm/Btuh           |
| Static pressure          | 0.50 in H <sub>2</sub> O |
| Load sensible heat ratio | 0.87                     |

*Bold/italic values have been manually overridden*

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.



**Load Short Form**  
**Entire House**  
**Bounds Heating and Air**

Job:  
 Date: Oct 20, 2025  
 By:

Email: jlegler@boundshvac.com

**Project Information**

For Spec House, Lerner

**Design Information**

|                             | Htg | Clg | Infiltration         |            |
|-----------------------------|-----|-----|----------------------|------------|
| Outside db (°F)             | 33  | 92  | Method               | Simplified |
| Inside db (°F)              | 68  | 75  | Construction quality | Average    |
| Design TD (°F)              | 35  | 17  | Fireplaces           | 0          |
| Daily range                 | -   | M   |                      |            |
| Inside humidity (%)         | 50  | 50  |                      |            |
| Moisture difference (gr/lb) | 29  | 44  |                      |            |

**HEATING EQUIPMENT**

|                  |            |
|------------------|------------|
| Make             | n/a        |
| Trade            | n/a        |
| Model            | n/a        |
| AHRI ref         | n/a        |
| Efficiency       | n/a        |
| Heating input    |            |
| Heating output   | 0 Btuh     |
| Temperature rise | 0 °F       |
| Actual air flow  | 0 cfm      |
| Air flow factor  | 0 cfm/Btuh |
| Static pressure  | 0 in H2O   |
| Space thermostat | n/a        |

**COOLING EQUIPMENT**

|                          |            |
|--------------------------|------------|
| Make                     | n/a        |
| Trade                    | n/a        |
| Cond                     | n/a        |
| Coil                     | n/a        |
| AHRI ref                 | n/a        |
| Efficiency               | n/a        |
| Sensible cooling         | 0 Btuh     |
| Latent cooling           | 0 Btuh     |
| Total cooling            | 0 Btuh     |
| Actual air flow          | 0 cfm      |
| Air flow factor          | 0 cfm/Btuh |
| Static pressure          | 0 in H2O   |
| Load sensible heat ratio | 0          |

| ROOM NAME                      | Area (ft <sup>2</sup> ) | Htg load (Btuh) | Clg load (Btuh) | Htg AVF (cfm) | Clg AVF (cfm) |
|--------------------------------|-------------------------|-----------------|-----------------|---------------|---------------|
| upstairs ah<br>(Rest of House) | 2089<br>2819            | 22542<br>47426  | 25308<br>33695  | 1167<br>1567  | 1167<br>1567  |
| Entire House                   | 4908                    | 69968           | 57491           | 2734          | 2734          |
| Other equip loads              |                         | 0               | 0               |               |               |
| Equip @ 0.97 RSM               |                         |                 | 55881           |               |               |
| Latent cooling                 |                         |                 | 10171           |               |               |
| <b>TOTALS</b>                  | <b>4908</b>             | <b>69968</b>    | <b>66052</b>    | <b>2734</b>   | <b>2734</b>   |

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed



wrightsoft

Right-Suite® Universal 2025 25 0 01 RSU57217

.plans & J&D (2025)\Lerner\Spec house\Lerner rup Calc = MJ8 Front Door faces. E

2025-Oct-21 15:07:48

Page 1



**Load Short Form  
(Rest of House)**  
**Bounds Heating and Air**

Job:  
Date: Oct 20, 2025  
By:

Email: jlegler@boundshvac.com

**Project Information**

For Spec House, Lerner

**Design Information**

|                             | Htg | Clg | Infiltration         |            |
|-----------------------------|-----|-----|----------------------|------------|
| Outside db (°F)             | 33  | 92  | Method               | Simplified |
| Inside db (°F)              | 68  | 75  | Construction quality | Average    |
| Design TD (°F)              | 35  | 17  | Fireplaces           | 0          |
| Daily range                 | -   | M   |                      |            |
| Inside humidity (%)         | 50  | 50  |                      |            |
| Moisture difference (gr/lb) | 29  | 44  |                      |            |

**HEATING EQUIPMENT**

|                        |                   |
|------------------------|-------------------|
| Make                   | Carrier           |
| Trade                  | 15 SEER2 HP       |
| Model                  | GH5SAN54800AA0    |
| AHRI ref               | 214101900         |
| Efficiency             | 7.5 HSPF2         |
| Heating input          |                   |
| Heating output         | 47500 Btuh @ 47°F |
| Temperature rise       | 28 °F             |
| Actual air flow        | 1567 cfm          |
| Air flow factor        | 0.033 cfm/Btuh    |
| Static pressure        | 0.50 in H2O       |
| Space thermostat       |                   |
| Capacity balance point | = 34 °F           |

Backup n/a n/a

Input = 0 kW, Output = 0 Btuh, 100 AFUE

**COOLING EQUIPMENT**

|                          |                     |
|--------------------------|---------------------|
| Make                     | Carrier             |
| Trade                    | 15 SEER2 HP         |
| Cond                     | GH5SAN54800AA0      |
| Coil                     | FJ5ANXC48L00        |
| AHRI ref                 | 214101900           |
| Efficiency               | 12.0 EER2, 15 SEER2 |
| Sensible cooling         | 32900 Btuh          |
| Latent cooling           | 14100 Btuh          |
| Total cooling            | 47000 Btuh          |
| Actual air flow          | 1567 cfm            |
| Air flow factor          | 0.047 cfm/Btuh      |
| Static pressure          | 0.50 in H2O         |
| Load sensible heat ratio | 0.84                |

| ROOM NAME      | Area (ft <sup>2</sup> ) | Htg load (Btuh) | Clg load (Btuh) | Htg AVF (cfm) | Clg AVF (cfm) |
|----------------|-------------------------|-----------------|-----------------|---------------|---------------|
| foyer/flex     | 548                     | 6734            | 2724            | 223           | 127           |
| master suite   | 293                     | 5998            | 4163            | 198           | 194           |
| his            | 63                      | 0               | 0               | 0             | 0             |
| hers           | 80                      | 1528            | 642             | 50            | 30            |
| hall 1         | 77                      | 0               | 0               | 0             | 0             |
| master bath    | 227                     | 1852            | 745             | 61            | 35            |
| wc             | 36                      | 0               | 0               | 0             | 0             |
| living/kitchen | 915                     | 16198           | 18122           | 535           | 843           |
| mother in law  | 276                     | 4978            | 2809            | 164           | 131           |
| bath 2         | 93                      | 1494            | 615             | 49            | 29            |
| wic            | 38                      | 1524            | 565             | 50            | 26            |
| pantry         | 72                      | 3683            | 1339            | 122           | 62            |
| laundry        | 100                     | 3437            | 1970            | 114           | 92            |

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.



wrightsoft

Right-Suite® Universal 2025 25.0.01 RSU57217

plans & J&D (2025) Lerner Spec house Lerner rup Calc = MJ8 Front Door faces. E

2025-Oct-21 15 07:48

Page 2

|                   |             |              |              |             |             |
|-------------------|-------------|--------------|--------------|-------------|-------------|
| (Rest of House)   | 2819        | 47426        | 33695        | 1567        | 1567        |
| Other equip loads |             | 0            | 0            |             |             |
| Equip @ 0.97 RSM  |             |              | 32751        |             |             |
| Latent cooling    |             |              | 6486         |             |             |
| <b>TOTALS</b>     | <b>2819</b> | <b>47426</b> | <b>39237</b> | <b>1567</b> | <b>1567</b> |

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed.



**Load Short Form**  
**upstairs ah**  
**Bounds Heating and Air**

Job:  
 Date: Oct 20, 2025  
 By:

Email: jlegler@boundshvac.com

**Project Information**

For Spec House, Lerner

**Design Information**

|                             | Htg | Clg | Infiltration         |            |
|-----------------------------|-----|-----|----------------------|------------|
| Outside db (°F)             | 33  | 92  | Method               | Simplified |
| Inside db (°F)              | 68  | 75  | Construction quality | Average    |
| Design TD (°F)              | 35  | 17  | Fireplaces           | 0          |
| Daily range                 | -   | M   |                      |            |
| Inside humidity (%)         | 50  | 50  |                      |            |
| Moisture difference (gr/lb) | 29  | 44  |                      |            |

**HEATING EQUIPMENT**

|                        |                   |
|------------------------|-------------------|
| Make                   | Carrier           |
| Trade                  | 15 SEER2 HP       |
| Model                  | GH5SAN53600AA0    |
| AHRI ref               | 214101828         |
| Efficiency             | 7 5 HSPF2         |
| Heating input          |                   |
| Heating output         | 35600 Btuh @ 47°F |
| Temperature rise       | 28 °F             |
| Actual air flow        | 1167 cfm          |
| Air flow factor        | 0 052 cfm/Btuh    |
| Static pressure        | 0 50 in H2O       |
| Space thermostat       |                   |
| Capacity balance point | = 23 °F           |

Backup

Input = 0 kW, Output = 0 Btuh, 100 AFUE

**COOLING EQUIPMENT**

|                          |                      |
|--------------------------|----------------------|
| Make                     | Carrier              |
| Trade                    | 15 SEER2 HP          |
| Cond                     | GH5SAN53600AA0       |
| Coil                     | FJ5ANXB36L00         |
| AHRI ref                 | 214101828            |
| Efficiency               | 12 0 EER2,14 5 SEER2 |
| Sensible cooling         | 24500 Btuh           |
| Latent cooling           | 10500 Btuh           |
| Total cooling            | 35000 Btuh           |
| Actual air flow          | 1167 cfm             |
| Air flow factor          | 0 046 cfm/Btuh       |
| Static pressure          | 0 50 in H2O          |
| Load sensible heat ratio | 0 87                 |

| ROOM NAME  | Area (ft <sup>2</sup> ) | Htg load (Btuh) | Clg load (Btuh) | Htg AVF (cfm) | Clg AVF (cfm) |
|------------|-------------------------|-----------------|-----------------|---------------|---------------|
| storage    | 574                     | 7742            | 6905            | 401           | 318           |
| bedroom 4  | 294                     | 2506            | 4794            | 130           | 221           |
| bath 4     | 78                      | 930             | 961             | 48            | 44            |
| bath 3     | 74                      | 816             | 935             | 42            | 43            |
| hall 2     | 78                      | 0               | 0               | 0             | 0             |
| media room | 390                     | 4423            | 3922            | 229           | 181           |
| ah         | 33                      | 0               | 0               | 0             | 0             |
| wic 3      | 56                      | 824             | 576             | 43            | 27            |
| bedroom 3  | 265                     | 4506            | 6053            | 233           | 279           |
| balcony    | 247                     | 796             | 1163            | 41            | 54            |

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed



wrightsoft

Right-Suite® Universal 2025 25 0 01 RSU57217

plans & J&D (2025)\Lerner\Spec house\Lerner.rup Calc = MJ8 Front Door faces: E

2025-Oct-21 15 07 48

Page 4

|                   |      |       |       |      |      |
|-------------------|------|-------|-------|------|------|
| upstairs ah       | 2089 | 22542 | 25308 | 1167 | 1167 |
| Other equip loads |      | 0     | 0     |      |      |
| Equip @ 0.97 RSM  |      |       | 24600 |      |      |
| Latent cooling    |      |       | 3685  |      |      |

|        |      |       |       |      |      |
|--------|------|-------|-------|------|------|
| TOTALS | 2089 | 22542 | 28284 | 1167 | 1167 |
|--------|------|-------|-------|------|------|

Calculations approved by ACCA to meet all requirements of Manual J 8th Ed



# Manual S Compliance Report

## (Rest of House)

Bounds Heating and Air

Job:  
Date: Oct 20, 2025  
By:

Email: jlegler@boundshvac.com

### Project Information

For Spec House, Lerner

### Cooling Equipment

#### Design Conditions

|                   |        |                   |       |      |                  |        |
|-------------------|--------|-------------------|-------|------|------------------|--------|
| Outdoor design DB | 92 2°F | Sensible gain     | 33695 | Btuh | Entering coil DB | 77 6°F |
| Outdoor design WB | 75 8°F | Latent gain       | 6486  | Btuh | Entering coil WB | 63 7°F |
| Indoor design DB  | 75 0°F | Total gain        | 40180 | Btuh |                  |        |
| Indoor RH         | 50%    | Estimated airflow | 1567  | cfm  |                  |        |

#### Manufacturer's Performance Data at Actual Design Conditions

|                   |            |              |                             |     |  |  |
|-------------------|------------|--------------|-----------------------------|-----|--|--|
| Equipment type    | Split ASHP |              |                             |     |  |  |
| Manufacturer      | Carrier    | Model        | GH5SAN54800AA0+FJ5ANXC48L00 |     |  |  |
| Actual airflow    | 1567 cfm   |              |                             |     |  |  |
| Sensible capacity | 37152 Btuh | 110% of load |                             |     |  |  |
| Latent capacity   | 7990 Btuh  | 123% of load |                             |     |  |  |
| Total capacity    | 45142 Btuh | 112% of load | SHR                         | 82% |  |  |

### Heating Equipment

#### Design Conditions

|                   |        |           |       |      |                  |        |
|-------------------|--------|-----------|-------|------|------------------|--------|
| Outdoor design DB | 33 2°F | Heat loss | 47426 | Btuh | Entering coil DB | 66 8°F |
| Indoor design DB  | 68 0°F |           |       |      |                  |        |

#### Manufacturer's Performance Data at Actual Design Conditions

|                            |            |             |                             |  |                  |        |
|----------------------------|------------|-------------|-----------------------------|--|------------------|--------|
| Equipment type             | Split ASHP |             |                             |  |                  |        |
| Manufacturer               | Carrier    | Model       | GH5SAN54800AA0+FJ5ANXC48L00 |  |                  |        |
| Actual airflow             | 1567 cfm   |             |                             |  |                  |        |
| Output capacity            | 38943 Btuh | 82% of load |                             |  | Capacity balance | 34 °F  |
| Supplemental heat required | 8483 Btuh  |             |                             |  | Economic balance | -99 °F |

|                       |            |            |           |      |  |  |
|-----------------------|------------|------------|-----------|------|--|--|
| Backup equipment type | Elec strip |            |           |      |  |  |
| Manufacturer          | n/a        | Model      | n/a+n/a   |      |  |  |
| Actual airflow        | 1567 cfm   |            |           |      |  |  |
| Output capacity       | 0 kW       | 0% of load | Temp rise | 0 °F |  |  |

Meets all requirements of ACCA Manual S



wrightsoft

Right-Suite® Universal 2025 25 0 01 RSU57217

.plans & J&D (2025)\Lerner\Spec house\Lerner rup Calc = MJ8 Front Door faces. E

2025-Oct-21 15:07:48

Page 1



# Manual S Compliance Report

## upstairs ah

### Bounds Heating and Air

Job:  
Date: Oct 20, 2025  
By:

Email jlegler@boundshvac.com

## Project Information

For: Spec House, Lerner

## Cooling Equipment

### Design Conditions

|                   |        |                    |       |      |                  |        |
|-------------------|--------|--------------------|-------|------|------------------|--------|
| Outdoor design DB | 92.2°F | Sensible gain      | 25308 | Btuh | Entering coil DB | 77.3°F |
| Outdoor design WB | 75.8°F | Latent gain        | 3685  | Btuh | Entering coil WB | 63.6°F |
| Indoor design DB  | 75.0°F | Total gain         | 28993 | Btuh |                  |        |
| Indoor RH         | 50%    | Estimated airflow: | 1167  | cfm  |                  |        |

### Manufacturer's Performance Data at Actual Design Conditions

|                   |            |              |                             |
|-------------------|------------|--------------|-----------------------------|
| Equipment type    | Split ASHP |              |                             |
| Manufacturer      | Carrier    | Model        | GH5SAN53600AA0+FJ5ANXB36L00 |
| Actual airflow    | 1167 cfm   |              |                             |
| Sensible capacity | 28189 Btuh | 11% of load  |                             |
| Latent capacity   | 5302 Btuh  | 144% of load |                             |
| Total capacity    | 33491 Btuh | 116% of load | SHR 84%                     |

## Heating Equipment

### Design Conditions

|                   |        |           |       |      |                  |        |
|-------------------|--------|-----------|-------|------|------------------|--------|
| Outdoor design DB | 33.2°F | Heat loss | 22542 | Btuh | Entering coil DB | 67.0°F |
| Indoor design DB  | 68.0°F |           |       |      |                  |        |

### Manufacturer's Performance Data at Actual Design Conditions

|                            |            |              |                             |
|----------------------------|------------|--------------|-----------------------------|
| Equipment type             | Split ASHP |              |                             |
| Manufacturer               | Carrier    | Model        | GH5SAN53600AA0+FJ5ANXB36L00 |
| Actual airflow             | 1167 cfm   |              |                             |
| Output capacity            | 35600 Btuh | 158% of load |                             |
| Supplemental heat required | 0 Btuh     |              |                             |

Capacity balance 23 °F  
Economic balance -99 °F

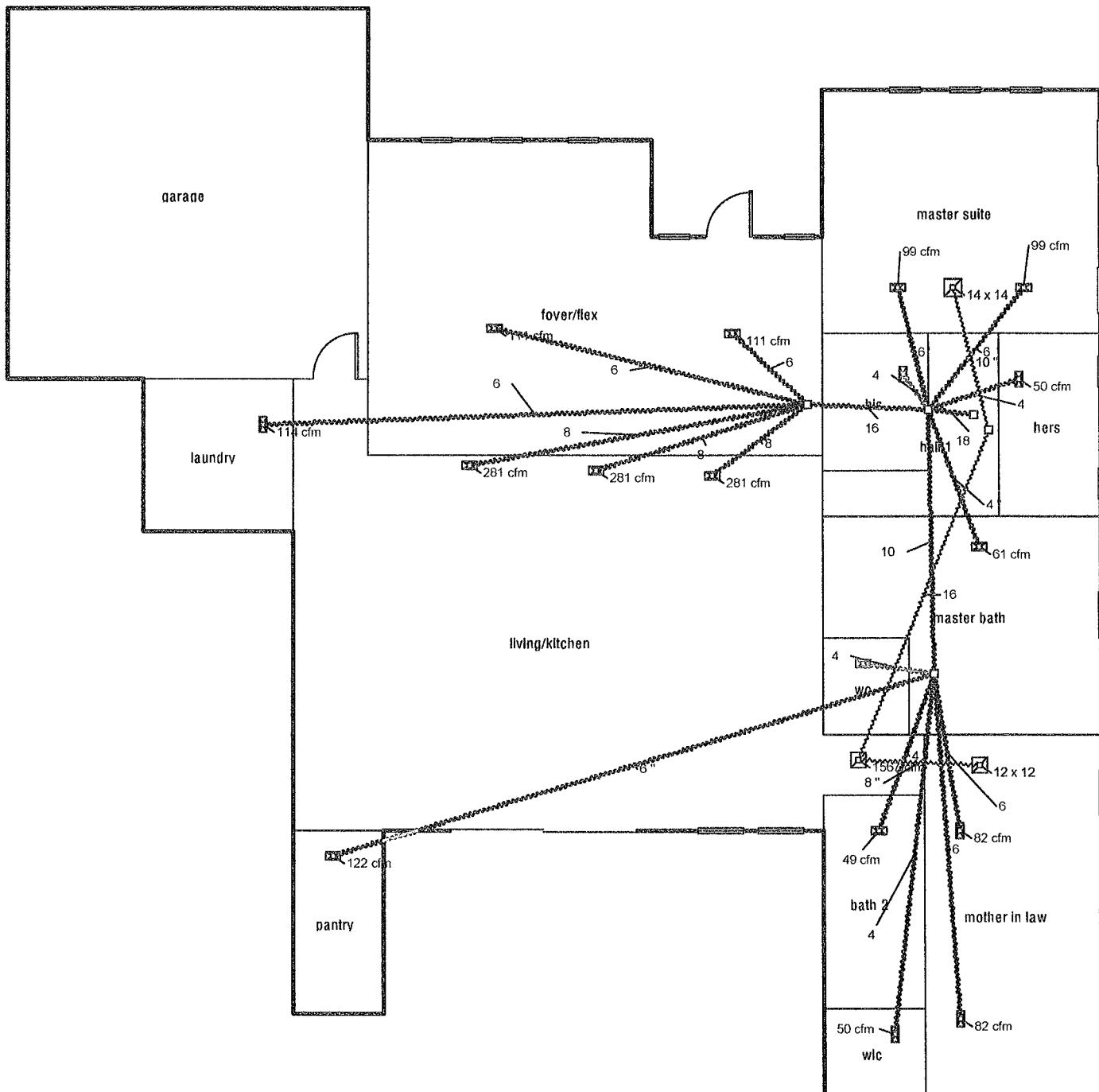
|                       |            |            |                 |
|-----------------------|------------|------------|-----------------|
| Backup equipment type | Elec strip |            |                 |
| Manufacturer          |            | Model      |                 |
| Actual airflow        | 1167 cfm   |            |                 |
| Output capacity.      | 0 kW       | 0% of load | Temp rise: 0 °F |

Meets all requirements of ACCA Manual S



wrightsoft

Right-Suite® Universal 2025 25 0 01 RSU57217


2025-Oct-21 15 07 48

Page 2

plans & J&D (2025)\Lerner\Spec house\lerner rup Calc = MJ8 Front Door faces: E



### Level 1



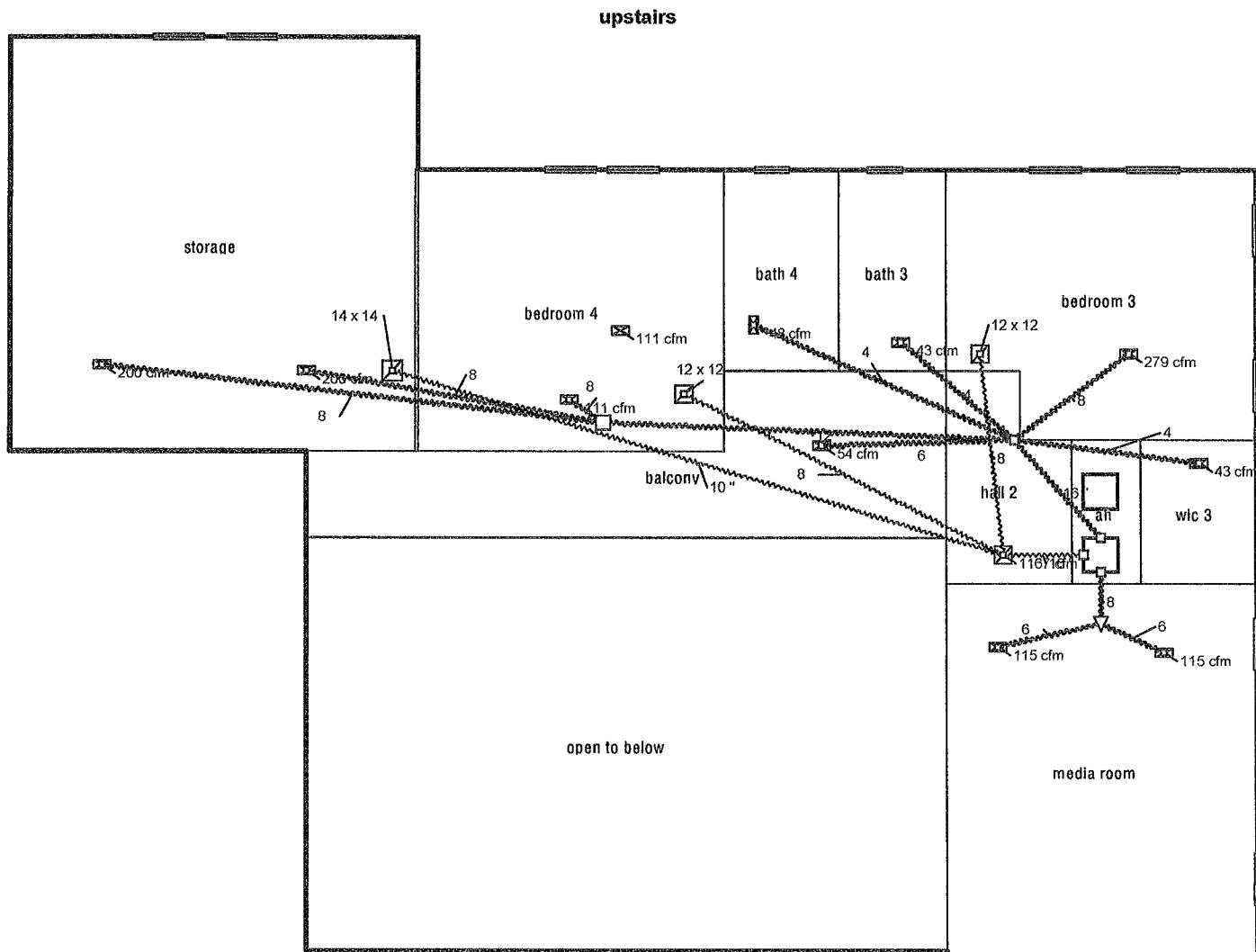
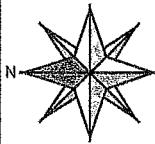
**Job #:**  
**Performed for:**  
Spec House

## Bounds Heating and Air

Scale: 1 : 121

Page 1

Page 1  
Right-Suite® Universal 2025



Right-Suite® Universal  
25.0.01 RSU57217

2025-Oct-21 15 08 17

2025-OCT-21 19:08:19

### 25) Lerner Spec house Lern

jlegler@boundshvac.com



**Job #:**  
**Performed for:**  
Spec House

**Bounds Heating and Air**

jlegler@boundshvac.com

Scale: 1 : 121

Page 2  
Right-Suite® Universal 2025  
25 0 01 RSU57217  
2025-Oct-21 15 08 19  
25)\Lerner\Spec house\Lerner rup



# Duct System Summary (Rest of House)

Bounds Heating and Air

Job:  
Date: Oct 20, 2025  
By:

Email: jiegler@boundshvac.com

## Project Information

For: Spec House, Lerner

|                                    | Heating              | Cooling              |
|------------------------------------|----------------------|----------------------|
| External static pressure           | 0.50 in H2O          | 0.50 in H2O          |
| Pressure losses                    | 0 in H2O             | 0 in H2O             |
| Available static pressure          | 0.50 in H2O          | 0.50 in H2O          |
| Supply / return available pressure | 0.343 / 0.157 in H2O | 0.343 / 0.157 in H2O |
| Lowest friction rate               | 0.200 in/100ft       | 0.200 in/100ft       |
| Actual air flow                    | 1567 cfm             | 1567 cfm             |
| Total effective length (TEL)       | 250 ft               |                      |

## Supply Branch Detail Table

| Name             | Design (Btuh) | Htg (cfm) | Clg (cfm) | Design FR | Diam (in) | H x W (in) | Duct Matl | Actual Ln (ft) | Ftg.Eqv Ln (ft) | Trunk |
|------------------|---------------|-----------|-----------|-----------|-----------|------------|-----------|----------------|-----------------|-------|
| bath 2           | h 1494        | 49        | 29        | 0.243     | 4.0       | 0x0        | VIFx      | 31.3           | 110.0           | st5   |
| foyer/flex       | h 3367        | 111       | 63        | 0.269     | 6.0       | 0x0        | VIFx      | 17.9           | 110.0           | st6   |
| foyer/flex-A     | h 3367        | 111       | 63        | 0.241     | 6.0       | 0x0        | VIFx      | 32.3           | 110.0           | st6   |
| hers             | h 1528        | 50        | 30        | 0.346     | 4.0       | 0x0        | VIFx      | 9.3            | 90.0            | st3   |
| his              | c 0           | 0         | 0         | 0.358     | 4.0       | 0x0        | VIFx      | 5.9            | 90.0            | st3   |
| laundry          | h 3437        | 114       | 92        | 0.219     | 6.0       | 0x0        | VIFx      | 47.1           | 110.0           | st6   |
| living/kitchen-A | c 6041        | 178       | 281       | 0.253     | 8.0       | 0x0        | VIFx      | 25.7           | 110.0           | st6   |
| living/kitchen-C | c 6041        | 178       | 281       | 0.239     | 8.0       | 0x0        | VIFx      | 33.7           | 110.0           | st6   |
| living/kitchen-D | c 6041        | 178       | 281       | 0.266     | 8.0       | 0x0        | VIFx      | 18.9           | 110.0           | st6   |
| master bath      | h 1852        | 61        | 35        | 0.335     | 4.0       | 0x0        | VIFx      | 12.6           | 90.0            | st3   |
| master suite     | h 2999        | 99        | 97        | 0.339     | 6.0       | 0x0        | VIFx      | 11.3           | 90.0            | st3   |
| master suite-A   | h 2999        | 99        | 97        | 0.333     | 6.0       | 0x0        | VIFx      | 13.2           | 90.0            | st3   |
| mother in law    | h 2489        | 82        | 65        | 0.244     | 6.0       | 0x0        | VIFx      | 30.8           | 110.0           | st5   |
| mother in law-A  | h 2489        | 82        | 65        | 0.224     | 6.0       | 0x0        | VIFx      | 43.1           | 110.0           | st5   |
| pantry           | h 3683        | 122       | 62        | 0.200     | 6.0       | 0x0        | VIFx      | 61.8           | 110.0           | st5   |
| wc               | c 0           | 0         | 0         | 0.254     | 4.0       | 0x0        | VIFx      | 25.1           | 110.0           | st5   |
| wic              | h 1524        | 50        | 26        | 0.223     | 4.0       | 0x0        | VIFx      | 44.2           | 110.0           | st5   |

## Supply Trunk Detail Table

| Name | Trunk Type | Htg (cfm) | Clg (cfm) | Design FR | Veloc (fpm) | Diam (in) | H x W (in) | Duct Material | Trunk |
|------|------------|-----------|-----------|-----------|-------------|-----------|------------|---------------|-------|
| st5  | Peak AVF   | 386       | 248       | 0.200     | 707         | 10.0      | 0 x 0      | VinlFlx       | st3   |
| st3  | Peak AVF   | 1567      | 1567      | 0.200     | 887         | 18.0      | 0 x 0      | VinlFlx       |       |
| st6  | Peak AVF   | 871       | 1061      | 0.219     | 760         | 16.0      | 0 x 0      | VinlFlx       | st3   |

*Bold/italic values have been manually overridden*



wrightsoft

Right-Suite® Universal 2025 25 0 01 RSU57217

plans & J&D (2025)\Lerner\Spec house\Lerner rup Calc = MJB Front Door faces. E

2025-Oct-21 15:07:48

Page 1

## Return Branch Detail Table

| Name | Grille Size (in) | Htg (cfm) | Clg (cfm) | TEL (ft) | Design FR | Veloc (fpm) | Diam (in) | H x W (in) | Stud/Joist Opening (in) | Duct Matl | Trunk |
|------|------------------|-----------|-----------|----------|-----------|-------------|-----------|------------|-------------------------|-----------|-------|
| rb1  | 0x0              | 1567      | 1567      | 78.3     | 0.200     | 594         | 22.0      | 0x0        |                         | VIFx      | rst7  |

## Return Trunk Detail Table

| Name | Trunk Type | Htg (cfm) | Clg (cfm) | Design FR | Veloc (fpm) | Diam (in) | H x W (in) | Duct Material | Trunk |
|------|------------|-----------|-----------|-----------|-------------|-----------|------------|---------------|-------|
| rst7 | Peak AVF   | 1567      | 1567      | 0.200     | 1122        | 16.0      | 0x0        | VinlFlx       |       |

*Bold/italic values have been manually overridden*



wrightsoft

Right-Suite® Universal 2025 25 0 01 RSU57217

plans & J&D (2025)\Lerner\Spec house\Lerner.rup Calc = MJ8 Front Door faces E

2025-Oct-21 15 07 48

Page 2



# Duct System Summary

## upstairs ah

### Bounds Heating and Air

Job:  
Date: Oct 20, 2025  
By:

Email: jlegler@boundshvac.com

## Project Information

For: Spec House, Lerner

|                                    | Heating              | Cooling              |
|------------------------------------|----------------------|----------------------|
| External static pressure           | 0.50 in H2O          | 0.50 in H2O          |
| Pressure losses                    | 0 in H2O             | 0 in H2O             |
| Available static pressure          | 0.50 in H2O          | 0.50 in H2O          |
| Supply / return available pressure | 0.416 / 0.084 in H2O | 0.416 / 0.084 in H2O |
| Lowest friction rate               | 0.243 in/100ft       | 0.243 in/100ft       |
| Actual air flow                    | 1167 cfm             | 1167 cfm             |
| Total effective length (TEL)       |                      | 206 ft               |

## Supply Branch Detail Table

| Name         | Design (Btuh) | Htg (cfm) | Clg (cfm) | Design FR | Diam (in) | H x W (in) | Duct Matl | Actual Ln (ft) | Ftg Eqv Ln (ft) | Trunk |
|--------------|---------------|-----------|-----------|-----------|-----------|------------|-----------|----------------|-----------------|-------|
| balcony      | c 1163        | 41        | 54        | 0.382     | 6.0       | 0x0        | VIFx      | 18.9           | 90.0            | st1   |
| bath 3       | c 935         | 42        | 43        | 0.391     | 4.0       | 0x0        | VIFx      | 16.3           | 90.0            | st1   |
| bath 4       | h 930         | 48        | 44        | 0.364     | 4.0       | 0x0        | VIFx      | 24.3           | 90.0            | st1   |
| bedroom 3-A  | c 6053        | 233       | 279       | 0.393     | 8.0       | 0x0        | VIFx      | 15.9           | 90.0            | st1   |
| bedroom 4    | c 2397        | 65        | 111       | 0.289     | 8.0       | 0x0        | VIFx      | 34.0           | 110.0           | st4   |
| bedroom 4-A  | c 2397        | 65        | 111       | 0         | 0         | 0x0        | VIFx      | 0              | 0               |       |
| media room   | h 2212        | 115       | 90        | 0.419     | 6.0       | 0x0        | VIFx      | 9.1            | 90.0            | st2   |
| media room-A | h 2212        | 115       | 90        | 0.428     | 6.0       | 0x0        | VIFx      | 7.0            | 90.0            | st2   |
| storage      | h 3871        | 200       | 159       | 0.261     | 8.0       | 0x0        | VIFx      | 49.2           | 110.0           | st4   |
| storage-A    | h 3871        | 200       | 159       | 0.243     | 8.0       | 0x0        | VIFx      | 61.1           | 110.0           | st4   |
| wic 3        | h 824         | 43        | 27        | 0.384     | 4.0       | 0x0        | VIFx      | 18.3           | 90.0            | st1   |

## Supply Trunk Detail Table

| Name | Trunk Type | Htg (cfm) | Clg (cfm) | Design FR | Veloc (fpm) | Diam (in) | H x W (in) | Duct Material | Trunk |
|------|------------|-----------|-----------|-----------|-------------|-----------|------------|---------------|-------|
| st2  | Peak AVF   | 229       | 181       | 0.419     | 656         | 8.0       | 0 x 0      | VinlFlx       |       |
| st4  | Peak AVF   | 466       | 429       | 0.243     | 593         | 12.0      | 0 x 0      | VinlFlx       |       |
| st1  | Peak AVF   | 873       | 876       | 0.243     | 627         | 16.0      | 0 x 0      | VinlFlx       | st1   |

*Bold/italic values have been manually overridden*



wrightsoft

Right-Suite® Universal 2025 25 0 01 RSU57217

2025-Oct-21 15:07:48

Page 3

plans & J&D (2025)\Lerner\Spec house\Lerner rup Calc = MJ8 Front Door faces E

## Return Branch Detail Table

| Name | Grille Size (in) | Htg (cfm) | Clg (cfm) | TEL (ft) | Design FR | Veloc (fpm) | Diam (in) | H x W (in) | Stud/Joist Opening (in) | Duct Matl | Trunk |
|------|------------------|-----------|-----------|----------|-----------|-------------|-----------|------------|-------------------------|-----------|-------|
| rb3  | 0x0              | 1167      | 1167      | 34.7     | 0.243     | 535         | 20.0      | 0x0        |                         | VIFx      | rst8  |

## Return Trunk Detail Table

| Name | Trunk Type | Htg (cfm) | Clg (cfm) | Design FR | Veloc (fpm) | Diam (in) | H x W (in) | Duct Material | Trunk |
|------|------------|-----------|-----------|-----------|-------------|-----------|------------|---------------|-------|
| rst8 | Peak AVF   | 1167      | 1167      | 0.243     | 836         | 16.0      | 0 x 0      | VinlFlx       |       |

*Bold/italic values have been manually overridden*

**RESIDENTIAL ENERGY CONSERVATION CODE DOCUMENTATION CHECKLIST**

**Florida Department of Business and Professional Regulation**  
**Simulated Performance Alternative (Performance) Method**

*Applications for compliance with the 2023 Florida Building Code, Energy Conservation via the residential Simulated Performance method shall include:*

- This Checklist*
- Form R405-2023 report*
- Input summary checklist that can be used for field verification (usually four pages/may be greater)*
- Energy Performance Level (EPL) Display Card (one page)*
- HVAC system sizing and selection based on ACCA Manual S or per exceptions provided in Section R403 7*
- Mandatory Requirements (five pages)*

*Required prior to CO:*

- Air Barrier and Insulation Inspection Component Criteria checklist (Table R402 4 1 1 - one page)*
- A completed 2023 Envelope Leakage Test Report (usually one page), exception in R402 4 allows dwelling units of R - 2 Occupancies and multiple attached single family dwellings to comply with Section C402 5*
- If FORM R405 duct leakage type indicates anything other than "default leakage", then a completed 2023 Duct Leakage Test Report - Performance Method (usually one page)*

## FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION

Florida Department of Business and Professional Regulation - Residential Performance Method

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                        |                         |                |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|-------------------------|
| Project Name<br>Street<br>City, State, Zip<br>Owner<br>Design Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spec house<br>TBD<br>High Springs, FL 32643<br>Spec House<br>FL, Gainesville Regional | Builder Name<br>Permit Office<br>Permit Number<br>Jurisdiction<br>County                                                                                                                                                                                                                      | Jerry Lerner<br>(Florida Climate Zone 2) |                                                                                                                                                                                                                                                                                                                                                        |                         |                |                         |
| 1 New construction or existing<br>2 Single family or multiple family<br>3 Number of units, if multiple family<br>4 Number of bedrooms<br>5 Is this a worst case?<br>6 Conditioned floor area above grade (ft <sup>2</sup> )<br>Conditioned floor area below grade (ft <sup>2</sup> )<br>7 Windows (469 ft <sup>2</sup> )<br>a U-Factor<br>SHGC<br>b U-Factor<br>SHGC<br>c U-Factor<br>SHGC<br>d U-Factor<br>SHGC<br>Area Weighted Average Overhang Depth<br>Area Weighted Average SHGC<br>8 Floor types (3547 83 ft <sup>2</sup> )<br>a Bg floor, heavy dry or light dam<br>b Part floor, r-19 ins, frm flr, 1<br>c N/A |                                                                                       | New (From Plans)<br>Single-Family<br>1<br>4<br>No<br>4912 00<br>0<br>Description<br>a Dbl, 0 330<br>0 24<br>b Dbl, 0 470<br>0 31<br>30 00<br>Area (ft <sup>2</sup> )<br>439 00<br>30 00<br>6 352 ft<br>0 244<br>Insulation (R)<br>0 0<br>19 0<br>Area (ft <sup>2</sup> )<br>3001 83<br>546 00 |                                          | 9 Wall types (5698 ft <sup>2</sup> )<br>a Frm wall, stucco ext, r-15 cav i<br>b Frm wall, 1/2" gyp bd ext, 3/8"<br>c N/A<br>d N/A<br>10 Ceiling types (3550 ft <sup>2</sup> )<br>a Attic ceiling, asphalt shingles<br>b N/A<br>c N/A<br>11 Ducts<br>a Sup. House, Ret. House, AH. House<br>b Sup: upstairs ah Attic, Ret: upstairs ah Attic, AH: House |                         | Insulation (R) | Area (ft <sup>2</sup> ) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          | 15 0<br>15 0                                                                                                                                                                                                                                                                                                                                           | 5341 50<br>356 67       |                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          | 38 0                                                                                                                                                                                                                                                                                                                                                   | 3550 44                 |                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          | R                                                                                                                                                                                                                                                                                                                                                      | Area (ft <sup>2</sup> ) |                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          | 6 0<br>6 0                                                                                                                                                                                                                                                                                                                                             | 0 00<br>0 00            |                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          | kBtu/hr                                                                                                                                                                                                                                                                                                                                                | Efficiency              |                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          | 45 1<br>33 5                                                                                                                                                                                                                                                                                                                                           | 15 SEER2<br>14 5 SEER2  |                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          | kBtu/hr                                                                                                                                                                                                                                                                                                                                                | Efficiency              |                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          | 38 9<br>35 6                                                                                                                                                                                                                                                                                                                                           | 7 5 HSPF2<br>7 5 HSPF2  |                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          | Cap 0 gal<br>UEF 0 80                                                                                                                                                                                                                                                                                                                                  |                         |                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          | 14 Hot water systems<br>a Propane instantaneous (0 gal)<br>b Conservation features<br>(None)                                                                                                                                                                                                                                                           |                         |                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                                                                                                                                                                                                                                                                                               |                                          | 15 Credits<br>Ceiling Fan,Cross Vent,Pstat                                                                                                                                                                                                                                                                                                             |                         |                |                         |
| Glass/Floor area: 0.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       | Total Proposed Modified Loads: 152.66<br>Total Baseline Loads: 162.97                                                                                                                                                                                                                         |                                          |                                                                                                                                                                                                                                                                                                                                                        |                         |                |                         |
| I hereby certify that the plans and specifications covered by this calculation are in compliance with the Florida Energy Code<br>Prepared By <u>Josh Legler</u><br>Signature <u>Josh Legler</u> Date <u>10/21/2025</u>                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                       | Review of the plans and specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed, this building will be inspected for compliance with Section 553 908 Florida Statutes                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                        |                         |                |                         |
| I hereby certify that this building, as designed, is in compliance with the Florida Energy Code<br>Owner/Agent Name <u>Jerry Lerner</u><br>Signature <u>Jerry Lerner</u> Date <u>10/20/25</u>                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       | Building Official Name _____<br>Signature _____ Date _____                                                                                                                                                                                                                                    |                                          |                                                                                                                                                                                                                                                                                                                                                        |                         |                |                         |

PASS



- Compliance requires certification by the air handler unit manufacturer that the air handler enclosure qualifies as certified factory-sealed in accordance with R403.3.2.1.
- Compliance requires an Air Barrier and Insulation Inspection Checklist in accordance with R402.4.1.1 and this project requires an envelope leakage test report with envelope leakage no greater than 7.0 ACH50 (R402.4.1.2).
- Compliance with a proposed duct leakage Qn requires a Duct Leakage Test Report confirming duct leakage to outdoors, tested in accordance with Section 803 of RESNET Standards, is not greater than 0.040 Qn for whole house.

# Building Input Summary Report

## PROJECT

|                 |                  |                   |          |                   |                        |
|-----------------|------------------|-------------------|----------|-------------------|------------------------|
| Title:          | Spec house       | Bedrooms:         | 4        | Address type:     | Street address         |
| Building Type:  | FLAsBuilt        | Bathrooms:        | 4        | Lot#:             |                        |
| Owner:          | Spec House       | Conditioned Area  | 4912     | Block/Subdivision |                        |
| # of Units:     | 1                | Total Stories     | 1        | Platbook          |                        |
| Builder Name:   | Jerry Lerner     | Worst Case        | No       | Street:           | TBD                    |
| Permit Office:  |                  | Rotate Angle      | 0        | County:           |                        |
| Jurisdiction:   |                  | Cross Ventilation | No       | City, State, Zip  | High Springs, FL 32643 |
| Family Type:    | Single-Family    | Whole House Fan   | No       |                   |                        |
| New/Existing:   | New (From Plans) | Terrain           | Rural    |                   |                        |
| Year Construct: | 2025             | Shielding         | Suburban |                   |                        |
| Comment:        |                  |                   |          |                   |                        |

## CLIMATE

| ✓ | Design Location          | TMY Site           | IECC Zone | Design Temp | Int Design Temp | Heating | Design | Daily Temp     |
|---|--------------------------|--------------------|-----------|-------------|-----------------|---------|--------|----------------|
|   |                          |                    |           | 97.5 %      | 2.5 %           | Winter  | Summer | Range          |
|   | FL, Gainesville Regional | FL_Gainesville_Rgn | 2         | 33          | 92              | 68      | 75     | 1148 44 Medium |

## BLOCKS

| # | Name              | Area                    | Volume                   |
|---|-------------------|-------------------------|--------------------------|
| 1 | House upstairs ah | 2812.00 ft <sup>2</sup> | 44503.55 ft <sup>3</sup> |
|   |                   | 2100.00 ft <sup>2</sup> | 18801.00 ft <sup>3</sup> |

## SPACES

| #  | Area           | Volume                 | Kitchen                  | Occupants | Bedrooms | Infil ID | Finished | Cooled | Heated |
|----|----------------|------------------------|--------------------------|-----------|----------|----------|----------|--------|--------|
| 1  | foyer/flex     | 548.22 ft <sup>2</sup> | 5482.22 ft <sup>3</sup>  | No        | 0        | 0        | 1        | Yes    | Yes    |
| 2  | master suite   | 293.33 ft <sup>2</sup> | 2933.33 ft <sup>3</sup>  | No        | 2        | 1        | 1        | Yes    | Yes    |
| 3  | his            | 63.00 ft <sup>2</sup>  | 630.00 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 4  | hers           | 80.00 ft <sup>2</sup>  | 800.00 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 5  | hall 1         | 77.00 ft <sup>2</sup>  | 770.00 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 6  | master bath    | 226.89 ft <sup>2</sup> | 2268.89 ft <sup>3</sup>  | No        | 0        | 0        | 1        | Yes    | Yes    |
| 7  | wc             | 35.89 ft <sup>2</sup>  | 358.89 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 8  | living/kitchen | 915.00 ft <sup>2</sup> | 25468.00 ft <sup>3</sup> | No        | 0        | 0        | 1        | Yes    | Yes    |
| 9  | mother in law  | 276.11 ft <sup>2</sup> | 2761.11 ft <sup>3</sup>  | No        | 1        | 1        | 1        | Yes    | Yes    |
| 10 | bath 2         | 93.33 ft <sup>2</sup>  | 933.33 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 11 | wic            | 37.78 ft <sup>2</sup>  | 377.78 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 12 | pantry         | 72.00 ft <sup>2</sup>  | 720.00 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 13 | laundry        | 100.00 ft <sup>2</sup> | 1000.00 ft <sup>3</sup>  | No        | 0        | 0        | 1        | Yes    | Yes    |
| 14 | bedroom 3      | 264.67 ft <sup>2</sup> | 2382.00 ft <sup>3</sup>  | No        | 1        | 1        | 1        | Yes    | Yes    |
| 15 | wic 3          | 55.56 ft <sup>2</sup>  | 500.00 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 16 | ah             | 33.33 ft <sup>2</sup>  | 300.00 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 17 | media room     | 390.00 ft <sup>2</sup> | 3510.00 ft <sup>3</sup>  | No        | 0        | 0        | 1        | Yes    | Yes    |
| 18 | hall 2         | 78.44 ft <sup>2</sup>  | 706.00 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 19 | bath 3         | 73.89 ft <sup>2</sup>  | 665.00 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 20 | bath 4         | 77.78 ft <sup>2</sup>  | 700.00 ft <sup>3</sup>   | No        | 0        | 0        | 1        | Yes    | Yes    |
| 21 | bedroom 4      | 294.00 ft <sup>2</sup> | 2646.00 ft <sup>3</sup>  | No        | 1        | 1        | 1        | Yes    | Yes    |
| 22 | storage        | 574.00 ft <sup>2</sup> | 5166.00 ft <sup>3</sup>  | No        | 0        | 0        | 1        | Yes    | Yes    |
| 23 | balcony        | 247.33 ft <sup>2</sup> | 2226.00 ft <sup>3</sup>  | No        | 0        | 0        | 1        | Yes    | Yes    |

## FLOORS

(Total Exposed Area = 3548 sq.ft.)

| ✓ # | Floor Type                                       | Space          | Perimeter | R-Value | Area                   | U-Factor | Tile | Wood | Carpet |
|-----|--------------------------------------------------|----------------|-----------|---------|------------------------|----------|------|------|--------|
| 1   | Bg floor, heavy dry or light damp soil, on grade | foyer/flex     | 52 ft     | 0       | 548.22 ft <sup>2</sup> | 1.180    | 0    | 10   | 0      |
| 2   | Bg floor, heavy dry or light damp soil, on grade | master suite   | 44 ft     | 0       | 293.33 ft <sup>2</sup> | 1.180    | 0    | 10   | 0      |
| 3   | Bg floor, heavy dry or light damp soil, on grade | his            | 0 ft      | 0       | 63.00 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 4   | Bg floor, heavy dry or light damp soil, on grade | hers           | 12 ft     | 0       | 80.00 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 5   | Bg floor, heavy dry or light damp soil, on grade | hall 1         | 0 ft      | 0       | 77.00 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 6   | Bg floor, heavy dry or light damp soil, on grade | master bath    | 14 ft     | 0       | 226.89 ft <sup>2</sup> | 1.180    | 0    | 10   | 0      |
| 7   | Bg floor, heavy dry or light damp soil, on grade | wc             | 0 ft      | 0       | 35.89 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 8   | Bg floor, heavy dry or light damp soil, on grade | living/kitchen | 54 ft     | 0       | 921.33 ft <sup>2</sup> | 1.180    | 0    | 10   | 0      |
| 9   | Bg floor, heavy dry or light damp soil, on grade | mother in law  | 35 ft     | 0       | 276.11 ft <sup>2</sup> | 1.180    | 0    | 10   | 0      |
| 10  | Bg floor, heavy dry or light damp soil, on grade | bath 2         | 12 ft     | 0       | 93.33 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 11  | Bg floor, heavy dry or light damp soil, on grade | wic            | 12 ft     | 0       | 37.78 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 12  | Bg floor, heavy dry or light damp soil, on grade | pantry         | 30 ft     | 0       | 72.00 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 13  | Bg floor, heavy dry or light damp soil, on grade | laundry        | 30 ft     | 0       | 100.00 ft <sup>2</sup> | 1.180    | 0    | 10   | 0      |
| 14  | Bg floor, heavy dry or light damp soil, on grade | bedroom 3      | 3 ft      | 0       | 26.11 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 15  | Bg floor, heavy dry or light damp soil, on grade | wic 3          | 2 ft      | 0       | 13.89 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 16  | Bg floor, heavy dry or light damp soil, on grade | media room     | 4 ft      | 0       | 36.11 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 17  | Bg floor, heavy dry or light damp soil, on grade | bath 3         | 3 ft      | 0       | 30.33 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 18  | Bg floor, heavy dry or light damp soil, on grade | bath 4         | 4 ft      | 0       | 46.67 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 19  | Bg floor, heavy dry or light damp soil, on grade | bedroom 4      | 1 ft      | 0       | 14.11 ft <sup>2</sup>  | 1.180    | 0    | 10   | 0      |
| 20  | Part floor, r-19 ins, frm flr, 12" thkns         | storage        | 69 ft     | 19      | 546.00 ft <sup>2</sup> | 0.049    | 0    | 10   | 0      |
| 21  | Bg floor, heavy dry or light damp soil, on grade | storage        | 1 ft      | 0       | 9.72 ft <sup>2</sup>   | 1.180    | 0    | 10   | 0      |



## WINDOWS

(Total Exposed Area = 469 sq.ft.)

| ✓  | #  | Ornt  | Wall ID      | Frame        | Panes        | NFRC  | U-Factor | SHGC                             | Impact                          | W x H, Area                     | Overhang Depth | Separation | Interior Shade | Screening |
|----|----|-------|--------------|--------------|--------------|-------|----------|----------------------------------|---------------------------------|---------------------------------|----------------|------------|----------------|-----------|
| 1  | 1  | E     | 1            | Vinyl        | Low-E Double | Yes   | 0.330    | 0.24                             | No                              | 6'0" x 5'0", 30 ft <sup>2</sup> | 4 ft 0 in      | 0 ft 0 in  | None           | None      |
| 2  | 1  | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 4'0" x 6'0", 24 ft <sup>2</sup>  | 9 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 3  | 5  | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 6'0" x 5'0", 30 ft <sup>2</sup>  | 1 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 4  | 6  | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 6'0" x 5'0", 30 ft <sup>2</sup>  | 1 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 5  | 7  | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 4'0" x 2'0", 8 ft <sup>2</sup>   | 0 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 6  | 8  | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 3'0" x 4'0", 12 ft <sup>2</sup>  | 1 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 7  | W  | 10    | Vinyl        | Low-E Double | Yes          | 0.330 | 0.24     | No                               | 6'0" x 6'0", 36 ft <sup>2</sup> | 18 ft 0 in                      | 0 ft 0 in      | None       | None           |           |
| 8  | 10 | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 12'0" x 8'0", 96 ft <sup>2</sup> | 18 ft 0 in                      | 0 ft 0 in                       | None           | None       |                |           |
| 9  | 12 | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 9'0" x 5'0", 45 ft <sup>2</sup>  | 1 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 10 | 23 | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 6'0" x 5'0", 30 ft <sup>2</sup>  | 1 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 11 | 24 | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 6'0" x 5'0", 30 ft <sup>2</sup>  | 1 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 12 | 27 | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 6'0" x 5'0", 30 ft <sup>2</sup>  | 1 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 13 | 29 | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 2'0" x 2'0", 4 ft <sup>2</sup>   | 0 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 14 | 30 | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 2'0" x 2'0", 4 ft <sup>2</sup>   | 0 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 15 | 31 | Vinyl | Low-E Double | Yes          | 0.330        | 0.24  | No       | 6'0" x 5'0", 30 ft <sup>2</sup>  | 1 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |
| 16 | 33 | Vinyl | Low-E Double | No.          | 0.470        | 0.31  | No       | 6'0" x 5'0", 30 ft <sup>2</sup>  | 1 ft 0 in                       | 0 ft 0 in                       | None           | None       |                |           |

## GARAGE

| ✓ | # | Floor Area | Ceiling Area | Exposed Wall Perimeter | Avg Wall Height | Exposed Wall Insulation |
|---|---|------------|--------------|------------------------|-----------------|-------------------------|
| 1 |   |            |              |                        |                 | 0                       |

## INFILTRATION

| # | Scope      | Method     | SLA      | CFM 50 | ELA   | EqlA  | ACH  | ACH 50 |
|---|------------|------------|----------|--------|-------|-------|------|--------|
| 1 | Wholehouse | Simplified | 0.000573 | 7386   | 405.5 | 761.5 | 0.55 | 7.00   |

## HEATING SYSTEM

| ✓ | # | System Type                | Subtype | Efficiency | Capacity     | Block | Ducts |
|---|---|----------------------------|---------|------------|--------------|-------|-------|
| 1 |   | Split air source heat pump |         | 7.5 HSPF2  | 47.5 kBtu/hr | 1     | sys#1 |
| 2 |   | Split air source heat pump |         | 7.5 HSPF2  | 35.6 kBtu/hr | 2     | sys#2 |

## COOLING SYSTEM

| ✓ | # | System Type                | Subtype | Efficiency | Capacity     | Air Flow | SHR  | Block | Ducts |
|---|---|----------------------------|---------|------------|--------------|----------|------|-------|-------|
| 1 |   | Split air source heat pump |         | 15 SEER2   | 47.0 kBtu/hr | 1567 cfm | 0.70 | 1     | sys#1 |
| 2 |   | Split air source heat pump |         | 14.5 SEER2 | 35.0 kBtu/hr | 1167 cfm | 0.70 | 2     | sys#2 |

## HOT WATER SYSTEM

| ✓ | # | System Type           | Subtype | Location | EF       | Cap   | Use    | SetPnt | Conservation |
|---|---|-----------------------|---------|----------|----------|-------|--------|--------|--------------|
| 1 |   | Propane instantaneous |         |          | 0.80 UEF | 0 gal | 70 gal | 120 °F | None         |

## DUCTS

| ✓ | # | Supply Location   | R-Value | Area              | Return Location   | Area              | Leakage Type                | Air Handler | CFM 25 Out          | Percent Leakage | QN   | RLF  | HVAC # Heat | HVAC # Cool |
|---|---|-------------------|---------|-------------------|-------------------|-------------------|-----------------------------|-------------|---------------------|-----------------|------|------|-------------|-------------|
| 1 | 2 | House upstairs ah | 6.0     | 0 ft <sup>2</sup> | House upstairs ah | 0 ft <sup>2</sup> | Default Leakage Proposed Qn | House House | (Default) 196.5 cfm | 6.00            | 0.08 | 0.04 | 0.00        | 1 2         |

## TEMPERATURES

| Programmable Thermostat. Y |                                    |     |    |     |    |     |    |     |    |     |    | Ceiling Fans |       |     |    |     |    |     |    |     |    |     |    |     |
|----------------------------|------------------------------------|-----|----|-----|----|-----|----|-----|----|-----|----|--------------|-------|-----|----|-----|----|-----|----|-----|----|-----|----|-----|
| Cooling                    | X                                  | Jan | X  | Feb | X  | Mar | X  | Apr | X  | May | X  | Jun          | X     | Jul | X  | Aug | X  | Sep | X  | Oct | X  | Nov | X  | Dec |
| Heating                    | X                                  | Jan | X  | Feb | X  | Mar | X  | Apr | X  | May | X  | Jun          | X     | Jul | X  | Aug | X  | Sep | X  | Oct | X  | Nov | X  | Dec |
| Venting                    | X                                  | Jan | X  | Feb | X  | Mar | X  | Apr | X  | May | X  | Jun          | X     | Jul | X  | Aug | X  | Sep | X  | Oct | X  | Nov | X  | Dec |
| Thermostat Schedule        | Florida Building Code, 8th Edition |     |    |     |    |     |    |     |    |     |    |              | Hours |     |    |     |    |     |    |     |    |     |    |     |
| Schedule Type              | (2023)                             |     |    |     |    |     |    |     |    |     |    |              | 6     |     |    |     |    |     |    |     |    |     |    |     |
| Cooling (WD)               | AM                                 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75           | 75    | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 |     |
|                            | PM                                 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75           | 75    | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 |     |
| Cooling (WEH)              | AM                                 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75           | 75    | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 |     |
|                            | PM                                 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75           | 75    | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 | 75  | 75 |     |
| Heating (WD)               | AM                                 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72           | 72    | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 |     |
|                            | PM                                 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72           | 72    | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 |     |
| Heating (WEH)              | AM                                 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72           | 72    | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 |     |
|                            | PM                                 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72           | 72    | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 | 72  | 72 |     |

## ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD

ESTIMATED ENERGY PERFORMANCE INDEX = 94

The lower the Energy Performance Index, the more efficient the home.

|                                             |                           |                                              |                      |
|---------------------------------------------|---------------------------|----------------------------------------------|----------------------|
| 1 New home or addition                      | 1 <u>New (From Plans)</u> | 12. Ducts, location & insulation level       | R _____              |
| 2 Single-family or multiple-family          | 2. <u>Single-Family</u>   | a Supply ducts                               | R _____              |
| 3 Number of units, if multiple-family       | 3 <u>1</u>                | b Return ducts                               | House, House         |
| 4. Number of bedrooms                       | 4 <u>4</u>                | c AHU location                               |                      |
| 5 Is this a worst case? (yes/no)            | 5 <u>No</u>               | 13 Cooling systems                           | Capacity <u>78.6</u> |
| 6 Conditioned floor area (ft <sup>2</sup> ) | 6 <u>4912 00</u>          | a Split system.                              | SEER2 <u>14.50</u>   |
| 7 Windows, type and area*                   | 7a <u>Dbl(Avg), 0 339</u> | b Single package.                            | SEER2                |
| a U-Factor                                  | 7b <u>0 24</u>            | c Ground/water source.                       | SEER/COP             |
| b Solar Heat Gain Coefficient (SHGC)        | 7c <u>469</u>             | d Room unit/PTAC                             | EER                  |
| c Area (ft <sup>2</sup> )                   |                           | e Other                                      |                      |
| 8 Skylights                                 | 8a _____                  | 14 Heating systems                           | Capacity <u>74.5</u> |
| a U-Factor                                  | 8b _____                  | a Split system heat pump                     | HSPF2 <u>7.50</u>    |
| b Solar Heat Gain Coefficient (SHGC)        |                           | b Single package heat pump                   | HSPF2                |
| 9 Floor type, insulation level              | 9a <u>0 0</u>             | c Electric resistance                        | COP                  |
| a. Slab-on-grade (R-value)                  | 9b <u>19 0</u>            | d Gas furnace, natural gas                   | AFUE                 |
| b. Wood, raised (R-value)                   | 9c _____                  | e Gas furnace, LPG                           | AFUE                 |
| c. Concrete, raised (R-value)               |                           | f Other                                      |                      |
| 10 Wall type and insulation                 |                           | 15 Water heating systems                     |                      |
| a. Exterior                                 |                           | a Electric resistance                        |                      |
| 1 Wood/mtl frame (Insulation R-value)       | 10a1 <u>15 0</u>          | b Gas fired, natural gas                     |                      |
| 2 Masonry (Insulation R-value)              | 10a2 _____                | c Gas fired, LPG                             | 0.80 UEF             |
| b. Adjacent                                 |                           | d Solar system with tank                     |                      |
| 1 Wood/mtl frame (Insulation R-value)       | 10b1 <u>15.0</u>          | e Dedicated heat pump with tank              |                      |
| 2 Masonry (Insulation R-value)              | 10b2 _____                | f Heat recovery unit                         | HeatRec%             |
| 11 Ceiling type and insulation level        |                           | g Other                                      |                      |
| a. Under attic (R-value)                    | 11a <u>38 0</u>           | 16 HVAC credits claimed (Performance Method) |                      |
| b. Single assembly (R-value)                | 11b _____                 | a Ceiling fans                               | Yes                  |
| c. Knee walls/skylight walls (R-value)      | 11c _____                 | b Cross ventilation                          | Yes                  |
| d. Radiant barrier installed                | 11d <u>Yes</u>            | c Whole house fan                            |                      |

\*Label required by Section R303 1 3 of the Florida Building Code, Energy Conservation, if not DEFAULT

I certify that this home has complied with the Florida Building Code, Energy Conservation, through the above energy saving features which will be installed (or exceeded) in this home before final inspection. Otherwise, a new EPL Display Card will be completed based on installed Code compliant features.

Builder Signature: Date: 10/20/25Address of New Home: TBD

Lot 4  
Hermitage Glen,  
High Springs, 32643

City/FL Zip: High Springs, FL 32643

# Florida Building Code, Energy Conservation, 8th Edition (2023)

## Mandatory Requirements for Residential Performance, Prescriptive and ERI Methods

|         |                        |           |
|---------|------------------------|-----------|
| ADDRESS | TBD                    | PERMIT #: |
|         | High Springs, FL 32643 |           |

### MANDATORY REQUIREMENTS - See individual code sections for full details

#### SECTION R401 GENERAL

**R401.3 Energy Performance Level (EPL) display card (Mandatory).** The building official shall require that an energy performance level (EPL) display card be completed and certified by the builder to be accurate and correct before final approval of the building for occupancy. Florida law (Section 553.9085, Florida Statutes) requires the EPL display card to be included as an addendum to each sales contract for both presold and nonpresold residential buildings. The EPL display card contains information indicating the energy performance level and efficiencies of components installed in a dwelling unit, completed and signed by the builder. The building official shall verify that the EPL display card accurately reflects the plans and specifications submitted to demonstrate compliance for the building. A copy of the EPL display card can be found in Appendix RD.

#### SECTION R402 BUILDING THERMAL ENVELOPE

**R402.4 Air leakage (Mandatory).** The building thermal envelope shall be constructed to limit air leakage in accordance with the requirements of Sections R402.4.1 through R402.4.5

**Exception:** Dwelling units of R-2 Occupancies and multiple attached single family dwellings shall be permitted to comply with Section C402.5

**R402.4.1 Building thermal envelope.** The building thermal envelope shall comply with Sections R402.4.1.1 and R402.4.1.2. The sealing methods between dissimilar materials shall allow for differential expansion and contraction.

**R402.4.1.1 Installation.** The components of the building thermal envelope as listed in Table R402.4.1.1 shall be installed in accordance with the manufacturer's instructions and the criteria listed in Table R402.4.1.1, as applicable to the method of construction. Where required by the code official, an approved third party shall inspect all components and verify compliance.

**R402.4.1.2 Testing.** The building or dwelling unit shall be tested and verified as having an air leakage rate not exceeding seven air changes per hour in Climate Zones 1 and 2, and three air changes per hour in Climate Zones 3 through 8. Dwelling units with an air leakage rate less than three air changes per hour shall be provided with whole-house mechanical ventilation in accordance with Section R403.6.1 of this code and M1507.3 of the Florida Building Code, Residential. Testing shall be conducted in accordance with ANSI/RESNET/ICC 380 and reported at a pressure of 0.2 inch w.g. (50 pascals). Testing shall be conducted by either individual as defined in Section 553.993(5) or (7), Florida Statutes, or individuals licensed as set forth in Section 489.105(3)(f), (g) or (l) or an approved third party. A written report of the results of the test shall be signed by the party conducting the test and provided to the code official. Testing shall be performed at any time after creation of all penetrations of the building thermal envelope.

**Exception:** Testing is not required for additions, alterations, renovations, or repairs, of the building thermal envelope of existing buildings in which the new construction is less than 85 percent of the building thermal envelope.

During testing

- 1 Exterior windows and doors, fireplace and stove doors shall be closed, but not sealed, beyond the intended weatherstripping or other infiltration control measures.
- 2 Dampers including exhaust, intake, makeup air, backdraft and flue dampers shall be closed, but not sealed beyond intended infiltration control measures.
- 3 Interior doors, if installed at the time of the test, shall be open.
- 4 Exterior doors for continuous ventilation systems and heat recovery ventilators shall be closed and sealed.
- 5 Heating and cooling systems, if installed at the time of the test, shall be turned off.
- 6 Supply and return registers, if installed at the time of the test, shall be fully open.
- 7 If an attic is both air sealed and insulated at the roof deck, interior access doors and hatches between the conditioned space volume and the attic shall be opened during the test and the volume of the attic shall be added to the conditioned space volume for purposes of reporting an infiltration volume and calculating the air leakage of the home.

**R402.4.2 Fireplaces.** New wood-burning fireplaces shall have tight-fitting flue dampers or doors, and outdoor combustion air. Where using tight-fitting doors on factory-built fireplaces listed and labeled in accordance with UL 127, the doors shall be tested and listed for the fireplace. Where using tight-fitting doors on masonry fireplaces, the doors shall be listed and labeled in accordance with UL 907.

**R402.4.3 Fenestration air leakage.** Windows, skylights and sliding glass doors shall have an air infiltration rate of no more than 0.3 cfm per square foot (1.5 L/s/m<sup>2</sup>), and swinging doors no more than 0.5 cfm per square foot (2.6 L/s/m<sup>2</sup>), when tested according to NFRC 400 or AAMA/WDMA/CSA 101/I S 2/A440 by an accredited, independent laboratory and listed and labeled by the manufacturer.

**Exception:** Site-built windows, skylights and doors

**R402.4.4 Rooms containing fuel-burning appliances.** In Climate Zones 3 through 8, where open combustion air ducts provide combustion air to open combustion fuel-burning appliances, the appliances and combustion air opening shall be located outside the building thermal envelope or enclosed in a room, isolated from inside the thermal envelope. Such rooms shall be sealed and insulated in accordance with the envelope requirements of Table R402.1.2, where the walls, floors and ceilings shall meet not less than the basement wall R-value requirement. The door into the room shall be fully gasketed and any water lines and ducts in the room insulated in accordance with Section R403. The combustion air duct shall be insulated where it passes through conditioned space to a minimum of R-8.

**Exceptions:**

- 1 Direct vent appliances with both intake and exhaust pipes installed continuous to the outside.
- 2 Fireplaces and stoves complying with Section R402.4.2 and Section R1006 of the Florida Building Code, Residential.

## MANDATORY REQUIREMENTS - (Continued)

- R402.4.6 Recessed lighting.** Recessed luminaires installed in the building thermal envelope shall be sealed to limit air leakage between conditioned and unconditioned spaces. All recessed luminaires shall be IC-rated and labeled as having an air leakage rate not more than 2.0 cfm (0.944 L/s) when tested in accordance with ASTM E283 at a 1.57 psf (75 Pa) pressure differential. All recessed luminaires shall be sealed with a gasket or caulk between the housing and the interior wall or ceiling covering.
- R402.4.6 Air-Sealed Electrical and Communication Boxes.** Air-sealed electrical and communication boxes that penetrate the air barrier of the building thermal envelope shall be caulked, taped, gasketed, or otherwise sealed to the air barrier element being penetrated. Air-sealed boxes shall be buried in or surrounded by insulation. Air-sealed boxes shall be marked in accordance with NEMA OS 4. Air-sealed boxes shall be installed in accordance with the manufacturer's instructions.

## SECTION R403 SYSTEMS

- R403.1 Controls**
- R403.1.1 Thermostat provision (Mandatory).** At least one thermostat shall be provided for each separate heating and cooling system.
- R403.1.3 Heat pump supplementary heat (Mandatory).** Heat pumps having supplementary electric-resistance heat shall have controls that limit supplemental heat operation to only those times when one of the following applies
  - 1 The vapor compression cycle cannot provide the necessary heating energy to satisfy the thermostat setting
  - 2 The heat pump is operating in defrost mode
  - 3 The vapor compression cycle malfunctions
  - 4 The thermostat malfunctions
- R403.3.2 Sealing (Mandatory).** All ducts, air handlers, filter boxes and building cavities that form the primary air containment passageways for air distribution systems shall be considered ducts and plenum chambers, shall be constructed and sealed in accordance with Section C403.2.9.2 of the Commercial Provisions of this code and shall be shown to meet duct tightness criteria below. Duct tightness shall be verified by testing in accordance with ANSI/RESNET/ICC 380 by either individuals as defined in Section 553.993(5) or (7), Florida Statutes, or individuals licensed as set forth in Section 489.105(3)(f), (g), or (i), Florida Statutes, to be "substantially leak free" in accordance with Section R403.3.3
  - R403.3.2.1 Sealed air handler.** Air handlers shall have a manufacturer's designation for an air leakage of no more than 2 percent of the design air flow rate when tested in accordance with ASHRAE 193.
- R403.3.3 Duct testing (Mandatory).** Ducts shall be pressure tested to determine air leakage by one of the following methods
  - 1 Rough-in test: Total leakage shall be measured with a pressure differential of 0.1 inch w.g. (25 Pa) across the system, including the manufacturer's air handler enclosure if installed at the time of the test. All registers shall be taped or otherwise sealed during the test.
  - 2 Post construction test: Total leakage shall be measured with a pressure differential of 0.1 inch w.g. (25 Pa) across the entire system, including the manufacturer's air handler enclosure. All registers shall be taped or otherwise sealed during the test.

**Exceptions:**

  - 1 A duct leakage test shall not be required where the ducts and air handlers are located entirely within the building thermal envelope.
  - 2 Duct testing is not mandatory for buildings complying by Section 405 of this code. Duct leakage testing is required for Section 405 compliance where credit is taken for leakage, and a duct air leakage  $Q_n$  to the outside of less than 0.080 (where  $Q_n$  = duct leakage to the outside in cfm per 100 square feet of conditioned floor area tested at 25 Pascals) is indicated in the compliance report for the proposed design.

A written report of the results of the test shall be signed by the party conducting the test and provided to the code official.
- R403.3.5 Building Cavities (Mandatory).** Building framing cavities shall not be used as ducts or plenums.
- R403.4 Mechanical system piping insulation (Mandatory).** Mechanical system piping capable of carrying fluids above 105°F (41°C) or below 55°F (13°C) shall be insulated to a minimum of R-3
  - R403.4.1 Protection of piping insulation.** Piping insulation exposed to weather shall be protected from damage, including that caused by sunlight, moisture, equipment maintenance, and wind, and shall provide shielding from solar radiation that can cause degradation of the material. Adhesive tape shall not be permitted.
  - R403.5.1 Heated water circulation and temperature maintenance systems (Mandatory).** Heated water circulation systems shall be in accordance with Section R403.5.1.1. Heat trace temperature maintenance systems shall be in accordance with Section R403.5.1.2. Automatic controls, temperature sensors and pumps shall be accessible. Manual controls shall be readily accessible.
    - R403.5.1.1 Circulation systems.** Heated water circulation systems shall be provided with a circulation pump. The system return pipe shall be dedicated return pipe or a cold water supply pipe. Gravity and thermosiphon circulation systems shall be prohibited. Controls for circulating hot water system pumps shall start the pump based on the identification of a demand for hot water within the occupancy. The controls shall automatically turn off the pump when the water in the circulation loop is at the desired temperature and when there is no demand for hot water.
    - R403.5.1.2 Heat trace systems.** Electric heat trace systems shall comply with IEEE 515.1 or UL 515. Controls for such systems shall automatically adjust the energy input to the heat tracing to maintain the desired water temperature in the piping in accordance with the times when heated water is used in the occupancy.
  - R403.5.2 Demand recirculation water systems (Mandatory).** Where installed, demand recirculation water systems shall have controls that comply with both of the following
    - 1 The controls shall start the pump upon receiving a signal from the action of a user of a fixture or appliance, sensing the presence of a user of a fixture or sensing the flow of hot or tempered water to a fixture fitting or appliance.
    - 2 The controls shall limit the temperature of the water entering the cold water piping to not greater than 104°F (40°C).

**MANDATORY REQUIREMENTS - (Continued)**

- R403.5.5 Heat traps (Mandatory).** Storage water heaters not equipped with integral heat traps and having vertical pipe risers shall have heat traps installed on both the inlets and outlets. External heat traps shall consist of either a commercially available heat trap or a downward and upward bend of at least 3 1/2 inches (89 mm) in the hot water distribution line and cold water line located as close as possible to the storage tank
- R403.5.6 Water heater efficiencies (Mandatory).**
  - R403.5.6.1 Storage water heater temperature controls.**
    - R403.5.6.1.1 Automatic controls.** Service water heating systems shall be equipped with automatic temperature controls capable of adjustment from the lowest to the highest acceptable temperature settings for the intended use. The minimum temperature setting range shall be from 100°F to 140°F (38°C to 60°C)
    - R403.5.6.1.2 shut down.** A separate switch or a clearly marked circuit breaker shall be provided to permit the power supplied to electric service systems to be turned off. A separate valve shall be provided to permit the energy supplied to the main burner(s) of combustion types of service water heating systems to be turned off
  - R403.5.6.2 Water heating equipment.** Water heating equipment installed in residential units shall meet the minimum efficiencies of Table C404.2 in Chapter 4 of the Florida Building Code, Energy Conservation, Commercial Provisions, for the type of equipment installed. Equipment used to provide heating functions as part of a combination system shall satisfy all stated requirements for the appropriate water heating category. Solar water heaters shall meet the criteria of Section R403.5.6.2.1
    - R403.5.6.2.1 Solar water heating system.** Solar systems for domestic hot water production are rated by the annual solar energy factor of the system. The solar energy factor of a system shall be determined from the Florida Solar Energy Center Directory of Certified Solar Systems. Solar collectors shall be tested in accordance with ISO Standard 9806, Test Methods for Solar Collectors, and SRCC Standard TM-1, Solar Domestic Hot Water System and Component Test Protocol. Collectors in installed solar water-heating systems should meet the following criteria
      - 1 Be installed with a tilt angle between 10 degrees and 40 degrees of the horizontal, and
      - 2 Be installed at an orientation within 45 degrees of true south
- R403.6 Mechanical ventilation (Mandatory).** The building shall be provided with ventilation that meets the requirements of the Florida Building Code, Residential or Florida Building Code, Mechanical, as applicable, or with other approved means of ventilation, including Natural, Infiltration or Mechanical means. Outdoor air intakes and exhausts shall have automatic or gravity dampers that close when the ventilation system is not operating
  - R403.6.1 Whole-house mechanical ventilation system fan efficacy.** When installed to function as a whole-house mechanical ventilation system, fans shall meet the efficacy requirements of Table R403.6.1
    - Exception:** Where mechanical ventilation fans are integral to tested and listed HVAC equipment, they shall be powered by an electronically commutated motor
  - R403.6.2 Ventilation air.** Residential buildings designed to be operated at a positive indoor pressure for mechanical ventilation shall meet the following criteria
    - 1 The design air change per hour minimums for residential buildings in ASHRAE 62.2, Ventilation for Acceptable Indoor Air Quality, shall be the maximum rates allowed for residential applications
    - 2 No ventilation or air-conditioning system make-up air shall be provided to conditioned space from attics, crawlspaces, attached enclosed garages or outdoor spaces adjacent to swimming pools or spas
    - 3 If ventilation air is drawn from enclosed space(s), then the walls of the space(s) from which air is drawn shall be insulated to a minimum of R-11 and the ceiling shall be insulated to a minimum of R-19, space permitting, or R-10 otherwise
- R403.7 Heating and cooling equipment.**
  - R403.7.1 Equipment sizing (Mandatory).** Heating and cooling equipment shall be sized in accordance with ACCA Manual S based on the equipment loads calculated in accordance with ACCA Manual J or other approved methodologies, heating and cooling calculation based on building loads for the directional orientation of the building. The manufacturer and model number of the outdoor and indoor units (if split system) shall be submitted along with the sensible and total cooling capacities at the design conditions described in Section R302.1. This code does not allow designer safety factors, provisions for future expansion or other factors that affect equipment sizing. System sizing calculations shall not include loads created by local intermittent mechanical ventilation such as standard kitchen and bathroom exhaust systems. New or replacement heating and cooling equipment shall have an efficiency rating equal to or greater than the minimum required by federal law for the geographic location where the equipment is installed

**TABLE R403.6.1**  
**WHOLE-HOUSE MECHANICAL VENTILATION SYSTEM FAN EFFICACY**

| FAN LOCATION           | AIRFLOW RATE MINIMUM<br>CFM | MINIMUM EFFICACY (a)<br>CFM/WATT | AIRFLOW RATE MAXIMUM<br>CFM |
|------------------------|-----------------------------|----------------------------------|-----------------------------|
| HRV or ERV             | Any                         | 1.2 cfm/watt                     | Any                         |
| Range hoods            | Any                         | 2.8 cfm/watt                     | Any                         |
| In-line fan            | Any                         | 3.8 cfm/watt                     | Any                         |
| Bathroom, utility room | 10                          | 2.8 cfm/watt                     | < 90                        |
| Bathroom, utility room | 90                          | 3.5 cfm/watt                     | Any                         |

For SI 1 cfm = 28.3 L/min

(a) When tested in accordance HVI Standard 916

**MANDATORY REQUIREMENTS - (Continued)**

**R403.7.1.1 Cooling equipment capacity.** Cooling only equipment shall be selected so that its total capacity is not less than the calculated total load but not more than 1 15 times greater than the total load calculated according to the procedure selected in Section 403 7, or the closest available size provided by the manufacturer's product lines. The corresponding latent capacity of the equipment shall not be less than the calculated latent load. The published value for AHRI total capacity is a nominal, rating-test value and shall not be used for equipment sizing. Manufacturer's expanded performance data shall be used to select cooling-only equipment. This selection shall be based on the outdoor design dry-bulb temperature for the load calculation (or entering water temperature for water-source equipment), the blower CFM provided by the expanded performance data, the design value for entering wet-bulb temperature and the design value for entering dry-bulb temperature. Design values for entering wet-bulb and dry-bulb temperatures shall be for the indoor dry bulb and relative humidity used for the load calculation and shall be adjusted for return side gains if the return duct(s) is installed in an unconditioned space.

**Exceptions:**

- 1 Attached single- and multiple-family residential equipment sizing may be selected so that its cooling capacity is less than the calculated total sensible load but not less than 80 percent of that load.
- 2 When signed and sealed by a Florida-registered engineer, in attached single- and multiple-family units, the capacity of equipment may be sized in accordance with good design practice.

**R403.7.1.2 Heating equipment capacity.**

- R403.7.1.2.1 Heat pumps.** Heat pump sizing shall be based on the cooling requirements as calculated according to Section R403 7 1 1, and the heat pump total cooling capacity shall not be more than 1 15 times greater than the design cooling load even if the design heating load is 1 15 times greater than the design cooling load.
- R403.7.1.2.2 Electric resistance furnaces.** Electric resistance furnaces shall be sized within 4 kW of the design requirements calculated according to the procedure selected in Section R403 7 1.
- R403.7.1.2.3 Fossil fuel heating equipment.** The capacity of fossil fuel heating equipment with natural draft atmospheric burners shall not be less than the design load calculated in accordance with Section R403 7 1.

**R403.7.1.3 Extra capacity required for special occasions.** Residences requiring excess cooling or heating equipment capacity on an intermittent basis, such as anticipated additional loads caused by major entertainment events, shall have equipment sized or controlled to prevent continuous space cooling or heating within that space by one or more of the following options:

- 1 A separate cooling or heating system is utilized to provide cooling or heating to the major entertainment areas.
- 2 A variable capacity system sized for optimum performance during base load periods is utilized.

**R403.8 Systems serving multiple dwelling units (Mandatory).** Systems serving multiple dwelling units shall comply with Sections C403 and C404 of the IECC—Commercial Provisions in lieu of Section R403.

**R403.9 Snow melt and ice system controls (Mandatory).** Snow- and ice-melting systems, supplied through energy service to the building, shall include automatic controls capable of shutting off the system when the pavement temperature is above 50°F (10°C), and no precipitation is falling and an automatic or manual control that will allow shutoff when the outdoor temperature is above 40°F (4.8°C).

**R403.10 Pools and permanent spa energy consumption (Mandatory).** The energy consumption of pools and permanent spas shall be in accordance with Sections R403 10 1 through R403 10 5.

- R403.10.1 Heaters.** The electric power to heaters shall be controlled by a readily accessible on-off switch that is an integral part of the heater mounted on the exterior of the heater, or external to and within 3 feet (914 mm) of the heater. Operation of such switch shall not change the setting of the heater thermostat. Such switches shall be in addition to a circuit breaker for the power to the heater. Gas-fired heaters shall not be equipped with continuously burning ignition pilots.
- R403.10.2 Time switches.** Time switches or other control methods that can automatically turn off and on according to a preset schedule shall be installed for heaters and pump motors. Heaters and pump motors that have built-in time switches shall be in compliance with this section.

**Exceptions:**

- 1 Where public health standards require 24-hour pump operations.
- 2 Pumps that operate solar- and waste-heat-recovery pool heating systems.
- 3 Where pumps are powered exclusively from on-site renewable generation.

**R403.10.3 Covers.** Outdoor heated swimming pools and outdoor permanent spas shall be equipped with a vapor- retardant cover on or at the water surface or a liquid cover or other means proven to reduce heat loss.

**Exception:** Where more than 70 percent of the energy for heating, computed over an operation season, is from site-recovered energy, such as from a heat pump or solar energy source, covers or other vapor-retardant means shall not be required.

- R403.10.4 Gas- and oil-fired pool and spa heaters.** All gas- and oil-fired pool and spa heaters shall have a minimum thermal efficiency of 82 percent for heaters manufactured on or after April 16, 2013, when tested in accordance with ANSI Z 21.56. Pool heaters fired by natural or LP gas shall not have continuously burning pilot lights.
- R403.10.5 Heat pump pool heaters.** Heat pump pool heaters shall have a minimum COP of 4.0 when tested in accordance with AHRI 1160, Table 2, Standard Rating Conditions-Low Air Temperature. A test report from an independent laboratory is required to verify procedure compliance. Geothermal swimming pool heat pumps are not required to meet this standard.

**MANDATORY REQUIREMENTS - (Continued)**

**R403.11 Portable spas (Mandatory).** The energy consumption of electric-powered portable spas shall be controlled by the requirements of APSP-14

**R403.13 Dehumidifiers (Mandatory).** If installed, a dehumidifier shall conform to the following requirements

- 1 The minimum rated efficiency of the dehumidifier shall be greater than 1 7 liters/ kWh if the total dehumidifier capacity for the house is less than 75 pints/day and greater than 2 38 liters/kWh if the total dehumidifier capacity for the house is greater than or equal to 75 pints/day
- 2 The dehumidifier shall be controlled by a sensor that is installed in a location where it is exposed to mixed house air
- 3 Any dehumidifier unit located in unconditioned space that treats air from conditioned space shall be insulated to a minimum of R-2
- 4 Condensate disposal shall be in accordance with Section M1411 3 1 of the Florida Building Code, Residential

**R403.13.1 Ducted dehumidifiers.** Ducted dehumidifiers shall, in addition to conforming to the requirements of Section R403 13, conform to the following requirements

- 1 If a ducted dehumidifier is configured with return and supply ducts both connected into the supply side of the cooling system, a backdraft damper shall be installed in the supply air duct between the dehumidifier inlet and outlet duct
- 2 If a ducted dehumidifier is configured with only its supply duct connected into the supply side of the central heating and cooling system, a backdraft damper shall be installed in the dehumidifier supply duct between the dehumidifier and central supply duct
- 3 A ducted dehumidifier shall not be ducted to or from a central ducted cooling system on the return duct side upstream from the central cooling evaporator coil
- 4 Ductwork associated with a dehumidifier located in unconditioned space shall be insulated to a minimum of R-6

**SECTION R404 ELECTRICAL POWER AND LIGHTING SYSTEMS**

**R404.1 Lighting equipment (Mandatory).** All permanently installed luminaires, excluding those in kitchen appliances, shall have an efficacy of at least 45 lumens-per-watt or shall utilize lamps with an efficacy of not less than 65 lumens-per-watt

**Exception:** Low-voltage lighting

**R404.1.1 Lighting equipment (Mandatory).** Fuel gas lighting systems shall not have continuously burning pilot lights

**TABLE 402.4.1.1**  
**AIR BARRIER AND INSULATION INSPECTION COMPONENT CRITERIA**

|                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Project Name<br>Street<br>City, State, Zip<br>Owner<br>Design Location         | Spec house<br>TBD<br>High Springs, FL 32643<br>Spec House<br>FL, Gainesville Regional                                                                                                                                                                                                                                                                                                                                                                       | Builder Name<br>Permit Office<br>Permit Number<br>Jurisdiction                                                                                                                                                                                                                                                                                                                      | Jerry Lerner                        |
| <b>COMPONENT</b>                                                               | <b>AIR BARRIER CRITERIA</b>                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>INSULATION INSTALLATION CRITERIA</b>                                                                                                                                                                                                                                                                                                                                             | <input checked="" type="checkbox"/> |
| General requirements                                                           | A continuous air barrier shall be installed in the building envelope. The exterior thermal envelope contains a continuous barrier. Breaks or joints in the air barrier shall be sealed.                                                                                                                                                                                                                                                                     | Air-permeable insulation shall not be used as a sealing material.                                                                                                                                                                                                                                                                                                                   | <input type="checkbox"/>            |
| Ceiling/attic                                                                  | The air barrier in any dropped ceiling/soffit shall be aligned with the insulation and any gaps in the air barrier shall be sealed. Access openings, drop down stairs or knee wall doors to unconditioned attics spaces shall be sealed.                                                                                                                                                                                                                    | The insulation in any dropped ceiling/soffit shall be aligned with the air barrier.                                                                                                                                                                                                                                                                                                 | <input type="checkbox"/>            |
| Walls                                                                          | The junction of the foundation and sill plate shall be sealed. The junction of the top plate and the top of exterior walls shall be sealed. Knee walls shall be sealed.                                                                                                                                                                                                                                                                                     | Cavities with corners and headers of frame walls shall be insulated by completely filling the cavity with a material having a thermal resistance of R-3 per inch minimum. Exterior thermal envelope insulation for framed walls shall be installed in substantial contact and continuous alignment with the air barrier                                                             | <input type="checkbox"/>            |
| Windows, skylights and doors                                                   | The space between window/door jambs and framing, and skylights and framing shall be sealed.                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                     | <input type="checkbox"/>            |
| Rim joists                                                                     | Rim joists are insulated and include an air barrier.                                                                                                                                                                                                                                                                                                                                                                                                        | Rim joists shall be insulated.                                                                                                                                                                                                                                                                                                                                                      | <input type="checkbox"/>            |
| Floors (including above-garage and cantilevered floors)                        | The air barrier shall be installed at any exposed edge of insulation.                                                                                                                                                                                                                                                                                                                                                                                       | Floor framing cavity insulation shall be installed to maintain permanent contact with the underside of subfloor decking, or floor framing cavity insulation shall be permitted to be in contact with the top side of sheathing, or continuous insulation installed on the underside of floor framing and extends from the bottom to the top of all perimeter floor framing members. | <input type="checkbox"/>            |
| Crawl space walls                                                              | Exposed earth in unvented crawl spaces shall be covered with a Class I vapor retarder with overlapping joints taped.                                                                                                                                                                                                                                                                                                                                        | Where provided in lieu of floor insulation, insulation shall be permanently attached to the crawlspace walls.                                                                                                                                                                                                                                                                       | <input type="checkbox"/>            |
| Shafts, penetrations                                                           | Duct shafts, utility penetrations, and flue shaft openings to exterior or unconditioned space shall be sealed.                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                     | <input type="checkbox"/>            |
| Narrow cavities                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Batts in narrow cavities shall be cut to fit, or narrow cavities shall be filled by insulation that on installation readily conforms to the available cavity spaces.                                                                                                                                                                                                                | <input type="checkbox"/>            |
| Garage separation                                                              | Air sealing shall be provided between the garage and conditioned spaces.                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                     | <input type="checkbox"/>            |
| Recessed lighting                                                              | Recessed light fixtures installed in the building thermal envelope shall be sealed to the finished surface.                                                                                                                                                                                                                                                                                                                                                 | Recessed light fixtures installed in the building thermal envelope shall be air tight and IC rated.                                                                                                                                                                                                                                                                                 | <input type="checkbox"/>            |
| Plumbing and wiring                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Batt insulation shall be cut neatly to fit around wiring and plumbing in exterior walls, or insulation that on installation readily conforms to available space shall extend behind piping and wiring.                                                                                                                                                                              | <input type="checkbox"/>            |
| Shower/tub on exterior wall                                                    | The air barrier shall be installed behind electrical or communication boxes or air-sealed boxes shall be installed.                                                                                                                                                                                                                                                                                                                                         | Exterior walls adjacent to showers and tubs shall be insulated.                                                                                                                                                                                                                                                                                                                     | <input type="checkbox"/>            |
| Electrical, communication, and other equipment boxes, housings, and enclosures | Boxes, housings, and enclosures that penetrate the air barrier shall be caulked, taped, gasketed, or otherwise sealed to the air barrier element being penetrated. All concealed openings into the box, housing, or enclosure shall be sealed. The continuity of the air barrier shall be maintained around boxes, housings, and enclosures that penetrate the air barrier. Alternatively, air-sealed boxes shall be installed in accordance with R402.4.6. | Boxes, housings, and enclosures shall be buried in or surrounded by tightly fitted insulation.                                                                                                                                                                                                                                                                                      | <input type="checkbox"/>            |
| HVAC register boots                                                            | HVAC supply and return register boots that penetrate building thermal envelope shall be sealed to the subfloor, wall covering or ceiling penetrated by the boot.                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                     | <input type="checkbox"/>            |
| Concealed sprinklers                                                           | When required to be sealed, concealed fire sprinklers shall only be sealed in a manner that is recommended by the manufacturer. Caulking or other adhesive sealants shall not be used to fill voids between fire sprinkler cover plates and walls or ceilings.                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                     | <input type="checkbox"/>            |

a. In addition, inspection of log walls shall be in accordance with the provisions of ICC-400.

# Envelope Leakage Test Report (Blower Door Test)

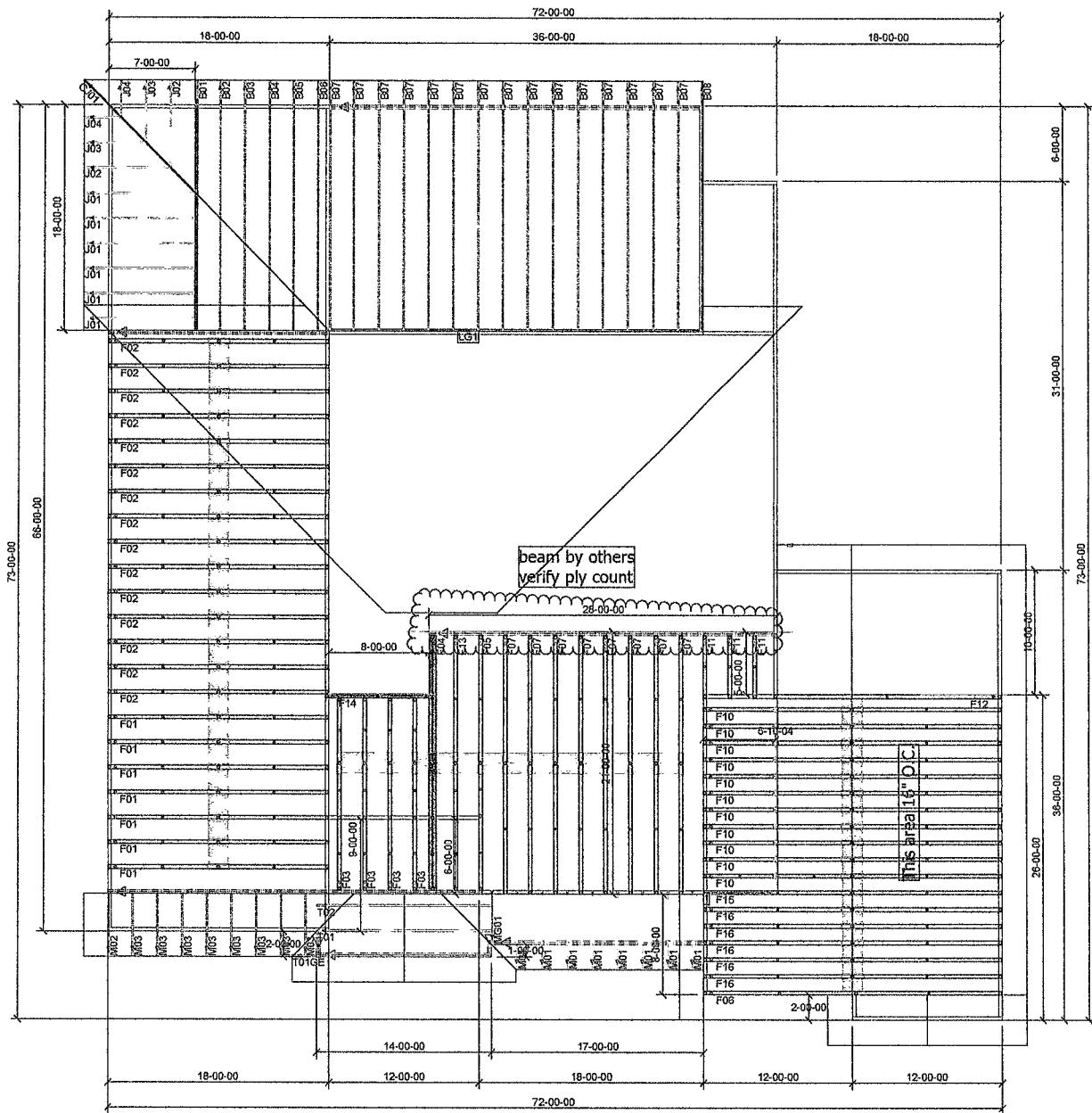
Residential Prescriptive, Performance or ERI Method Compliance  
2023 Florida Building Code, Energy Conservation, 8th Edition

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jurisdiction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Permit Number |                                                                                                                                                                                       |
| <b>Job Information</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                                                                                                                                                                       |
| Builder Jerry Lerner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Community     | Lot                                                                                                                                                                                   |
| Address TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unit.         |                                                                                                                                                                                       |
| City High Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | State FL      | Zip 32643                                                                                                                                                                             |
| <b>Air Leakage Test Results</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | <i>Passing results must meet either the Performance, Prescriptive, or ERI Method</i>                                                                                                  |
| <input type="checkbox"/> <b>PRESCRIPTIVE METHOD</b> The building or dwelling unit shall be tested and verified as having an air leakage rate of not exceeding 7 air changes per hour at a pressure of 0.2 inch w.g. (50 pascals) in Climate Zones 1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                                                                       |
| <input checked="" type="checkbox"/> <b>PERFORMANCE or ERI METHOD</b> The building or dwelling unit shall be tested and verified as having an air leakage rate of not exceeding the selected ACH(50) value, as shown on FORM R405-2023 (Performance) or R406-2023 (ERI), section labeled as Infiltration, sub-section ACH50<br>ACH(50) specified on Form R405-2023-Energy Calc (Performance) or R406-2023 (ERI) <input type="text" value="7 000"/>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                       |
| $\text{CFM(50)} \times 60 \div \text{Building Volume} = \text{ACH(50)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | <b>Method for calculating building volume:</b>                                                                                                                                        |
| <input type="checkbox"/> <b>PASS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | <input type="checkbox"/> Retrieved from architectural plans<br><input checked="" type="checkbox"/> Code software calculated<br><input type="checkbox"/> Field measured and calculated |
| <input checked="" type="checkbox"/> When ACH(50) is less than 3, Mechanical Ventilation installation must be verified by building department.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                       |
| <p><b>R402.4.1.2 Testing.</b> The building or dwelling unit shall be tested and verified as having an air leakage rate not exceeding seven air changes per hour in Climate Zones 1 and 2, and three air changes per hour in Climate Zones 3 through 8. Dwelling units with an air leakage rate less than three air changes per hour shall be provided with whole-house mechanical ventilation in accordance with Section R403.6.1 of this code and M1507.3 of the Florida Building Code, Residential. Testing shall be conducted in accordance with ANSI/RESNET/ICC 380 and reported at a pressure of 0.2 inch w.g. (50 pascals). Testing shall be conducted by either individual as defined in Section 553.993(5) or (7), Florida Statutes, or individuals licensed as set forth in Section 489.105(3)(f), (g) or (i) or an approved third party. A written report of the results of the test shall be signed by the party conducting the test and provided to the code official. Testing shall be performed at any time after creation of all penetrations of the building thermal envelope.</p> <p><b>Exception:</b> Testing is not required for additions, alterations, renovations, or repairs, of the building thermal envelope of existing buildings in which the new construction is less than 85 percent of the building thermal envelope.</p> <p><b>During testing</b></p> <ol style="list-style-type: none"> <li>1 Exterior windows and doors, fireplace and stove doors shall be closed, but not sealed, beyond the intended weatherstripping or other infiltration control measures</li> <li>2 Dampers including exhaust, intake, makeup air, back draft and flue dampers shall be closed, but not sealed beyond intended infiltration control measures</li> <li>3 Interior doors, if installed at the time of the test, shall be open</li> <li>4 Exterior doors for continuous ventilation systems and heat recovery ventilators shall be closed and sealed</li> <li>5 Heating and cooling systems, if installed at the time of the test, shall be turned off</li> <li>6 Supply and return registers, if installed at the time of the test, shall be fully open</li> <li>7 If an attic is both air sealed and insulated at the roof deck, interior access doors and hatches between the conditioned space volume and the attic shall be opened during the test and the volume of the attic shall be added to the conditioned space volume for purposes of reporting an infiltration volume and calculating the air leakage of the home</li> </ol> |               |                                                                                                                                                                                       |
| <b>Testing Company</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                                                                                                                                                                       |
| Company Name: _____                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Phone: _____                                                                                                                                                                          |
| I hereby verify that the above Air Leakage results are in accordance with the 2023 8th Edition Florida Building Code Energy Conservation requirements according to the compliance method selected above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                       |
| Signature of Tester: _____                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | Date of Test: _____                                                                                                                                                                   |
| Printed Name of Tester: _____                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                       |
| License/Certification #: _____                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Issuing Authority: _____                                                                                                                                                              |

# Duct Leakage Test Report

Residential Prescriptive, Performance or ERI Method Compliance  
2023 Florida Building Code, Energy Conservation, 8th Edition

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |             |             |          |             |          |             |                               |             |                      |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-------------|----------|-------------|----------|-------------|-------------------------------|-------------|----------------------|--------------|
| Jurisdiction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Permit Number |             |             |          |             |          |             |                               |             |                      |              |
| <b>Job Information</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             |             |          |             |          |             |                               |             |                      |              |
| Builder Jerry Lerner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Community     |             |             |          |             |          |             |                               |             |                      |              |
| Address: TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit:         |             |             |          |             |          |             |                               |             |                      |              |
| City High Springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | State FL      |             |             |          |             |          |             |                               |             |                      |              |
| Zip 32643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |             |             |          |             |          |             |                               |             |                      |              |
| <b>Duct Leakage Test Results</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |             |             |          |             |          |             |                               |             |                      |              |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 20%;">System 1</td> <td style="width: 80%;">_____ cfm25</td> </tr> <tr> <td>System 2</td> <td>_____ cfm25</td> </tr> <tr> <td>System 3</td> <td>_____ cfm25</td> </tr> <tr> <td>Sum of any additional systems</td> <td>_____ cfm25</td> </tr> <tr> <td>Total of all systems</td> <td style="text-align: center;"><b>cfm25</b></td> </tr> </table>                                                                                                                                                                                                                  |               | System 1    | _____ cfm25 | System 2 | _____ cfm25 | System 3 | _____ cfm25 | Sum of any additional systems | _____ cfm25 | Total of all systems | <b>cfm25</b> |
| System 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _____ cfm25   |             |             |          |             |          |             |                               |             |                      |              |
| System 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _____ cfm25   |             |             |          |             |          |             |                               |             |                      |              |
| System 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _____ cfm25   |             |             |          |             |          |             |                               |             |                      |              |
| Sum of any additional systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _____ cfm25   |             |             |          |             |          |             |                               |             |                      |              |
| Total of all systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>cfm25</b>  |             |             |          |             |          |             |                               |             |                      |              |
| <div style="border: 1px solid black; padding: 10px; margin-top: 10px;"> <p><input type="checkbox"/> <b>Prescriptive Method</b> cfm25 (Total)<br/>To qualify as "substantially leak free" Qn Total must be less than or equal to 0.04 if air handler unit is installed. If air handler unit is not installed, Qn Total must be less than or equal to 0.03. This testing method meets the requirements in accordance with Section R403.3.3</p> <p><i>Is the air handler unit installed during testing?</i></p> <p><input type="checkbox"/> YES (&lt;= 0.04 Qn)<br/><input type="checkbox"/> NO (&lt;= 0.03 Qn)</p> </div>                                      |               |             |             |          |             |          |             |                               |             |                      |              |
| <div style="border: 1px solid black; padding: 10px; margin-top: 10px;"> <p><input checked="" type="checkbox"/> <b>Performance / ERI Method</b> cfm25 (Out or Total)<br/>To qualify using this method, Qn must be not greater than the proposed duct leakage Qn specified on Form R405-2023 or R406-2023</p> <p>Leakage Type selected on Form R405-2023 (Energy Calc) or R406-2023</p> <p>Qn specified on Form R405-2023 (Energy Calc) or R406-2023</p> <table style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%; text-align: center;">Proposed Qn</td> <td style="width: 50%; text-align: center;">0.04</td> </tr> </table> </div> |               | Proposed Qn | 0.04        |          |             |          |             |                               |             |                      |              |
| Proposed Qn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04          |             |             |          |             |          |             |                               |             |                      |              |
| <p>Total of all systems     <math>\frac{4912}{\text{Total Conditioned Square Footage}} =</math> _____ Qn</p> <p><input type="checkbox"/> <b>PASS</b>      <input type="checkbox"/> <b>FAIL</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |             |             |          |             |          |             |                               |             |                      |              |
| <p>Duct tightness shall be verified by testing in accordance with ANSI/RESNET/ICC380 by either individuals as defined in Section 553.993(5) or (7), Florida Statutes, or individuals licensed as set forth in Section 489.105(3)(f), (g) or (i), Florida Statutes.</p>                                                                                                                                                                                                                                                                                                                                                                                       |               |             |             |          |             |          |             |                               |             |                      |              |
| <b>Testing Company</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |             |             |          |             |          |             |                               |             |                      |              |
| Company Name: _____ Phone: _____                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |             |             |          |             |          |             |                               |             |                      |              |
| I hereby verify that the above duct leakage test results are in accordance with the 2023 8th Edition Florida Building Code Energy Conservation requirements according to the compliance method selected above                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             |          |             |          |             |                               |             |                      |              |
| Signature of Tester: _____ Date of Test: _____                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |             |             |          |             |          |             |                               |             |                      |              |
| Printed Name of Tester: _____                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             |          |             |          |             |                               |             |                      |              |
| License/Certification #: _____ Issuing Authority: _____                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             |             |          |             |          |             |                               |             |                      |              |


## Reference Home Characteristics

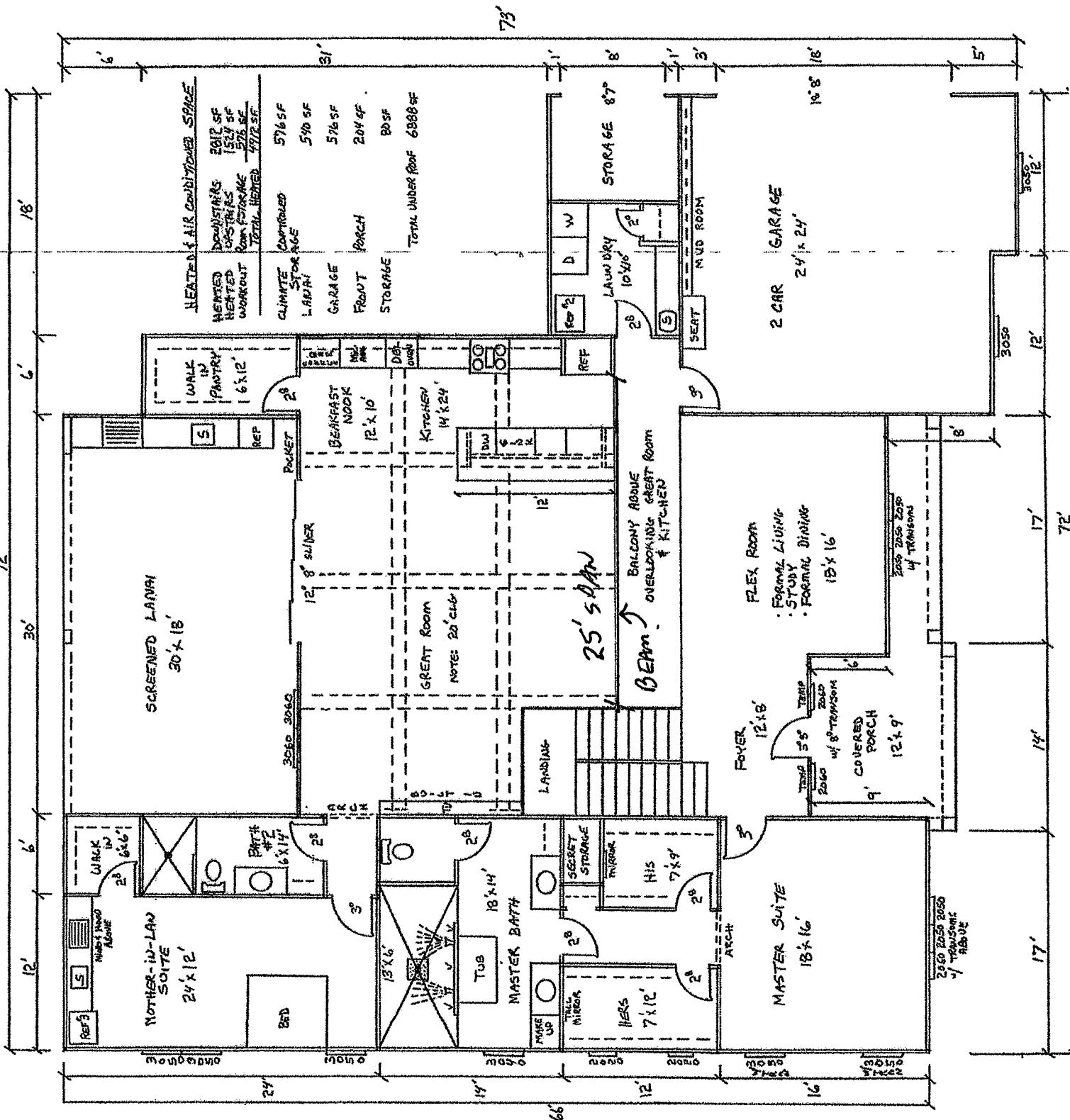
Spec House  
TBD  
High Springs, FL 32643

Title: Lerner  
FLBase2023

TMY City: FL\_Gainesville\_Rgn

|                                               |                  |
|-----------------------------------------------|------------------|
| Above-grade Walls (Uo)                        | 0.084            |
| Above-grade Wall Solar Absorptance            | 0.75             |
| Above-grade Wall Infared Emittance            | 0.90             |
| Basement Walls (Uo)                           | n/a              |
| Above-grade Floors (Uo)                       | n/a              |
| Slab Insulation R-Value                       | 0.0              |
| Ceilings (Uo)                                 | 0.030            |
| Roof Solar Absorptance                        | 0.75             |
| Roof Infared Emittance                        | 0.90             |
| Attic Vent Area (ft <sup>2</sup> )            | 4.86             |
| Crawl space Vent Area (ft <sup>2</sup> )      | n/a              |
| Exposed Masonry Floor Area (ft <sup>2</sup> ) | 600.37           |
| Carpet & Pad R-Value                          | 1.9              |
| Door Area (ft <sup>2</sup> )                  | 0.00             |
| Door U-Factor                                 | n/a              |
| North Window Area (ft <sup>2</sup> )          | 39.50            |
| South Window Area (ft <sup>2</sup> )          | 117.25           |
| East Window Area (ft <sup>2</sup> )           | 117.25           |
| West Window Area (ft <sup>2</sup> )           | 117.25           |
| Window U-Factor                               | 0.400            |
| Window SHGC (Heating)                         | 0.2169           |
| Window SHGC (Cooling)                         | 0.2169           |
| ACH50                                         | 7.00             |
| Internal Gains * (Btu/day)                    | 169016           |
| Water heater gallons per day                  | 140.00           |
| Water Heater set point temperature            | 120.00           |
| Water heater efficiency rating                | 0.77             |
| Labeled Heating System Rating and Efficiency  | HSPF = 8.8       |
| Labeled Cooling System Rating and Efficiency  | SEER = 15.0      |
| Air Distribution System Efficiency            | 0.88             |
| Thermostat Type                               | Manual           |
| Heating Thermostat Settings                   | 72.0 (All hours) |




1025-005

Client: JERRY LERNER  
 Date 10/14/2025  
 Quote Date / /  
 Seal Date / /  
 Designer Jason DeGroff

Mayo Truss

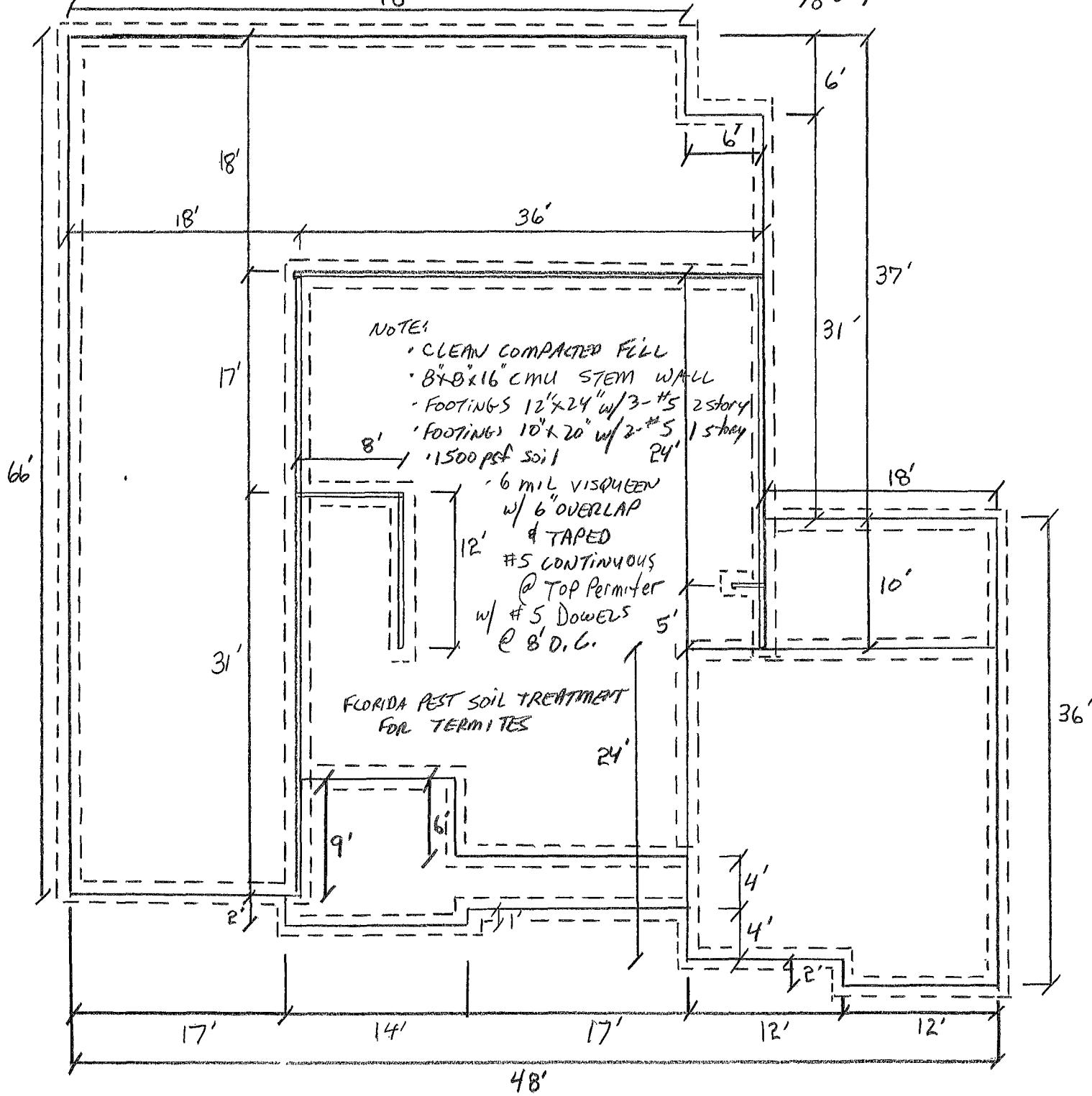
Ph (386) 294-3988  
 Fax (386) 294-3981  
 mayotruss@windstream.net

FIRST FLOOR PLAN '72.



BEAM BY OTHERS / BEAM ABOVE




BEAM TO RECEIVE FLOOR TRUSSES 20' 8 1/2" Long @ 2' o.c.

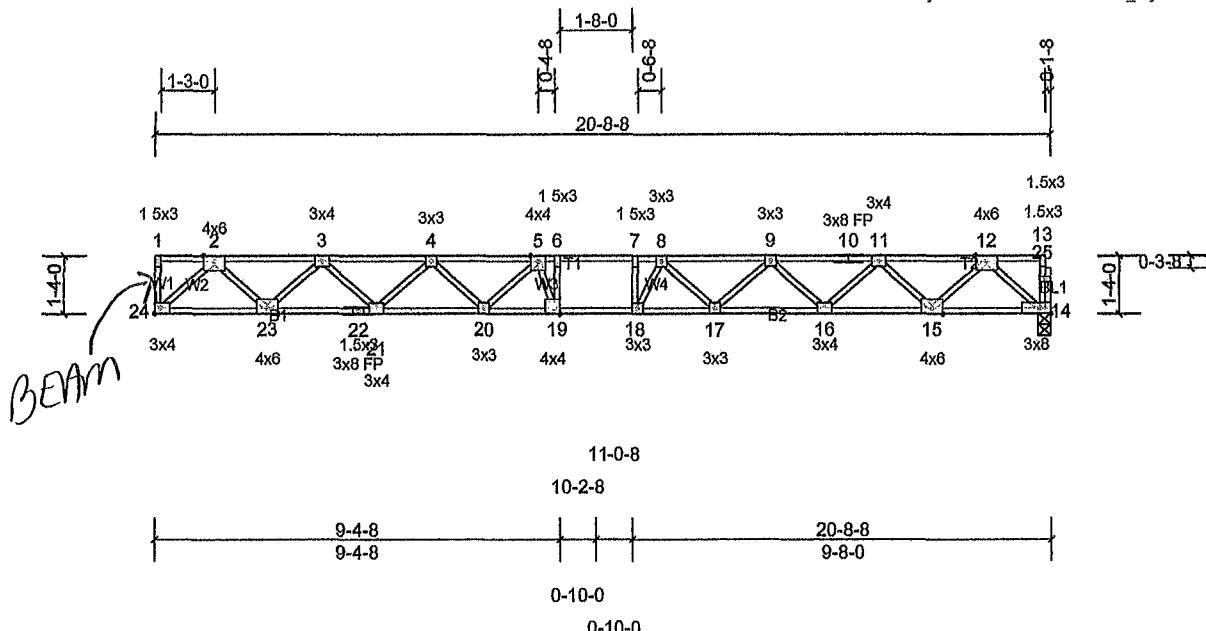
BEAM TO SPAN END OF BALCONY

# FOUNDATION PLAN

48'

$\frac{1}{8} = 1'$




|                 |              |                     |          |          |  |
|-----------------|--------------|---------------------|----------|----------|--|
| Job<br>1025-005 | Truss<br>F07 | Truss Type<br>Floor | Qty<br>8 | Ply<br>1 |  |
|-----------------|--------------|---------------------|----------|----------|--|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MTek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:mJNdK?1vKFLrC?V9CdrTAyTVww-wcvIZSQaEn06lOW\_WytfAQY2vt50CFWypEw8yTUmq



Scale = 1:51.8

0'-10-0

#### Plate Offsets (X, Y) [19'-0-1-8, Edge]

| Loading | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | I/defl | L/d | PLATES         | GRIP            |
|---------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|----------------|-----------------|
| TCLL    | 40 0  | Plate Grip DOL  | 1 00            | TC       | 0 90 | Vert(LL) | -0.41 | 18-19 | >600   | 360 | MT20           | 244/190         |
| TCDL    | 10 0  | Lumber DOL      | 1 00            | BC       | 0 92 | Vert(CT) | -0.56 | 18-19 | >436   | 240 |                |                 |
| BCLL    | 0 0   | Rep Stress Incr | YES             | WB       | 0 35 | Horz(CT) | 0.10  | 14    | n/a    | n/a |                |                 |
| BCDL    | 5.0   | Code            | FBC2023/TPI2014 | Matrix-S |      |          |       |       |        |     | Weight: 107 lb | FT = 20%F, 11%E |

#### LUMBER

TOP CHORD 2x4 SP No.2(flat)  
BOT CHORD 2x4 SP No.2(flat) \*Except\* B2 2x4 SP No.1 (flat)  
WEBS 2x4 SP No.2(flat)  
OTHERS 2x4 SP No 2(flat)

#### BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.  
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 2-2-0 oc bracing 17-18.

REACTIONS (lb/size) 14=1122/0-3-8, (min 0-1-8),  
24=1129/ Mechanical

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250  
(lb) or less except when shown

TOP CHORD 2-3=-2067/0, 3-4=-3533/0, 4-5=-4422/0,  
5-6=-4755/0, 6-7=-4755/0, 7-8=-4755/0,  
8-9=-4438/0, 9-10=-3562/0, 10-11=-3562/0,  
11-12=-2110/0

BOT CHORD 23-24=0/1173, 22-23=0/2932, 21-22=0/2932,  
20-21=0/4109, 19-20=0/4716, 18-19=0/4755,  
17-18=0/4718, 16-17=0/4132, 15-16=0/2968,  
14-15=0/1222

WEBS 6-19=-468/249, 7-18=-369/194,  
2-24=-1594/0, 2-23=0/1243, 3-23=-1203/0,  
3-21=0/836, 4-21=-801/0, 4-20=0/473,  
5-20=-518/0, 5-19=-362/639, 12-14=-1625/0,  
12-15=0/1234, 11-15=-1194/0, 11-16=0/826,  
9-16=-792/0, 9-17=0/454, 8-17=-485/0,  
8-18=-322/546

#### NOTES

- 1) Unbalanced floor live loads have been considered for this design
- 2) The Fabrication Tolerance at joint 22 = 11%
- 3) Refer to girder(s) for truss to truss connections.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10'-0-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

|                 |              |                   |          |          |  |
|-----------------|--------------|-------------------|----------|----------|--|
| Job<br>1025-005 | Truss<br>A01 | Truss Type<br>Hip | Qty<br>2 | Ply<br>1 |  |
|-----------------|--------------|-------------------|----------|----------|--|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITEk Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:pN98mKWA7EUN8ZndkKnpuyTVcx-KBbRCUSH199byCl5gfWaHoV3JGzmlLohCw1uWSyTUm

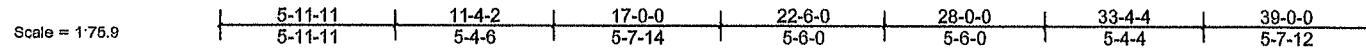
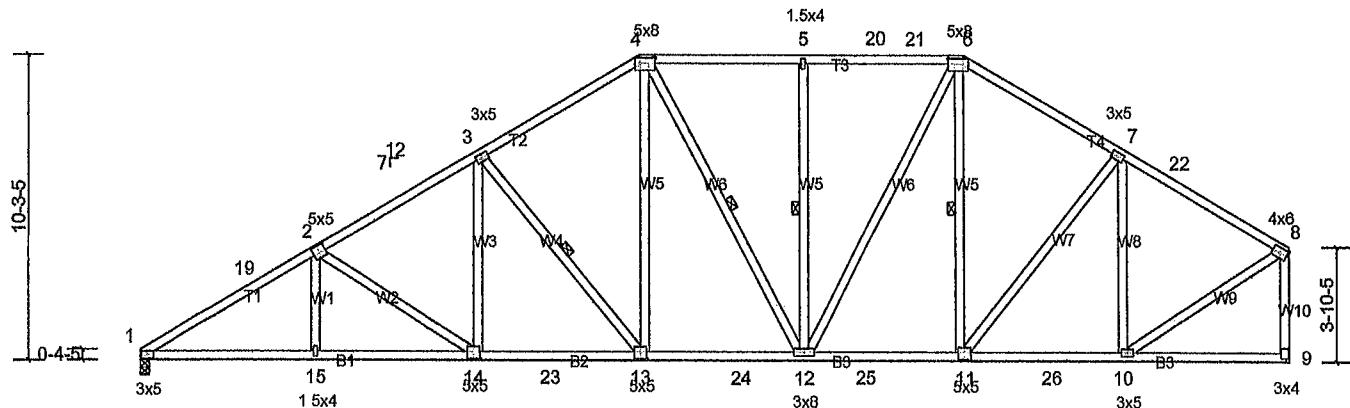
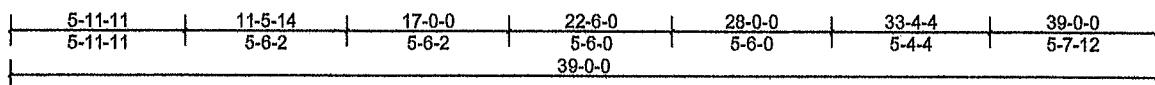





Plate Offsets (X, Y) [2:0-2-8,0-3-0], [4-0-6-0,0-2-4], [6 0-6-0,0-2-4], [11 0-2-8,0-3-0], [13 0-2-8,0-3-0], [14 0-2-8,0-3-0]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | l/defl | L/d  | PLATES | GRIP                    |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|--------|-------------------------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1.25            | TC        | 0.41 | Vert(LL) | -0.15 | 13-14  | >999 | 240    | MT20                    |
| TCDL        | 10 0  | Lumber DOL      | 1.25            | BC        | 0.72 | Vert(CT) | -0.28 | 13-14  | >999 | 180    |                         |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0.49 | Horz(CT) | 0 10  | 9      | n/a  | n/a    |                         |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |      |        | Weight: 272 lb FT = 20% |

**LUMBER**  
TOP CHORD 2x4 SP No.2  
BOT CHORD 2x4 SP No 2  
WEBS 2x4 SP No 2

**BRACING**  
TOP CHORD Structural wood sheathing directly applied, except end verticals.  
BOT CHORD Rigid ceiling directly applied  
WEBS 1 Row at midpt 3-13, 4-12, 5-12, 6-11

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

**REACTIONS** (lb/size) 1=1554/0-3-8, (min 0-2-2), 9=1554/ Mechanical

Max Horiz 1=250 (LC 11)  
Max Uplift 1=86 (LC 12), 9=88 (LC 12)  
Max Grav 1=1801 (LC 17), 9=1780 (LC 18)

**FORCES** (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

**TOP CHORD** 1-19=3109/206, 2-19=3037/225, 2-3=2637/243, 3-4=2111/267, 4-5=1725/264, 5-20=1725/264, 20-21=1725/264, 6-21=1725/264, 6-7=1730/248, 7-22=1430/182, 8-22=1555/163, 8-9=1692/164

**BOT CHORD** 1-15=290/2774, 14-15=292/2769, 14-23=226/2308, 13-23=226/2308, 13-24=146/1834, 12-24=146/1834, 12-25=114/1462, 11-25=114/1462, 11-26=136/1288, 10-26=136/1288

**WEBS** 3-13=750/127, 4-13=32/825, 5-12=361/103, 6-12=54/680, 7-11=20/316, 7-10=599/131, 8-10=102/1483, 2-14=543/98, 3-14=0/521

#### NOTES

1) Unbalanced roof live loads have been considered for this design

- Wind ASCE 7-22, Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf, BCDL=6 0psf, h=25ft;  
B=45ft, L=39ft, eave=5ft; Cat. II, Exp B, Enclosed,  
MWFRS (directional) and C-C Zone3 0-0-0 to 3-10-13,  
Zone1 3-10-13 to 17-0-0, Zone2 17-0-0 to 22-6-0, Zone1  
22-6-0 to 28-0-0, Zone2 28-0-0 to 33-4-4, Zone1 33-4-4  
to 38-10-4 zone; cantilever left and right exposed , end  
vertical left and right exposed,C-C for members and  
forces & MWFRS for reactions shown; Lumber  
DOL=1 60 plate grip DOL=1 60
- Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding
- This truss has been designed for a 10.0 psf bottom chord  
live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf  
on the bottom chord in all areas where a rectangle  
3-06-00 tall by 2-00-00 wide will fit between the bottom  
chord and any other members, with BCDL = 10 0psf
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to  
bearing plate capable of withstanding 86 lb uplift at joint  
1 and 88 lb uplift at joint 9
- This truss design requires that a minimum of 7/16"

structural wood sheathing be applied directly to the top  
chord and 1/2" gypsum sheetrock be applied directly to  
the bottom chord.

#### LOAD CASE(S)

Standard

|                 |              |                              |          |          |                          |
|-----------------|--------------|------------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>A03 | Truss Type<br>Piggyback Base | Qty<br>3 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|------------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:tcCxJXjvZy4B8wQBUK7Es\_yTVbN-KBbRCUSH199byCl5gjWaHoV3JGzmlLohCw1uWSyTUmn

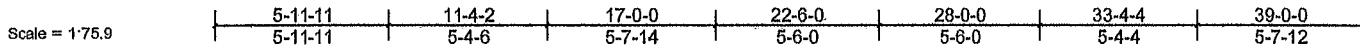
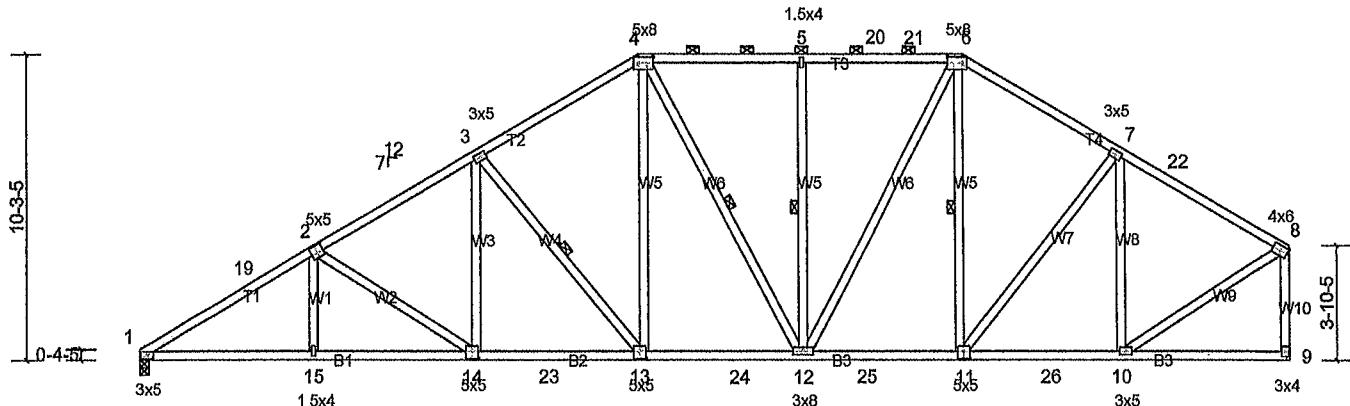
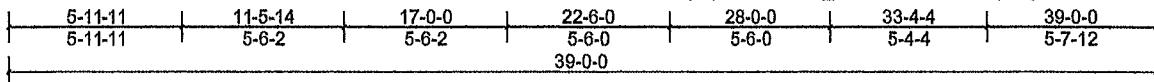





Plate Offsets (X, Y) [2 0-2-8,0-3-0], [4 0-6-0,0-2-4], [6 0-6-0,0-2-4], [11 0-2-8,0-3-0], [13 0-2-8,0-3-0], [14 0-2-8,0-3-0]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | I/dell | L/d  | PLATES | GRIP                    |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|--------|-------------------------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1.25            | TC        | 0.41 | Vert(LL) | -0 15 | 13-14  | >999 | 240    |                         |
| TCDL        | 10 0  | Lumber DOL      | 1.25            | BC        | 0.72 | Vert(CT) | -0.28 | 13-14  | >999 | 180    |                         |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB        | 0.49 | Horz(CT) | 0 10  | 9      | n/a  | n/a    |                         |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |      |        | Weight: 272 lb FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No.2  
BOT CHORD 2x4 SP No 2  
WEBS 2x4 SP No 2

#### BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (4-3-10 max.) 4-6.

BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 3-13, 4-12, 5-12, 6-11

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS (lb/size) 1=1554/0-3-8, (min 0-2-2), 9=1554/ Mechanical

Max Horiz 1=250 (LC 11)

Max Uplift 1=86 (LC 12), 9=-88 (LC 12)

Max Grav 1=1801 (LC 17), 9=1780 (LC 18)

FORCES (lb) - Max. Comp./Max. Tens - All forces 250 (lb) or less except when shown.

TOP CHORD 1-19=3109/206, 2-19=3037/225,

2-3=2837/243, 3-4=2111/267,

4-6=1726/264, 5-20=1726/264,

20-21=1726/264, 6-21=1726/264,

6-7=1730/248, 7-22=1430/182,

8-22=1555/163, 8-9=1692/164

BOT CHORD 1-15=290/2774, 14-15=292/2769,

14-23=226/2308, 13-23=226/2308,

13-24=146/1834, 12-24=146/1834,

12-25=114/1463, 11-25=114/1463,

11-26=136/1288, 10-26=136/1288

WEBS 3-13=-750/127, 4-13=-32/825,

5-12=-361/103, 6-12=-54/679, 7-11=-21/317,

7-10=-599/131, 8-10=-102/1483,

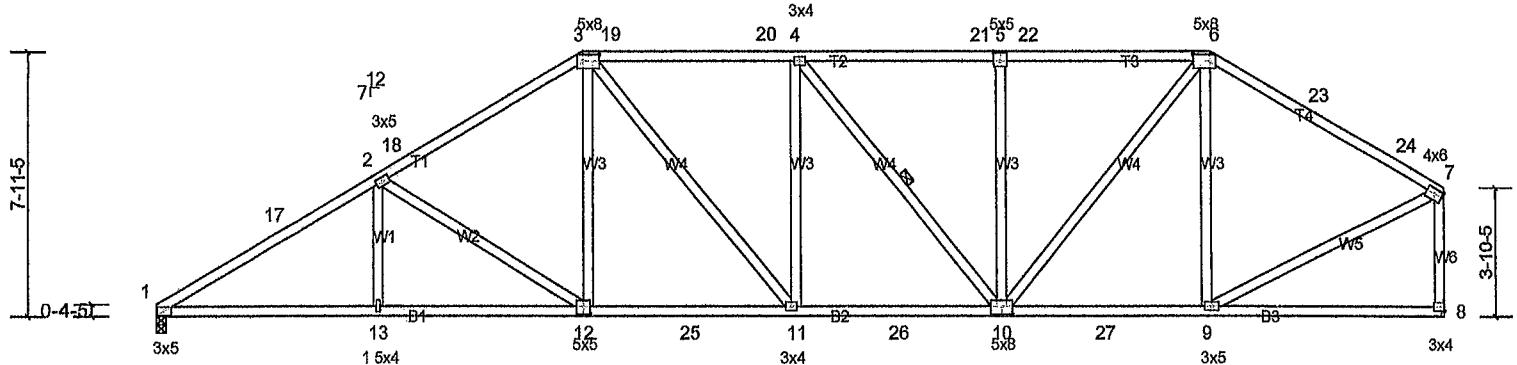
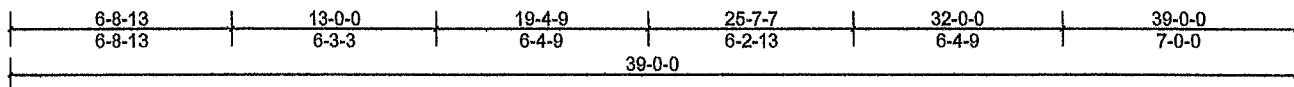
2-14=-543/99, 3-14=0/521

#### NOTES

1) Unbalanced roof live loads have been considered for this design

- Wind ASCE 7-22, Vult=130mph (3-second gust)  
Vasd=101mph; TCDL=8.0psf, BCDL=6 0psf; h=25ft;  
B=45ft; L=39ft; eave=5ft; Cat. II, Exp B, Enclosed,  
MWFRS (directional) and C-C Zone3 0-0-0 to 3-10-13,  
Zone1 3-10-13 to 17-0-0, Zone2 17-0-0 to 22-6-0, Zone1  
22-6-0 to 28-0-0, Zone2 28-0-0 to 33-4-4, Zone1 33-4-4  
to 38-10-4 zone; cantilever left and right exposed , end  
vertical left and right exposed; C-C for members and  
forces & MWFRS for reactions shown, Lumber  
DOL=1 60 plate grip DOL=1 60
- Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding
- This truss has been designed for a 10 0 psf bottom chord  
live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20 0psf  
on the bottom chord in all areas where a rectangle  
3-08-00 tall by 2-00-00 wide will fit between the bottom  
chord and any other members, with BCDL = 10.0psf
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to  
bearing plate capable of withstanding 66 lb uplift at joint  
1 and 88 lb uplift at joint 9
- This truss design requires that a minimum of 7/16"
- Graphical purlin representation does not depict the size  
or the orientation of the purlin along the top and/or  
bottom chord

LOAD CASE(S) Standard



|                 |              |                   |          |          |                          |
|-----------------|--------------|-------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>A05 | Truss Type<br>Hip | Qty<br>1 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|-------------------|----------|----------|--------------------------|

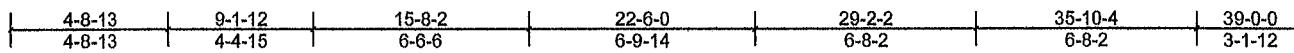
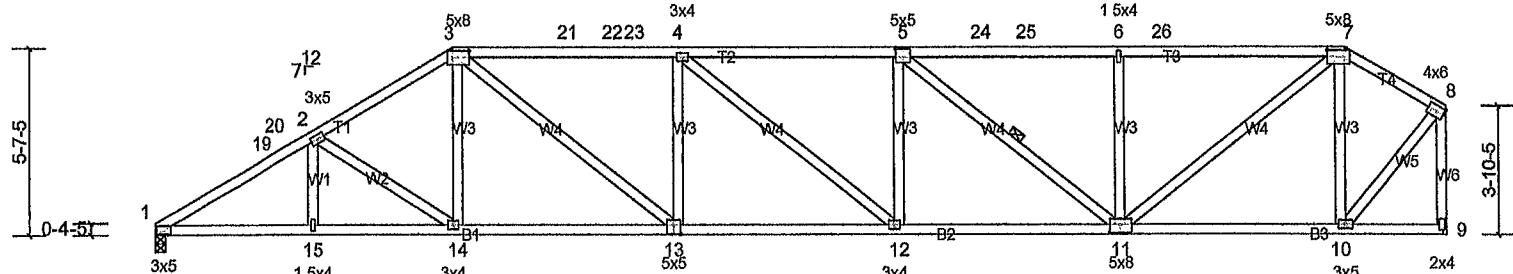
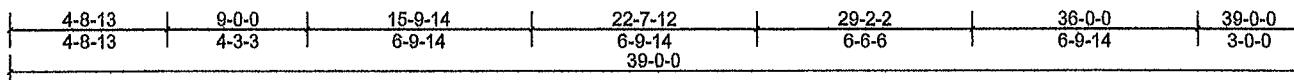
Mayo Truss, Mayo, Fl, Jason DeGroot

Run: 8.83 S Mar 20 2026 Print: 8.830 S Mar 20 2026 MITek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:xE4BKrhe2LqTudGoMJ4mnZyTvBp-KBbRCUSH99byCl5gfWaHoV1EGyvllhCw1uWSyTUmn






|                 |              |                   |          |          |                          |
|-----------------|--------------|-------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>A07 | Truss Type<br>Hip | Qty<br>1 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|-------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, FL, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Oct 14 14:00:46

Page: 1

ID:xE4BKrh2LqTudGoMJ4mnZyTVbP-KBbRCUSH199byCl5gIWa-HoV1IG\_IIMYhCw1uWSyTUmn



Scale = 1:67 7

Plate Offsets (X, Y) [3 0-6-0,0-2-4], [5.0-2-8,0-3-0], [7 0-6-0,0-2-4], [11 0-3-12,0-3-0], [13 0-2-8,0-3-4]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | I/defl | L/d  | PLATES | GRIP                    |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|--------|-------------------------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1.25            | TC        | 0.52 | Vert(LL) | -0 19 | 12-13  | >999 | 240    |                         |
| TCDL        | 10 0  | Lumber DOL      | 1.25            | BC        | 0.69 | Vert(CT) | -0 41 | 12-13  | >999 | 180    |                         |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0.44 | Horz(CT) | 0 13  | 9      | n/a  | n/a    |                         |
| BCDL        | 10 0  | Code            | FBC2023/TP12014 | Matrix-AS |      |          |       |        |      |        | Weight: 228 lb FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No.2  
BOT CHORD 2x4 SP No.2  
WEBS 2x4 SP No 2

#### BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.  
BOT CHORD Rigid ceiling directly applied  
WEBS 1 Row at midpt 5-11

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size) 1=1554/0-3-8, (min 0-1-13), 9=1554/ Mechanical

Max Horiz 1=158 (LC 11)

Max Uplift 1=86 (LC 12), 9=88 (LC 12)

FORCES (lb) - Max Comp./Max. Ten - All forces 250 (lb) or less except when shown

TOP CHORD 1-19=-2757/210, 19-20=-2666/216, 2-20=-2654/224, 2-3=-2435/231, 3-21=-2787/266, 21-22=-2787/266, 22-23=-2787/266, 4-23=-2787/266, 4-5=-2812/255, 5-24=-2182/218, 24-25=-2182/218, 6-25=-2182/218, 6-26=-2182/218, 7-26=-2182/218, 7-8=-992/139, 8-9=-1540/131

BOT CHORD 1-15=-310/2329, 14-15=-310/2329, 13-14=-231/2057, 12-13=-259/2800, 11-12=-246/2809, 10-11=-112/809

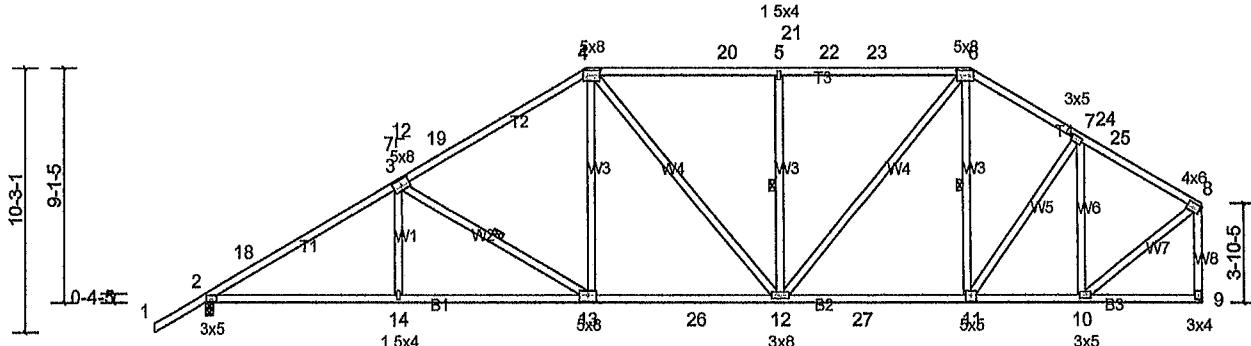
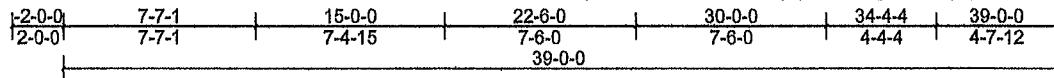
WEBS 2-14=-343/92, 3-14=0/361, 7-10=-890/159, 8-10=-110/1298, 4-13=-492/118, 3-13=-56/1006, 5-12=0/254, 5-11=-814/50, 6-11=-426/126, 7-11=-121/1750

#### NOTES

1) Unbalanced roof live loads have been considered for this design

- Wind ASCE 7-22, Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft; B=45ft; L=39ft; eave=5ft; Cat. II, Exp B, Enclosed; MWFRS (directional) and C-C Zone3 0-0-0 to 3-10-13, Zone1 3-10-13 to 9-0-0, Zone2 9-0-0 to 14-6-3, Zone1 14-6-3 to 36-0-0, Zone3 36-0-0 to 38-10-4 zone; cantilever left and right exposed, end vertical left and right exposed, C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1 60 plate grip DOL=1 60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding
- This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 1 and 88 lb uplift at joint 9
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard



|                 |              |                   |          |          |                          |
|-----------------|--------------|-------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>A09 | Truss Type<br>Hip | Qty<br>1 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|-------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2026 Print: 8.830 S Mar 20 2026 MITek Industries, Inc. Tue Oct 14 14:00:46

Page: 1

ID:pN98mKWA7EUN8ZnzdKKnpuvTVcx-OoTgnoR0LYvijvbjYET6CNPhbSHxqQoPlcYnSayTUmp



Scale = 1 87.6

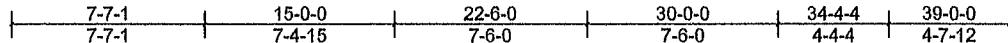



Plate Offsets (X, Y) [3.0-4-0,0-3-0], [4 0-6-0,0-2-4], [6.0-6-0,0-2-4], [11 0-2-8,0-3-0], [13.0-4-0,0-3-0]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL     | in    | (loc) | I/defl | L/d | PLATES         | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|----------|-------|-------|--------|-----|----------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1 25            | TC        | Vert(LL) | -0 19 | 12-13 | >999   | 240 |                |          |
| TCDL        | 10 0  | Lumber DOL      | 1.25            | BC        | Vert(CT) | -0 33 | 12-13 | >999   | 180 |                |          |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | Horz(CT) | 0 11  | 9     | n/a    | n/a | MT20           | 244/190  |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |          |       |       |        |     | Weight: 248 lb | FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No 2  
BOT CHORD 2x4 SP No 2  
WEBS 2x4 SP No 2

#### BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

WEBS 1 Row at midpt 3-13, 5-12, 6-11

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size) 2=1677/0-3-8, (min 0-2-4), 9=1551/ Mechanical

Max Horiz 2=245 (LC 11)

Max Uplift 2=150 (LC 12), 9=-86 (LC 12)

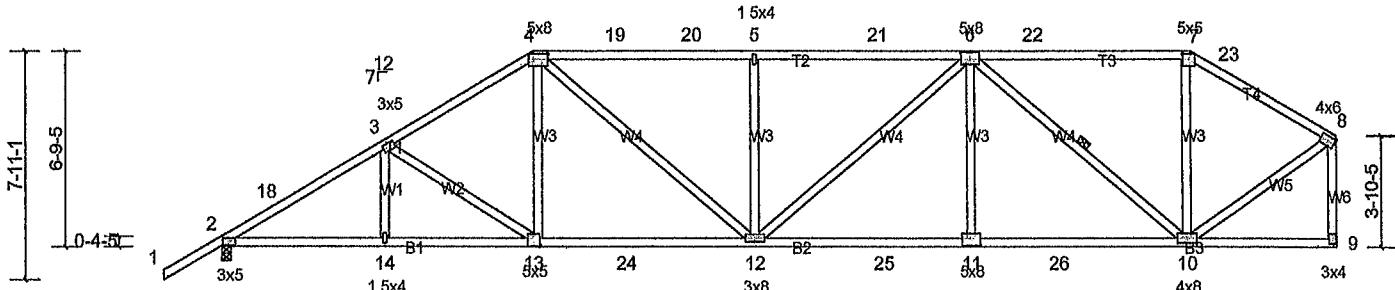
Max Grav 2=1890 (LC 17), 9=1751 (LC 18)

FORCES (lb) - Max. Comp./Max. Ten - All forces 250 (lb) or less except when shown

TOP CHORD 2-18=-2978/156, 3-18=-2902/195, 3-19=-2299/194, 4-19=-2198/234, 4-20=-1949/251, 5-20=-1949/251, 5-21=-1949/251, 21-22=-1949/251, 22-23=-1949/251, 6-23=-1949/251, 6-7=-1688/225, 7-24=-1290/169, 24-25=-1308/165, 8-25=-1392/155, 8-9=-1671/158

BOT CHORD 2-14=-277/2615, 13-14=-278/2611, 13-26=-167/1968, 12-26=-167/1968, 12-27=-122/1426, 11-27=-122/1426, 10-11=-130/1150

WEBS 3-14=0/310, 3-13=-754/131, 4-13=0/699, 4-12=-48/265, 5-12=-509/139, 6-12=-64/895, 7-11=-21/510, 8-10=-105/1421, 7-10=-771/121


#### NOTES

1) Unbalanced roof live loads have been considered for this design

- Wind ASCE 7-22; Vull=130mph (3-second gust)  
Vasd=101mph, TCDL=6 0psf, BCDL=6 0psf; h=25ft; B=45ft; L=39ft; eave=5ft; Cat. II, Exp B, Enclosed; MWFRS (directional) and C-C Zone3 -2-0-0 to 1-10-13, Zone1 1-10-13 to 15-0-0, Zone2 15-0-0 to 20-6-3, Zone1 20-6-3 to 30-0-0, Zone2 30-0-0 to 35-6-3, Zone1 35-6-3 to 38-10-4 zone; cantilever left and right exposed, end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10 0psf
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 2 and 86 lb uplift at joint 9
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                   |          |          |                          |        |        |        |        |        |        |        |        |       |        |       |       |        |       |       |        |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|----------|----------|--------------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|-------|-------|--------|-------|-------|--------|--|--|--|--|--|--|
| Job<br>1025-005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Truss<br>A11 | Truss Type<br>Hip | Qty<br>1 | Ply<br>1 | Job Reference (optional) |        |        |        |        |        |        |        |        |       |        |       |       |        |       |       |        |  |  |  |  |  |  |
| Mayo Truss, Mayo, Fl, Jason DeGroff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                   |          |          |                          |        |        |        |        |        |        |        |        |       |        |       |       |        |       |       |        |  |  |  |  |  |  |
| Run: 8.83 S Mar 20 2026 Print: 8.830 S Mar 20 2026 MiTek Industries, Inc. Tue Oct 14 14:00:46                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                   |          |          |                          |        |        |        |        |        |        |        |        |       |        |       |       |        |       |       |        |  |  |  |  |  |  |
| ID:HejWzgWouXcEmjM9BRr0L6yTVcw-OoTgnoR0LYvJvbjYET6CNPgJSGOqO_PlcYnSayTUmp                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                   |          |          |                          |        |        |        |        |        |        |        |        |       |        |       |       |        |       |       |        |  |  |  |  |  |  |
| Page: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                   |          |          |                          |        |        |        |        |        |        |        |        |       |        |       |       |        |       |       |        |  |  |  |  |  |  |
| <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 12.5%;">-2-0-0</td><td style="width: 12.5%;">5-8-13</td><td style="width: 12.5%;">11-0-0</td><td style="width: 12.5%;">18-8-9</td><td style="width: 12.5%;">26-3-7</td><td style="width: 12.5%;">34-0-0</td><td style="width: 12.5%;">39-0-0</td></tr> <tr> <td>2-0-0</td><td>5-8-13</td><td>6-3-3</td><td>7-8-9</td><td>7-6-13</td><td>7-8-9</td><td>5-0-0</td></tr> <tr> <td colspan="7" style="text-align: center;">39-0-0</td></tr> </table> |              |                   |          |          |                          |        | -2-0-0 | 5-8-13 | 11-0-0 | 18-8-9 | 26-3-7 | 34-0-0 | 39-0-0 | 2-0-0 | 5-8-13 | 6-3-3 | 7-8-9 | 7-6-13 | 7-8-9 | 5-0-0 | 39-0-0 |  |  |  |  |  |  |
| -2-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-8-13       | 11-0-0            | 18-8-9   | 26-3-7   | 34-0-0                   | 39-0-0 |        |        |        |        |        |        |        |       |        |       |       |        |       |       |        |  |  |  |  |  |  |
| 2-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5-8-13       | 6-3-3             | 7-8-9    | 7-6-13   | 7-8-9                    | 5-0-0  |        |        |        |        |        |        |        |       |        |       |       |        |       |       |        |  |  |  |  |  |  |
| 39-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                   |          |          |                          |        |        |        |        |        |        |        |        |       |        |       |       |        |       |       |        |  |  |  |  |  |  |



|                |        |        |        |        |         |        |
|----------------|--------|--------|--------|--------|---------|--------|
| Scale = 1:78.3 | 5-8-13 | 11-0-0 | 18-8-9 | 26-3-7 | 33-10-4 | 39-0-0 |
|                | 5-8-13 | 6-3-3  | 7-8-9  | 7-6-13 | 7-8-13  | 5-1-12 |

Plate Offsets (X, Y) [4.0-6-0,0-2-4], [6.0-4-0,0-3-0], [7.0-3-0,0-2-4], [11.0-4-0,0-3-0], [13.0-2-8,0-3-4]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | l/defl | L/d  | PLATES | GRIP                    |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|--------|-------------------------|
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.25            | TC        | 0.64 | Vert(LL) | -0.24 | 12-13  | >999 | 240    |                         |
| TCDL        | 10.0  | Lumber DOL      | 1.25            | BC        | 0.84 | Vert(CT) | -0.43 | 12-13  | >999 | 180    |                         |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB        | 0.70 | Horz(CT) | 0.13  | 9      | n/a  | n/a    |                         |
| BCDL        | 10.0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |      |        | Weight: 230 lb FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No 2  
BOT CHORD 2x4 SP No.2  
WEBS 2x4 SP No.2

#### BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.  
BOT CHORD Rigid ceiling directly applied  
WEBS 1 Row at midpt 6-10

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS (lb/size) 2=1677/0-3-8, (min. 0-2-4), 9=1651/Mechanical

Max Horiz 2=198 (LC 11)  
Max Uplift 2=-150 (LC 12), 9=-86 (LC 12)

Max Grav 2=1893 (LC 17), 9=1749 (LC 18)

FORCES (lb) - Max. Comp./Max. Ten - All forces 250  
(lb) or less except when shown

TOP CHORD 2-18=-3059/159, 3-18=-2997/188,  
3-4=-2625/216, 4-19=-2712/249,  
19-20=-2712/249, 5-20=-2712/249,  
5-21=-2712/249, 6-21=-2712/249,  
6-22=-1247/178, 7-22=-1247/178,  
7-23=-1366/164, 8-23=-1477/149,  
8-9=-1686/154

BOT CHORD 2-14=-288/2665, 13-14=-288/2665,  
13-24=-206/2258, 12-24=-206/2258,  
12-25=-200/2432, 11-25=-200/2432,  
11-26=-200/2432, 10-26=-200/2432

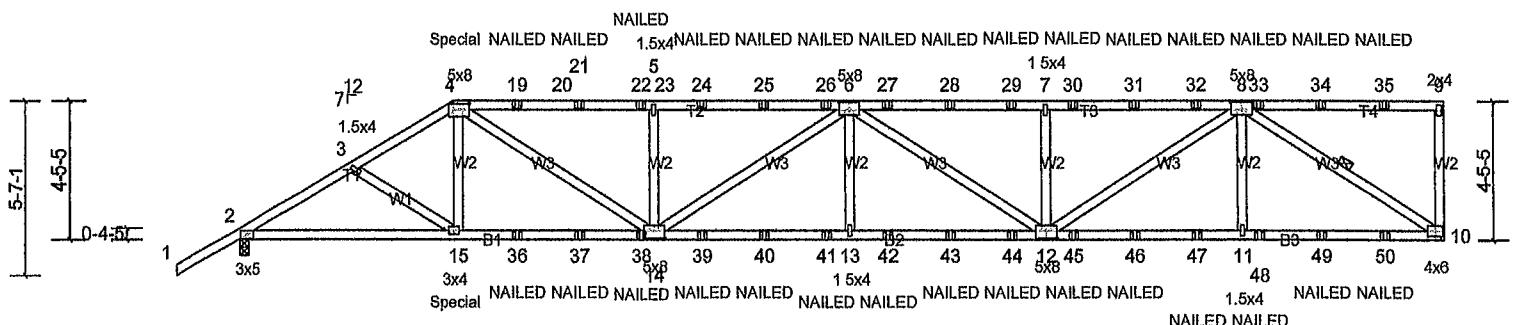
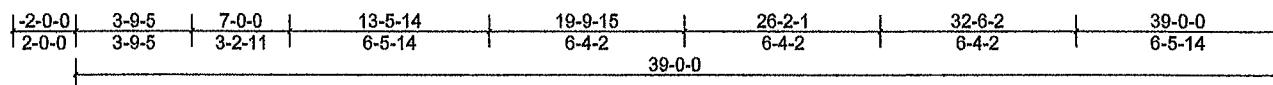
WEBS 3-13=-483/97, 4-13=0/546, 4-12=-43/750,  
5-12=-483/138, 6-12=-25/421, 6-11=0/413,  
6-10=-1577/95, 7-10=0/430, 8-10=-98/1482

#### NOTES

1) Unbalanced roof live loads have been considered for this design

- 2) Wind ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf; BCDL=6.0psf; h=25ft;  
B=45ft; L=39ft; eave=5ft; Cat. II, Exp B, Enclosed;  
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-10-13,  
Zone1 1-10-13 to 11-0-0, Zone2 11-0-0 to 16-6-3, Zone1  
16-6-3 to 34-0-0, Zone3 34-0-0 to 38-10-4 zone,  
cantilever left and right exposed, end vertical left and  
right exposed; C-C for members and forces & MWFRS for  
reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding
- 5) This truss has been designed for a 10.0 psf bottom chord  
live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf  
on the bottom chord in all areas where a rectangle  
3-06-00 fall by 2-00-00 wide will fit between the bottom  
chord and any other members, with BCDL = 10.0psf
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to  
bearing plate capable of withstanding 150 lb uplift at joint  
2 and 86 lb uplift at joint 9
- 9) This truss design requires that a minimum of 7/16"  
structural wood sheathing be applied directly to the top  
chord and 1/2" gypsum sheetrock be applied directly to  
the bottom chord.

LOAD CASE(S) Standard



|                 |              |                               |          |          |                          |
|-----------------|--------------|-------------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>A13 | Truss Type<br>Half Hip Girder | Qty<br>1 | Ply<br>2 | Job Reference (optional) |
|-----------------|--------------|-------------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, FI, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:h8Pfb1ZhAS\_pdA4ksa0jzkyTVct-wcv1ZSQoAenD5i0W\_WytfAtSI2ys5z9FWypEw8yTUmq



Scale = 1:72,3

7-1-12 13-5-14 19-9-15 26-2-1 32-6-2 39-0-0  
7-1-12 6-4-2 6-4-2 6-4-2 6-4-2 6-5-14

Plate Offsets (X, Y) [4.0-6-0,0-2-4], [6-0-4-0,0-3-0], [8 0-4-0,0-3-0], [12 0-4-0,0-3-0], [14.0-4-0,0-3-0]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | I/defl | L/d  | PLATES         | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|----------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1.25            | TC        | 0 82 | Vert(LL) | -0 28 | 13-14  | >999 | 240            | MT20     |
| TCDL        | 10 0  | Lumber DOL      | 1 25            | BC        | 0 73 | Vert(CT) | -0 58 | 13-14  | >803 | 180            |          |
| BCLL        | 0 0*  | Rep Stress Incr | NO              | WB        | 0 55 | Horz(CT) | 0 17  | 10     | n/a  | n/a            |          |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-MS |      |          |       |        |      | Weight: 430 lb | FT = 20% |

**LUMBER**  
TOP CHORD 2x4 SP No.2 \*Except\* T2.2x4 SP No.  
BOT CHORD 2x4 SP No 2 \*Except\* B2:2x4 SP No.  
WERS 2x4 SP No 2

| WEBS           | 1 Row at midpt                                                                            | 8-10 |
|----------------|-------------------------------------------------------------------------------------------|------|
| <b>BRACING</b> |                                                                                           |      |
| TOP CHORD      | Structural wood sheathing directly applied or<br>3-11-4 oc purlins, except end verticals. |      |
| BOT CHORD      | Rigid ceiling directly applied or 10-0-0 oc<br>bracing                                    |      |

**REACTIONS (lb/size)** 2=3163/0-3-B, (min. 0-1-14)  
10=3242/ Mechanical  
11=3242/ Mechanical

FORCES (lb) - Max Comp /Max Tens - All forces 250

FORCED (lb) MAX. COMPRESSIVE T.S. 11,160,000 LBS  
(lb) or less except when shown  
TOP CHORD 2-3=-5592/359, 3-4=-5448/362,

4-19=-7203/599, 19-20=-7203/599,  
20-21=-7203/599, 21-22=-7203/599

20-21--7203/599, 21-22--7203/599,  
5-22--7203/599, 5-23--7203/599,  
23-24--7203/599, 24-25--7203/599,  
25-26--7203/599, 6-28--7203/599,  
6-27--6944/623, 27-28--6944/623,  
28-29--6944/623, 7-29--6944/623,  
7-30--6944/623, 30-31--6944/623,  
31-32--6944/623, 8-32--6944/623,

|           |                                                                                                                                                       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| BOT CHORD | 9-10-289/94<br>2-15-333/4765, 15-36-309/4710,<br>36-37-309/4710, 37-38-309/4710,<br>14-38-309/4710, 14-39-630/7887,<br>20-19-630/7887, 12-14-630/7887 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|

39-40=-630/7887, 40-41=-630/7887,  
 13-41=-630/7887, 13-42=-630/7887,  
 42-43=-630/7887, 43-44=-630/7887,  
 12-44=-630/7887, 12-45=-395/4383,  
 45-46=-395/4383, 46-47=-395/4383,  
 11-47=-395/4383, 11-48=-395/4383,  
 48-49=-395/4383, 49-50=-395/4383,  
 10-50=-395/4383

WEBS 4-15=0/684, 4-14=-317/2993, 5-14=-827/281,  
6-14=-844/104, 6-13=0/516, 6-12=-1127/72,  
7-12=-751/255, 8-12=-246/3061, 8-11=0/557,  
8-10=-5169/438

## NOTES

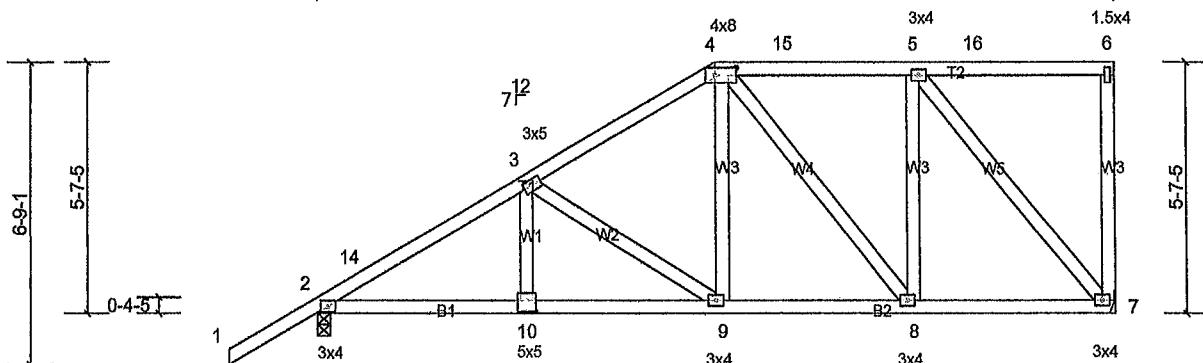
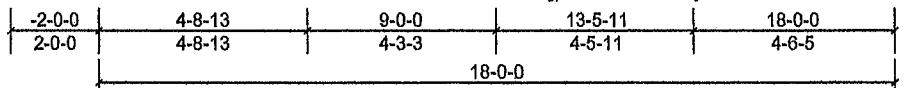
- 1) 2-ply truss to be connected together with 10d (0 131"x3") nails as follows:  
Top chords connected as follows. 2x4 - 1 row at 0-9-0 oc.  
Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.  
Web connected as follows. 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design
- 4) Wind ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf; BCDL=6 Opsf; h=25ft;  
B=45ft; L=39ft; eave=5ft; Cat. II, Exp B, Enclosed;  
MWFRS (directional), cantilever left and right exposed ,  
end vertical left and right exposed, Lumber DOL=1 60.  
plate grip DOL=1 60
- 5) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain, loading requirements specific to the use of this truss component.
- 6) Provide adequate drainage to prevent water ponding
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) \* This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 274 lb uplift at joint 10 and 259 lb uplift at joint 2
- 11) "NAILED" Indicates 3-10d (0 148"x3") or 3-12d (0 148"x3.25") toe-nails per NDS guidelines.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 217 lb down and 109 lb up at 7-0-0 on top chord, and 344 lb down at 7-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

**LOAD CASE(S) Standard**

- 1) Dead + Roof Live (balanced). Lumber Increase=1 25, Plate Increase=1 25  
Uniform Loads (lb/ft)  
Vert: 1-4=-60, 4-9=-60, 10-16=-20

Concentrated Loads (lb)

Vert: 4=-170 (F), 15=-303 (F), 19=-122 (F), 21=-122 (F), 22=-122 (F), 24=-122 (F), 25=-122 (F), 26=-122 (F), 27=-122 (F), 28=-122 (F), 29=-122 (F), 30=-122 (F), 31=-122 (F), 32=-122 (F), 33=-122 (F), 34=-122 (F), 35=-122 (F), 36=-59 (F), 37=-59 (F), 38=-59 (F), 39=-59 (F), 40=-59 (F), 41=-59 (F), 42=-59 (F), 43=-59 (F), 44=-59 (F), 45=-59 (F), 46=-59 (F), 47=-59 (F), 48=-59 (F), 49=-59 (F), 50=-59 (F)



|                 |              |                        |          |          |                          |
|-----------------|--------------|------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>B02 | Truss Type<br>Half Hip | Qty<br>1 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, FL, Jason DeGroff

Run: 8.83 S Mar 20 2026 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:46

Page: 1

ID:WYCbPsgpObENP!OcnFVs?CyTuzQ-zDnY8mO82dXlsRs8t6wPainF4FOsd29y2eK7rFyTUms



Scale = 1.50.4



Plate Offsets (X, Y) [4 0-5-8,0-2-0], [10 0-2-8,0-3-0]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | l/defl | L/d  | PLATES | GRIP                    |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|--------|-------------------------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1 25            | TC        | 0.25 | Vert(LL) | -0.02 | 9-10   | >999 | 240    |                         |
| TCDL        | 10 0  | Lumber DOL      | 1 25            | BC        | 0.26 | Vert(CT) | -0.05 | 9-10   | >999 | 180    |                         |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0.58 | Horz(CT) | 0 02  | 7      | n/a  | n/a    |                         |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |      |        | Weight: 112 lb FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No 2  
BOT CHORD 2x4 SP No.2  
WEBS 2x4 SP No 2

#### BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

6) \* This truss has been designed for a live load of 20 Opsf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 7 and 84 lb uplift at joint 2.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

REACTIONS (lb/size) 2=841/0-3-8, (min 0-1-8), 7=707/ Mechanical

Max Horiz 2=200 (LC 12)

Max Uplift 2=84 (LC 12), 7=-94 (LC 9)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 2-14=-1098/24, 3-14=-1036/47, 3-4=-764/67, 4-15=-467/59, 5-15=-467/59

BOT CHORD 2-10=-149/895, 9-10=-149/895, 8-9=-86/608, 7-8=-59/467

WEBS 3-9=-357/75, 4-9=0/320, 5-7=-718/91, 5-8=0/320

#### NOTES

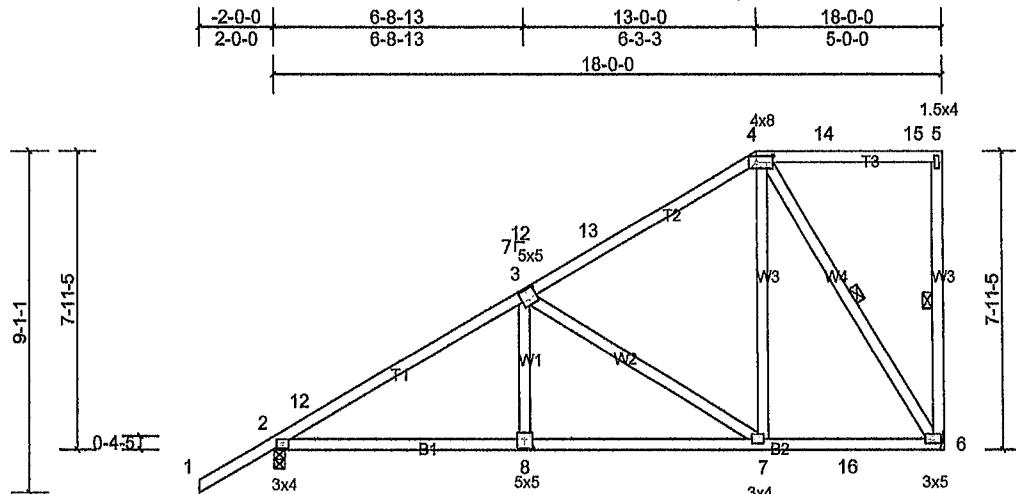
1) Unbalanced roof live loads have been considered for this design

2) Wind ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf, BCDL=6 0psf, h=25ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed;  
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,  
Zone1 1-0-0 to 9-0-0, Zone2 9-0-0 to 13-5-11, Zone1  
13-5-11 to 17-10-4 zone; cantilever left and right  
exposed, end vertical left exposed; C-C for members and  
forces & MWFRS for reactions shown, Lumber  
DOL=1 60 plate grip DOL=1 60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.


|                 |              |                        |          |          |                          |
|-----------------|--------------|------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>B04 | Truss Type<br>Half Hip | Qty<br>1 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:IGF?IwmTGMN5\_GbLoe9zs5yTUzH-zDnY8mO82dXlsRs8l6wPahnD5FKcd1?y2eK7rFyTUms



Scale = 1:60.1

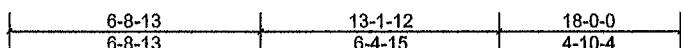



Plate Offsets (X, Y) [3 0-2-8,0-3-0], [4 0-5-8,0-2-0], [8.0-2-8,0-3-0]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | I/defl | L/d  | PLATES | GRIP                    |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|--------|-------------------------|
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.26            | TC        | 0.38 | Vert(LL) | -0.06 | 8-11   | >999 | 240    | MT20                    |
| TCDL        | 10.0  | Lumber DOL      | 1.25            | BC        | 0.46 | Vert(CT) | -0.12 | 8-11   | >999 | 180    |                         |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB        | 0.65 | Horz(CT) | 0.02  | 6      | n/a  | n/a    |                         |
| BCDL        | 10.0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |      |        | Weight: 111 lb FT = 20% |

## LUMBER

TOP CHORD 2x4 SP No 2  
BOT CHORD 2x4 SP No.2  
WEBS 2x4 SP No 2

## WIRE BRACING

**BRACING**  
**TOP CHORD** Structural wood sheathing directly applied, except end verticals.

**BOT CHORD** Rigid ceiling directly applied  
**WEBS** 1 Row at midpt 5-6, 4-6

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

- 6) \* This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10 0psf
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 6 and 60 lb uplift at joint 2.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

REACTIONS (lb/size) 2=841/0-3-8 (min. 0-1-8) 6=707/

(lb/inch) 2=-175, 3=-, (Min. 3-1-3), 3-7  
Mechanical

## FORCES

TOP CHORD 2-12=-1147/0, 3-12=-1131/0, 3-13=-547/0,

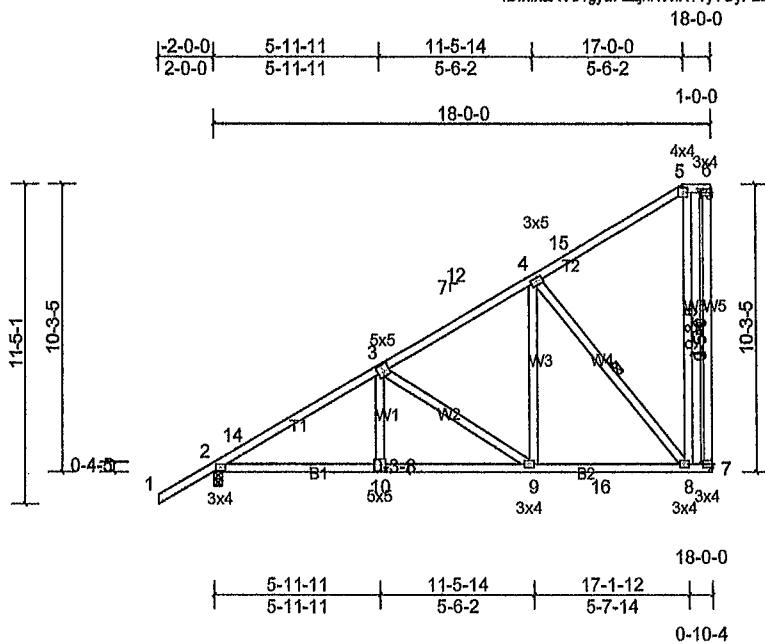
4-13=-459/24  
BOT CHORD 2-8=-149/977, 7-8=-151/973, 7-16=-60/419,

WEBS 6-16=60/419  
3-8=0/282, 3-7=-668/107, 4-7=0/586,  
4-8=-707/119

## NOTES

**NOTES**

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind ASCE 7-22, Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6 0psf; BCDL=6 0psf; h=25ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed,  
MWFRS (directional) and C-C Zone3 2-0-0 to 1-0-0,  
Zone1 1-0-0 to 13-0-0, Zone2 13-0-0 to 17-2-15, Zone1  
17-2-15 to 17-10-4 zone; cantilever left and right  
exposed, end vertical left exposed, C-C for members and  
forces & MWFRS for reactions shown, Lumber  
DOL=1.60 plate grip DOL=1 60
- 3) Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding
- 5) This truss has been designed for a 10 0 psf bottom chord  
live load nonconcurrent with any other live loads.


|                 |              |                        |          |          |                          |
|-----------------|--------------|------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>B06 | Truss Type<br>Half Hip | Qty<br>1 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:xfxaAV61gyu7LZjkRWfX??yTUyr-zDnY8mOB2dXlsRs8l6wPalnA\_Fl2d6Ky2eK7nFyTUms



Scale = 1.80.7

Plate Offsets (X, Y) [3 0-2-8,0-3-0], [6.Edge,0-1-8], [7 Edge,0-1-8], [10'0-2-8,0-3-0]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | l/defl | L/d  | PLATES | GRIP                    |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|--------|-------------------------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1 25            | TC        | 0 52 | Vert(LL) | -0.12 | 8-9    | >999 | 240    |                         |
| TCDL        | 10 0  | Lumber DOL      | 1 25            | BC        | 0 63 | Vert(CT) | -0.22 | 8-9    | >965 | 180    |                         |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0 37 | Horz(CT) | 0.02  | 7      | n/a  | n/a    |                         |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |      |        | Weight: 126 lb FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No.2  
BOT CHORD 2x4 SP No.2  
WEBS 2x4 SP No.2

#### BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.  
WEBS 1 Row at midpt 6-7, 4-8

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

6) \* This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10 0psf

7) Refer to girder(s) for truss to truss connections.  
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 7 and 27 lb uplift at joint 2.  
9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

REACTIONS (lb/size) 2=841/0-3-8, (min. 0-1-8), 7=707/  
Mechanical

Max Horiz 2=333 (LC 12)

Max Uplift 2=27 (LC 12), 7=-114 (LC 12)

Max Grav 2=929 (LC 17), 7=862 (LC 17)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 2-14=-1168/0, 3-14=-1154/0, 3-4=-698/0,  
6-7=-300/9

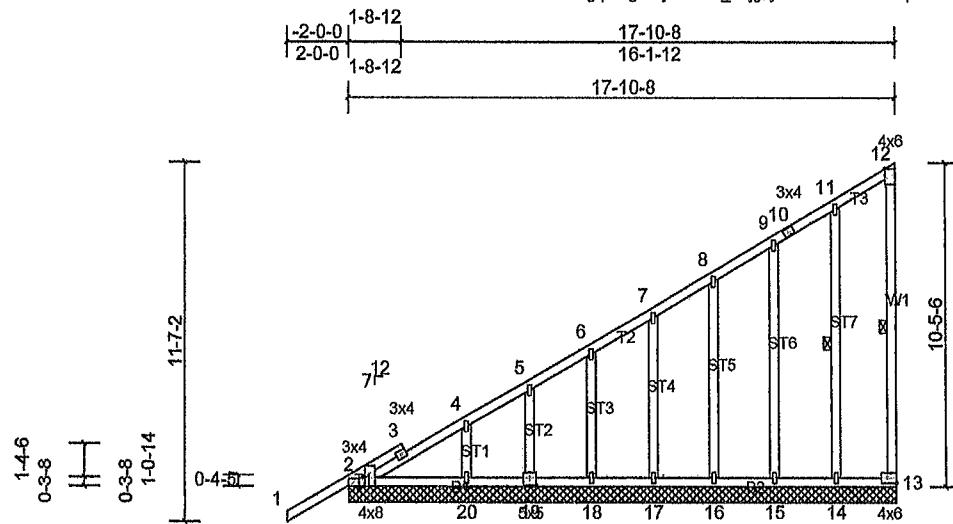
BOT CHORD 2-10=-146/1019, 9-10=-147/1015,  
9-16=-89/584, 8-16=-89/584

WEBS 3-9=-515/70, 4-9=0/592, 4-8=-860/129

#### NOTES

1) Unbalanced roof live loads have been considered for this design  
2) Wind ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf; BCDL=6 0psf; h=25ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed;  
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,  
Zone1 1-0-0 to 17-0-0, Zone3 17-0-0 to 17-10-4 zone;  
cantilever left and right exposed, end vertical left  
exposed; C-C for members and forces & MWFRS for  
reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.  
4) Provide adequate drainage to prevent water ponding  
5) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.


|                 |              |                                         |          |          |  |
|-----------------|--------------|-----------------------------------------|----------|----------|--|
| Job<br>1025-005 | Truss<br>B08 | Truss Type<br>Monopitch Supported Gable | Qty<br>1 | Ply<br>1 |  |
|-----------------|--------------|-----------------------------------------|----------|----------|--|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:gqtU4giGHjsm0S5s\_TVjg7yTUv-RPLwM6Pmpw9UbRKRpRe7yKJofhAMcM6Hi3gNhyTUm



Scale = 1:72 9

17'-10-8

Plate Offsets (X, Y) [2 0-3-8,Edge], [2 0-1-9,Edge], [12 0-3-12,Edge], [13 Edge,0-2-0], [19'0-2-8,0-3-0]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | l/defl | L/d | PLATES | GRIP                    |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|-----|--------|-------------------------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1.25            | TC        | 0 64 | Vert(LL) | n/a   | -      | n/a | 999    |                         |
| TCDL        | 10 0  | Lumber DOL      | 1.25            | BC        | 0.44 | Vert(CT) | n/a   | -      | n/a | 999    |                         |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0 13 | Horz(CT) | 0.00  | 13     | n/a | n/a    |                         |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |     |        | Weight: 132 lb FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No 2  
BOT CHORD 2x4 SP No 2  
WEBS 2x4 SP No.2  
OTHERS 2x4 SP No.2

#### BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied  
WEBS 1 Row at midpt 12-13, 11-14

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

#### REACTIONS

All bearings 17-10-8

(lb) - Max Horiz 2=363 (LC 11) .

Max Uplift All uplift 100 (lb) or less at joint(s)

2, 13, 14, 15, 16, 17, 18, 19

Max Grav All reactions 250 (lb) or less at joint

(s) 13, 14, 15, 16, 17, 18, 19, 20

except 2=290 (LC 1)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown

TOP CHORD 2-3=-557/391, 3-4=-553/416, 4-5=-506/370,

5-6=-444/346, 6-7=-386/315, 7-8=-328/285,

8-9=-268/254

#### NOTES

1) Unbalanced roof live loads have been considered for this design

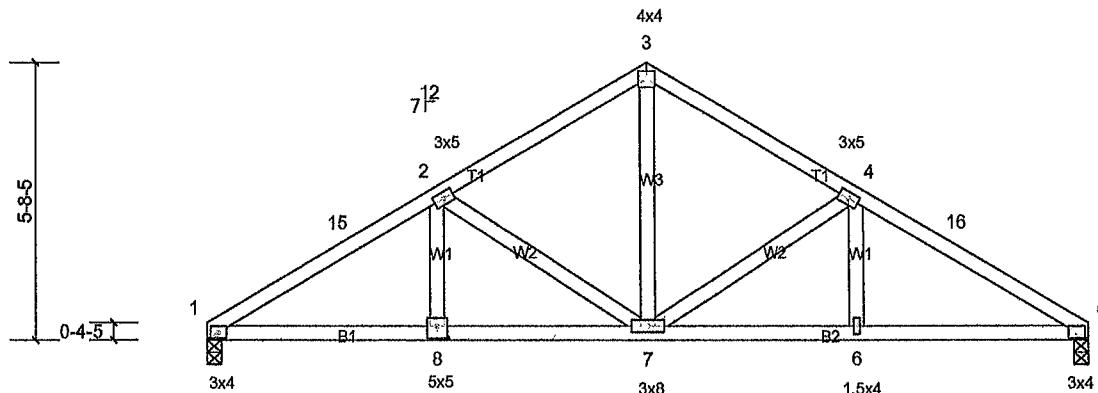
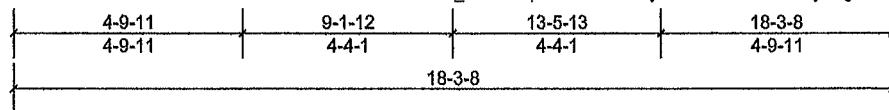
2) Wind ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf; BCDL=6 0psf; h=25ft;  
B=45ft; L=24ft; eave=2ft; Cat. II, Exp B, Enclosed,  
MWFRS (directional) and C-C Zone3 zone, cantilever left  
and right exposed, end vertical left and right exposed; C-  
C for members and forces & MWFRS for reactions  
shown, Lumber DOL=1 60 plate grip DOL=1 60

3) Truss designed for wind loads in the plane of the truss  
only For studs exposed to wind (normal to the face),  
see Standard Industry Gable End Details as applicable,  
or consult qualified building designer as per ANSI/TPI 1

4) Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.

- 5) All plates are 1 5x4 (||) MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) \* This truss has been designed for a live load of 20 Opsf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 13, 2, 14, 15, 16, 17, 18, 19, 2.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard



|                 |              |                      |          |          |                          |
|-----------------|--------------|----------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>C02 | Truss Type<br>Common | Qty<br>2 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|----------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, FL, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Oct 14 14:00:46

Page: 1

ID:Tm\_OYhUMHpZ0ksuLJXmY2myTVbh-KBbRCUSHI99byCl5gfWaHoV6aG46lQahCw1uWSyTUmn



Scale = 1.46.3



#### Plate Offsets (X, Y) [8.0-2-8,0-3-0]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | l/defl | L/d  | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|---------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1 25            | TC        | 0 21 | Vert(LL) | -0 03 | 7      | >999 | 240           |          |
| TCDL        | 10 0  | Lumber DOL      | 1 25            | BC        | 0 31 | Vert(CT) | -0 06 | 6-7    | >999 | 180           |          |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0 18 | Horz(CT) | 0 03  | 5      | n/a  | n/a           |          |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |      | Weight: 89 lb | FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No 2  
BOT CHORD 2x4 SP No.2  
WEBS 2x4 SP No 2

#### BRACING

TOP CHORD Structural wood sheathing directly applied  
BOT CHORD Rigid ceiling directly applied.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 1 and 41 lb uplift at joint 5.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

#### LOAD CASE(S)

Standard

**REACTIONS** (lb/size) 1=732/0-3-8, (min 0-1-8),  
5=732/0-3-8, (min 0-1-8)

Max Horiz 1=105 (LC 11)

Max Uplift 1=-41 (LC 12), 5=-41 (LC 12)

**FORCES** (lb) - Max. Comp./Max. Ten - All forces 250  
(lb) or less except when shown

TOP CHORD 1-15=-1156/146, 2-15=-1093/161,  
2-3=-810/165, 3-4=-810/165,

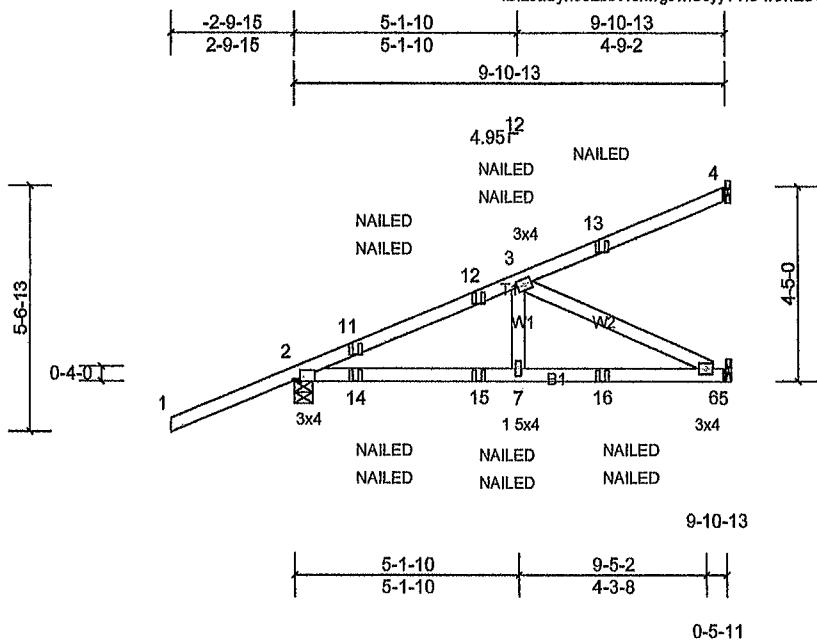
4-16=-1093/161, 5-16=-1156/146

BOT CHORD 1-8=-80/963, 7-8=-80/963, 6-7=-76/963,  
5-6=-76/963

WEBS 3-7=-56/506, 4-7=-398/110, 2-7=-398/110

#### NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6 0psf, BCDL=6 0psf; h=25ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed;  
MWFRS (directional) and C-C Zone3 0-0-0 to 3-0-0,  
Zone1 3-0-0 to 9-1-12, Zone2 9-1-12 to 13-5-13, Zone1  
13-5-13 to 18-3-8 zone; cantilever left and right  
exposed, end vertical left and right exposed, C-C for  
members and forces & MWFRS for reactions shown,  
Lumber DOL=1 60 plate grip DOL=1 60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


|                 |               |                                   |          |          |                          |
|-----------------|---------------|-----------------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>CJ01 | Truss Type<br>Diagonal Hip Girder | Qty<br>3 | Ply<br>1 | Job Reference (optional) |
|-----------------|---------------|-----------------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:z3aSyno6ZbbW6kwqJvnU3vTVf9-wcvJZSQOaEn05i0W\_WvlfAtVs2 851SFWpEw8vTUmg



Scale = 1 51 2

0-5-11

Plate Offsets (X, Y) [2:0-1-8,Edge]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | l/defl | L/d  | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|---------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1.25            | TC        | 0 62 | Vert(LL) | -0 08 | 7-10   | >999 | 240           | MT20     |
| TCDL        | 10 0  | Lumber DOL      | 1 25            | BC        | 0 59 | Vert(CT) | -0 08 | 6-7    | >999 | 180           |          |
| BCLL        | 0 0*  | Rep Stress Inor | NO              | WB        | 0 27 | Horz(CT) | 0.01  | 5      | n/a  | n/a           |          |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-MS |      |          |       |        |      | Weight: 45 lb | FT = 20% |

## LUMBER

TOP CHORD 2x4 SP No.2  
BOT CHORD 2x4 SP No 2  
WERS 2x4 SP No 2

WEBS  
BRACING

**BRACING**  
**TOP CHORD** Structural wood sheathing directly applied or  
6-0-0 oc purlins.

**BOT CHORD** Rigid ceiling directly applied or 10'-0" oc bracing.

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

**REACTIONS (lb/size)** 2=475/0-4-15, (min. 0-1-8), 4=131/  
Mechanical, 5=273/ Mechanical  
May Use: 2-166 (L.C.2)

Max Horiz 2=166 (LC 8)  
 Max Uplift 2=-187 (LC 8), 4=-45 (LC 8)  
 Max Grav 2=556 (LC 13), 4=133 (LC 19),  
 5=309 (LC 13)

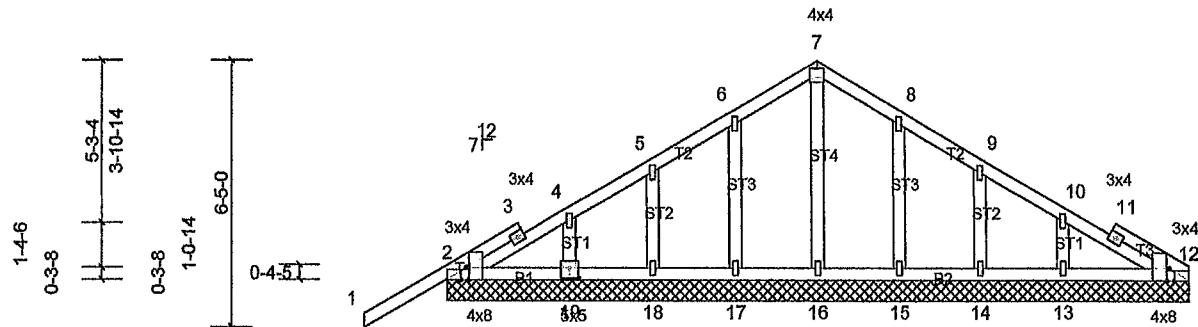
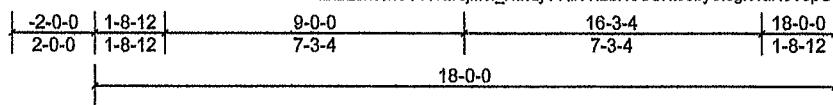
**FORCES** (lb) - Max. Comp./Max. Ten - All forces 250

(lb) or less except when shown

BOT CHORD 2-14=-242/561, 14-15=-62/561,  
7-15=-62/561, 7-16=-62/561, 6-16=-62/561  
WEBS 3-7=0/250, 3-6=-622/69

## NOTES

- 1) Wind ASCE 7-22, Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0 psf, BCDL=6 0psf; h=25ft;  
B=45ft, L=24ft; eave=4ft; Cat. II, Exp B, Enclosed,  
MWFRS (directional), cantilever left and right exposed ,  
end vertical left and right exposed, Lumber DOL=1 60  
plate grip DOL=1 60
- 2) Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10 0 psf bottom chord  
live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20 Opsi  
on the bottom chord in all areas where a rectangle  
3-06-00 tall by 2-00-00 wide will fit between the bottom  
chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.



|                 |              |                                      |          |          |  |
|-----------------|--------------|--------------------------------------|----------|----------|--|
| Job<br>1025-005 | Truss<br>D01 | Truss Type<br>Common Supported Gable | Qty<br>1 | Ply<br>1 |  |
|-----------------|--------------|--------------------------------------|----------|----------|--|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:228hWnCV?YKwe|M9f\_NwldyTVdK-KBbRCUSH99byCl5gfWaHoV6pG7zISkhCw1uWSyTUm



Scale = 1.54.4

Plate Offsets (X, Y) [2:0-3-8,Edge], [2.0-1-9,Edge], [12.0-3-8,Edge], [12.0-1-9,Edge], [19.0-2-8,0-3-0]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL     | in   | (loc) | I/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|----------|------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1 25            | TC        | Vert(LL) | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| TCDL        | 10 0  | Lumber DOL      | 1 25            | BC        | Vert(CT) | n/a  | -     | n/a    | 999 |               |          |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | Horz(CT) | 0 00 | 12    | n/a    | n/a |               |          |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |          |      |       |        |     | Weight: 94 lb | FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No 2  
BOT CHORD 2x4 SP No.2  
OTHERS 2x4 SP No.2

#### BRACING

TOP CHORD Structural wood sheathing directly applied  
BOT CHORD Rigid ceiling directly applied.

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

#### REACTIONS

All bearings 18-0-0  
(lb) - Max Horiz 2=114 (LC 11)  
Max Uplift All uplift 100 (lb) or less at joint(s)  
2, 13, 14, 15, 17, 18  
Max Grav All reactions 250 (lb) or less at joint  
(s) 12, 13, 14, 15, 16, 17, 18, 19  
except 2=276 (LC 1)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250  
(lb) or less except when shown

#### NOTES

1) Unbalanced roof live loads have been considered for this design

2) Wind ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf; BCDL=6 0psf; h=25ft,  
B=45ft; L=24ft; eave=2ft; Cat. II, Exp B, Enclosed;  
MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed, end vertical left and right exposed, C-C for members and forces & MWFRS for reactions shown, Lumber DOL=1 60 plate grip DOL=1 60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1

4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

5) All plates are 1 5x4 (l) MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.

9) \* This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

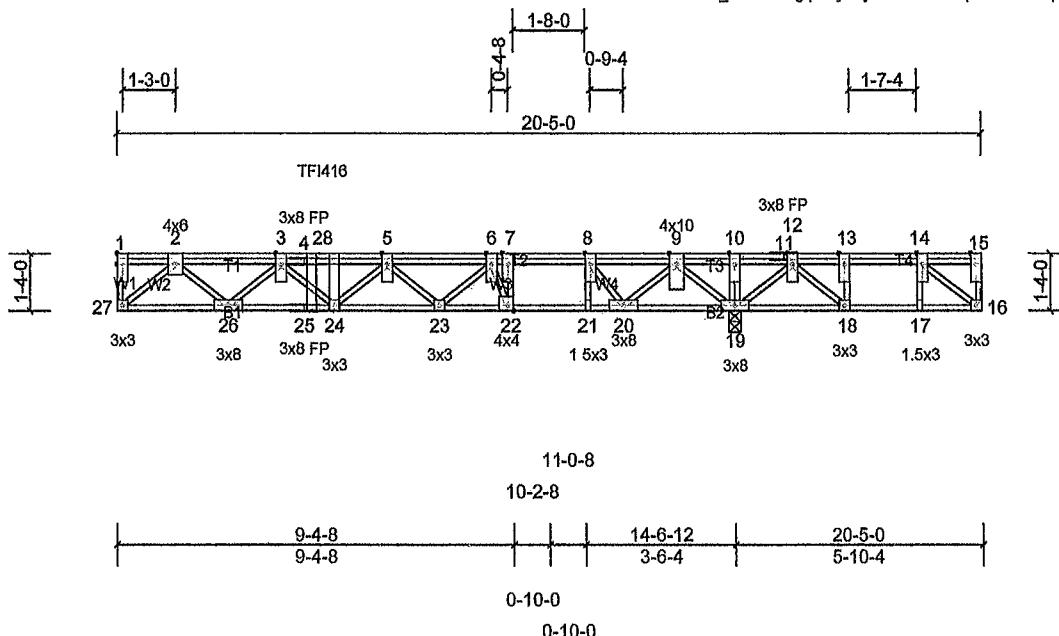
10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 2, 17, 18, 15, 14, 13, 2.

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard






|                 |              |                            |          |          |  |
|-----------------|--------------|----------------------------|----------|----------|--|
| Job<br>1025-005 | Truss<br>F04 | Truss Type<br>Floor Girder | Qty<br>1 | Ply<br>2 |  |
|-----------------|--------------|----------------------------|----------|----------|--|

Mayo Truss, Mayo, FL, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Oct 14 14:00:46

Page: 1

ID:50UXP0RAE\_1WUnEWgq7s8yTVy-RPLwM6Pmpwf9UbRKRpRe7yKH3fa7Mat6HI3gNhyTUmr



Scale = 1 52.7

#### Plate Offsets (X, Y) [22:0-1-8,Edge]

| Loading | (psf) | Spacing         | 2-0-0           | CSI      | DEFL     | in    | (loc) | I/defl | L/d | PLATES         | GRIP            |
|---------|-------|-----------------|-----------------|----------|----------|-------|-------|--------|-----|----------------|-----------------|
| TCLL    | 40 0  | Plate Grip DOL  | 1 00            | TC       | Vert(LL) | -0.13 | 22-23 | >999   | 360 |                |                 |
| TCDL    | 10 0  | Lumber DOL      | 1 00            | BC       | Vert(CT) | -0.18 | 22-23 | >994   | 240 |                |                 |
| BCLL    | 0 0   | Rep Stress Incr | NO              | WB       | Horz(CT) | 0.03  | 19    | n/a    | n/a |                |                 |
| BCDL    | 5 0   | Code            | FBC2023/TPI2014 | Matrix-S |          |       |       |        |     | Weight: 268 lb | FT = 20%F, 11%E |

#### LUMBER

TOP CHORD 2x4 SP No.2(flat)  
BOT CHORD 2x4 SP No 2(flat)  
WEBS 2x4 SP No 2(flat)

#### BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.  
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing

REACTIONS (lb/size) 16=7/ Mechanical, 19=1924/0-3-8, (min 0-1-8), 27=1427/ Mechanical  
Max Uplift 16=198 (LC 3)  
Max Grav 16=205 (LC 4), 19=1956 (LC 9), 27=1487 (LC 10)

FORCES (lb) - Max. Comp./Max. Ten - All forces 250 (lb) or less except when shown

TOP CHORD 2-3=-3034/0, 3-4=-4667/0, 4-28=-4667/0, 5-28=-4667/0, 5-6=-4158/0, 6-7=-2488/0, 7-8=-2488/0, 8-9=-1359/0, 9-10=0/1536, 10-11=0/1536, 11-12=0/1536, 12-13=-142/451, 13-14=-142/451

BOT CHORD 26-27=0/1567, 25-26=0/4465, 24-25=0/4465, 23-24=0/4862, 22-23=0/3324, 21-22=0/2488, 20-21=0/2488, 19-20=-353/0, 18-19=-1044/0, 17-18=-451/142, 16-17=-451/142

WEBS 7-22=0/2064, 8-21=0/362, 10-19=-419/0, 2-27=-2081/0, 2-28=0/1989, 3-28=-1942/0, 3-24=0/275, 5-24=-265/0, 5-23=-998/0, 6-23=0/1181, 6-22=-2460/0, 9-19=-1646/0, 9-20=0/2058, 8-20=-1943/0, 12-19=-709/0, 14-16=-184/587, 12-18=0/938, 13-18=-545/0

#### NOTES

- 1) Fasten trusses together to act as a single unit as per standard industry detail, or loads are to be evenly applied to all plies.
- 2) Unbalanced floor live loads have been considered for this design.
- 3) All plates are 3x8 (||) MT20 unless otherwise indicated.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 198 lb uplift at joint 16.

- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0 131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.
- 8) Use MiTek TFI416 (With 10d nails into Girder & 2-10d x 1-1/2 nails into Truss) or equivalent at 4-10-4 from the left end to connect truss(es) F14 (1 ply 2x4 SP) to front face of top chord
- 9) Fill all nail holes where hanger is in contact with lumber
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

#### LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced). Lumber Increase=1 00, Plate Increase=1 00  
Uniform Loads (lb/ft)  
Vert: 16-27=-10, 1-15=-100  
Concentrated Loads (lb)  
Vert: 28=-1126 (F)

|                 |              |                     |           |          |                          |
|-----------------|--------------|---------------------|-----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>F10 | Truss Type<br>Floor | Qty<br>11 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|---------------------|-----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Oct 14 14:00:46

Page: 1

ID:x\_14e7t1?MNvWanX9B26mYyTY6Z-wcvIZSQOaEn050W\_WytfAtZx2w05?2FWypEw8yTUmq

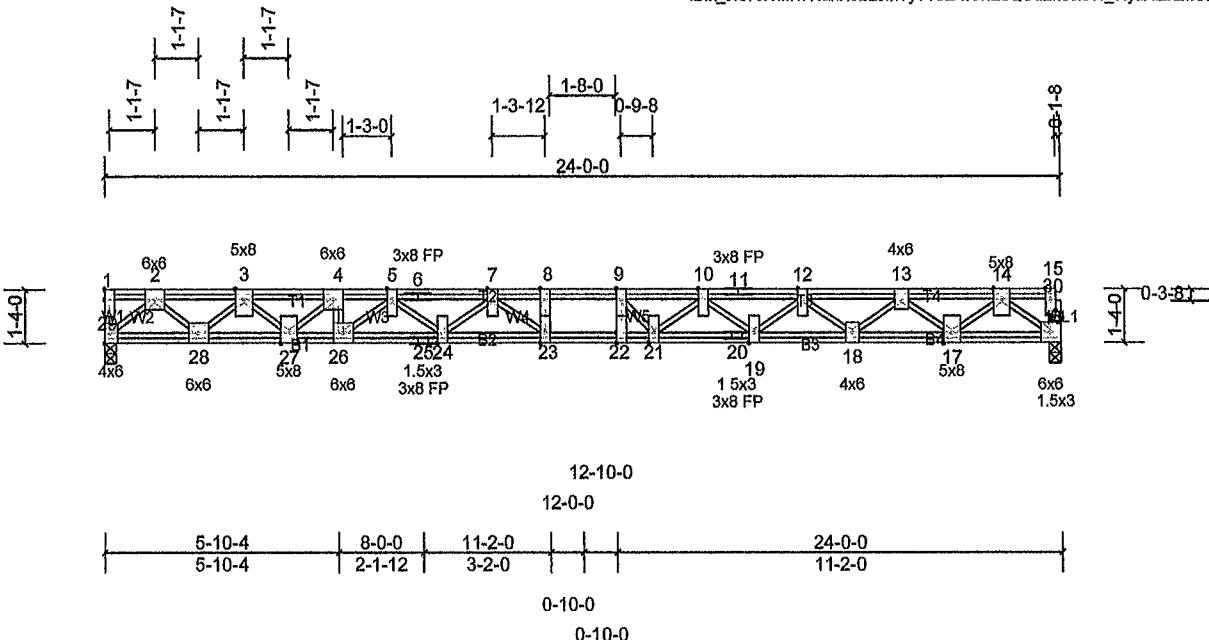



Plate Offsets (X, Y) [22:0-3-0, Edge], [30 0-1-8, 0-1-8]

| Loading | (psf) | Spacing         | 1-4-0           | CSI      | DEFL | in       | (loc) | l/defl | L/d  | PLATES | GRIP           |                 |
|---------|-------|-----------------|-----------------|----------|------|----------|-------|--------|------|--------|----------------|-----------------|
| TCLL    | 40 0  | Plate Grip DOL  | 1 00            | TC       | 0 36 | Vert(LL) | -0.40 | 23-24  | >716 | 360    | MT20           | 244/190         |
| TCDL    | 10 0  | Lumber DOL      | 1 00            | BC       | 0.85 | Vert(CT) | -0.55 | 23-24  | >520 | 240    |                |                 |
| BCLL    | 0 0   | Rep Stress Incr | NO              | WB       | 0.42 | Horz(CT) | 0 06  | 16     | n/a  | n/a    |                |                 |
| BCDL    | 5 0   | Code            | FBC2023/TPI2014 | Matrix-S |      |          |       |        |      |        | Weight: 190 lb | FT = 20%F, 11%E |

#### LUMBER

TOP CHORD 2x4 SP No 2(flat)  
BOT CHORD 2x4 SP No.2(flat) \*Except\* B2,B3.2x4 SP  
No.1(flat)  
WEBS 2x4 SP No.2(flat)  
OTHERS 2x4 SP No.2(flat)

#### BRACING

TOP CHORD Structural wood sheathing directly applied or  
6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc  
bracing

REACTIONS (lb/size) 16=981/0-3-8, (min 0-1-8),  
29=1211/0-3-8, (min 0-1-8)

FORCES (lb) - Max. Comp./Max. Ten - All forces 250  
(lb) or less except when shown

TOP CHORD 2-3=-2357/0, 3-4=-4320/0, 4-5=-5283/0,  
5-6=-5853/0, 6-7=-5853/0, 7-8=-5897/0,  
8-9=-5897/0, 9-10=-5623/0, 10-11=-4839/0,  
11-12=-4839/0, 12-13=-3661/0,  
13-14=-2057/0

BOT CHORD 28-29=0/1274, 27-28=0/3427, 26-27=0/5283,  
25-26=0/5860, 24-25=0/5660, 23-24=0/5989,  
22-23=0/5897, 21-22=0/5897, 20-21=0/5304,  
19-20=0/5304, 18-19=0/4350, 17-18=0/2957,  
16-17=0/1207

WEBS 4-26=0/283, 9-22=-131/317, 5-26=-479/0,  
5-24=0/335, 7-24=-345/56, 7-23=-453/394,  
14-16=-1492/0, 14-17=0/1128,  
13-17=-1191/0, 13-18=0/932, 12-18=-911/0,  
12-19=0/648, 10-19=-615/0, 10-21=0/593,  
9-21=-716/91, 2-29=-1728/0, 2-28=0/1506,  
3-28=-1487/0, 3-27=0/1242, 4-27=-1277/0

#### NOTES

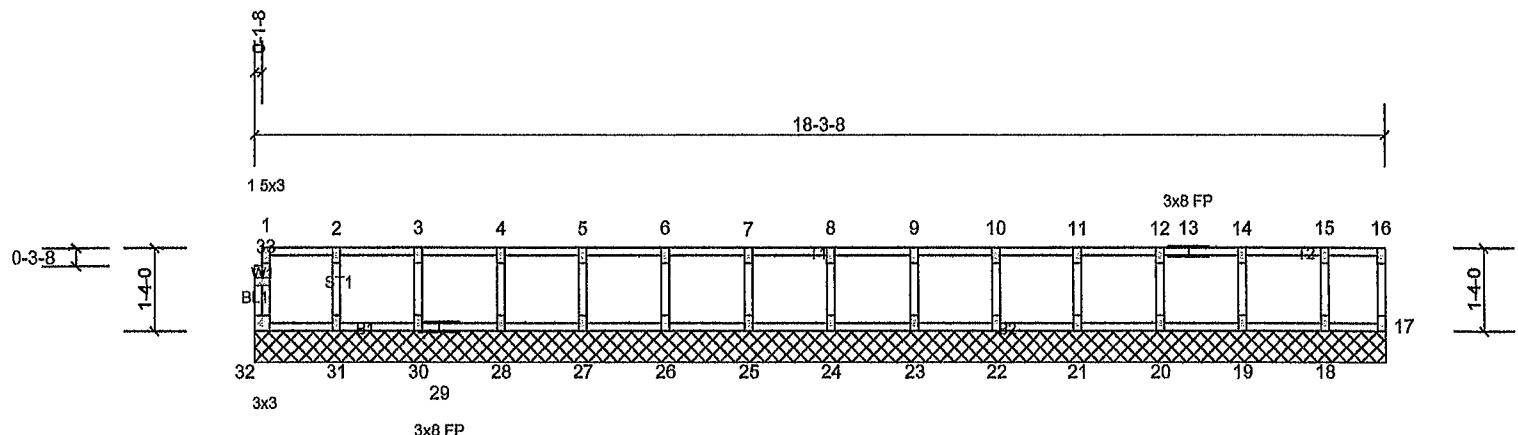
- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x8 (||) MT20 unless otherwise indicated.
- 3) The Fabrication Tolerance at joint 25 = 11%, joint 20 = 11%
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0 131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means
- 5) CAUTION, Do not erect truss backwards.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 450 lb down at 5-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

#### LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced) Lumber Increase=1 00, Plate Increase=1 00  
Uniform Loads (lb/ft)  
Vert: 16-29=-7, 1-15=-67  
Concentrated Loads (lb)  
Vert: 4=-450 (F)


|                 |              |                                     |          |          |                          |
|-----------------|--------------|-------------------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>F12 | Truss Type<br>Floor Supported Gable | Qty<br>1 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|-------------------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

Page 1

ID:99gCbLo\_4pXf?onwwRynamyTVs3-wcvIZSQOaEn05l0W\_WytfAtek27A55UFWypEw8yTUmg



Scale = 1:36.2

| Loading | (psf) | Spacing         | 1-4-0           | CSI      | DEFL | in        | (loc) | l/defl | L/d | PLATES        | GRIP            |
|---------|-------|-----------------|-----------------|----------|------|-----------|-------|--------|-----|---------------|-----------------|
| TCLL    | 40 0  | Plate Grip DOL  | 1 00            | TC       | 0 05 | Vert(LL)  | n/a   | -      | n/a | 999           | MT20            |
| TCDL    | 10 0  | Lumber DOL      | 1 00            | BC       | 0 01 | Vert(TL)  | n/a   | -      | n/a | 999           |                 |
| BCLL    | 0 0   | Rep Stress Incr | YES             | WB       | 0 01 | Horiz(TL) | 0 00  | 17     | n/a | n/a           |                 |
| BCDL    | 5 0   | Code            | FBC2023/TPI2014 | Matrix-R |      |           |       |        |     | Weight: 80 lb | FT = 20%F, 11%E |

## LUMBER

TOP CHORD 2x4 SP No 2(flat)  
 BOT CHORD 2x4 SP No.2(flat)  
 WEBS 2x4 SP No 2(flat)  
 OTHERS 2x4 SP No 2(flat)

## **BRACING**

|                  |                                                                                       |
|------------------|---------------------------------------------------------------------------------------|
| <b>TOP CHORD</b> | Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. |
| <b>BOT CHORD</b> | Rigid ceiling directly applied or 10-0-0 oc                                           |

#### REACTIONS. All reactions. 12.2.2

**IONS** All bearings 18-3-8.  
(lb) - Max Grav All reactions 250 (lb) or less at joint  
(s) 17, 18, 19, 20, 21, 22, 23, 24,  
25, 26, 27, 28, 30, 31, 32

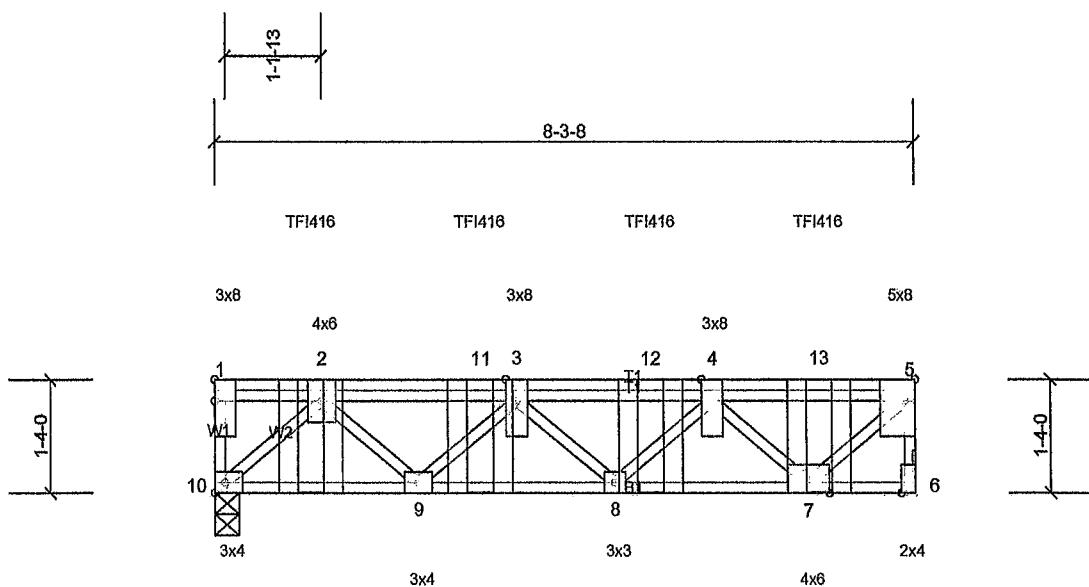
**FORCES** (lb) - Max. Comp./Max. Ten. - All forces 250  
(lb) or less except when shown

## NOTES

**NOTES**

- 1) All plates are 1 5x3 (||) MT20 unless otherwise indicated.
- 2) Gable requires continuous bottom chord bearing.
- 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 4) Gable studs spaced at 1-4-0 oc.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0 131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect


|                 |              |                            |          |          |                          |
|-----------------|--------------|----------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>F14 | Truss Type<br>Floor Girder | Qty<br>1 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|----------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

ID: SOPj7HwIZv08Go7KJrCB0yTW45-wcvIZSQOaEn05l0W\_WyfAtWU2zS6?UFWypEw8yTUmq

Page: 1



Scale = 1 26.5

Plate Offsets (X, Y) [5 0-3-0,Edge], [6.0-1-8,Edge]

| Loading | (psf) | Spacing         | 2-0-0           | CSI      | DEFL     | In    | (loc) | I/defl | L/d | PLATES        | GRIP            |
|---------|-------|-----------------|-----------------|----------|----------|-------|-------|--------|-----|---------------|-----------------|
| TCLL    | 40 0  | Plate Grip DOL  | 1 00            | TC       | Vert(LL) | -0 03 | 8-9   | >999   | 360 | MT20          | 244/190         |
| TCDL    | 10 0  | Lumber DOL      | 1 00            | BC       | Vert(CT) | -0 05 | 8-9   | >999   | 240 |               |                 |
| BCLL    | 0 0   | Rep Stress Incr | NO              | WB       | Horz(CT) | 0 02  | 6     | n/a    | n/a |               |                 |
| BCDL    | 5 0   | Code            | FBC2023/TPI2014 | Matrix-P |          |       |       |        |     | Weight: 55 lb | FT = 20%F, 11%E |

#### LUMBER

TOP CHORD 2x4 SP No.2(flat)  
BOT CHORD 2x4 SP No.2(flat)  
WEBS 2x4 SP No.2(flat)

#### BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.  
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS (lb/size) 6=1226/ Mechanical, 10=1214/0-3-8, (min 0-1-8)

FORCES (lb) - Max. Comp./Max. Ten - All forces 250  
(lb) or less except when shown

TOP CHORD 5-6=-1219/0, 2-11=-1780/0, 3-11=-1780/0,  
3-12=-2145/0, 4-12=-2145/0, 4-13=-1022/0,  
5-13=-1022/0

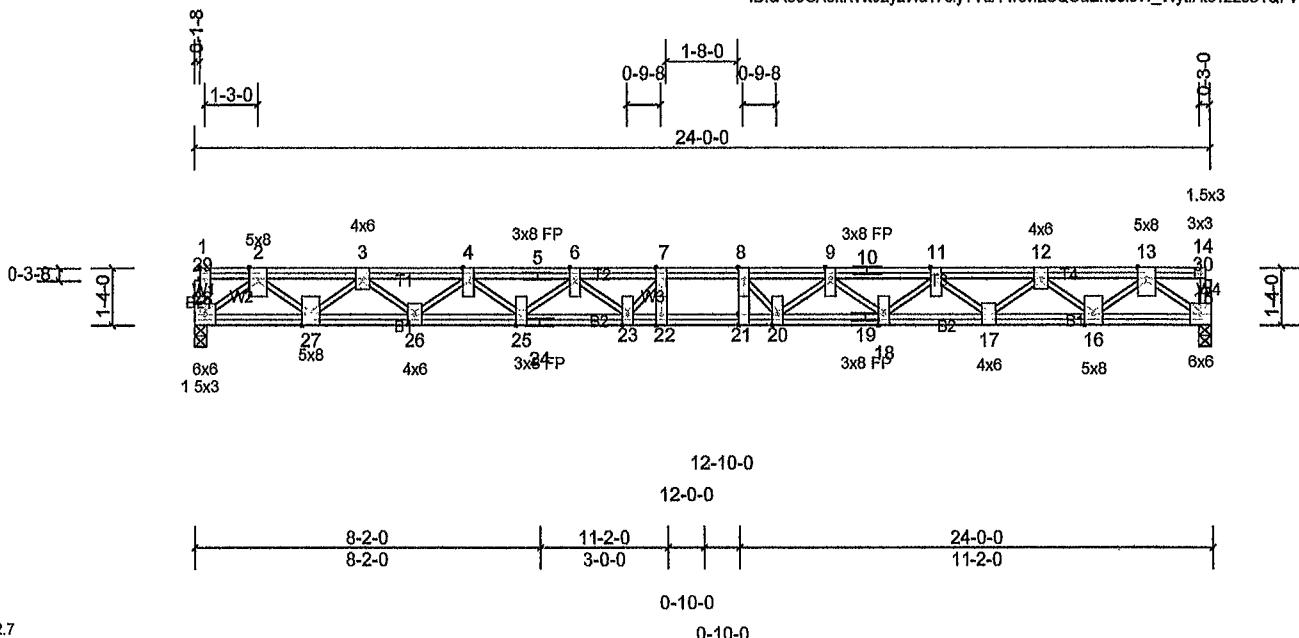
BOT CHORD 9-10=0/1242, 8-9=0/2294, 7-8=0/1974  
WEBS 2-10=-1709/0, 2-9=0/760, 3-9=-726/0,  
4-7=-1345/0, 5-7=0/1407

#### NOTES

- 1) Refer to girder(s) for truss to truss connections.
- 2) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0 131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 3) Use MITek TFI416 (With 10d nails into Girder & 2-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-1-12 from the left end to 7-1-12 to connect truss(es) F03 (1 ply 2x4 SP) to front face of top chord
- 4) Fill all nail holes where hanger is in contact with lumber
- 5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

#### LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced) Lumber Increase=1 00, Plate Increase=1 00  
Uniform Loads (lb/ft)  
Vert: 6-10=10, 1-5=-100  
Concentrated Loads (lb)  
Vert: 2=-385 (F), 11=-385 (F), 12=-385 (F), 13=-385 (F)


|                 |              |                     |          |          |                          |
|-----------------|--------------|---------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>F16 | Truss Type<br>Floor | Qty<br>5 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|---------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:cA09GA91tKwJ2yzWa17cIyTVuA-wcvIzSQoAen05i0W\_WylfAtc12zs51QFWpEw8yTUmq



Scale = 1.52.7

Plate Offsets (X, Y) [21 0-3-0,Edge], [29 0-1-8,0-1-8]

| Loading | (psf) | Spacing         | 1-4-0           | CSI      | DEFL | in       | (loc) | l/defl | L/d  | PLATES         | GRIP            |
|---------|-------|-----------------|-----------------|----------|------|----------|-------|--------|------|----------------|-----------------|
| TCLL    | 40 0  | Plate Grip DOL  | 1 00            | TC       | 0 16 | Vert(LL) | -0 32 | 21-22  | >893 | 360            | MT20            |
| TCDL    | 10 0  | Lumber DOL      | 1 00            | BC       | 0 67 | Vert(CT) | -0 44 | 21-22  | >650 | 240            |                 |
| BCLL    | 0 0   | Rep Stress Incr | YES             | WB       | 0.27 | Horz(CT) | 0 05  | 15     | n/a  | n/a            |                 |
| BCDL    | 5 0   | Code            | FBC2023/TPI2014 | Matrix-S |      |          |       |        |      | Weight: 188 lb | FT = 20%F, 11%E |

## LUMBER

TOP CHORD 2x4 SP No 2( flat)  
 BOT CHORD 2x4 SP No 2( flat)  
 WEBS 2x4 SP No 2( flat)  
 OTHERS 2x4 SP No. 2( flat)

## BRACING

**FRAMING**  
**TOP CHORD** Structural wood sheathing directly applied or  
6-0-0 oc purlins, except end verticals.

**BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing

**REACTIONS (lb/size)** 15=866/0-3-8, (min. 0-1-8),  
28=866/0-3-8, (min. 0-1-8)

**FORCES** (lb) - Max. Comp./Max. Ten. - All forces 250  
(lb) or less except when shown

TOP CHORD 2-3=-1790/0, 3-4=-3132/0, 4-5=-4051/0,  
5-6=-4051/0, 6-7=-4560/0, 7-8=-4662/0,

8-9=-4580/0, 9-10=-4051/0, 10-11=-4051/0,  
 11-12=-3132/0, 12-13=-1790/0  
**BOT CHORD** 27-28=0/1061, 26-27=0/2560, 25-26=0/3688,  
 24-25=0/4396, 23-24=0/4396, 22-23=0/4662,

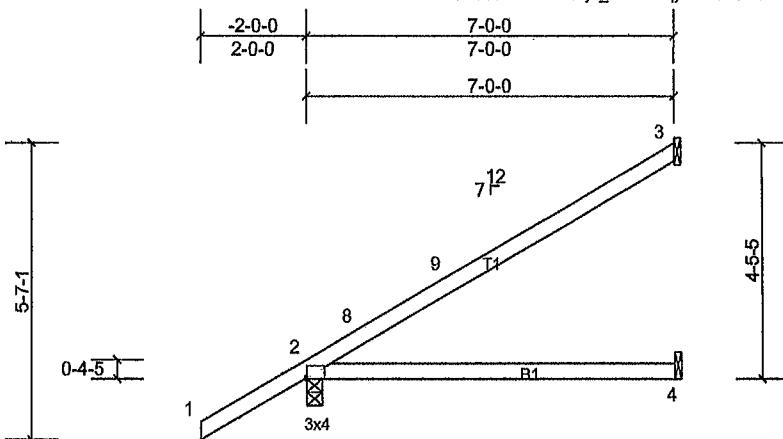
21-22=0/4662, 20-21=0/4662, 19-20=0/4396,  
18-19=0/4396, 17-18=0/3688, 16-17=0/2560,  
15-16=0/1061  
WEBS 2-28=-1311/0, 2-27=0/967, 3-27=-1019/0,

$$\begin{aligned}
 3-26 &= 0/758, 4-26 = -735/0, 4-25 = 0/481, \\
 6-25 &= -456/0, 6-23 = -22/386, 7-23 = -434/162, \\
 13-15 &= -1311/0, 13-16 = 0/967, 12-16 = -1019/0, \\
 12-17 &= 0/758, 11-17 = -735/0, 11-18 = 0/481, \\
 9-18 &= -456/0, 9-20 = -22/386, 8-20 = -434/162
 \end{aligned}$$

## NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x8 (1/8) MT20 unless otherwise indicated.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 cc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard


|                 |              |                         |           |          |                          |
|-----------------|--------------|-------------------------|-----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>J01 | Truss Type<br>Jack-Open | Qty<br>28 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|-------------------------|-----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Oct 14 14:00:46

Page: 1

ID:keAnJ36HFBNCjV\_LnCLG?qjTVmV-KBbRCUSHl99byCl5g!WaHoV1vG1GISQhCw1uWSyTUmn



Scale = 1.42.6

Plate Offsets (X, Y) [2:Edge,0-0-4]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | l/defl | L/d  | PLATES | GRIP          |          |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|--------|---------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1.25            | TC        | 0 57 | Vert(LL) | 0 09  | 4-7    | >939 | 240    | MT20          | 244/190  |
| TCDL        | 10 0  | Lumber DOL      | 1.25            | BC        | 0 50 | Vert(CT) | -0.21 | 4-7    | >403 | 180    |               |          |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0 00 | Horz(CT) | 0 00  | 3      | n/a  | n/a    |               |          |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |      |        | Weight: 26 lb | FT = 20% |

LUMBER

TOP CHORD 2x4 SP No.2  
BOT CHORD 2x4 SP No 2

BRACING

TOP CHORD Structural wood sheathing directly applied.  
BOT CHORD Rigid ceiling directly applied.

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

LOAD CASE(S) Standard

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

REACTIONS (lb/size) 2=415/0-3-8, (min. 0-1-8), 3=182/  
Mechanical, 4=79/ Mechanical

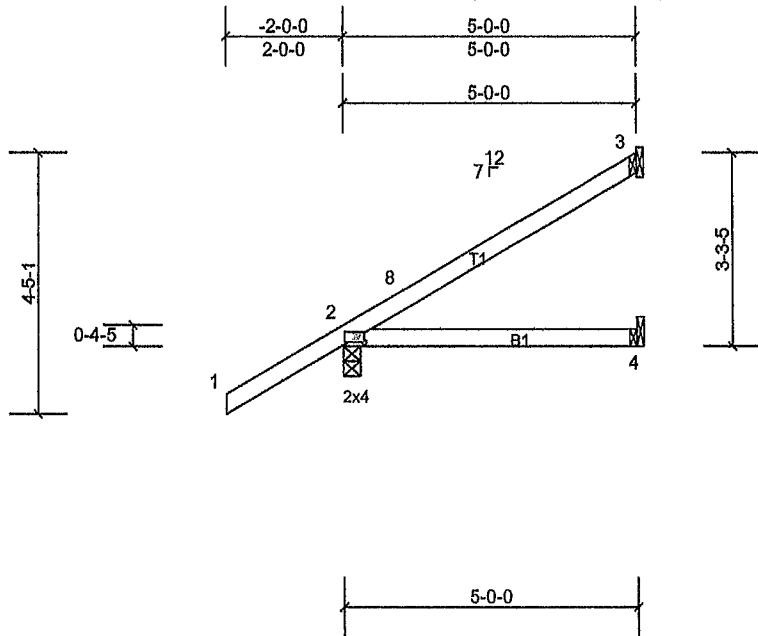
Max Horiz 2=165 (LC 12)  
Max Uplift 2=-56 (LC 12), 3=-65 (LC 12)  
Max Grav 2=415 (LC 1), 3=183 (LC 17),  
4=124 (LC 3)

FORCES (lb) - Max. Comp./Max. Ten - All forces 250  
(lb) or less except when shown

TOP CHORD 2-8=312/74

NOTES

- Wind ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf; BCDL=6 0psf; h=25ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed;  
MWFRS (directional) and C-C Zone3-2-0-0 to 1-0-0,  
Zone1 1-0-0 to 6-11-4 zone; cantilever left and right  
exposed, end vertical left and right exposed,C-C for  
members and forces & MWFRS for reactions shown;  
Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.
- This truss has been designed for a 10 0 psf bottom chord  
live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf  
on the bottom chord in all areas where a rectangle  
3-06-00 tall by 2-00-00 wide will fit between the bottom  
chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to  
bearing plate capable of withstanding 65 lb uplift at joint  
3 and 56 lb uplift at joint 2.


|                 |              |                         |          |          |                          |
|-----------------|--------------|-------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>J02 | Truss Type<br>Jack-Open | Qty<br>6 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|-------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:Cqk9XP6w0VV3LfZXKvsVY2yTVmU-KBbRCUSHI99byCl5gfWaHoV4SG5Q1SQhCw1uWSyTUmn



Scale = 1 38.2

**Plate Offsets (X, Y) [2:0-1-7,0-1-0]**

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | l/defl | L/d  | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|---------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1.25            | TC        | 0.34 | Ver(LL)  | 0.03  | 4-7    | >999 | 240           | MT20     |
| TCDL        | 10 0  | Lumber DOL      | 1.25            | BC        | 0.23 | Ver(CT)  | -0.05 | 4-7    | >999 | 180           |          |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0.00 | Horz(CT) | 0.00  | 3      | n/a  | n/a           |          |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |      | Weight. 20 lb | FT = 20% |

## LUMBER

TOP CHORD 2x4 SP No 2

BOT CHORD 2x4 SP No.2

## **BRACING**

**TOP CHORD** Structural wood sheathing directly applied  
**BOT CHORD** Rigid ceiling directly applied.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

**LOAD CASE(S)** Standard

**REACTIONS (lb/size)** 2=342/0-3-8, (min. 0-1-8), 3=121/  
Mechanical, 4=52/ Mechanical

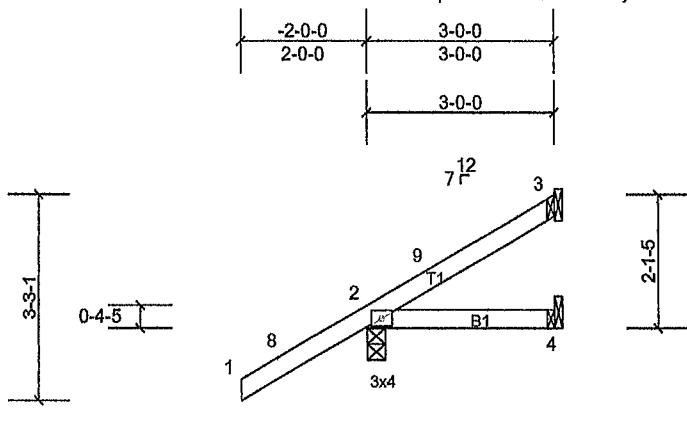
Max Horiz 2=132 (LC 12)  
Max Uplift 2=-66 (LC 12), 3=-41 (LC 12)  
Max Grav 2=342 (LC 1), 3=122 (LC 17), 4=81 (LC 3)

**FORCES** (lb) - Max Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 2-8=290/87

## NOTES

- 1) Wind. ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf, BCDL=6 0psf; h=25ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed,  
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,  
Zone1 1-0-0 to 4-11-4 zone; cantilever left and right  
exposed, end vertical left and right exposed, C-C for  
members and forces & MWFRS for reactions shown;  
Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10 0 psf bottom chord  
live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20.0psf  
on the bottom chord in all areas where a rectangle  
3-06-00 fall by 2-00-00 wide will fit between the bottom  
chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to  
bearing plate capable of withstanding 41 lb uplift at joint  
3 and 66 lb uplift at joint 2.


|                 |              |                         |          |          |                          |
|-----------------|--------------|-------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>J03 | Truss Type<br>Jack-Open | Qty<br>7 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|-------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:Cqk9XP6w0VV3l.fZXKvsVY2yTVmU-KBbRCUSH199byCl5gfWaHoV4GG7ZISQhCw1uWSyTUmn



Scale = 1 36.7

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL     | in       | (loc) | I/defl | L/d  | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|----------|----------|-------|--------|------|---------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1.25            | TC        | 0 35     | -0 01    | 4-7   | >999   | 240  | MT20          | 244/190  |
| TCDL        | 10 0  | Lumber DOL      | 1 25            | BC        | 0 09     | Vert(LL) | -0 01 | 4-7    | >999 | 180           |          |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0 00     | Vert(CT) | 0 00  | 2      | n/a  | n/a           |          |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-MP | Horz(CT) |          |       |        |      | Weight: 13 lb | FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No.2  
BOT CHORD 2x4 SP No 2

#### BRACING

TOP CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins.  
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

**MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.**

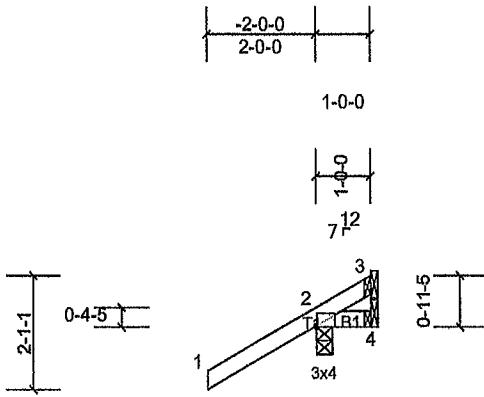
**REACTIONS** (lb/size) 2=278/0-3-8, (min 0-1-8), 3=57/  
Mechanical, 4=19/ Mechanical  
Max Horiz 2=99 (LC 12)  
Max Uplift 2=-84 (LC 12), 3=-15 (LC 12)  
Max Grav 2=278 (LC 1), 3=59 (LC 17), 4=47  
(LC 3)

**FORCES** (lb) - Max. Comp./Max. Ten - All forces 250  
(lb) or less except when shown.

#### NOTES

- 1) Wind ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6 0psf, BCDL=6 0psf; h=25ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed;  
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,  
Zone1 1-0-0 to 2-11-4 zone; cantilever left and right  
exposed, end vertical left and right exposed,C-C for  
members and forces & MWFRS for reactions shown,  
Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10 0 psf bottom chord  
live load nonconcurrent with any other live loads.
- 4) \* This truss has been designed for a live load of 20 0psf  
on the bottom chord in all areas where a rectangle  
3-06-00 tall by 2-00-00 wide will fit between the bottom  
chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to  
bearing plate capable of withstanding 15 lb uplift at joint  
3 and 84 lb uplift at joint 2.

**LOAD CASE(S)** Standard


|                 |              |                         |          |          |  |
|-----------------|--------------|-------------------------|----------|----------|--|
| Job<br>1025-005 | Truss<br>J04 | Truss Type<br>Jack-Open | Qty<br>7 | Ply<br>1 |  |
|-----------------|--------------|-------------------------|----------|----------|--|

Mayo Truss, Mayo, Fl, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:Cqk9XP6w0VV3LfZXKvsVY2yVmU-KBbRCUSH9byCl5gWaHoV4GG7dSQhCw1uWSyTUmn  
1-0-0



Scale = 1.41.4



Plate Offsets (X, Y) [2.Edge,0-0-4]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL     | in   | (loc) | I/defl | L/d | PLATES       | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|----------|------|-------|--------|-----|--------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1 25            | TC        | Vert(LL) | 0 00 | 7     | >999   | 240 | MT20         | 244/190  |
| TCDL        | 10 0  | Lumber DOL      | 1 25            | BC        | Vert(CT) | 0 00 | 7     | >999   | 180 |              |          |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | Horz(CT) | 0 00 | 2     | n/a    | n/a |              |          |
| BCDL        | 10 0  | Code            | FBC2023/TP12014 | Matrix-MP |          |      |       |        |     | Weight: 7 lb | FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No.2  
BOT CHORD 2x4 SP No 2

#### BRACING

TOP CHORD Structural wood sheathing directly applied or 1-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

**REACTIONS** (lb/size) 2=281/0-3-8, (min. 0-1-8), 3=29/ Mechanical, 4=53/ Mechanical

Max Horiz 2=67 (LC 12)

Max Uplift 2=149 (LC 12), 3=-29 (LC 1), 4=53 (LC 1)

Max Grav 2=281 (LC 1), 3=31 (LC 12), 4=51 (LC 12)

**FORCES** (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

#### NOTES

1) Wind ASCE 7-22, Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf; BCDL=6 0psf; h=25ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed,  
MWFRS (directional) and C-C Zone3 zone, cantilever left  
and right exposed, end vertical left and right exposed; C-  
C for members and forces & MWFRS for reactions  
shown, Lumber DOL=1 60 plate grip DOL=1 60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.

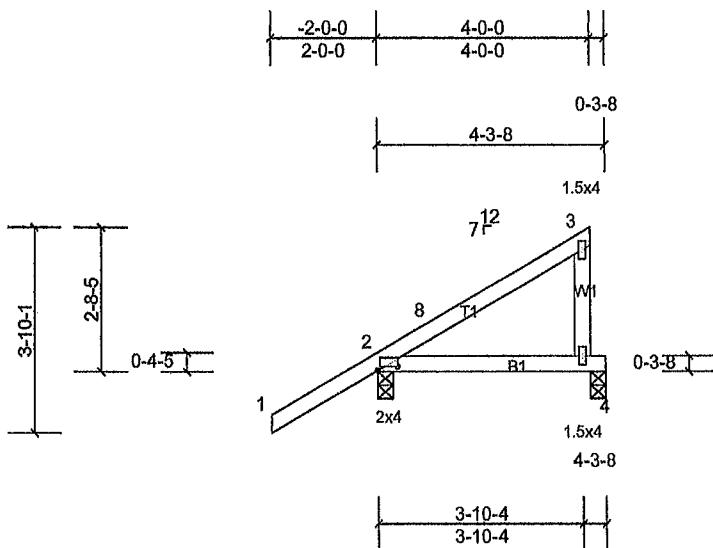
4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 3, 149 lb uplift at joint 2 and 53 lb uplift at joint 4

**LOAD CASE(S)** Standard

|                 |              |                         |          |          |                          |
|-----------------|--------------|-------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>M01 | Truss Type<br>Monopitch | Qty<br>8 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|-------------------------|----------|----------|--------------------------|


Mayo Truss, Mayo, FL, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID: 6PZy3DnQ30RGR6G622LOHeyTVld-KBbRCUSHt99byCl5g!WaHoV3eG6?ISQhCw1uWSyTUmn

4-3-8



Scale = 1.42 2

0-5-4

Plate Offsets (X, Y). [2 0-4-8, 0-0-14]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | l/defl | L/d  | PLATES | GRIP          |          |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|--------|---------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1.25            | TC        | 0 39 | Vert(LL) | -0 01 | 4-7    | >999 | 240    | MT20          | 244/190  |
| TCDL        | 10 0  | Lumber DOL      | 1.25            | BC        | 0 13 | Vert(CT) | -0 02 | 4-7    | >999 | 180    |               |          |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0 00 | Horz(CT) | 0 00  | 2      | n/a  | n/a    |               |          |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |      |        | Weight: 20 lb | FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No.2  
BOT CHORD 2x4 SP No.2  
WEBS 2x4 SP No.2

#### BRACING

TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD Rigid ceiling directly applied.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

LOAD CASE(S) Standard

**REACTIONS** (lb/size) 2=305/0-3-8, (min. 0-1-8), 4=123/0-3-8, (min. 0-1-8)

Max Horiz 2=138 (LC 12)

Max Uplift 2=-88 (LC 12), 4=-33 (LC 12)

Max Grav 2=305 (LC 1), 4=147 (LC 17)

**FORCES** (lb) - Max. Comp./Max. Ten - All forces 250 (lb) or less except when shown

TOP CHORD 2-8=309/109

#### NOTES

1) Unbalanced roof live loads have been considered for this design

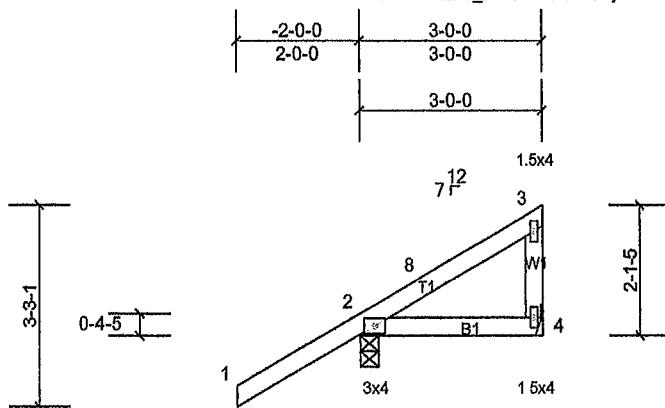
2) Wind ASCE 7-22, Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6 0psf, BCDL=6 0psf, h=25ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Partially  
Enclosed, MWFRS (directional) and C-C Zone3 -2-0-0 to  
1-0-0, Zone1 1-0-0 to 3-10-4 zone; cantilever left and  
right exposed, end vertical left exposed; C-C for  
members and forces & MWFRS for reactions shown,  
Lumber DOL=1 60 plate grip DOL=1 60

3) Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.

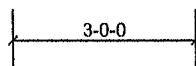
4) This truss has been designed for a 10 0 psf bottom chord  
live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20 0psf  
on the bottom chord in all areas where a rectangle  
3-06-00 tall by 2-00-00 wide will fit between the bottom  
chord and any other members.

6) Provide mechanical connection (by others) of truss to  
bearing plate capable of withstanding 33 lb uplift at joint  
4 and 88 lb uplift at joint 2.


|                 |              |                         |          |          |                          |
|-----------------|--------------|-------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>M03 | Truss Type<br>Monopitch | Qty<br>8 | Ply<br>1 | Job Reference (optional) |
|-----------------|--------------|-------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, Fl, Jason DeGroff


Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MiTek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:IoOBsalbD\_Ww1POUkmn9WWyTVKN-RPLwM6Pmpwf9UbRKRpRe7yKNRfmUMeQ6HI3gNhTUmrf



Scale = 1 36.5



| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | I/defl | L/d  | PLATES | GRIP          |          |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|------|--------|---------------|----------|
| TCLL (root) | 20.0  | Plate Grip DOL  | 1.25            | TC        | 0.41 | Vert(LL) | -0.01 | 4-7    | >999 | 240    | MT20          | 244/190  |
| TCDL        | 10.0  | Lumber DOL      | 1.25            | BC        | 0.10 | Vert(CT) | -0.01 | 4-7    | >999 | 180    |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB        | 0.00 | Horz(CT) | 0.00  | 2      | n/a  | n/a    |               |          |
| BCDL        | 10.0  | Code            | FBC2023/TPI2014 | Matrix-MP |      |          |       |        |      |        | Weight: 16 lb | FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No.2  
BOT CHORD 2x4 SP No.2  
WEBS 2x4 SP No.2

#### BRACING

TOP CHORD Structural wood sheathing directly applied or 3'-0-0 oc purlins, except end verticals.  
BOT CHORD Rigid ceiling directly applied or 10'-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS (lb/size) 2=276/0-3-8, (min 0-1-8), 4=72/  
Mechanical

Max Horiz 2=98 (LC 12)

Max Uplift 2=85 (LC 12)

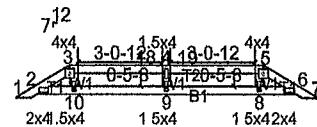
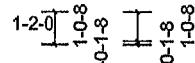
Max Grav 2=276 (LC 1), 4=76 (LC 17)

FORCES (lb) - Max. Comp./Max. Ten - All forces 250  
(lb) or less except when shown

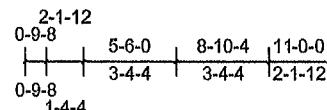
TOP CHORD 2-8=280/103

#### NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf; BCDL=6.0psf; h=25ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed,  
MWFRS (directional) and C-C Zone3 -2-0-0 to 1-0-0,  
Zone1 1-0-0 to 2-10-4 zone; cantilever left and right  
exposed, end vertical left exposed; C-C for members and  
forces & MWFRS for reactions shown; Lumber  
DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord  
live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf  
on the bottom chord in all areas where a rectangle  
3'-0-6-0 tall by 2'-0-0-0 wide will fit between the bottom  
chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to  
bearing plate capable of withstanding 85 lb uplift at joint



| Job      | Truss | Truss Type | Qty | Ply |                          |
|----------|-------|------------|-----|-----|--------------------------|
| 1025-005 | PB01  | Piggyback  | 2   | 1   | Job Reference (optional) |

Mayo Truss, Mayo, FL, Jason DeGroff


Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

|                                                                           |
|---------------------------------------------------------------------------|
| ID:k3?dVuTohcJD_kxgnSJO?TyTVIZ-KBbRCUSH99byCl5gfWaHoV7gG7]IS2hCw1uWSyTUmr |
| 2-0-0                                                                     |
| 5-6-0                                                                     |
| 9-0-0                                                                     |
| 11-0-0                                                                    |



Scale = 1 80.4



| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | I/defl | L/d | PLATES | GRIP                   |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|-----|--------|------------------------|
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1 26            | TC        | 0 14 | Vert(LL) | n/a   | -      | n/a | 999    |                        |
| TCDL        | 10.0  | Lumber DOL      | 1 25            | BC        | 0 08 | Vert(CT) | n/a   | -      | n/a | 999    |                        |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0 02 | Horz(CT) | 0 00  | 15     | n/a | n/a    |                        |
| BCDL        | 10.0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |     |        | Weight: 33 lb FT = 20% |

#### LUMBER

TOP CHORD 2x4 SP No.2  
BOT CHORD 2x4 SP No.2  
WEBS 2x4 SP No.2

#### BRACING

TOP CHORD Structural wood sheathing directly applied  
BOT CHORD Rigid ceiling directly applied.

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

#### REACTIONS

All bearings 9-4-15.  
(lb) - Max Horiz 2=20 (LC 10)  
Max Uplift All uplift 100 (lb) or less at joint(s)  
2, 6, 8, 9, 10  
Max Grav All reactions 250 (lb) or less at joint  
(s) 2, 6, 8, 10 except 9=309 (LC 23).

9) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 2, 6, 10, 8, 9, 2, 6

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer

#### LOAD CASE(S)

Standard

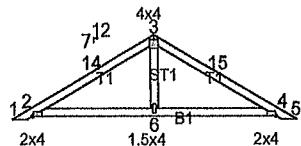
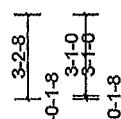
FORCES (lb) - Max. Comp./Max. Ten - All forces 250  
(lb) or less except when shown

#### NOTES

- Unbalanced roof live loads have been considered for this design
- Wind ASCE 7-22, Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf; BCDL=6 0psf; h=26ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed;  
MWFRS (directional) and C-C Zone3 0-3-8 to 2-0-0,  
Zone2 2-0-0 to 6-2-15, Zone1 6-2-15 to 9-0-0, Zone3  
9-0-0 to 10-8-8 zone; cantilever left and right exposed,  
end vertical left and right exposed; C-C for members and  
forces & MWFRS for reactions shown, Lumber  
DOL=1 60 plate grip DOL=1 60
- Truss designed for wind loads in the plane of the truss only For studs exposed to wind (normal to the face),  
see Standard Industry Gable End Details as applicable,  
or consult qualified building designer as per ANSI/TPI 1
- Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding
- Gable requires continuous bottom chord bearing
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10 0 psf bottom chord  
live load nonconcurrent with any other live loads.

|                 |               |                         |          |          |                          |
|-----------------|---------------|-------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>PB03 | Truss Type<br>Piggyback | Qty<br>5 | Ply<br>1 | Job Reference (optional) |
|-----------------|---------------|-------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, FL, Jason DeGroff



Run: 8.63 S Mar 20 2025 Print: 8.630 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:45

Page: 1

ID:gjfpuOjCSIWmtuK0x9/GTyTVfG-KBbRCUSH99byCl5gfWaHoV6gG5TISlhCw1uWSyTUmn

5-6-0 11-0-0

5-6-0 11-0-0 5-6-0



Scale = 1.86

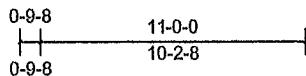



Plate Offsets (X, Y) [2 0-0-4,Edge], [4 0-0-4,Edge]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1 25            | TC        | 0.20 | Vert(LL) | n/a   | -      | n/a | MT20          | 244/190  |
| TCDL        | 10 0  | Lumber DOL      | 1 25            | BC        | 0.23 | Vert(CT) | n/a   | -      | n/a |               |          |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0 04 | Horz(CT) | 0 00  | 11     | n/a |               |          |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |     | Weight: 37 lb | FT = 20% |

**LUMBER**  
TOP CHORD 2x4 SP No 2  
BOT CHORD 2x4 SP No 2  
OTHERS 2x4 SP No.2

**BRACING**  
TOP CHORD Structural wood sheathing directly applied  
BOT CHORD Rigid ceiling directly applied.

MITek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

**REACTIONS** (lb/size) 2=216/9-4-15, (min. 0-1-8),  
4=216/9-4-15, (min 0-1-8),  
6=381/9-4-15, (min 0-1-8)  
Max Horiz 2=60 (LC 10)  
Max Uplift 2=38 (LC 12), 4=38 (LC 12)

**FORCES** (lb) - Max. Comp./Max. Ten - All forces 250  
(lb) or less except when shown

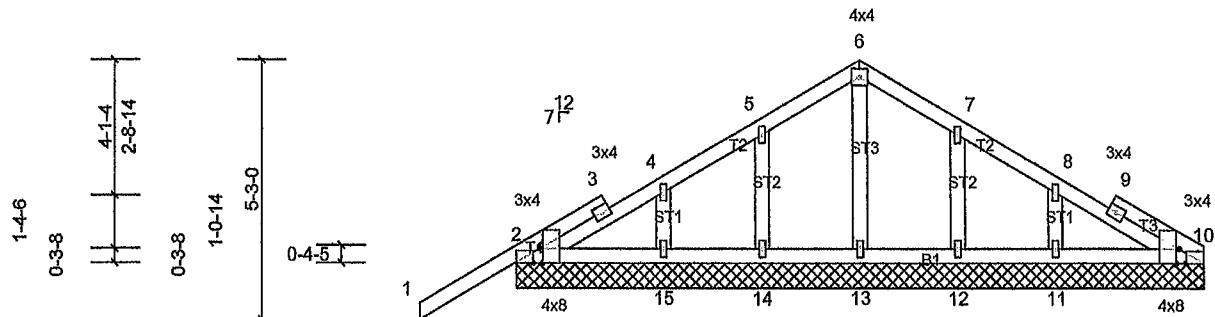
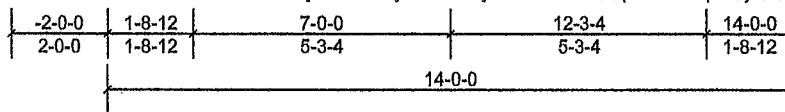
#### NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind ASCE 7-22; Vult=130mph (3-second gust)  
Vasd=101mph, TCDL=6.0psf, BCDL=6.0psf; h=25ft;  
B=45ft; L=24ft; eave=4ft; Cat. II, Exp B, Enclosed;  
MWFRS (directional) and C-C Zone3 0-3-8 to 3-3-8,  
Zone1 3-3-8 to 5-6-0, Zone2 5-6-0 to 9-8-8, Zone1 9-8-8  
to 10-8-8 zone, cantilever left and right exposed, end  
vertical left and right exposed, C-C for members and  
forces & MWFRS for reactions shown, Lumber  
DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss  
only. For studs exposed to wind (normal to the face),  
see Standard Industry Gable End Details as applicable,  
or consult qualified building designer as per ANSI/TPI 1
- 4) Building Designer / Project engineer responsible for  
verifying applied roof live load shown covers rain loading  
requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing
- 6) Gable studs spaced at 4-0-0 oc.
- 7) This truss has been designed for a 10 0 psf bottom chord  
live load nonconcurrent with any other live loads.

- 8) \* This truss has been designed for a live load of 20 0psf  
on the bottom chord in all areas where a rectangle  
3-06-00 tall by 2-00-00 wide will fit between the bottom  
chord and any other members.
- 9) Provide mechanical connection (by others) of truss to  
bearing plate capable of withstanding 100 lb uplift at joint  
(s) 2, 4, 2, 4.
- 10) This truss design requires that a minimum of 7/16"  
structural wood sheathing be applied directly to the top  
chord and 1/2" gypsum sheetrock be applied directly to  
the bottom chord
- 11) See Standard Industry Piggyback Truss Connection  
Detail for Connection to base truss as applicable, or  
consult qualified building designer

#### LOAD CASE(S)

Standard



|                 |                |                                      |          |          |                          |
|-----------------|----------------|--------------------------------------|----------|----------|--------------------------|
| Job<br>1025-005 | Truss<br>T01GE | Truss Type<br>Common Supported Gable | Qty<br>1 | Ply<br>1 | Job Reference (optional) |
|-----------------|----------------|--------------------------------------|----------|----------|--------------------------|

Mayo Truss, Mayo, FL, Jason DeGroff

Run: 8.83 S Mar 20 2025 Print: 8.830 S Mar 20 2025 MITek Industries, Inc. Tue Oct 14 14:00:46

Page: 1

ID: u0yNG8zO7CZyUXlfzI24R6yTVhW-RPLwM6Pmpwf9UbRKRpRe7yKPkfm0Me\_6HI3gNhyTUmr



Scale = 1.46.7

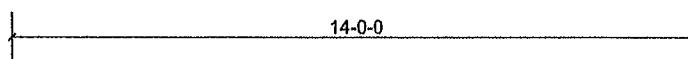



Plate Offsets (X, Y). [2:0-3-8,Edge], [2:0-1-9,Edge], [10:0-3-8,Edge], [10:0-1-9,Edge]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI       | DEFL | in       | (loc) | I/defl | L/d | PLATES | GRIP          |          |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|--------|-----|--------|---------------|----------|
| TCLL (roof) | 20 0  | Plate Grip DOL  | 1 25            | TC        | 0.26 | Vert(LL) | n/a   | -      | n/a | 999    | MT20          | 244/190  |
| TCDL        | 10 0  | Lumber DOL      | 1.25            | BC        | 0 07 | Vert(CT) | n/a   | -      | n/a | 999    |               |          |
| BCLL        | 0 0*  | Rep Stress Incr | YES             | WB        | 0 03 | Horz(CT) | 0 00  | 10     | n/a | n/a    |               |          |
| BCDL        | 10 0  | Code            | FBC2023/TPI2014 | Matrix-AS |      |          |       |        |     |        | Weight. 69 lb | FT = 20% |

**LUMBER**  
TOP CHORD 2x4 SP No 2  
BOT CHORD 2x4 SP No.2  
OTHERS 2x4 SP No.2

**BRACING**  
TOP CHORD Structural wood sheathing directly applied  
BOT CHORD Rigid ceiling directly applied.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

9) \* This truss has been designed for a live load of 20 0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 12, 11, 2.

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

**LOAD CASE(S)** Standard

**REACTIONS** All bearings 14-0-0.

(lb) - Max Horiz. 2=91 (LC 11)

Max Uplift All uplift 100 (lb) or less at joint(s)

2, 11, 12, 14

Max Grav All reactions 250 (lb) or less at joint(s) 10, 11, 12, 13, 14, 15 except

2=274 (LC 1)

**FORCES** (lb) - Max. Comp./Max. Ten - All forces 250  
(lb) or less except when shown

#### NOTES

1) Unbalanced roof live loads have been considered for this design

2) Wind ASCE 7-22; Vult=130mph (3-second gust)

Vasd=101mph, TCDL=6.0psf, BCDL=6 0psf, h=25ft, B=45ft, L=24ft, eave=2ft; Cat. II, Exp B, Enclosed, MWFRS (directional) and C-C Zone3 zone; cantilever left and right exposed, end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1 60 plate grip DOL=1 60

3) Truss designed for wind loads in the plane of the truss only For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1

4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

5) All plates are 1 5x4 (II) MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10 0 psf bottom chord live load nonconcurrent with any other live loads.