DATE 09/2	4/2008		oia County Bu		struction	PERMIT 000027361
APPLICANT	DONNY	WILLIAMS		PHONE	755-0764	
ADDRESS	541	SW AIRPARK GLEN	ı	LAKE CITY		FL 32025
OWNER	VALERIE	RYAN		PHONE	239 566-8008	
ADDRESS	130	SW WACO COURT		LAKE CITY		FL 32025
CONTRACTO	R DO	NNY WILLIAMS		PHONE	755-0764	
LOCATION O	F PROPER	SISTER'S V 1ST HOUSE	VELCOME ROAD, TL O	ON LOCKHEED LANI	E, TL ON WACO	<u> </u>
TYPE DEVEL	OPMENT	SFD,UTILITY	ESTI	MATED COST OF CO	NSTRUCTION	177500.00
HEATED FLO	OR AREA	1922.00	TOTAL AREA	3550.00	HEIGHT	STORIES 1
FOUNDATION	N CONC	. WALL	S FRAMED RO	OOF PITCH 12/12	FL	OOR SLAB
LAND USE &		RSF-2	1 KAMED	-		0
Minimum Set I	Back Requir	ments: STREET-F	RONT 25.00	REAR	15.00	SIDE 10.00
NO. EX.D.U.	0	FLOOD ZONE	<u>X</u> I	DEVELOPMENT PER	MIT NO.	
PARCEL ID	12-4S-16-	02935-122	SUBDIVISION	CANNON CREEK	ESTATES	
LOT 2	BLOCK	PHASE _	UNIT 0	ТОТ	AL ACRES 2.	03
Culvert Permit EXISTING Driveway Conr COMMENTS:		Culvert Waiver Co 08-629 Septic Tank Number	ontractor's License Numb		Applicant/Owner/ VR proved for Issuance Check # or C.	e New Resident
		EOD BIII	LDING & ZONING	2 DEDARTMENT		
Temporary Pov	var	FOR BU				(footer/Slab)
remporary rov		date/app. by	- Foundation	date/app. by	_ Monontine _	date/app. by
Under slab rou	gh-in plumb		Slab		Sheathing/	Nailing
		date/app		date/app. by		date/app. by
Framing			Rough-in plumbing abo	we slab and below woo	d floor	
Electrical roug	date/ap		10 W 10 10 10 10 10 10 10 10 10 10 10 10 10			date/app. by
Electrical roug		date/app. by	Heat & Air Duct	date/app. by	Peri. beam (Linte	date/app. by
Permanent pow		nte/app. by	C.O. Final	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Culvert	**************************************
M/H tie downs,		lectricity and plumbing		ite/app. by	Pool	date/app. by
Reconnection			date/app. Pump pole	Utility Po	le.	date/app. by
M/H Pole	te/app. by	date/app. by Trav	date/a	pp. by	date/app. by	date/app. by
BUILDING PE	RMIT FEE	\$890.00	CERTIFICATION FEE	\$17.75	SURCHARGE	E FEE \$17.75
MISC. FEES \$	0.00	ZONING	CERT. FEE \$ 50.00	FIRE FEE \$	WAST	TE FEE \$
FLOOD DEVE	LOPMENT	FEE\$ FLOO	DD ZONE FEE \$ 25.00	CULVERT FEE \$	тот	TAL FEE 1000.50
	OFFICE	The !	10/1/1-	CLERKS-OFFICE	(1)	

NOTICE: IN ADDITION TO THE REQUIREMENTS OF THIS PERMIT, THERE MAY BE ADDITIONAL RESTRICTIONS APPLICABLE TO THIS PROPERTY THAT MAY BE FOUND IN THE PUBLIC RECORDS OF THIS COUNTY. AND THERE MAY BE ADDITIONAL PERMITS REQUIRED FROM OTHER GOVERNMENTAL ENTITIES SUCH AS WATER MANAGEMENT DISTRICTS, STATE AGENCIES, OR FEDERAL AGENCIES.

"WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT."

EVERY PERMIT ISSUED SHALL BECOME INVALID UNLESS THE WORK AUTHORIZED BY SUCH PERMIT IS COMMENCED WITHIN 180 DAYS AFTER ITS ISSUANCE, OR IF THE WORK AUTHORIZED BY SUCH PERMIT IS SUSPENDED OR ABANDONED FOR A PERIOD OF 180 DAYS AFTER THE TIME THE WORK IS COMMENCED. A VALID PERMIT RECIEVES AN APPROVED INSPECTION EVERY 180 DAYS. WORK SHALL BE CONSIDERED TO BE IN ACTIVE PROGESS WHEN THE PERMIT HAS RECIEVED AN APPROVED INSPECTION WITHIN 180 DAYS.

The Issuance of this Permit Does Not Waive Compliance by Permittee with Deed Restrictions.

COLUMBIA COUNTY BUILDING DEPARTMENT RESIDENTIAL MINIMUM PLAN REQUIREMENTS AND CHECKLIST FOR THE FLORIDA RESIDENTIAL BUILDING CODE 2004 with 2005 & 2006 Supplements and One (1) and Two (2) Family Dwellings

ALL REQUIREMENTS ARE SUBJECT TO CHANGE

ALL BUILDING PLANS MUST INDICATE COMPLIANCE with the Current FLORIDA BUILDING CODES and the Current FLORIDA RESIDENTIAL CODE. ALL PLANS OR DRAWING SHALL PROVIDED CALCULATIONS AND DETAILS THAT HAVE THE SEAL AND SIGNATURE OF A CERTIFIED ARCHITECT OR ENGINEER REGISTERED IN THE STATE OF FLORIDA, OR ALTERNATE METHODOLOGIES, APPROVED BY THE STATE OF FLORIDA BUILDING COMMISSION FOR ONE-AND-TWO FAMILY DWELLINGS.

FOR DESIGN PURPOSES THE FOLLOWING BASIC WIND SPEEDS ARE PER FIGURE R301.2(4) of the Residential Code (Florida Wind speed map) SHALL BE USED.

WIND SPEED LINE SHALL BE DEFINED AS FOLLOWS: THE CENTERLINE OF INTERSTATE 75.

- ALL BUILDINGS CONSTRUCTED EAST OF SAID LINE SHALL BE ------ 100 MPH
- 2. ALL BUILDINGS CONSTRUCTED WEST OF SAID LINE SHALL BE ------110 MPH
- 3. NO AREA IN COLUMBIA COUNTY IS IN A WIND BORNE DEBRIS REGION

GENERAL REQUIREMENTS;

- Two (2) complete sets of plans containing the following:
- All drawings must be clear, concise and drawn to scale, details that are not used shall be marked void
- Condition space (Sq. Ft.) and total (Sq. Ft.) under roof shall be shown on the plans.
- Designers name and signature shall be on all documents and a licensed architect or engineer, signature and official embossed seal shall be affixed to the plans and documents per FBC 106.1.

Site Plan information including:

- Dimensions of lot or parcel of land
- Dimensions of all building set backs
- Location of all other structures (include square footage of structures) on parcel, existing or proposed well and septic tank and all utility easements.
 - Provide a full legal description of property.

Wind-load Engineering Summary, calculations and any details required:

- Plans or specifications must meet state compliance with FRC Chapter 3
- The following information must be shown as per section FRC
- Basic wind speed (3-second gust), miles per hour
- Wind importance factor and nature of occupancy
- Wind exposure if more than one wind exposure is used, the wind exposure and applicable wind direction shall be indicated
- The applicable internal pressure coefficient, Components and Cladding The design wind pressure in terms of psf (kN/m2), to be used for the design of exterior component and cladding materials not specifally designed by the registered design professional.

Elevations Drawing including:

- All side views of the structure
- Roof pitch
 - Overhang dimensions and detail with attic ventilation
- Location, size and height above roof of chimneys
 - Location and size of skylights with Florida Product Approval
- Number of stories
 - e) Building height from the established grade to the roofs highest peak

All pro	Dimensioned area plan showing rooms, attached garage, breeze ways, covered porches, deck, balconies and raised floor surfaces located more than 30 inches above the floor or grade All exterior and interior shear walls indicated Shear wall opening shown (Windows, Doors and Garage doors Emergency escape and rescue opening in each bedroom (net clear opening shown) Safety glazing of glass where needed Fireplaces types (gas appliance) (vented or non-vented) or wood burning with Hearth (see chapter 10 of FRC) Stairs with dimensions (width, tread and riser and total run) details of guardrails, Handrails (see FRC 311) Plans must show and identify accessibility of bathroom (see FRC 322) materials placed within opening or onto/into exterior shear walls, soffits or roofs shall have Florida duct approval number and mfg. installation information submitted with the plans (see Florida product roval form)
J. J. J.	a) Location of all load-bearing walls footings indicated as standard, monolithic, dimensions, size and type of reinforcing. b) All posts and/or column footing including size and reinforcing c) Any special support required by soil analysis such as piling. d) Assumed load-bearing valve of soil (psf) e) Location of horizontal and vertical steel, for foundation or walls (include # size and type)
CO	ONCRETE SLAB ON GRADE Per FRC R506 Show Vapor retarder (6mil. Polyethylene with joints lapped 6 inches and sealed) Show control joints, synthetic fiber reinforcement or welded fire fabric reinforcement and Supports
P	ROTECTION AGAINST TERMITES Per FRC 320: Indicate on the foundation plan if soil treatment is used for subterranean termite prevention or submit other approved termite protection methods. Protection shall be provided by registered termiticides
Me	Show all materials making up walls, wall height, and Block size, mortar type Show all Lintel sizes, type, spans and tie-beam sizes and spacing of reinforcement tal frame shear wall and roof systems shall be designed, signed and sealed by Florida Prof. gineer or Architect
~	Floor truss package shall including layout and details, signed and sealed by Florida Registered Professional Engineer
8	Show conventional floor joist type, size, span, spacing and attachment to load bearing walls, stem walls and/or priers Girder type, size and spacing to load bearing walls, stem wall and/or priers Attachment of joist to girder Wind load requirements where applicable
~	Show required under-floor crawl space Show required amount of ventilation opening for under-floor spaces

Show required covering of ventilation opening.

intermediate of the areas structural panel sheathing Show Draft stopping, Fire caulking and Fire blocking

Show the required access opening to access to under-floor spaces

Provide live and dead load rating of floor framing systems (psf).

Show the sub-floor structural panel sheathing type, thickness and fastener schedule on the edges &

Show fireproofing requirements for garages attached to living spaces, per FRC section R309

2

WOOD WALL FRAMING CONSTRUCTION FRC CHAPTER 6

- Stud type, grade, size, wall height and oc spacing for all load bearing or shear walls.
- Fastener schedule for structural members per table R602.3 (1) are to be shown.
- Show wood structural panel's sheathing attachment to studs, joist, trusses, rafters and structural members, showing fastener schedule attachment on the edges & intermediate of the areas structural panel sheathing
- Show all required connectors with a max uplift rating and required number of connectors and oc spacing for continuous connection of structural walls to foundation and roof trusses or rafter systems.
- Show sizes, type, span lengths and required number of support jack studs, king studs for shear wall opening and girder or header per FRC Table R502.5 (1)
- Indicate where pressure treated wood will be placed.
- Show all wall structural panel sheathing, grade, thickness and show fastener schedule for structural panel sheathing edges & intermediate areas
- A detail showing gable truss bracing, wall balloon framing details or/ and wall hinge bracing detail

ROOF SYSTEMS:

- Truss design drawing shall meet section FRC R802.10 Wood trusses. Include a layout and truss details and be signed and sealed by Fl. Pro. Eng.
- Show types of connector's assemblies' and resistance uplift rating for all trusses and rafters
- Show gable ends with rake beams showing reinforcement or gable truss and wall bracing details
- Provide dead load rating of trusses

Conventional Roof Framing Layout Per FRC 802:

- Rafter and ridge beams sizes, span, species and spacing
- Connectors to wall assemblies' include assemblies' resistance to uplift rating.
- Valley framing and support details
- Provide dead load rating of rafter system.

ROOF SHEATHING FRC Table R602,3(2) FRC 803

Include all materials which will make up the roof decking, identification of structural panel sheathing, grade, thickness and show fastener schedule for structural panel sheathing on the edges & intermediate areas

ROOF ASSEMBLIES FRC Chapter 9

Include all materials which will make up the roof assembles covering; with Florida Product Approval numbers for each component of the roof assembles covering.

FCB Chapter 13 Florida Energy Efficiency Code for Building Construction

- Residential construction shall comply with this code by using the following compliance methods in the FBC Subchapter 13-6, Residential buildings compliance methods. Two of the required forms are to be submitted, showing dimensions condition area equal to the total condition living space area
- Show the insulation R value for the following areas of the structure: Attic space, Exterior wall cavity and Crawl space (if applicable)

HVAC information shown

- Manual J sizing equipment or equivalent computation
- Exhaust fans locations in bathrooms

Plumbing Fixture layout shown

All fixtures waste water lines shall be shown on the foundation plan

Electrical layout shown including:

- Switches, outlets receptacles, lighting and all required GFCI outlets identified
- Ceiling fans
- Smoke detectors
- Service panel, sub-panel, location(s) and total ampere ratings

- On the electrical plans identify the electrical service overcurrent protection device for the main electrical service. This device shall be installed on the exterior of structures to serve as a disconnecting means for the utility company electrical service. Conductors used from the exterior disconnecting means to a panel or sub panel shall have four-wire conductors, of which one conductor shall be used as an equipment ground. Indicate if the utility company service entrance cable will be of the overhead or underground type.
- Appliances and HVAC equipment and disconnects
- Arc Fault Circuits (AFCI) in bedrooms
- Notarized Disclosure Statement for Owner Builders
- Notice of Commencement Recorded (in the Columbia County Clerk Office) Notice
 Of Commencement is required to be filed with the building department Before Any
 Inspections Will Be Done.

Private Potable Water

- Size of pump motor
- Size of pressure tank
- Cycle stop valve if used

THE FOLLOWING ITEMS MUST BE SUBMITTED WITH BUILDING PLANS

- Building Permit Application: A current Building Permit Application form is to be completed and submitted for all residential projects.
- Parcel Number: The parcel number (Tax ID number) from the Property Appraiser (386) 758-1084 is required. A copy of property deed is also requested.
- Environmental Health Permit or Sewer Tap Approval: A copy of the Environmental Health permit, existing septic approval or sewer tap approval is required before a building permit can be issued. (386) 758-1058 (Toilet facilities shall be provided for construction workers)
- <u>City Approval:</u> If the project is to be located within the city limits of the Town of Fort White, prior approval is required. The Town of Fort White approval letter is required to be submitted by the owner or contractor to this office when applying for a Building Permit. (386) 497-2321
- Flood Information: All projects within the Floodway of the Suwannee or Santa Fe Rivers shall require permitting through the Suwannee River Water Management District, before submitting application to this office. Any project located within a flood zone where the base flood elevation (100 year flood) has been established shall meet the requirements of Section 8.8 of the Columbia County Land Development Regulations. Any project located within a flood zone where the base flood elevation has not been established (Zone A) shall meet the requirements of Section 8.7 of the Columbia County Land Development Regulations. CERTIFIED FINISHED FLOOR ELEVATIONS WILL BE REQUIRED ON ANY PROJECT WHERE THE BASE FLOOD ELEVATION (100 YEAR FLOOD) HAS BEEN ESTABLISHED. A development permit will also be required. The permit cost is \$50.00.
- <u>Driveway Connection:</u> If the property does not have an existing access to a public road, then an application for a culvert permit (\$25.00) must be made. If the applicant feels that a culvert is not needed, they may apply for a culvert waiver (\$50.00). All culvert waivers are sent to the Columbia County Public Works Department for approval or denial.
- 911 Address: If the project is located in an area where the 911 address has been issued, then the proper Paper work from the 911 Addressing Departments must be submitted. (386) 758-1125

ALL REQUIRED INFORMATION IS TO BE SUBMITTED FOR REVIEW. NOTIFICATION WILL BE GIVEN WHEN THE APPLICATION AND PLANS ARE APPROVED AND READY TO PERMIT.

PRODUCT APPROVAL OFECIFICATION SHEET

Location:	Project Name:
Location.	22 places provide the information and the
As required by Flo. da Statute 553.842 at	nd Florida Administrative Code 9B-72, please provide the information and the

product approval number(s) on the building components listed below if they will be utilized on the construction project for which you are applying for a building permit on or after April 1, 2004. We recommend you contact your local product supplier should you not know the product approval number for any of the applicable listed products. More information about statewide product approval can be obtained at www.floridabuilding.org

Category/Subcategory	Manufacturer	Product Description	Approval Number(s)
A. EXTERIOR DOORS			20-0.00
1. Swinging	THERMATOR	68 STEEL/WOOD UPTO GFT OPE	10 01-0828,00
Sliding	1110000	INCLUDES SIDELITES	
3. Sectional			
Roll up Automatic		4.4.	
6. Other			The second secon
	Dan Las & Per	TER BUIT. SINGLE ITUNG	AAMA CERT BE
B. WINDOWS SILVERLINE	CAPITAL TOOL	740, 165, 3240, 4250, Seeies	101/18,297
Single hung	In I Products	140,162, 32,00	CTLA-744W-B
Horizontal Slider			
3. Casement			
4. Double Hung		740 165 3240 4250 Soleies	01-35673.05
5. Fixed		140 165 3240 4230	-
6. Awning			
7. Pass -through			
8. Projected		- de de de des Cons	1.20172 02
9. Mullion	MI Products	740, 165, 3240, 4250 Sepies	01-33613,03
10. Wind Breaker			
11 Dual Action			
12. Other			
. PANEL WALL			
1. Siding (Sheer Wall)	NOR BOORD	8'-9'x10' OSB WALL Sheeting	NER 108
2. Soffits	140.	WINDSTROM	
3. EIFS			
4. Storefronts			
5. Curtain walls			
6. Wall louver			
7. Glass block			
	BARRICADE	BUILDING WRAP FED SPEC.	44 B790A
8. Membrane	DARCITADE	BUILDING SOM	
9. Greenhouse			
10. Other			Company of the Compan
D. ROOFING PRODUCTS	De con a series	2542 + 3042 ASPYAT/FIREGUES Ship de	ST-20020 2008
Asphalt Shingles	CERTAINTEED	SAE 4 SOUR HAPARI THE GUAS SHOWS	ASTMD-486
Underlayments	WOODLAND	15# 30# FELT	13111111111
Roofing Fasteners			-
Non-structural Metal Rf			-
5. Built-Up Roofing			
Modified Bitumen			
7. Single Ply Roofing Sys			
8. Roofing Tiles			
9. Roofing Insulation			
10. Waterproofing			
11. Wood shingles /shakes			
12. Roofing Slate	1		

1 1 m 1 1 m (n m 1)	Manufacturer	Product Descript	ion	Approval Number(s
ategory/Subcategory (cont.)	Manuacture			
13. Liquid Applied Roof Sys				
14. Cements-Adhesives -				
Coatings				
15. Roof Tile Adhesive				
16. Spray Applied Polyurethane Roof				
17. Other				
SHUTTERS				
1. Accordion				
2. Bahama				
3. Storm Panels				
4. Colonial				
5. Roll-up				
6. Equipment				
7. Others				
SKYLIGHTS				
1. Skylight				
2. Other				
STRUCTURAL				
COMPONENTS				
 Wood connector/anchor 		-		
2. Truss plates				
Engineered lumber				
Railing				
Coolers-freezers		-		
Concrete Admixtures				
7. Material				
8. Insulation Forms				
9. Plastics	Managara	11.01 008	The" Roof Dock	NER 108
10. Deck-Roof	NORBOARD	4.X8. 020	16 1001 1205	
11. Wall				
12. Sheds				
13. Other				-
NEW EXTERIOR				
ENVELOPE PRODUCTS				
^				583
11. Wall 12. Sheds 13. Other H. NEW EXTERIOR ENVELOPE PRODUCTS 1. 2. The products listed below ditime of inspection of these products.	id not demonstr	rate product approlowing information	oval at plan review. I un must be available to	ne product was te
i contains	2) CODY OF THE 2	applicable manur	ACTOL CLO ILLOCOLLOCATION	
understand these products	J copy of the c	1 16	aval cannot be demon	strated during inspect
l understand these products	may have to be	e removed if appi	oval cannot be demon	Strated daring map
	4			0//02
11 01 / 11)011	_ \		Donald E Willia	Uns 4/1/08
parod & recept			Print Name	Date
ontractor or Contractor's Authorize	d Agent Signature		rant vanc	
			Permit # (FOR STAFF U	SE ONLY)
ocation			remit # (FORSTAFF C	
	Website:			Effective April 1. 2

Website:

02/02/04 - 2 of 2

ITW Building Components Group, Inc.

1950 Marley Drive Haines City, FL 33844
Florida Engineering Certificate of Authorization Number: 0 278
Florida Certificate of Product Approval # FL1999
Page 1 of 1 Document ID:1TKE8228Z0226160520

Truss Fabricator: Anderson Truss Company

Job Identification: 8-207--Fill in later DONNY WILLIAMS -- , **

Truss Count: 58

Dof Doccription

Model Code: Florida Building Code 2004 and 2006 Supplement

Truss Criteria: ANSI/TPI-2002 (STD) /FBC

Engineering Software: Alpine Software, Versions 7.36, 7.37.

Structural Engineer of Record: The identity of the structural EOR did not exist as of

Address: the seal date per section 61G15-31.003(5a) of the FAC

Minimum Design Loads: Roof - 40.0 PSF @ 1.25 Duration

Floor - N/A

Wind - 110 MPH ASCE 7-02 -Closed

Notes:

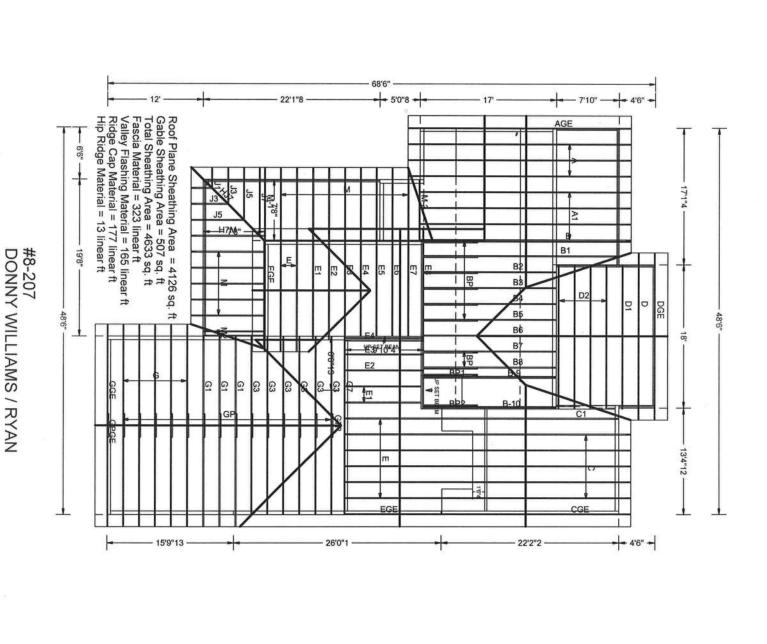
- Determination as to the suitability of these truss components for the structure is the responsibility of the building designer/engineer of record, as defined in ANSI/TPI 1
- 2. The drawing date shown on this index sheet must match the date shown on the individual truss component drawing.
- 3. As shown on attached drawings; the drawing number is preceded by: HCUSR8228

Details: BRCLBSUB-A11030EE-GBLLETIN-PIGBACKB-A11015EE-

Drawing#

L#	Ret Description	Drawing#	Date
1	23499 A1	08239066	08/26/08
2	23500 B7	08239099	08/26/08
3	23501 B8	08239085	08/26/08
4	23502A	08239076	08/26/08
5	23503 AGE	08239108	08/26/08
6	23504 B1	08239082	08/26/08
7	23505 B2	08239093	08/26/08
8	23506B3	08239083	08/26/08
9	23507 B4	08239081	08/26/08
10	2350885	08239080	08/26/08
11	23509B-9	08239107	08/26/08
12	23510 B - 10	08239110	08/26/08
13	23511В	08239077	08/26/08
14	2351286	08239084	08/26/08
15	23513C	08239102	08/26/08
16	23514C1	08239103	08/26/08
17	23515 CGE	08239101	08/26/08
18	23516D	08239075	08/26/08
19	23517D1	08239087	08/26/08
20	23518D2	08239089	08/26/08
21	23519 DGE	08239086	08/26/08
22	23520 E	08239074	08/26/08
23	23521E1	08239078	08/26/08
24	23522E2	08239079	08/26/08
25	23523 E8	08239006	08/26/08
26	23524 E7	08239007	08/26/08
27	23525 - · E6	08239008	08/26/08
28	23526 E5	08239009	08/26/08
29	23527 E4	08239010	08/26/08
30	23528 E3	08239104	08/26/08
31	23529 EGE	08239105	08/26/08
32	23530E4	08239112	08/26/08
33	23531 E3	08239098	08/26/08
34	23532E2	08239097	08/26/08
35	23533E1	08239100	08/26/08
36	23534E	08239096	08/26/08

#	Ref Description	Drawing#	Date
37	23535 EGE	08239095	08/26/08
38	23536G1	08239091	08/26/08
39	23537 G	08239092	08/26/08
40	23538G3	08239094	08/26/08
41	23539GGE	08239088	08/26/08
42	23540G7	08239011	08/26/08
43	23541J1	08239072	08/26/08
44	23542HJ7	08239069	08/26/08
45	23543J3	08239071	08/26/08
46	23544J5	08239070	08/26/08
47	23545 J7	08239073	08/26/08
48	23546M-3	08239065	08/26/08
49	23547 H7M	08239067	08/26/08
50	23548M-1	08239111	08/26/08
51	23549 M	08239064	08/26/08
52	23550 M2	08239068	08/26/08
53	23551BP	08239012	08/26/08
54	23552BP1	08239106	08/26/08
55	23553 BP2	08239013	08/26/08
56	23554GP	08239014	08/26/08
57	23555GPGE	08239090	08/26/08
58	23556G7P	08239109	08/26/08



-Truss Design Engineer-Doug Fleming Florida License Number: 66648 i950 Marley Drive Haines City, FL 33844

JOB NO: 8-207 PAGE NO: 1 OF 1

JOB DESCRIPTION:: Fill in later /: DONNY WILLIAMS

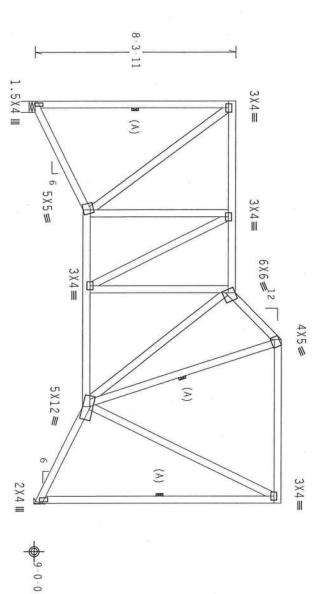
Top chord 2x4 SP | Bot chord 2x4 SP | Webs 2x4 SP | Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50\,\mathrm{cm}$ Roof overhang supports 2.00 psf soffit load PLT TYP. 8-207--Fill in later DONNY WILLIAMS --TW Building Components Group Inc. Haines City, FL 33844 FL COA #0 278 ALPINE Wave #2 Dense #2 Dense #3 $2X4(A1) \equiv$ R=294 U=90 W=3.5" **WARNING** TRUSSES REQUIRE EXTREME CARE IN FARRICATION. HANDLING. SHIPPING, INSTALLING AND BRACING. RETER TO BCSI. (BUILDING COMPONENT SAFETY INFORMATION), PUBLISHED BY TPI (TRUSS PLATE INSTITUTE, 218 NORTH LIE STREET, SUITE 132. ALEXANGRA, VA. 22:14) AND TRUS COUNCIL OF ARREAGA. 6300 CHIESPRISE LAME, MADISON, H. 53/19) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OTHERWISE HOLGATED TO FUNDO SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED RIGID CELLING. BUILDING DESIGNER PER ANSI/TPI I SEC. 8-1-12 8-0-12 8-3-8 8-3-8 11-7-2 Design Crit: ** Al) 4 X 4 == 3X4= R-1272 U-84 W-5.5" Ma TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) 24-10-0 Over 4-0-0 4-0-0 6 5 X 5 / 5X8= 12 Supports 5-2-4 4-5-14 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED within 4.50 ft from roof edge, CAT II, EXP B, wind wind BC DL=5.0 psf. IW=1.00 GCpi(+/-)=0.18 8-1-0 Shim all supports to solid bearing. Wind reactions based on MWFRS pressures. 4 X 4 ≡ 4 X 8 ≡ 3-7-2 3X4/ CENS, No. 66648 5 X 5 ₩ 4-5-8 4-5-8 12 R-661 U-29 1.5X4 Ⅲ 3X4/ BC LL BC DL TC DL DUR.FAC. SPACING TOT.LD. FL/-/4/-→9-0-0 1-3-15 24.0" 1.25 40.0 10.0 PSF 20.0 PSF 10.0 PSF 0.0 PSF TC DL=5.0 PSF REF SEQN-DATE HC-ENG DRW HCUSR8228 08239066 JREF -Scal located psf, le = .25"/Ft.R8228-1TKE8228Z02 DF / DF 38499 08/26/08 9 23499

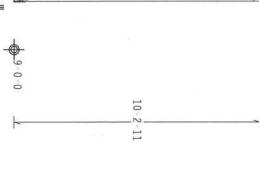
8-207--Fill in later DONNY WILLIAMS --87)

Bot p chord 2x4 SP t chord 2x4 SP Webs 2x4 SP #2 Dense #2 Dense #3

End verticals not exposed to wind pressure

(A) Continuous lateral bracing equally spaced on member.


Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.


110 mph wind, 18.27 ft mean hgt, ASCE 7-02, CLOSED within 4.50 ft from roof edge, CAT II, EXP B, wind wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18 bldg, not TC DL=5.0 psf,

Wind reactions based on MWFRS pressures.

In lieu of structural panels use purlins to brace all flat TC @ 0C.

Provide for complete drainage of roof.

U=71 W=5.5"	4-5-8	7-	4-7-4
	<u> </u>	10-8	*
(-16-6-8 Over		3-3-4
1	0ver 2 Supports	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+1-11-Q1 4-9-12
R-74	4-0-0	6-9-0	6-9-0
740 U-121	v v	_	

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/ /10(0)

Wave

A PROPERLY ATTACHED RIGID CEILING

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE BCG, INC. SHALL NOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN. ANY FAILURE TO BUILD THE TRUSS IN COMPORMACE WITH FPI; OR FARELECTION, MANULUG, SUPPING, INSTALLING A BRACILE OF TRUSSES, OR AND TOTAL DESIGN CONFIDENCY HAS A PROPERLY FOR THE APPLICABLE PROVISIONS OF HIS (MATIONAL DESIGN SPEC, BY AFREA) AND TPI. ITH BCG CONFIDENCY HIS ARE MADE OF ZOIDS FORMACK (MIJESEN) ASTROMATION HIS DESIGN, POSITION PER BRAHINGS 160A-Z. ANY HISSECTION OF PLATES FOLUCIOUS BY (1) SHALL BE PER ANNEX A OF THIS DESIGN. AND ANY AND THE SUITABLE OF PROFESSIONAL ENGLINEERING RESPONSIBILITY SOLELY FOR THE TRUSS COMPONENT DESIGN SHOWN.

BESIDES SHOWN.

THE SUITABLE OF PROFESSIONAL ENGLINEERING RESPONSIBILITY SOLELY FOR THE TRUSS COMPONENT DESIGN SHOWN.

THE SUITABLE OF PROFESSIONAL ENGLINEERING RESPONSIBILITY SOLELY FOR THE TRUSS COMPONENT DESIGN SHOWN.

7.36. STONAL ENGINEE CENS lo. 66648 80 BC LL DUR.FAC. BC DL TC DL TC LL SPACING TOT.LD. FL/-/4/-/-/R/-20.0

10.0 PSF 10.0 PSF

DRW HCUSR8228 08239099

PSF

Scale = .25"/Ft.

R8228- 23500

DATE REF

08/26/08

24.0" 1.25 40.0 0.0 PSF PSF

JREF -

1TKE8228Z02

SEQN-

HC-ENG

DF / DF 38532

ITW Building Components Group Haines City, FL 33844 FL COA #0 278

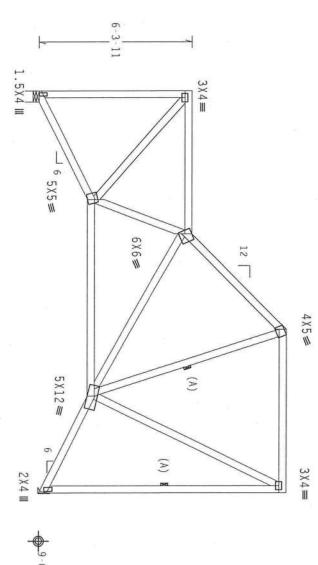
ALPINE

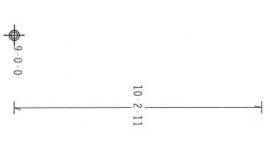
8-207--Fill in later DONNY WILLIAMS --* 88

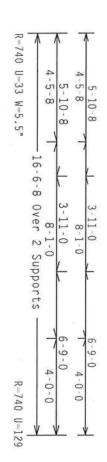
Top chord 2x4 SP Bot chord 2x4 SP Webs 2x4 SP #2 Dense #2 Dense #3

End verticals not exposed to wind pressure

(A) Continuous lateral bracing equally spaced on member.


Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.


110 mph wind, 17.27 ft mean hgt, ASCE 7-02, CLOSED within 4.50 ft from roof edge, CAT II, EXP B, wind wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18 bldg, not TC DL=5.0 located psf,


Wind reactions based on MWFRS pressures.

In lieu of structural panels use purlins to brace all flat TC @ OC.

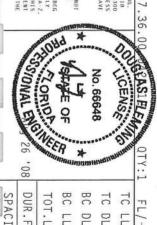
Provide for complete drainage of roof.

PLT

TYP.

Wave

WARNING TRUSSES REDUIRE EXTREME CARE IN FARRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, REFER TO BEST (BUILDING COMPORENT SAFETY INFORMATION), PUBLISHED BY TPI (TRUSS PLATE INSTITUTE, 219 HORTH LEE STREIT, SUITE 312, ALEXANDRIA, VA. 22314) AND NEGA (A000 TRUSS COUNCELS MATERICA, 6300 ENTREPASE LANE, MADISON, NI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNITESS OPHERAL'S INDICATED TOP CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PANELS AND DOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PANELS AND DOTTOM CHORD SHALL HAVE


IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE BEG. THE. SHALL NOT BE RESPONSIBLE FOR ANY DEPLATION FROM THIS DESIGN, ANY FALLURE FOR BUILD THE TRUSS IN COMPORNANCE WITH IT: OR FARRICATHO, MANDLING. SHIPPING, INSTALLING A BRACHE OF TRUSSES. IN COMPORNS HITH APPLICABLE PROPYSIONS OF THIS CHAILING A BRACHE OF THE APPLICABLE PROPYSIONS OF THIS CHAILING A BRACHE OF MANDLING. SHIPPING, INSTALLING A BRACHE OF MANDLING AND THIS DESIGN SHIP. OF THE APPLICABLE PROPYSIONS OF THIS ARE AND CONTRACT OF THIS DESIGN AND THIS DESIGN OF MANDLING ARE ARE AND COLORED OF THIS DESIGN AND THE TRUSS COMPORERS DESIGN AND THE TRUSS DESIGN AND THE

TW Building Components Group

ALPINE

Haines City, FL 33844 FL COA #0 278

BUILDING BESIGNER PER ANSI/TPI 1 SEC.

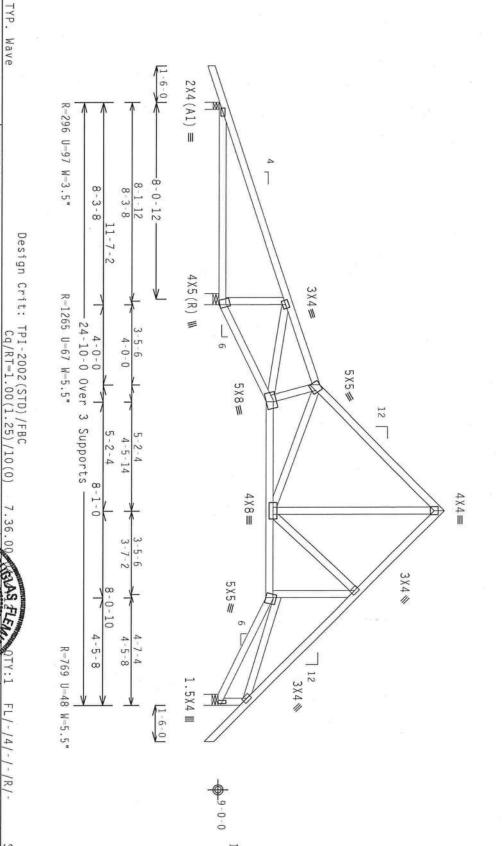
SPACING	NALE 26 '08 DUR.FAC. 1.25	TOT.LD.	BC LL	BC DL	TC DL	TC LL
24.0"	25	40.0 PSF	0.0 PSF	10.0 PSF	10.0 PSF	20.0 PSF
JREF - 1TKE8228Z02		SEQN- 38537	HC-ENG DF/DF	DRW HCUSR8228 082390	DATE 08/26/08	REF R8228- 23501

08239085

Scale =

.25"/Ft.

Top chord 2x4 SP #2 Dense Bot chord 2x4 SP #2 Dense Webs 2x4 SP #3


Roof overhang supports 2.00 psf soffit load

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50\,\mathrm{cm}$

110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18

Wind reactions based on MWFRS pressures

Shim all supports to solid bearing.

9

NORTH LEE STREET, SUITE 312, ALEXANDRIA, VA.
ENTERPRISE LANE, MADISON, WI 52719) FOR SA
OTHERNISE INDICATED OF CHORD SHALL HAVE PRO
A PROPERLY ATTACHED RIGID CEILING. CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTON CHORD SHALL HAVE

TYP.

Wave

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITW MCG, INC. SHALL NOT BE RESPONSIBLE FOR ANY DEVATION FROM THIS DESIGN, ANY FAILURE TO BUILD THE TRUSS IN CONTORNANCE WITH IP: OR FARREACTING, JANGULDE, SUPPPING, HISTALLING & BRACLING OF TRUSSES, DESIGN CONFORMS WITH APPLICABLE PROPYISIONS OF THOS (MATIONAL DESIGN SEFE, NY MARCO, ARD TOT. ITW MCG CONNECTOR PLATES ARE HADR OF 20/18/166A (M.H/SS/N) ASTW A653 GRADE 40/60 (M. K/M.SS) GALV. STELL APPLY PLATES TO EACH FACE OF TRUSS AND. UNLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER DRAWHIGS 160A-Z, ANY INSPECTION OF PLATES FOLLOWED BY (I) SHALL BE PER AMBEX AS (FIT) 2002 SEC.3. A SCAL ON THIS DRAWHIG INDICALES ACCEPTANCE OF PROPESSIONAL HEROID MERCHANDERS HOLD IN THE SULFAMENT AND USE OF THIS COMPONENT FOR ANY BUILDING IS THE RESPONSIBILITY OF THE DESIGN SHOWN. THE SULFAMELITY AND USE OF THIS COMPONENT FOR ANY BUILDING IS THE RESPONSIBILITY OF THE DESIGN SHOWN. THE SUITABILITY AND USE OF THIS COMPONENT FOR BUILDING DESIGNER PER ANSI/TPL 1 SEC. 2.

TW Building Components Group

ALPINE

Haines City, FL 33844 FL COA #0 278

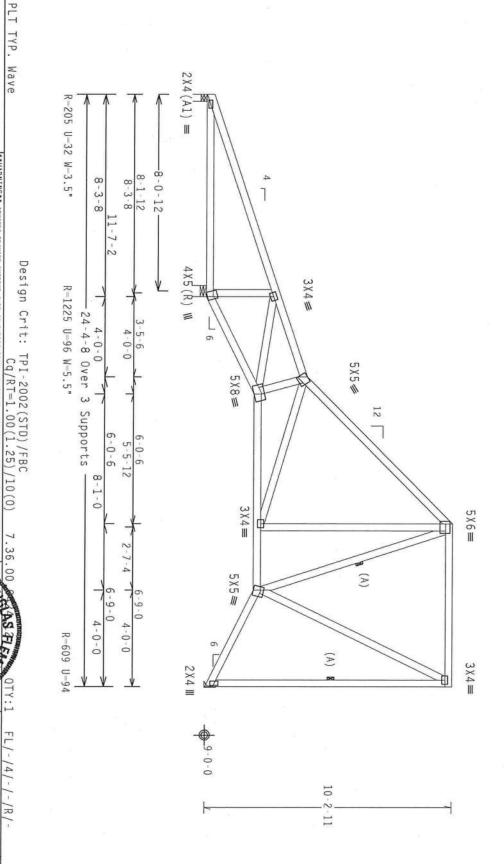
SPACING 24.0"	26 '08 DUR.FAC. 1.25	TOT.LD. 40.0 PSF	BC LL 0.0 PSF	BC DL 10.0 PSF	TC DL 10.0 PSF	IC.LL ZU.U PSF
JREF-		SEQN-	HC-ENG	DRW HC	DATE	REF
JREF- 1TKE8228Z02		38746	-ENG DF/DF	HCUSR8228 08239076	08/26/08	R8228 - 23502

Scale = .25"/Ft.

Top chord 2x4 SP Bot chord 2x4 SP Webs 2x4 SP Ξ #2 Dense #2 Dense #3

Continuous lateral bracing equally spaced on member

In lieu of structural panels use purlins to brace all flat TC @ 24" $\,$ 0C.


Shim all supports to solid bearing

110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18

Wind reactions based on MWFRS pressures.

Right end vertical not exposed to wind pressure.

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50\,.$

WARNING IRUSSES REQUIRE EXTREME CARE IN FARRICATION, HANDLING, SHIPPING, INSTALLING AND BRACHME, RELER TO BEST. (BUILDING COMPONENT SAFETY INFORMATION), PHULLINGED BY TET CRUSS FLATE INSTITUTE, 21B MORTH LEE STREET, SUITE 312. ALEXANDRIA, VA, 22314) AND MICA (4000) TRUSS COUNCEL OF AMERICA, 6300 ENTREPRES LANE, MADISON, WI 55719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OTHERWISS INDUSTANTED TOP COMES MALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG, INC. SHALL NOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN, ANY FAILURE TO DULID THE 1805S IN COMPORMANCE WITH PIT OR FLAREFACTION, AND UNG. SIMPPIG. HISTALLING A BRACHING OF THUSSES, VAKENA) AND TPI. ITH BCG CONNECTION PARTS ARE NOTE OF 2D/28/166A (H.M/SS/N) ASTM A653 GRADE AD/50G (H.K/M.SS) GALV. SIEEL. APPLY PLATES TO EACH FACE OF TRUSS AND. UNCESS OTHERNISE LOCATED ON THIS DESIGN, POSITION PER DRAMINGS 160A-Z, ANY INSPECTION OF PLATES FOLLOWED BY (I) SHALL BE FER ANNEX AS OF FELL-2002 SEC. 3. A SEA, ON THIS DRAMING INDICANTS ACCOMPONENT OF THE STANDARD OF THE THUSS COMPONENT OF THE THUSS THE

ITW Building Components Group

ALPINE

Haines City, FL 33844 FL COA #0 278

DESIGN SHOWN. THE SUITABILITY AND US

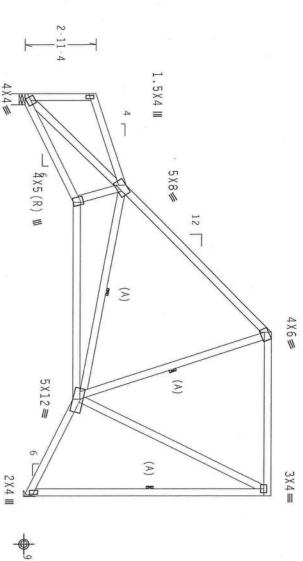
7.36.00 OU JCENSE STONAL BASINET CENS No. 66648

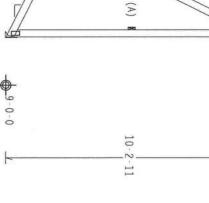
Ĺ	80,	441	tienii	1111111111	NAME TO BE	,,,	Y:1
SPACING	DUR.FAC.	TOT.LD.	BC LL	BC DL	TC DL	TC LL	FL/-/4/-/-/R/-
24.0"	1.25	40.0 PSF	0.0 PSF	10.0 PSF	10.0 PSF	20.0 PSF	-/-/R/-
JREF- 1TKE8228Z02		SEQN- 38506	HC-ENG DF/DF	DRW HCUSR8228 08239082	DATE 08/26/08	REF R8228- 23504	Scale = .25"/Ft.

-207--Fill in later DONNY WILLIAMS --82)

Bot t chord 2x4 SP t chord 2x4 SP Webs 2x4 SP ##2 Dense Dense

End verticals not exposed to wind pressure


(A) Continuous lateral bracing equally spaced on member.


Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

110 mph wind, 15.58 ft mean hgt, ASCE 7-02, CLOSED within 4.50 ft from roof edge, CAT II, EXP B, wind wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18 TC DL=5.0 psf,

Wind reactions based on MWFRS pressures.

In lieu of structural panels use purlins to brace all flat TC @ 0C.

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

PLT

TYP.

Wave

WARNING RUSSER REQUIRE EXTREME CARE IN FABRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING. RETER TO BESS! (DULLOING COMPORENT SAFETY INDIGNATION), PUBLISHED BY TPT (TRUSS PLATE INSTITUTE, ZIDE MORTH LEE STREET, SUITE AX, ALEXANDRA, VA, ZZJAJ) AND MICA (DOOD TRUSS COUNCIL OF AMERICA, 6300 ENTERPRISE LANE, MADISON, MI \$3719) FOR SAFETY PRACTICES PRIOR TO PERFORMING INESE FUNCTIONS. UNLESS OTHERWISE HOUSEARD FOR THE MADISON, MI \$3719) FOR SAFETY PRACTICES PRIOR TO PERFORMING INESE FUNCTIONS. UNLESS OTHERWISE HOUSEARD FOR SAFETY PRACTICES PRIOR TO PERFORMING INESE FUNCTIONS. UNLESS OTHERWISE HOUSEARD FOR SAFETY PRACTICES PRIOR TO PERFORMING INESE FUNCTIONS.

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE NGG, INC. SHALL NOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN, ANY FAILURE FO DULLD FHE TRUSS IN COMPORMANCE WITH FPI; OR FARBLECKLING, MANDING, SHEPPIG, HESTALLING A BRACHIG OF TRUSSES, DESIGN CONTROLING, SHAPPIGABLE PROVISIONS OF NOS (MATIONAL DESIGN SPEC, BY AREA) AND FPI. THU BGG CONNECTOR PLATES ARE MADE OF 20/18/16/36 (AH.)/SS/S) ASIM A653 GRADE 40/60 (H. K/M.SS) GALV. STEEL: APPLY PLATES TO LACH FACE OF TRUSS AND, UNLESS OTHERNISK LOCATED ON THIS DUSTAIN PROBLEM PER DRAWNES 160-A.7. ANY INSPECTION OF PLATES FOLLOGED BY (I) SHALL BE FER ANNEX AS OF FPII-2002 SEC.3. A SEA, ON THIS DUSTAIN SHAPLAY AND USE OF THIS COMPONENT FOR ANY BUILDING IS THE RESPONSIBILITY OF THE DESIGN SHOWN. THE SHITABILITY AND USE OF THIS COMPONENT FOR ANY BUILDING IS THE RESPONSIBILITY OF THE

ITW Building Components Group

ALPINE

Haines City, FL 33844 FL COA #0 278

DESIGN SHOWN. THE SUITABILITY AND BUILDING DESIGNER PER ANSI/TPI I SEC.

CONSTRUCTION OF THE STATE OF TH SONAL ENGINE CENSE No. 66644 80 BC DL BC TC DL SPACING DUR.FAC. TOT.LD. TC FL/-/4/-/-/R/-10.0 24.0" 1.25 40.0 10.0 20.0 0.0

PSF

DATE REF

08/26/08 23505

DRW HCUSR8228 08239093

DF / DF 38511

PSF

Scale = .25"/Ft. R8228-

PSF PSF

PSF

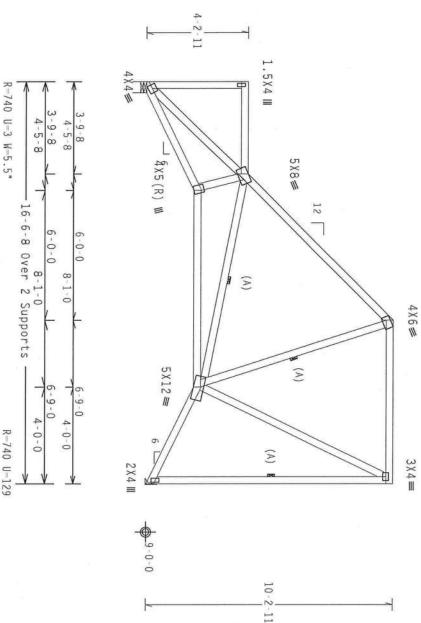
SEQN-HC-ENG

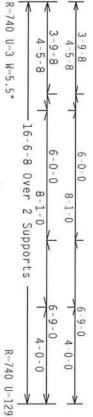
JREF -

Top b chord 2x4 SP t chord 2x4 SP Webs 2x4 SP ##2 Dense

End verticals not exposed to wind pressure

3 Continuous lateral bracing equally spaced on member


Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.


110 mph wind, 16.22 ft mean hgt, ASCE 7-02, CLOSED within 4.50 ft from roof edge, CAT II, EXP B, wind wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18 TC DL-5.0 psf.

Wind reactions based on MWFRS pressures.

In lieu of structural panels use purlins to 0C. brace all flat TC @

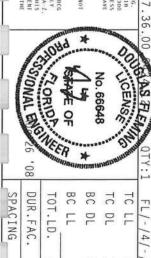
Provide for complete drainage of roof.

Design Crit: TPI-2002 (STD) /FBC Cq/RT=1.00(1.25)/10(0)

PLT TYP.

WARNING. TRUSSES REQUIRE EXTREME CARE IN FARRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, RETER TO BEST (BUILDING COMPONENT SAFITY INFORMATION), PUBLISHED BY THE (BUISS PLATE HESTIQUE, 21B NODIN LLE SIREI, SUITE 137. ALEXANDRIA, VA, 22314) AND HICA (MODOD TRUSS COUNCIL OF AMERICA, 6300 ENVEREDENCA, MICE, SUITE 137. ALEXANDRIA, VA, 22314) AND HICA (MODOD TRUSS COUNCIL OF AMERICA, 6300 ENVEREDENCATED TOP CORDO SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE

IMPORTANTFURMISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE BUSS IN COMPORMANCE WITH BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN, MY FAILURE TO BUILD THE BUSS IN COMPORMANCE WITH IP: OR FARRICATION, INDIVING, SUPPPING, INSTALLING A BRACING OF TRUSSES,


DESIGN COMPORES WITH APPLICABLE PROFISIONS OF BOS (MATIONAL DESIGN SPEC, S. WAREA) AND TPI. THE GEOMETRE PRINTES ARE MADE ON POLICY PRINTES AND AND TRUS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER DRAWHING 160A-Z, ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE PER ARMER AS OF THIT-2002 SEC. 3. A SEAL ON THIS DRAWHING INDICATES ACCUPANCE OF PROFESSIONAL REGIONERING RESPONSIBILITY SOLELY FOR THE TRUSS COMPONENT OF THE STATE AS OFFICE ADDRAWING SHOULD AND THE SULFAMENT AND THE STATE AS OFFICE ADDRAWING SHOULD AND THE SULFAMENT AND THE

ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE PER ANNEX AS DRAWING INDICATES. ACCEPTANCE OF PROFESSIONAL ENGINEERING BEST DESIGN SHOWN. THE SULFABILITY AND USE OF THIS COMPONENT FOR BUILDING DESIGNER PER ANSI/TPI 1 SEC. 2.

ITW Building Components Group

ALPINE

Haines City, FL 33844 FL CQ^ #0 278

0.0

PSF PSF

SEQN-HC-ENG

38516

PSF PSF

DRW HCUSR8228 08239083

DF / DF

DATE REF

08/26/08

23506

PSF

Scale = .25"/Ft. R8228-

24.0"

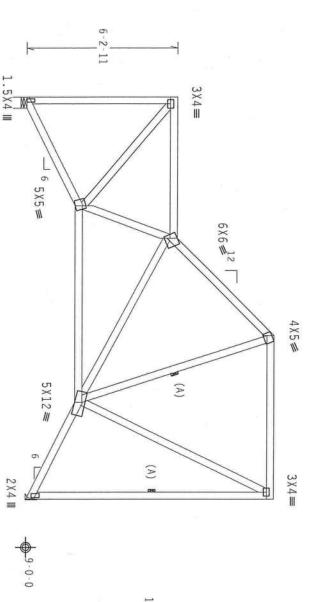
JREF -

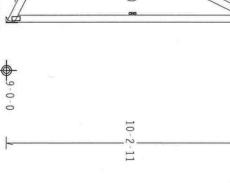
8-207--Fill in later DONNY WILLIAMS * 84)

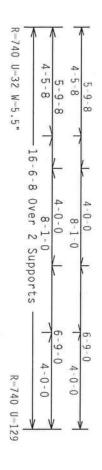
Bot p chord 2x4 SP #2 E t chord 2x4 SP #2 E Webs 2x4 SP #3 Dense Dense

End verticals not exposed to wind pressure

 \geq Continuous lateral bracing equally spaced on member


Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.


110 mph wind, 17.22 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18


Wind reactions based on MWFRS pressures.

In lieu of structural panels use purlins to brace all flat TC @ $0\mathrm{C}_{\cdot}$

Provide for complete drainage of roof

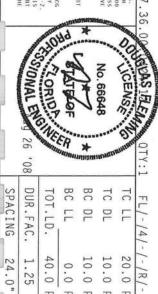
PLT TYP. Wave

WARNING TRUSSES REQUIRE EXTREME CARE IN FARRICATION, INAULING, SHIPPING, INSTALLING AND BRACING. RETER TO BEST (BUILDING COMPONENT SAFETY INFORMATION), PUBLISHED BY TPI (TRUSS PLATE INSTITUTE, 210 MORTH LEE STREET, SUITE 137. AREXANDRA, VA, Z2134) AND NICA (MODO TRUSS COUNCIL OF AMERICA, 6300 EXTERPRISE LAKE, MADISON, HI 53779) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. DRIESS OFFICENISE INTERVISE INDICATED TOR FORDO SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

Design Crit:

IMPORTANT*UBBISH A COPY OF THIS DESIGN TO THE TRESPLATATION CONTRACTOR. THE DEG. HEC. SHALL NOT BE RESPONSIBLE FOR MAY DEPLATED HE DESIGNATION FOR HIS DESIGNE, ANY FAILURE TO BUILD HE TRUSS IN CONFORMACE WITH PER LOCAL PROPERTY OF A BRACING OF BUILDS. HE TRUSS IN CONFORMACE WITH A PEL CALLE PROPERTY OF A BRACING OF BUILDS SELE.

DESIGNE CONFORMS WITH A PEL CALLE PROPERTY ON SO HER OF (MATIONAL DESIGNA SELE. A MATANA) AND TPI.


CONNECTOR PLATES ARE MADE OF 20/18/166A W.H.M.SS/R), ASTM ASS GAME 40/60 (W. K/M.SS) GALL. STEEL, APPLY PLATES TO AGAIN TACE OF BUILS AND BUILTS OF THE ANDER AND THE DESIGNATION FOR BUILDINGS HOARS AND AND THE STEEL AND THE SENSIAL PROPERTY OF THE PLATES OF THE ADDRESS OF THE ADDRESS SEL.3. A SELECTION OF PLATES AND THE SELECTION OF THE SEL DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL ENGINEERING OTHERMISE LOCATED ON THIS DESIGN, POSITION PER DRAWINGS 160A-2 SMALL BE PER ARREX AS OF TPI1-2002 SEC.3. A SEA ON THIS ORNAL EREST OR RESPONSIBILITY SOUTH FOR THE RESPONSIBILITY OF THE RESPONSIBILITY OF THE

ITW Building Components Group Inc.

ALPINE

Haines City, FL 33844 FL CQA #0 278

DESIGN SHOWN. THE SUSTABILITY AND USI BUILDING DESIGNER PER ANSI/TPE I SEC. 2

40.0 10.0 20.0 10.0 24.0" 1.25 0.0 PSF PSF PSF PSF PSF

SEQN-

HC-ENG

DF / DF 38521

JREF -

1TKE8228Z02

DATE REF

08/26/08 23507

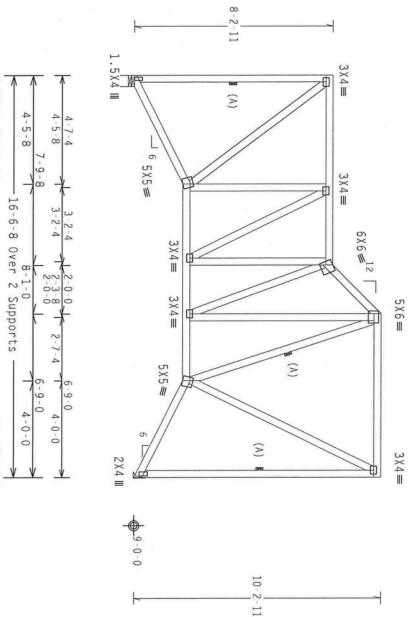
Scale = .25"/Ft. R8228-

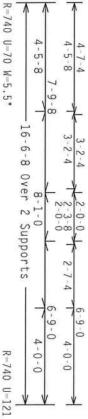
DRW HCUSR8228 08239081

Top chord 2x4 SP #2
Bot chord 2x4 SP #2
Webs 2x4 SP #3 Dense Dense

End verticals not exposed to wind pressure

(A) Continuous lateral bracing equally spaced on member.


Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.


110 mph wind, 18.22 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18

Wind reactions based on MWFRS pressures.

OC. lieu of structural panels use purlins to brace all flat TC @

Provide for complete drainage of roof

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

7.36.00

FL/-/4/-/-/R/-

Scale = .25"/ft. R8228-

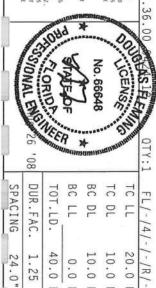
PSF

PLT TYP.

Wave

WARNING RUSSES REQUIRE EXTREME CARE IN CABRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING. REFIRE TO BEST. (BUILDING COMPONERS SAFETY INFORMATION), PUBLISHED BY THE (TRUSS PLATE INSTITUTE, 21B NORTH LEE STREIT, SUITE 312, ALEXANDRIA, VA, 22314) AND HICA (ADOD TRUSS COUNCIL OF AMERICA, 6300 EXTREMPS IN LAME, MADISON, MI 55719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OFHERSISE INDICATED FOR COMED SHALL HAVE PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTON CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTON CHORD SHALL HAVE

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG. THC. SHALL NOT BE RESPONSIBLE FOR NAW DEVIATION FROM THIS DESIGN, ANY FALLURE TO BUILD THE THUSS IN COMPORNANCE WITH IP!: OR FAREIGATING, MAINLING, SHIPPIG, INSTALLING A BRACHNO OF TRUSSES, DESIGN CONTROL OF THE THIS DESIGN CONFIGENCY WITH APPLICABLE PROVISIONS OF NOS. (MATIONAL DESIGN SPEC, 39 ANEXA) AND TP!. THE GENERAL PROVISIONS OF NOS. (MATIONAL DESIGN SPEC, 39 ANEXA) AND TP!. THIS DESIGN, POSITION PER DRAWINGS 150A-Z. PARTES TO EACH FACE OF TRUSS AND, UNLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER DRAWINGS 150A-Z. ANY INSPECTION OF PLATES FOLLOWED BY (1) SMALL BE FER ARREX AS OF PITI-2002 SEC. 3.


ANY INSPECTION OF PLATES FOLLOWED BY (1) SMALL BE FER ARREX AS OF PITI-2002 SEC. 3.

BRANING INDICATES ACCEPTAINEE OF PROFESSIONAL FROM HEED AND FOLLOWED SHELLY SOLLY FOR THE TRUSS COMPONENT DESIGN SHOWN. THE SULFABLILITY OF THE

ITW Building Components Group

ALPINE

Haines City, FL 33844 FL CQA #0.278

PSF PSF

DRW HCUSR8228 08239080

DF / DF 38526

DATE REF

08/26/08 23508

PSF

PSF

SEQN-HC-ENG

JREF -

chord 2x4 SP #2 Dense chord 2x4 SP #2 Dense Webs 2x4 SP #3

110 mph wind, 16.63 ft mean hgt, ASCE 7-02, CLOSED within 4.50 ft from roof edge, CAT II, EXP B, wind wind BC 0L-5.0 psf. Iw=1.00 GCpi(+/-)=0.18 bldg, not located TC DL-5.0 psf,

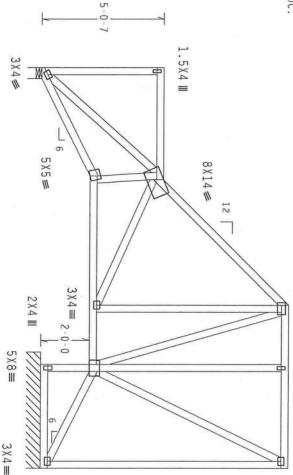
Wind reactions based on MWFRS pressures.

Trusses to be spaced at 48.0" OC maximum

Deflection factor for meets L/240 live and L/180 total load. Creep increase dead load is 1.50.

In lieu be used lieu of structural panels or rigid ceiling purlins may used to brace TC @ 24" max. 0C, BC @ 24" max. 0C.

COMPLETE TRUSSES REQUIRED


Nailing Schedule: (10d_Box_or_Gun_(0.128"x3",_min.)_nails)
Top Chord: 1 Row @12.00" o.c.
Bot Chord: 1 Row @12.00" o.c.
Webs : 1 Row @ 4" o.c. Use equal spacing between rows and in each row to avoid splitting.

stagger nails

End verticals not exposed to wind pressure

in lieu of structural sheathing. The TC of this truss shall be braced with attached spans at 24" OC

4 X 6 ≡ 1.5X4 Ⅲ 3×4≡

10

=

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

7.36.00

20.0

Scale = .25"/Ft.

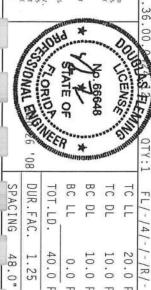
R8228-

PSF PSF

DATE REF

08/26/08 23509 PLT TYP.

Wave


WARNING TRUSSES BEQUIRE EXTREME CARE IN FABRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, REFER TO BCSI. (BULLDING COMPORENT SAFETY IMPORATION), PUBLISHED BY PPI (TRUSS PLAIE INSTITUTE, 218 HORTH LEE STREIT, SHITE 132, ALEXANDRIA, WA, 22314) AND MICH, (MOOD TRUSS CONNECT OF AMERICA, 6300 ENTERPRISE LANE, MADISON, NI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS UTHERWISE HOLGALD TOP CHOODS SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHOED SHALL HAVE N PROPERLY ATTACHED RIGID CEILING

ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE PER ARREX AS OF FPI-2000 SEC.3. A
DRAHIMS INDICATES ACCEPHANCE OF PROFESSIONAL BEFER ARREX AS OF FPI-2000 SEC.3. A
DRAHIMS INDICATES ACCEPHANCE OF PROFESSIONAL ENGINEERING RESPONSIBILITY SOLELY FOR THE THU
DESIGN SHOWN. THE SUITABLILITY AND USE OF THIS COMPONENT FOR MAY BUILDING IS THE BESPONSIB
BUILDING DESIGNER PER ARSI/TPI 1 SEC. Z. IN. POSITION PER DRAHINGS 160A-Z
102 SEC.3. A SEAL ON THIS
SOLELY FOR THE TRUSS COMPONENT
NG IS THE RESPONSIBILITY OF THE

ITW Building Components Group

ALPINE

Haines City, FL 33844 FL COA #0 278

0.0 10.0 PSF PSF

HC-ENG

DF / DF 38682

DRW HCUSR8228 08239107

PSF

SEQN-

48.0" 1.25

JREF -

110 mph wind, 15.58 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18 Top chord 2x4 SP #2 Dense Bot chord 2x4 SP #2 Dense Webs 2x4 SP #3

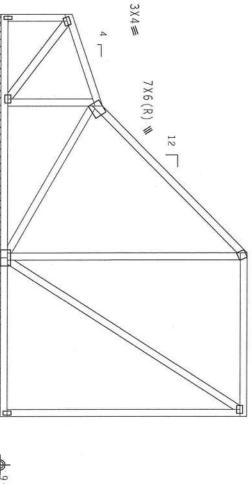
Wind reactions based on MWFRS pressures.

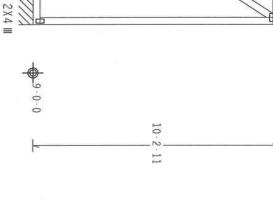
In lieu of structural panels or rigid ceiling purlins may be used to brace TC @ 24" max. OC, BC @ 24" max. OC.

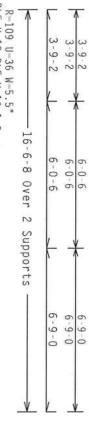
THIS TRUSS IS DESIGNED TO SUPPORT THE LOAD FROM 24" OC SPACING ONLY. THIS TRUSS IS NOT DESIGNED TO SUPPORT ANY ADDITIONAL LOADING FROM CONVENTIONAL FRAMING.

4X4=

3 X 4 ≡


COMPLETE TRUSSES REQUIRED


Nailing Schedule: Top Chord: 1 Row 0 Bot Chord: 1 Row 0 Webs: 1 Row 0 (10d_Box_or_Gun_(0.128"x3",_min.)_nails)
@12.00" o.c.
@12.00" o.c.
@12.00" o.c.
@ 4" o.c.


Use equal spacing between rows and in each row to avoid splitting. stagger nails

End verticals not exposed to wind pressure

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

1.5X4 Ⅲ

3 X 4 ==

5X8=

R=79 R-109 U-36 W-5.5" PLF U-13 PLF W-16-1-0

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

FL/-/4/-/-/R/-

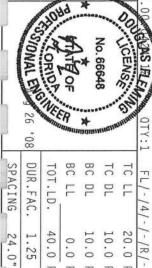
Scale = .25"/Ft.

R8228- 23510

PLT TYP.

Wave

WARNING IRUSSÉS REQUIRE EXTRÈME CARE IN FABRICATION, MARDLING, SHIPPING, INSTALLING AND BRACING, REFER TO BOSI. (DULLDING COMPONENT SAFETY INFORMATION), PUBLISHED DU TY PET (FRUSS PLATE INSTITUTE, ZIB MORTH LEE STREET, SUITE 315, ALEXANDRIK, WA, Z2314) AND NTCA (4000) TRUSS COUNCEL S. AMERICA, 6300 ENTERPRISE LANE, MADISON, WI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OFHERMISE INDICATED TOR CHORD SMALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS, AND BOTTOM CHORD SMALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SMALL HAVE


IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG, INC. SHALL NOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN, ANY FAILURE TO BUILD THE TRUSS IN COMPORMANCE WITH IPI; OR FARELACHING, HANDLING, SHEPPIG, HISTALLING A BRACHING OF TRUSSES, DESIGN CONFORMS WITH APPLICABLE PROPYSIONS OF THOS (MATIDNA) DESIGN SPEC, BY AREAD, AND IPI. ITH BCG CONMECTION PLATES ARE MADE OF 20/18/106A (M.H/SS/R), ASTM A653 GRADE 40/60 (M. K/M.SS) GALV. STEEL, APPLY PLATES TO EACH FACE OF TRUSS AND. BUILESS OTHERNISE LOCATED ON THIS DESIGN, POSITION PER DRAUTHOS 160A-Z. ANY HAST-CLION OF PLATES FOLLOWED BY (I) SHALL BE PER ARMEX AS OF IPI1-2002 SEC. 3. SEAL ON THIS DESIGN SHOWN. THE SULFABLILITY AND USE OF THIS COMPONENT FOR ANY BUILDING IS THE RESPONSIBILITY OF THE DESIGN SHOWN. THE SULFABILITY AND USE OF THIS COMPONENT FOR ANY BUILDING IS THE RESPONSIBILITY OF THE

ITW Building Components Group Inc. Haines City, FL 33844 FL COA #0 278

BUILDING DESIGNER PER

ALPINE

80. BC DL

PSF

DRW HCUSR8228 08239110

PSF PSF

DATE REF

08/26/08

PSF PSF

HC-ENG

DF / DF 38687

JREF -

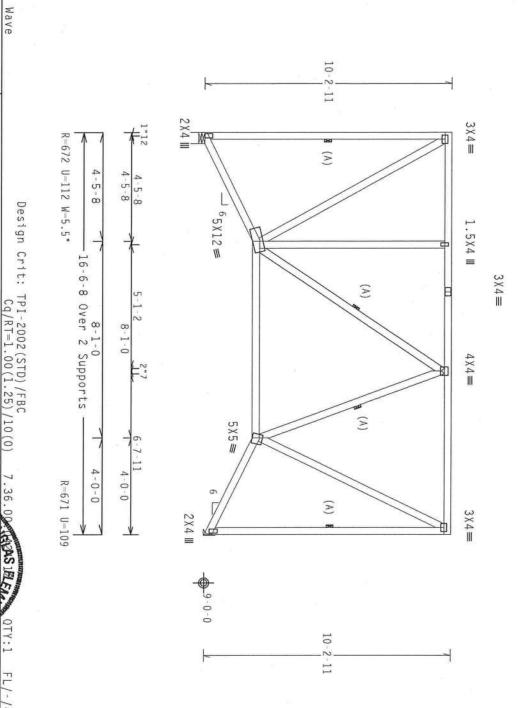
Bot In lieu of structural panels use purlins to brace all flat TC @ 24" $\,$ 0C. Roof overhang supports 2.00 psf soffit load PLT TYP. ITW Building Components Group 8-207--Fill in later DONNY WILLIAMS -chord 2x4 SP Webs 2x4 SP Haines City, FL 33844 FL COA #0 778 ALPINE Wave #2 Dense #2 Dense #3 2X4(A1) R=325 U=53 W=3.5" **IMPORTANT**FURBLE IA COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG, INC. SHALL HOT BE RESPONSIBLE FOR ANY DEFLATION FROM THIS DESIGN, ANY Y LALLUEE FOR BUILD THE TRUSS IN COMPORMANCE WITH TPI; OR FARBLEACHING, HANDLING, SHAPPING, HISTALLING & BRACHING OF TRUSSES, DESIGN COMPORES HITH APPLICABLE PROVISIONS OF NDS (NATIONAL DESIGN SPEC, BY AFRAYA) AND IFI. ITH BCG CONNECTOR FLATES ARE MADE OF 2018/16/16/08 OF HASS AND. UNLESS OTHERS LICALEE DON THIS DESIGN, POSITION FER DRAWHERS, 160A-2; ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE PER ANNEX A3 OF IPI1-200Z SEC.3. A SEAL ON THIS **MARNING** IRUSSES REQUIRE EXTREME CARE IN FARRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, REFER TO REST (BUILDING COMPONENT SAFETY INFORMATION), PUBLISHED BY THE (TRBUSS PLACE INSTITUTE, 219 NORTH LEE STREET, SUITE 312, ALEXANDRIA, VA, 22310) ADD VITACA (MODO TRUSS COUNCIL OF AMERICA, 6300 CHIEBERISE LAME, MODISON, NI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OTHERWISE INDICATED TOP CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED RIGHD CELLING. Ш DRAWING INDICATES 8-0-12 8-1-12 8-3-8 8-3-8 11-7-2 Design Crit: * 5×5≡ R-1195 U-91 W-5.5" 24-4-8 Over 3 TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) 4-0-0 4-0-0 6 多X8 5×5= N. POSITION PER DRAWINGS 160A-2
0Z SEC.3. A SEAL ON THIS
SOLELY FOR THE TRUSS COMPONENT
NG IS THE RESPONSIBILITY OF THE Supports 4-3-9 21-9-6 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18 Right end vertical not exposed to wind pressure. Wind reactions based on MWFRS pressures. Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50. 3X4少 -7-10 4X5= 4 X 8 ≡ 12-1-0 6-9-0 6-7-4 R-607 U-100 80 1.5X4 III 3 X 4 ≡ BC LL DUR.FAC. BC DL TC DL SPACING TC LL TOT.LD. FL/-/4/-/-/R/-_11-0-0 40.0 10.0 20.0 1.25 24.0" 0.0 10.0 PSF PSF PSF PSF PSF JREF -SEQN-DATE REF HC-ENG DRW HCUSR8228 08239077 Scale = .25"/Ft. R8228-1TKE8228Z02 DF / DF 38911 08/26/08 23511

8-207--Fill in later DONNY WILLIAMS B6)

כחים/ שממוזדווכם מו וחסים וווח.

Top Bot chord 2x4 SP #2 Dense chord 2x4 SP #2 Dense Webs 2x4 SP #3

End verticals not exposed to wind pressure.


Continuous lateral bracing equally spaced on member.

Provide for complete drainage of roof

110 mph wind, 19.22 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18

Wind reactions based on MWFRS pressures

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

WARNING IRUSSES REQUIRE EXTREME CARE IN FABRICATION. HANDLING, SHIPPING, INSTALLING AND BRACING. REFER TO BEST QUILIDING COMPONENT SAFETY INFORMATION), PUBLISHED BY TPT (TRUSS PLATE INSTITUTE, 219 MORTH LEE STREIT, SUITE 312. AREXANDRIA, VA, 22314) AND NICA (MORD TRUSS COUNCIL OF AMERICA, 6200 ITHERPRIST LANE, MADISON, NI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OTHERWISE INDICATED FOR CORDO SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS.

PLT TYP.

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG, INC. SHALL NOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN: ANY FAILURE TO BUILD THE TRUSS IN COMPORANCE WITH IP: OR FARBICATION, HANDLUNG, SHIPPIDE, INSTALLING A BRACING OF TRUSSES, BY AFERNA AND TRI. ITH BCG DESIGN COMPRECIOR PLATES ARE MADE OF 20/19/166A (M.H/SS/M) ASIM A653 GRADE 40/60 (M. K/M.SS) GALV. SIEEL APPLY PLATES TO EACH FACE OF TRUSS AND, DULESS OTHERNISE LOCATED ON THIS DESIGN, POSITION PER BRACHMENT SHOPLY PLATES TO EACH FACE OF TRUSS AND, DULESS OTHERNISE LOCATED ON THIS DESIGN, POSITION PER BRACHMENT SHOPLY ANY INSPECTION OF PLATES FOLLOWED BY (I) SHALL HE FER ANNEX AS OT TPIL-2002 SEC. 3. ASIAL ON THIS DESIGN AS SHALL SHOPLY ANY INSPECTION OF PLATES FOLLOWED BY (I) SHALL HE FER ANNEX AS OT TPIL-2002 SEC. 3. A SEAL ON THIS DESIGN AS SHALL S

ITW Building Components Group Inc.

ALPINE

Haines City, FL 33844 FL COA #0.278

COURS IFLE ORIONAL ENGINEER CENS No. 66648 80 BC DL BC LL TC DL TC LL DUR.FAC. SPACING TOT.LD. FL/-/4/-/-/R/-40.0 10.0 10.0 20.0 0.0 PSF PSF PSF

PSF

Scale =.25"/Ft. R8228-

DATE REF

08/26/08

23512

DRW HCUSR8228 08239084

DF / DF

1.25 24.0" PSF

JREF -

1TKE8228Z02

SEQN-HC-ENG

38919

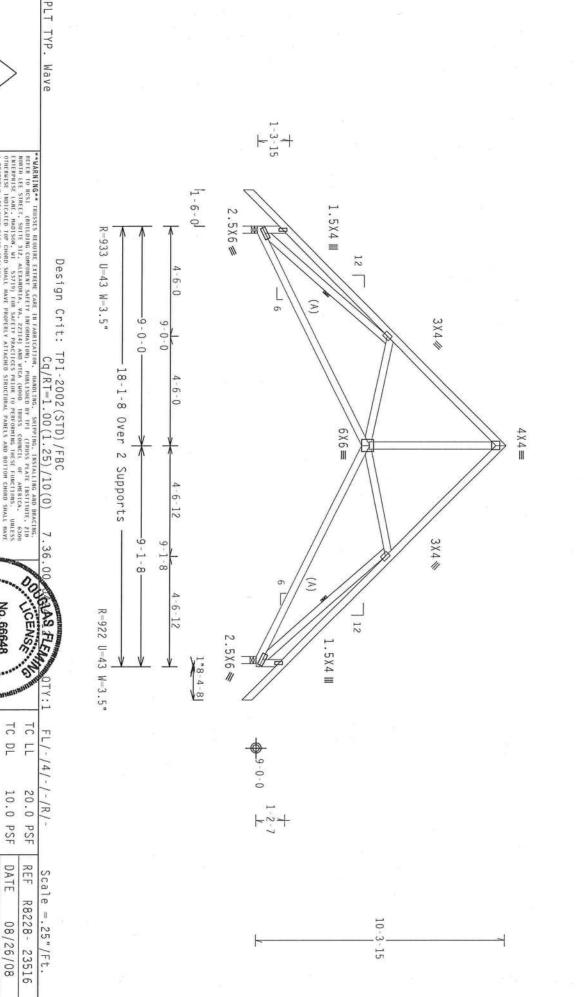
Top chord 2x4 SP Bot chord 2x4 SP Webs 2x4 SP PLT Roof overhang supports 2.00 psf soffit load Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50. (A) Continuous lateral bracing equally spaced on member ITW Building Components Group Inc. 8-207--Fill in later DONNY WILLIAMS --TYP. Haines City, FL 33844 FL COA #0 278 ALPINE Wave #2 Dense #2 Dense #3 **IMPORTANI***FURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE BCG, INC. SHALL NOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN; ANY FAILURE TO WHILD THE FRUSS IN COMPORMANCE WITH IP: OR FABRICATION, INAULING, SHEPPING, HISTALLIGA & BRACHIG OF TRUSSES, DESIGN COMPORES HITH APPLICABLE PROVISIONS OF RNS. (MATIONAL DESIGN SEC. S. ATERN) AND TPI. HE RCC CONNECTOR PLATES ARE HADE OF 20/18/166A (M.H/SS/R) ASYM A653 GRADE 40/60 (M. K/M.SS) GALV. STEEL. APPLY PLATES TO EACH FACE OF TRUSS AND. BULGSS OTHERHISE LOCATED ON THIS DESIGN, POSITION PER DRAWHERS 160A.Z. ANY INSPECTION OF PLATES FOLLOWED BY (F) SHALL BE FER ANNEX AS OF FPII-2002 SEC. 3. A SEAL ON THIS DESIGN. AND THE SECRET SOLITY OF HE THESE COMPONENT OF THE SECRET SOLITY OF THE - WARNING** TRUSSES BEGUINE EXTBEME CARE IN FARRICATION, HANDLING, SHIPPING, HISTALLING AND BRACING, REFER TO BEST (BUILDING COMPONENT SAFELY INFORMATION), PUBLISHED BY TPI (TRUSS PLATE INSTITUTE, 218 MORTH LEE STREET, SHIFE 312, ALEXANDRA, VA, 22314) AND WICK, (MOOD TRUSS, COUNCIL OF AMERICA, 6300 CHIEGRES LANE, ANDISON, HI 55719) FOR SAFELY PRACTICES PRIOR TO PEFFORNING INSTITUTE TRUSCIONS, UNLESS OFHEREYSE INDICATED PRODUCTIONS OF A PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTON CHORD SHALL HAVE BUILDING DESIGNER PER ANSI/TPI 1 1-6-0J 2X4(A1) = R = 780Design Crit: U=29 W=5.5" 6-2-1 TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) 16-5-0 Over 11-7-2 1.5X4 Ⅲ 3X4 == 5-4-11 2 Supports 3 \ 4 ≡ 3 X 4 ≡ 7X6(R) Φ Right end vertical not exposed to wind pressure. Wind reactions based on MWFRS pressures 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18 7.36. 4-9-14 4-9-14 4-9-14 GODBAAS FLA R=684 U=101 SONAL BIGHT (A) CENS 3 X 4 ≡ 2X4 III No. 66648 80 BC DL TC DL DUR.FAC. TC SPACING TOT.LD. FL/-/4/-/-/R/-9 20.0 24.0" 40.0 1.25 10.0 PSF 10.0 PSF 0.0 PSF PSF PSF DATE REF SEQN-JREF -DRW HCUSR8228 08239102 HC-ENG Scale = .25"/Ft. R8228-1TKE8228Z02 DF / DF 38559 08/26/08 23513

IHIS UNG PREPARED FROM COMPUTER INPUT (LUADS & DIMENSIONS) SUBMITTED BY TRUSS MFR.

Top chord 2x4 SP Bot chord 2x4 SP Webs 2x4 SP Truss spaced at 24.0" OC designed to support 1-6-0 top chord outlookers. Cladding load shall not exceed 10.00 PSF. Top chord must not be cut or notched. Note: THE BUILDING DESIGNER IS RESPONSIBLE FOR THE DESIGN OF THE ROOF, FLOOR AND CEILING DIAPHRAGMS, GABLE END SHEAR WALLS, AND SUPPORTING SHEAR WALLS. DIAPHRAGMS AND SHEAR WALLS MUST PROVIDE CONTINUOUS LATERAL RESTRAINT TO THE GABLE END. ALL CONNECTIONS ARE TO BE PROVIDED BY THE BUILDING DESIGNER. Roof overhang supports 2.00 psf soffit load See DWGS A11015EE0207 & GBLLETIN0207 for more requirements Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50.\,$ TW Building Components Group 8-207--Fill in later DONNY WILLIAMS TYP. Haines City, FL 33844 FL COA #0 278 All Plates ALPINE Wave #2 Dense #2 Dense #3 Are 1.5X4 Except As Shown. **IMPORTANT***FURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG, THC. SHALL NOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN, ANY FAILURE TO BUILD THE TRUSS IN COMPORNANCE WITH TPI; OR FARRECKITHG, INNOLLING, SHEPPIG, INSTALLING A BRACHEG OF TRUSSES.

DESIGN COMPORES HITH APPLICABLE PROPYISIONS OF THIS (MATIONAL DESIGN SPEC. BY AFRA) AND TPI.

CONNECTOR PLATES ARE MADE OF 20/18/166A (M.M.SS/PS) ASIM MASS GRADE 40/60 (M. K/M.SS) GALV. STEEL APPLY PLATES TO EACH FACE OF TRUSS AND. UNLESS OTHERS SECONDED OF THIS DESIGN, POSITION PER DRAWNASS IGA.Z. PART OF THIS SECONDED OF THIS DESIGN SECONDED OF THIS **WARNING** TRUSSES REQUIRE EXTREME CARE IN FARRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, REFER TO BEST (BUILDING COMPORENT SAFETY INFORMATION), PUBLISHED BY TPI (TRUSS PLATE INSTITUTE, 21% HORIN LEE SIEEE, SHIPE 137, ALEXANDRIA, VA, 223-14) AND HICA (MODED TRUSS COUNCIL OF AMERICA, 6300 CHIERDRISE LANE, MONISON, VI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OTHERWISE INDICATED TOP CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE BUILDING DESIGNER PER BRAWING INDICATES ACCEPTANCE OF PROFESSIONAL ENGINEERING RESPONSIBILITY R-151 PLF U-21 PLF 0-9-121-5-13 3X10(** Design Crit: * CGE W=16-5-0STHIL TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) 16-5-0 Over Continuous Support SOLELY FOR THE TRUSS COMPONENT NG IS THE RESPONSIBILITY OF THE 3-3-9 Right end vertical not exposed to wind pressure 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18 (**) 1 plate(s) require special positioning. Refer plot details for special positioning requirements. Wind reactions based on MWFRS pressures (A) Continuous lateral bracing equally spaced on member. 3 X 4 ≡ 7.36.00 GOUGE SALES 3×4/ OSIONAL ENGINEE CENS No. 66648 4-9-14 12 08 3 BC DL TC DL DUR.FAC. BC LL TC SPACING OT.LD. FL/-/4/-/-/R/-SEE 10.0 40.0 20.0 PSF 10.0 PSF 0.0 ABOVE 25 PSF 0 PSF PSF scaled plate JREF -DATE REF SEQN-HC-ENG DRW HCUSR8228 08239101 Scale = .3125"/Ft R8228-1TKE8228Z02 DF / DF 38800 08/26/08 23515


THE THE REPORT OF STREET CONTINUED OF STREET STREET

Wind reactions based on MWFRS pressures

Roof overhang supports 2.00 psf soffit load

(A) Continuous lateral bracing equally spaced on member.

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50\,\cdot$

TW Building Components Group Haines City, FL 33844 FL COA #0.778

DESIGN SHOWN. THE SUITABILITY AND BUILDING DESIGNER PER ANSI/IP1 1 SEC.

ALPINE

A PROPERLY ATTACHED RIGID CEILING

No. 66648

BC DL BC LL

TC DL

10.0

DATE

08/26/08

80

DUR.FAC.

1.25 24.0"

TOT.LD.

40.0

PSF

SEQN-

38542

0.0 10.0 PSF PSF

PSF

HC-ENG

DF / DF

DRW HCUSR8228 08239075

SPACING

JREF -

1TKE8228Z02

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE BCG, INC. SHALL NOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN; ANY FAILURE TO BUILD THE THUSS IN COMPORMANCE WITH IP1; OR FARRICATION, MANULUG, SUPPING, HESTALLIG & BRACHES OF TRUSSES, DESIGN CONFORMS WITH APPLICABLE PROVISIONS OF DROS (MATIONAL DESIGN SPEC, BY AREA) AND TP1. THE GC COMMERCIAN PLATES ARE MADE OF 20/18/1604 (M.H/SS/M) ASEM A653 GRADE AD/60 (M. K/M.SS) ALLY SIELE APPLY PLATES TO EACH FACE OF TRUSS AND. UNLESS OTHERNISE LOCATED ON THIS DESIGN, POSITION DER DRAWHINGS 160A-Z. ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE PUR NAMEZ AS OF TP11-2002 SEC.3. A SEAL ON THIS DESIGN SHALLS ACCOMPONENT OF ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE PUR NAMEZ AS OF TP11-2002 SEC.3. A SEAL ON THIS DRAWHING INSTALLATE ACCEPTABLE OF THE FOLSOWED BY (1) SHALL BE PUR NAMEZ AS OF TP11-2002 SEC.3. A SEAL ON THIS DRAWHING INSTALLATE ACCEPTABLE OF THE FOLSOWED BY (1) SHALL BE PUR NAMEZ AS OF TP11-2002 SEC.3.

Bot PLT TYP. Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50. 8-207--Fill in later ITW Building Components Group Inc. p chord 2x4 SP t chord 2x4 SP Webs 2x4 SP Continuous lateral bracing equally spaced on member Haines City, FL 33844 FL COA #0 278 ALPINE Wave #2 Dense #2 Dense #3 DONNY WILLIAMS **IMPORTANT**FURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. IT N 8GG, 1NG. SHALL NOT BE RESPONSIBLE FOR ANY DEPLATION FROM THIS DESIGN, MY FAILURE TO BUILD THE TRUSS IN COMPORNANCE WITH THIS DESIGN CONTRACTOR. AND LING. SHIPPING, INSTALLING A BRACHEG OF TRUSSES, DESIGN CONTRACTOR. AND LING. SHEPPING, INSTALLING A BRACHEG OF TRUSSES, DESIGN CONTRACTOR OF THE ADDITION OF THE SECONDARY SHIP APPLICABLE PROVISIONS OF HIS SECONDARY AND THE ADDITION OF THE ADDITION OF THE SECONDARY SHIP AND LING. AND LINESS OF THIS DESIGN, POSITION OF ROMATHICS IGNA-Z, ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE PER ANNEX AS OF THIS DOSIGN, FOR THE TRUSS COMPOREN THE BRANCH OF THE SECONDARY SHIP AND LINESS OF THIS DESIGN, POSITION OF THE TRUSS COMPOREN THE SHAP AND LINESS OF THIS DESIGN SHOWN, THE SHIP AND USE OF THIS COMPONENT FOR ANY BUILDING IS THE RESPONSIBILITY OF THE BUILDING DESIGNER PER ANSI/TPI 1 SEC. 2. A PROPERLY ATTACHED RIGID CEILING. 1.5X4 III 2.5X6# R-821 U-29 W-3.5" 4-6-0 Design Crit: ** 3X4 W 9-0-0 9-0-0 01) 12 18-1-8 TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) 0ver 6X6≡ 4X4 =2 Supports 12 3X4 // 9-1-8 9-1-8 110 mph wind, 15.00 ft mean hgt, anywhere in roof, CAT II, EXP B, psf. Iw=1.00 GCpi(+/-)=0.18 Wind reactions based on MWFRS pressures. 7.36 A -6-12 R-821 U-30 W-3.5" 2.5×6/4 Vo. 66648 80 ASCE BC LL BC DL TC DL SPACING DUR.FAC. C TOT.LD. 7-02, CLOSED bldg, Located TC DL-5.0 psf, wind BC DL-5.0 /4/-40.0 20.0 10.0 24.0" 1.25 10.0 PSF -/R/ 0.0 PSF PSF PSF PSF SEQN-DATE REF JREF -HC-ENG DRW HCUSR8228 08239087 Scale =.25"/Ft. R8228- 23517 1TKE8228Z02 DF / DF 10-3-15 38546 08/26/08

Top chord 2x4 SP Bot chord 2x4 SP Webs 2x4 SP PLT Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50. (A) Continuous lateral bracing equally spaced on member TW Building Components Group 8-207--Fill in later DONNY WILLIAMS TYP. Haines City, FL 33844 FL COA #0.278 ALPINE Wave #2 Dense #2 Dense #3 **IMPORTANT** TURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. IT N BCG, INC. SHALL HOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN, ANY FALLURE TO BUILD THE IRUSS IN COMPORNANCE WITH TP: OR FABRICATING, UNDIVING, SHIPPING, INSTALLING A BRACING OF TRUSSES.

DESIGN COMPRESS WITH APPLICABLE PROVISIONS OF HOS (MATIONAL DESIGN SPIC, BY AFRIKA AND TP). ITH BCG
CONNECTOR PLATES ARE MADE OF 20/18/16GA (M.H/SS/K) ASTN A653 ORADE 40/50 (M.K/M.SS) GALV. STEEL APPLY DESIGN SHOWN. THE BUILDING DESIGNER PER DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL ENGINEERING RESPONSIBILITY A PROPERLY ATTACHED RIGID CEILING 1.5X4 III 2.5X6# R=821 U=29 W=3.5" Design Crit: A 6 * 3X4 / 9-0-0 9-0-0 12 18-1-8 E LOCATED ON THIS DESIGN, POSITION PER DRAHINGS 160A.
PER ANNEX A3 OF TP11-2002 SEC. 3. A SEAL ON THE TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/ Over €X6≡ 4 X 4 == 1 Supports SOLELY FOR THE TRUSS COMPONENT /10(0)12 3X4// -9-1-8 9-1-8 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18 Wind reactions based on MWFRS pressures. 7.36. GOUGLAS! FLE -6-12 R-821 U-30 W-5.5" ORIOP ILE 2.5X6 CENS No. 6664 1.5X4 Ⅲ 80 BC DL TC DL DUR.FAC. C SPACING TOT.LD. FL/-/4/-/-/R/-Ε 40.0 20.0 24.0" 1.25 10.0 PSF 10.0 PSF 0.0 PSF PSF PSF DATE REF JREF -SEQN-HC-ENG DRW HCUSR8228 08239089 Scale =.25"/Ft. R8228-1TKE8228Z02 DF / DF 38550 10-3-15 08/26/08 23518

Truss spaced at 24.0" OC designed to support 1-6-0 top chord outlookers. Cladding load shall not exceed 10.00 PSF. Top chord must not be cut or notched. Bot Note: All Plates Are 1.5X4 Except As Shown. PLT TYP. OTHERS. Deflection meets L/240 live and L/180 total load. factor for dead load is 1.50. Roof overhang supports 2.00 psf soffit load ITW Building Components Group MEMBER TO BE LATERALLY BRACED FOR OUT OF PLANE WIND LOADS TO TRUSS. BRACING SYSTEM TO BE DESIGNED AND FURNISHED BY b chord 2x4 SP t chord 2x4 SP Webs 2x4 SP -207--Fill in later Haines City, FL 33844 FL COA #0 278 ALPINE Wave) #2 Dense P #2 Dense P #3 :W2, W8 2x4 SP # DONNY WILLIAMS **IMPORTANT**TUBBISIA A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITW BCG. THE. SMALL NOT BE RESCONSING TOR ANY DEVIATION FROM HIS DESIGN; ANY FAILURE TO BUILD THE FRUSS IN COMPORMANCE WITH TOTAL OR TARRICATING, MANDLING, SHIPPING, HSTALLING & BRACTHEO OF THUSSES.
DESIGN COMPONES WITH APPLICABLE PROVISIONS OF MOS (MAILONAL DESIGN SPEC, BY AFRA) AND TOTAL. THE BCG COMBICTION FAILS AND FAME OF TOTAL PROVISIONS OF MOS (MAILONAL DESIGN SPEC, BY AFRA) AND TOTAL APPLY A COMBICTION FAILS AND FAME OF TOTAL PROVISIONS OF MOS (MAILONAL DESIGN SPEC, BY AFRA) AND TOTAL APPLY A COMBICTION FAILS AND FAME OF TOTAL PROVISIONS OF MOS (MAILONAL DESIGN SPEC, BY AFRA) AND TOTAL PROVISIONS OF THE COMBICTORY AND THE PROVISIONS OF THE PROVINCE OF THE PROVISIONS OF THE **WARNING.** TRUSSES BEQUIRE EXTREME CARE IN FARRICATION, HANDLING, SHIPPPHO, INSTALLING AND BRACING. RETER TO BEST (BUILDING COMPORENT SAFETY INFORMATION), PUBLISHED BY FIT (TRUSS PLATE HISTHUTE, 21M MORTH LEE STREIT, SUITE 312, ALEXANDRA, VA, 22314) AND MICA (1000) TRUSS COUNCIL OF AMERICA, 6300 ENTERGRESE LANG, MAISSON, WI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OTHERWISE INDICATED FOR CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED REPORTED FOR CHORD SHALL HAVE BUILDING DESIGNER PER PLATES TO EACH FACE OF TRUSS AND. UMLESS OTHERWIY ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL ENGI 1-6-0 3X4 **■** 8X10(R) 0 #2 Dense: 4X10(R) 31-80 R=1520 U=140 W=3.5' 3×4/ 1.5X4(**) ₩ Design Crit: 4-6-0 ** PROFESSIONAL ENGINEERING RESPONSIBILITY SO AND USE OF THIS COMPONENT FOR ANY BUILDING UNLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER DR BY (1) SHALL BE PER ANNEX AS OF TPIL-2002 SEC.3. A DGE Creep increase 4X4# 12 3X4/ 9-0-0 7-8-1 TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) 18-1-8 2.5X6 4-6-0 Over 4 X 5 (R) IN. POSITION PER DRAWINGS 160A-Z
102 SEC.3. A SEAL ON THIS
SOLELY FOR THE TRUSS COMPONENT
NG IS THE RESPONSIBILITY OF THE 6 X 6 ≡ N Supports 2.5X6 4-6-12 = THE ROOF, FLOOR AND CEILING DIAPHRAGMS, GABLE END SHEAR WALLS, AND SUPPORTING SHEAR WALLS. DIAPHRAGMS AND SHEAR WALLS MUST PROVIDE CONTINUOUS LATERAL RESTRAINT TO THE GABLE END. ALL CONNECTIONS ARE TO BE PROVIDED BY THE BUILDING DESIGNER. 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL-5.0 psf, wind BC DL-5.0 psf. Iw-1.00 GCpi(+/-)-0.18 (**) plot See DWGS A11015EE0207 & GBLLETIN0207 for more requirements Wind reactions based on MWFRS pressures 8 BUILDING DESIGNER IS RESPONSIBLE FOR THE DESIGN OF 12 9-1-8 2 plate(s) require special positioning. Refer details for special positioning requirements. 3×6 # 3×4/ GOUDAS FLEA SSS/ONAL T 4X10(R) 4-6-12 No. 66648 1.5X4(**) Ⅲ CORIDA R-1502 U-135 W-3.5" WIE O 3X4 / GINER 1 01-53 0-11-4-8 7X10(R) 80 BC LL BC DL DUR.FAC. TC DL C SPACING TOT.LD. FL/-/4/-/ SEE 40.0 10.0 20.0 10.0 0.0 ABOVE . 25 0.1 PSF PSF PSF PSF PSF scaled plate SEQN-DATE REF JREF -DRW HCUSR8228 08239086 HC-ENG Scale R8228-1TKE8228Z02 =.25"/Ft. DF / DF 08/26/08 38904 23519

Top chord 2x4 SP # Bot chord 2x4 SP # Webs 2x4 SP # PLT Roof overhang supports 2.00 psf soffit load Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50.\,$ 8-207--Fill in later DONNY WILLIAMS TW Building Components Group TYP. Haines City, FL 33844 FL COA #0 278 ALPINE Wave #2 Dense #2 Dense #3 **IMPORTANT**TURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITM BCG, THG. SHALL NOT THE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN, ANY FAILURE TO BUILD THE TRUSS IN COMPORMANCE WITH TPI: OR FABLICATHIG., INMIDITION, SHIPPING, INSTALLING & BHACHIG OF TRUSSES, DESIGN COMPORES WITH APPLICACHE PROVISIONS OF NDS (MATIONAL DESIGN SPEC, BY ALENA) AND TPI. I'LL APPLY PLATES TO LACH FACE OF THUSS AND. WHILESS OF NDS (MATIONAL DESIGN SPEC, BY ALENA) AND TPI. THE PLATES TO LACH FACE OF THUSS AND. WHILESS OF NDS (MATIONAL DESIGN SPEC, BY ALENA) AND TPI. THE PLATES TO LACH FACE OF THUSS AND. WHILESS OF NDS (MATIONAL DESIGN SPEC, BY ALENA) AND TPI. THE PLATES TO LACH FACE OF THUSS AND. WHILESS OF NDS (MATIONAL DESIGN SPEC, BY ALENA) AND TPI. **MARNING** RRUSES REQUERE EXTREME CARE IN FARRICATION, HANDLING, SHIPPING, HISTALLING AND BRACING, RETER TO RCS! (BUILDING COMPONENT SAFETY INFORMATION), PUBLISHED BY FIT (ERRES PLATE INSTITUTE, 210 MORTH LEE STREET, SUITE 372, ALEXANDRIA, VA. 22314) AND WITA (MODD TRUSS COUNCIL OF AMERICA, 6300 THEERETSE LIBIGATION, MI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FINGITIONS, UNLESS OTHERHISE HOLDSCAFED FOR DEBO SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE DRAWING INDICATES ACCEPT 41-6-0× 3X4(B1) = R=661 12 Design Crit: U-97 W-5.5" 6-2-12 6-2-12 MATIONAL DESIGN SPEC, BY ATREA) AND FPL. IIN BEG ASTH A653 GRADE 40/60 (W. KJN.SS) GALV. STEEL, APPLY LOCATED ON THIS DESIGN, POSITION PER DRAWINGS 160A-Z ER ANNEX A3 OF IPI1-2002 SEC.3. A SEAL ON THIS 12-5-8 TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) 0ver 1.5X4 III 4 X 4 == 2 Supports 6-2-12 6 - 2 - 1212 110 mph wind, 21.29 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf. lw=1.00 GCpi(+/-)=0.18 Wind reactions based on MWFRS pressures. 7.36. =661 U=97 W=5.5" OO JOENS 3X4(B1) = No. 66648 41-6-02 80 18-5-14 BC LL BC DL TC DL TC LL SPACING DUR.FAC. TOT.LD. FL/-/4/-/-/R/-24.0" 40.0 10.0 PSF 20.0 PSF 1.25 10.0 PSF PSF PSF REF JREF -DATE SEQN-HC-ENG DRW HCUSR8228 08239074 Scale = .3125"/Ft R8228- 23520 1TKE8228Z02 DF / DF 38695 08/26/08

ימוטיים שטוונוובט שו ואטשש ואוא.

SPACING

24.0"

JREF -

1TKE8228702

Top chord 2x4 SP #
Bot chord 2x4 SP #
Webs 2x4 SP # PLT TYP. Roof overhang supports 2.00 psf soffit load. Left end vertical exposed to wind pressure. Deflection meets L/240 criteria for brittle and flexible wall coverings. Provide for complete drainage of roof. Truss must be installed as shown with top chord up. (8-207--Fill in later DONNY WILLIAMS TW Building Components Group Inc. Haines City, FL 33844 FL COA #0 278 ALPINE Wave #2 Dense #2 Dense #3 :W1 2x4 SP **IMPORTANI***UBBRISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITW RCG, INC. SHALL NOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN; ANY FAILURE TO BUILD THE TRUSS IN CONTONMANCE WITH PRIOR FLANGE TO BE ADMITTANISH. ANALYTHICE, SHIPPING, INSTALLING & BRACING OF TRUSSES.

DESIGN CONTROLLY HIS, AND THE PROVISIONS OF ANY SHRACING OF TRUSSES. ANY ATAPA, AND TRI. ITW RCG CONTROLLY AND TRIL PROVISIONS OF ANY SHRACING OF TRUSSES. ANY ATAPA, AND TRI. THE RCG CONTROLLY AND TRIL PROVISIONS OF ANY SHRACING OF TRUSSES. AND TRIL APPLICABLE PROVISIONS OF ANY SHRACING OF TRUSS. AND TRIL APPLICABLE PROVISIONS OF ANY SHRACING OF TRUSS. AND TRIL APPLY PARTY OF THE PROVISION OF **WARNING** IRUSSES REQUIRE EXTREME CARE IN FARRICATION. HANDLING, SHIPPING, INSTALLING AND BRACING. RELER TO BEST. (BUILDING COMPORENT SAFETY INFORMATION). PUBLISHED BY FET (TRUSS PLATE INSTITUTE, 219 MORTH LEE SINEE, SUITE 312, ALEXANDRIA, VA. 22314) AND HTCA (4000 DIRUSS COUNCILS OF MATERICA, 6300 ENTREPRESE LANG. HOUSION, MI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OTHERWISE INDICATED TOP CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE BUILDING DESIGNER PER DRAWING INDICATES #2 Dense: 1.5X4 Ⅲ 3 × 4 ≡ R=582 U=262 W=5.5" Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) ** E8) 5-10-4 -10-4 12-0-0 Over 2 Supports SIGN SPEC. BY AFRINA) AND TPI. ITM BCG RADE 40/60 (M. K.M. SS) GALV. SIEEL APPLY THIS DESIGN, POSITION PER DRAHIMGS 160A-2 OF TPII-2002 SEC.3. A SEAL ON THIS N. POSITION PER DRAWINGS 160A-Z.
102 SEC.3. A SEAL ON THIS
SOLELY FOR THE TRUSS COMPONENT
NG IS THE RESPONSIBILITY OF THE 1.5X4 Ⅲ 4 X 8 ≡ 4 110 mph wind, 25.97 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18 Right end vertical not exposed to wind pressure. Wind reactions based on MWFRS pressures. Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50. 7.36.00 5-10-4 6-0-0 OSIONAL BUGINE R=474 U=175 1.5X4 Ⅲ 3 X 4 == 80 BC LL BC DL TC DL DUR.FAC. TC LL SPACING TOT.LD. FL/-/4/-/-/R/-24.0" 1.25 40.0 20.0 10.0 PSF 10.0 PSF 0.0 PSF PSF PSF REF DATE SEQN-HC-ENG DF/DF DRW HCUSR8228 08239006 JREF -Scale = .375"/Ft. R8228 - 23523 1TKE8228Z02 08/26/08 39896

Top chord 2x4 SP #2 Dense Bot chord 2x4 SP #2 Dense Webs 2x4 SP #3 :W1 2x4 SP

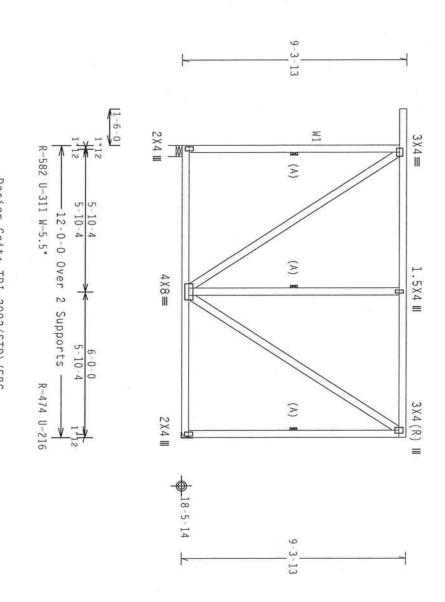
#2 Dense:

Left end vertical exposed to wind pressure. Deflection meets L/240 criteria for brittle and flexible wall coverings.

Roof overhang supports 2.00 psf soffit load

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50\,.$

Truss must be installed as shown with top chord up


110 mph wind, 27.81 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18

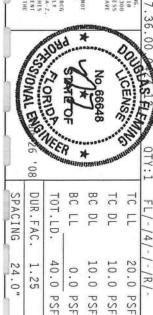
Wind reactions based on MWFRS pressures.

Right end vertical not exposed to wind pressure

(A) Continuous lateral bracing equally spaced on member.

Provide for complete drainage of roof.

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)


PLT TYP.

Wave

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE SCG. INC. SHALL NOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN ANY FAILURE TO BUILD THE FRISS IN COMPORMANCE WITH IP): OR FARELACTING, HANDLING, SIMPPING, HISTALLING A BRACLING OF THYSES, DESIGN COMPORES WITH APPLICABLE PROPYSIONS OF HIS GRAIN AGES GRADE APPLICABLE PROPYSIONS OF HIS GRAIN AGES GRADE APPLICABLE PROPYSIONS OF HIS GRADE APPLICABLE PROPYSIONS OF HIS SCHAMBER AND THIS SOLAR. SHEEL APPLY PLATES TO EACH FACE OF TRUSS AND, DUELSS OTHERSISE LOCATED ON THIS DESIGN, POSITION OF PREDICTION OF PLATES FOLLOWED BY (1) SHALL HE PER ANNEX AS OF THIS FOLLOWED BY (1) SHALL HE

ITW Building Components Group Inc. Haines City, FL 33844 FL COA #0 278

ALPINE

PSF

HC-ENG

DF / DF 39892

DRW HCUSR8228 08239007

PSF

SEQN-

JREF -

1TKE8228Z02

PSF

DATE REF

08/26/08

PSF

Scale =.25"/Ft.

R8228 - 23524

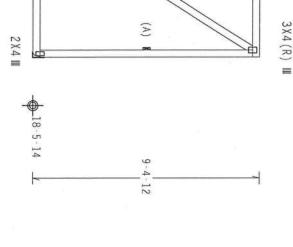
Top chord Bot chord (8-207--Fill in later DONNY WILLIAMS Chord 2x4 SP #2 Dense Chord 2x4 SP #2 Dense Webs 2x4 SP #3 :W1 2x4 SP * E6) 110 mph wind, 27.89 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18

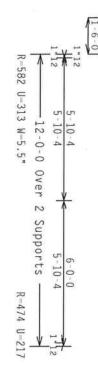
#2 Dense:

Left end vertical exposed to wind pressure. Deflection meets L/240 criteria for brittle and flexible wall coverings.

Roof overhang supports 2.00 psf soffit load

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.


Wind reactions based on MWFRS pressures.


Right end vertical not exposed to wind pressure.

(A) Continuous lateral bracing equally spaced on member.

Provide for complete drainage of roof.

Truss must be installed as shown with top chord up. 9 12 M 3 X 4 == (A) 3 1.5X4 Ⅲ

2X4 III

4 X 8 =

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

PLT TYP.

Wave

WARNING TRUSSES REGULER LETRINE CARE IN FARRICATION. HANDLING, SHIPPING, INSTALLING AND BRACING. REFER TO BESS. (DULIDING COMPONENT SAFETY INFORMATION), DRELIENDED BY THE (TRUSS PLATE HESTIDUE, 21D MORIN LE STREE, SUITE 137, ALEXANDRIA, VA. 22314) AND WICA (MORD TRUSS COUNCIL OF AMERICA, 6300 ERRICHPESS LAME, MADISON, WI 53759) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OTHERWISE TRUDICATION FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OTHERWISE TRUDICATION FOR SHALL MAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL MAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL MAVE

IMPORTANT FURBLES A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. IT WEGG, INC. SMALL NOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN; ANY FAILURE TO BUILD THE TRUSS IN COMPORNANCE WITH FPI; OF FAREIGATING, HANDLIGGE, SELPTING, INSTALLIGG & BACALING OF TRUSSES; A FLADA AND TPI. IT HIS DESIGN CONTROLS AND THE APPLICABLE PROVISIONS OF MOS (MATIONAL DESIGNS SPIC, BY ATAPA) AND TPI. IT HIS COMPONENS WITH APPLICABLE PROVISIONS OF MOS (MATIONAL DESIGNS SPIC, BY ATAPA) AND TPI. IT HIS COMPONENS TO EACH FACE OF TRUSS. AND INDICAS (MATIONAL DESIGNS SPIC) AND STITUM FRE BRANINGS INDICATES OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FRE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE OF POSITION FREE BRANINGS 160A J. ANY ALONE HIS DESIGN AND SPICE A DRAWING INDICATES ACCEPTANCE OF PROFESS DESIGN SHOWN. THE SUITABILITY AND USE BUILDING DESIGNER PER ANSI/TPI 1 SEC. 2.

USE OF THIS COM

TW Building Components Group Inc. Haines City, FL 33844 FL COA #0 278

ALPINE

	WALEN 26 '08 DUR.	RIORIVE	R	Ž ?	PAA •••••• HIMIN	NS.
SPACING	DUR.FAC	TOT.LD.	BC L	BC D	TC DL	TC L
ING	FAC.	LD.	F	DL	F	F
24.0"	1.25	40.0 PSF	0.0	10.0	10.0 PSF	20.0 PSF
-		PSF	PSF	PSF	PSF	PSF
JREF	Si ,	SEQN	HC-ENG DF/DF	DRW	DATE	REF
- 1TKE			NG D	HCUSR		R8228
JREF - 1TKE8228Z02		39888	F/DF	DRW HCUSR8228 08239008	08/26/08	28 - 23525

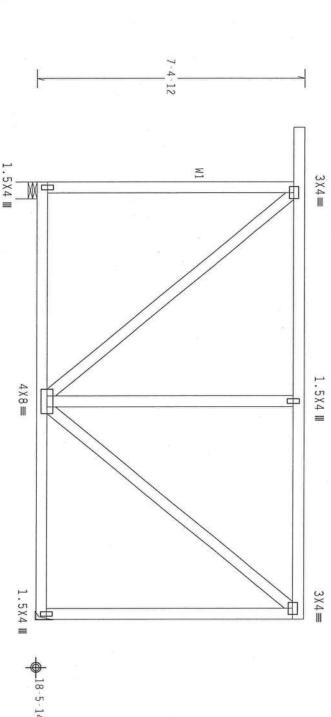
Scale = .25"/Ft.

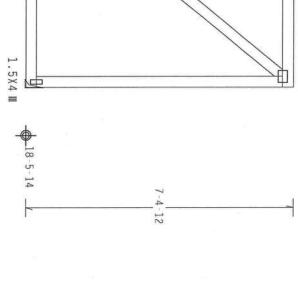
110 mph wind, 25.89 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi (+/-)=0.18

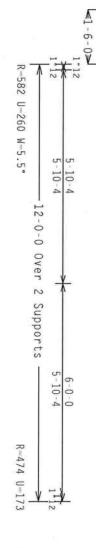
Top chord 2x4 SP ; Bot chord 2x4 SP ; Webs 2x4 SP ; #2 Dense #2 Dense #3 :W1 2x4 SP

#2 Dense:

Left end vertical exposed to wind pressure. Deflection meets L/240 criteria for brittle and flexible wall coverings.


Roof overhang supports 2.00 psf soffit load.


Provide for complete drainage of roof.


Wind reactions based on MWFRS pressures.

Right end vertical not exposed to wind pressure. Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

Truss must be installed as shown with top chord up.

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

PLT TYP.


Wave

REFER TO BOSI (BUILDING COMPONE)
NORTH LEE STREET, SUITE 312, ALEXX
PENTERPRISE LANE, MADISON, HI 531
OTHERBISE INDICATED TOP CHORD SHAI
A PROPERLY ATTACHED RIGID CEILING.

IMPORTANT TURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG, INC. SHALL NOT BE RESPONSIBLE FOR ANY DEVALION FROM THIS DESIGN; ANY FALLURE TO BRILD THE TRISS IN COMPORNANCE WITH ITH IT OR FAREACATHO, HABRILLOG. SHEPPING, INSTALL NO A BRACING OF TROSSES. WARRAY AND THE THIS DESIGN COMPORTS ITH APPLICABLE PROVISIONS OF HOS SEA (RATIONAL DESIGN SPEC, BY ATRAY) AND THE THIS DESIGN COMPORTS ARE HAD TO A SHALL ROY SEA GRADE TO A SHALL APPLY A SHALL ROY SH DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL ENGINEERING RESPONSIBILITY DESIGN SHOWN. THE SUITABILITY AND USE OF THIS COMPONENT FOR ANY BUILDING DESIGNEEPER PER ARSI/FPI 1 SEC. 2. RESPONSIBILITY OF THE

TW Building Components Group Haines City, FL 33844 FL COA #0 278

ALPINE

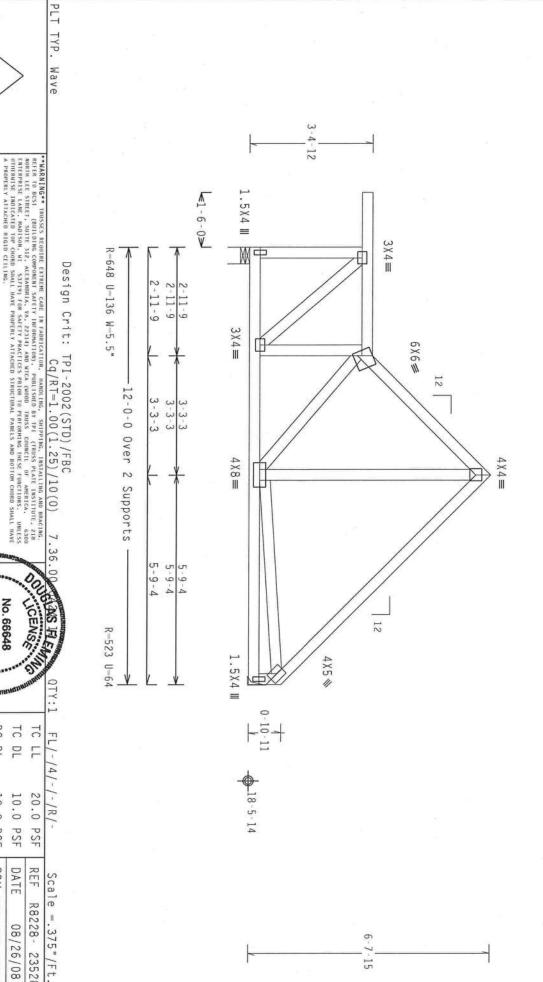
	ONAL EN 26 '08 DUR.	ZORIOR	TATE OF I PRINT	***************************************	No SSSAR	ICENS OF
SPACING	DUR.FAC	TOT.LD.	BC LL	BC DL	TC DL	TC LL
ING	FAC.	LD.	_	_	_	_
24.0"	1.25	40.0	0.0	10.0	10.0	20.0
]	01	40.0 PSF	0.0 PSF	PSF	PSF	20.0 PSF
JREF-		SEQN-	HC-E	DRW	DATE	REF
			HC-ENG DF/DF	HCUSRE		R8228-
(E822		39884	JDF	3228 0	08/26/08	
1TKE8228Z02				HCUSR8228 08239009	/08	23526

Scale =.375"/Ft.

In lieu of structural panels use purlins to brace all flat TC @ 24" $\,$ 0C. Left end vertical exposed to wind pressure. Deflection meets L/240 criteria for brittle and flexible wall coverings. Top chord 2x4 SP #2 Dense Bot chord 2x4 SP #2 Dense Webs 2x4 SP #3 :W1 2x4 SP PLT TYP. (8-207--Fill in later DONNY WILLIAMS TW Building Components Group Haines City, FL 33844 FL CQA #0 278 ALPINE Wave S -4-12 **IMPORTANT**FURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. 11th BCG, THC, SHALL NOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN, NAY FAILURE TO BUILD THE TRUSS IN COMPORMANCE WITH IP: OR FAREIGNATHING, HANGLING, SHAPPING, HISKAILING A BRACTING OF TRUSSES, DESIGN CONFORMS HILL APPLICABLE PROPYISIONS OF THOS (MATIONAL DESIGN SPEC, BY ACEAN, AND TRI. 11th BCG CONNECTOR PLATES ARE HADE OF 20/18/160A (M.H/SS/N). ASIM A653 GRANDE 40/60 (M. K/M:SS) GALV. STEEL, APPLY PLATES TO EACH FACE OF TRUSS AND. UNLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER DRAWINGS 160A-Z, PLATES TO EACH FACE OF TRUSS AND. UNLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER DRAWINGS 160A-Z, AND THE TRUSK CONTROL OF THE TRUSK CONDOMINENT. WARNING* TRUSSES REQUIRE EXTREME CARE IN FABRICATION, MANDING, SHIPPING, HEADALING AND BRACING, BEFER TO BEST, QUILLDING COMPONENT SAFETY INFORMATION), PRINCIPED BY THE CITRUSS PLATE INSTITUTE, 218 HORRING, VA. 223-2314) AND MICHAGO TRUSS COUNCIL OF AMERICA, 6320 CHIEGHERS LANE, MADISON, WI 53718) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE TRUSTIONS, UNITESS OFFICENTISE INSTITUTE, 518 AFFENDE SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SMALL HAVE PROPERLY ATTACHED TRUSTED STRUCTURAL PARELS AND BOTTOM CHORD SMALL HAVE DESIGN SHOWN. THE SUITABILITY BUILDING DESIGNER PER ANSI/TP1 1 DRAWING INDICATES 1.5X4 Ⅲ **★**1-6-0> #2 Dense: WI 3 X 4 ≡ R=648 U=179 W=5.5" Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) E4) 4-11-9 4-11-9 12-0-0 Over 5×6# 3 X 4 ≡ OZ SEC.3. A SEAL ON THIS SOLELY FOR THE TRUSS COMPONENT NG IS THE RESPONSIBILITY OF THE 4 X 8 ≡ 4×4≡ 2 Supports 110 mph wind, 22.27 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18 Roof overhang supports 2.00 psf soffit load Wind reactions based on MWFRS pressures Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50. 5-9-4 5-9-4 CENSA 12 R-523 U-65 1.5X4 Ⅲ 4×5/ 80 BC LL BC DL DUR.FAC. TC DL TC LL SPACING TOT.LD. FL/-/4/-/-/R/-24.0" 1.25 40.0 20.0 PSF 10.0 PSF 10.0 PSF 0.0 PSF PSF JREF -DATE REF SEQN-DRW HCUSR8228 08239010 HC-ENG Scale = .375"/Ft. R8228 - 23527 1TKE8228Z02 DF / DF 39880 08/26/08 -7-15

Top chord 2x4 SP Bot chord 2x4 SP Webs 2x4 SP #2 Dense #2 Dense #3

Left end vertical not exposed to wind pressure


Roof overhang supports 2.00 psf soffit load

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

110 mph wind, 22.27 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18

Wind reactions based on MWFRS pressures.

In lieu of structural panels use purlins to brace all flat TC @ 0C. 24"

TW Building Components Group Inc.

ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL ENGINEERS OF THIS OF THIS OF THIS OF THIS OF THIS OF THE SUITABILITY AND USE OF THE SUIT

ALPINE

IMPORTANT TURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG. INC. SMALL NOT BE RESPONSIBLE FOR ANY DEVLATOR FROM THIS DESIGN ANY FAILURE TO BUILD THE TRUSS IN COMPORNANCE WITH THIS OR FARRICATING, INMOLING, SHIPPING, INSTALLING A BRACING OF TRUSSES.

DESIGN COMPRESS WITH APPLICABLE PROVISIONS OF INSTALLING A BRACING OF TRUSSES. BY AFAFA, AND THIS. ITH BCG CONNECTOR PLATES ARE MADE OF 20/IB/ISGA (W.H/SS/K) ASTN A653 GRADE 40/50 (W.K/M.SS) GALV STEEL, APPLY

SIGN SEC. BY ATAPA) AND FP! ITH BCG RADE 40/50 (W. K/M.SS) GALV. STEEL APPLY THIS DESIGN. POSITION PER BRANINGS 160A-Z OF TPI1-2002 SEC.3. A SEAL ON THIS

ORIOF IE

80

DUR.FAC.

TOT.LD.

40.0

PSF PSF

SEQN-HC-ENG

38736

SPACING

24.0" 1.25

JREF -

1TKE8228Z02

CENS No. 66648

BC DL

10.0 PSF 0.0

DRW HCUSR8228 08239104

DF / DF

TC DL TC LL

20.0 10.0 PSF

PSF

R8228 - 23528

DATE REF

08/26/08

BC LL

SOLELY FOR THE TRUSS COMPONENT

Haines City, FL 33844 FL COA #0 278

Top chord 2x4 SP Bot chord 2x4 SP Webs 2x4 SP :Stack Chord SCI Stacked top chord must NOT be notched or cut in area (NNL). Dropped top chord braced at 24" o.c. intervals. Attach stacked top chord (SC) to dropped top chord in notchable area using 3x4 tie-plates 24" o.c. Center plate on stacked/dropped chord interface, plate length perpendicular to chord length. Splice top chord in notchable area using 3x6. THE BUILDING DESIGNER IS RESPONSIBLE FOR THE DESIGN OF THE ROOF, FLOOR AND CEILING DIAPHRAGMS, GABLE END SHEAR WALLS. AND SUPPORTING SHEAR WALLS. DIAPHRAGMS AND SHEAR WALLS MUST PROVIDE CONTINUOUS LATERAL RESTRAINT TO THE GABLE END. ALL CONNECTIONS ARE TO BE PROVIDED BY THE BUILDING DESIGNER. Note: All Plates See DWGS All030EE0207 & GBLLETIN0207 for more requirements Roof overhang supports 2.00 psf soffit load. Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50. TW Building Components Group Inc. 8-207--Fill in later Haines City, FL 33844 FL COA #0 278 ALPINE Wave #2 Dense #2 Dense #3 2x4 SP #2 Dense::Stack Chord Are 1.5X4 Except As Shown. DONNY WILLIAMS **IMPORTANT** FURBISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE BCG, INC. SHALL NOT BE RESPONSIBLE FOR ANY DEFIATION FROM THIS DESIGN, ANY FAILURE TO BUILD THE TRUSS IN COMPORNANCE WITH FPI: OR FARRICATING, MARILLEG, SHEPTHG, INSTALLING A BRACTING OF TRUSSES, DESIGN COMPORES WITH APPLICABLE PROPUTSIONS OF THOS (RATIONAL DESIGN SPEC, BY ATERA) AND TPI. THE BCG CONNECTION PLATES ARE MADE OF 20/18/166A (M.M/SS/M) ASTM A653 BRADE 40/50 (M.K/M.SS) GALV. STEEL. APPLICABLES TO LACH FACE OF TRUSS AND. UNLESS OTHERSISE LOCATED ON THIS DISIGN, POSITION PER DRAWINGS 100A-X. ANY INSPECTION OF PLATES FOLLOWED BY (I) SHALL BE PER ANNEX A. OF FPII-2002 SEC. 3. A SEA, ON THIS DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

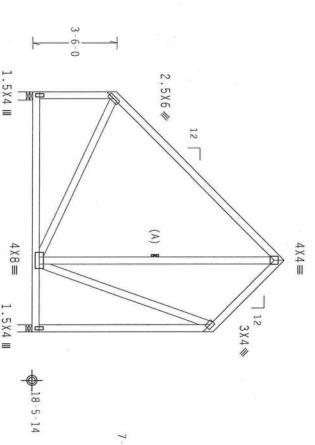
DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL BEGINNERS AND FPII-2002 SEC. 3.

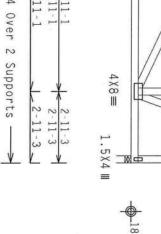
DRAWING INDICATE AND FRANCE A PROPERLY ATTACHED RIGID CEILING BUILDING DESIGNER PER ANSI/TP1 1 Design Crit: ** **SC2** EGE 2x4 SP #2 TPI-2002 (STD) /FBC Cq/RT=1.00(1.25)/10(0) **€**1-6-0>**€** Dense: R-423 U-42 W-5.5" 3-0-0 (NNL 3X8(A3) = 3-0-0 3X4 / 12 R=126 Truss spaced at 24.0" OC designed to support 1-6-0 top chord outlookers. Cladding load shall not exceed 10.00 PSF. Top chord must not be cut or notched. 110 mph wind, 21.76 ft mean hgt, ASCE anywhere in roof, CAT II, EXP B, wind psf. Iw=1.00 GCpi(+/-)=0.18 6 - 2 - 12Wind reactions based on MWFRS pressures Ξ PLF U=50 PLF W=11-6 lieu of structural panels use purlins to 7.36 12-5-8 Over OUGAS FLE ORIO PIE No. 66648 9-5-8 W Supports * BC DL DUR.FAC. TC DL SPACING TOT.LD. FL/-/4/-7-02, CLOSED bldg, Located TC DL=5.0 psf, wind BC DL=5.0 -2-12 SEE brace /-/R/-40.0 10.0 10.0 20.0 12 0.0 ABOVE R-301 U-0× -5.5" 3X4// 10 PSF PSF PSF PSF 3X8(A3)@ 0-0 (NNL) 3-0-0 REF JREF -SEQN-DATE HC-ENG DRW HCUSR8228 08239105 **1**-6-0≥ Scale =.375"/Ft. III R8228-1TKE8228Z02 DF / DF 08/26 38740 23529 18-5-/08 0

α

Top chord 2x4 SP | Bot chord 2x4 SP | Webs 2x4 SP | #2 Dense #2 Dense #3


End verticals not exposed to wind pressure.

(A) Continuous lateral bracing equally spaced on member.


110 mph wind, 25.45 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18

Wind reactions based on MWFRS pressures.

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

10-5-1

R = 435U-8 W-4" 9-10-4 Over 6-11-1 Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) R-435 U-157 W-3.5"

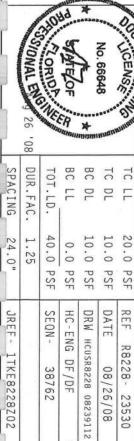
A PROPERLY ATTACHED RIGID CEILING.

PLT TYP.

Wave

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITW BCG, INC. SHALL NOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN, ANY FALLURE TO BALLD THE TRUSS IN COMPORNANCE WITH IPT: OR FARRICATION, HANDLING. SHEPPIG, INSTALLING & BRACHING OF TRUSSES, DESIGN CONFORMS WITH APPLICANLE PROVISIONS OF THOS (MATIONAL DESIGN SECO. WAREA) AND TPI. ITW BCG COMMECTION PLATES ARE HADE OF 707/18/16/36 (W.H/SS/R). ASHA A653 GRADE 40/50 (W.K/M.SS) GALV. SHELL APPLY PLATES TO EACH FACE OF TRUSS AND. UNLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER BRAWHOS 166A-Z, ANY INSPECTION OF PLATES FOLLOWED BY (I) SHALL BE PER ANNEX A.3 OF FPII-2002 SEC.3. A SEAL ON THIS DRAWHIG INDICATES ACCURATE ACCEPTS AND MADE AS THE TRUSS COMPONENT FOR THE SHALL AND AND THE SHALL BE PER ANNEX A.3 OF FPII-2002 SEC.3.

TW Building Components Group Inc.


ALPINE

Haines City, FL 33844 FL COA #0 278

DESIGN SHOWN. THE SUITABILITY AND BUILDING DESIGNER PER ANSI/TPI 1 SEC.

THE SUITABILITY AND USE OF THIS COMPONENT FOR R PER ANSI/TPI 1 SEC. 2.

DF / DF 38762

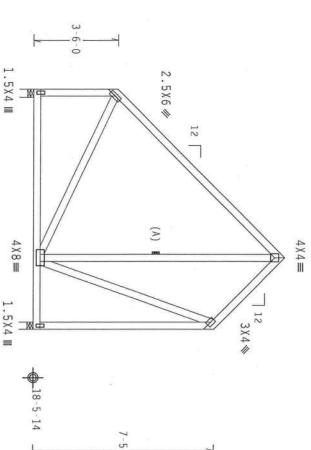
08/26/08

1TKE8228Z02

FL/-/4/-/-/R/-

Scale = .25"/Ft. R8228 - 23530

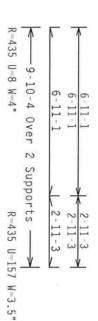
Top chord 2x4 SP #
Bot chord 2x4 SP #
Webs 2x4 SP # #2 Dense #2 Dense #3


End verticals not exposed to wind pressure.

(A) Continuous lateral bracing equally spaced on member.

110 mph wind, 25.45 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf. Iw=1.00 GCpi (+/-)=0.18

Wind reactions based on MWFRS pressures.


Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

13

10

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

PLT TYP.

Wave

REFER TO BESS! (BUILDING COMPONENT SAFETY INFORMATION), HANDLING, SHIPPING, INSTALLING AND BRACING, HORTH LEE STREET, SUIFE 1127, ALEXANDRIA, VA. 22-214) AND WITCH (BUILDING COMPONENT, SAFETY PROGRATION), PRINCIPE BY THE CIRRLES, SOURCEL OF AMERICA, 6300 CHIERRESS LAME, MADISON, WILLS SAFETY PRACTICES PRIOR TO PERCORNING THESE TRUCTIONS, UNLESS OTHERWISE LIBITICATED TO ELONGO SMALL HAVE PROPERTY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SMALL HAVE PROPERTY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SMALL HAVE

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE BCG, TMC, SMALL NOT BE RESPONSIBLE FOR ANY DEVIATION FRONT HIS DESIGN; ANY TAILURE TO BUILD THE TRUSS IN COMPORMANCE WITH FPI; OR FARELT-CHING, MANDING, SHEPPING, HISFALLING A BRACING OF TRUSSES, DESIGN CONFORMS WITH APPLICABLE PROPUSIONS OF DROS (MATIONAL DESIGN SPEC, DY ATERA) AND TPI. 178 BCG CONNECTOR PLATES ARE MADE OF ZO/18/166A (M.H/SS/N). ASIM A653 GRADE A0/500 (M.K./M.SS) GALV. STEEL. APPLY PLATES TO LACH FACE OF TRUSS AND. UNICES OTHERWISE LOCATED ON THIS DESIGN, POSITION DER DRAWINGS 160A-Z. ANY INSPECTION OF PLATES FOLLOWED BY (I) SMALL BE PER ANNEX AS OF TRIL-2002 SEC.3. A SEAL ON THIS BRAINGS INDICATE ACCEPTANCE OF ZORDESSESSIONAL RESPONSIBILITY SOLLY FOR THE TRUSS CORPOORER! SHADE AS A SEAL ON THIS BRAINGS INDICATE ACCEPTANCE ACCEPTANCE OF ZORDESSESSIONAL RESPONSIBILITY SOLLY FOR THE RESPONSIBILITY OF THE DESIGN SHOWN. THE S BUILDING DESIGNER PER

TW Building Components Group Inc. Haines City, FL 33844 FL COA #0 278

ALPINE

40.0 PSF

SEQN-HC-ENG

0.0 PSF

24.0" 1.25

JREF -

1TKE8228Z02

10.0 PSF 20.0 PSF

DATE REF

08/26/08

Scale = .25"/Ft.

R8228-

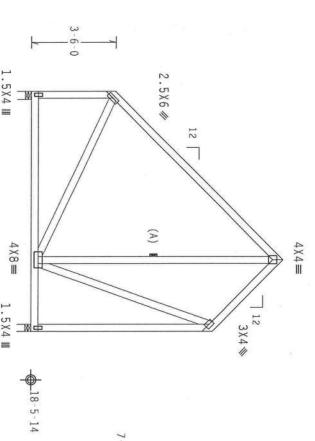
23531

10.0 PSF

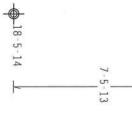
DRW HCUSR8228 08239098

DF / DF 38762

Top chord 2x4 SP Bot chord 2x4 SP Webs 2x4 SP #2 Dense #2 Dense #3


End verticals not exposed to wind pressure

(A) Continuous lateral bracing equally spaced on member.


110 mph wind, 25.45 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18

Wind reactions based on MWFRS pressures

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

10-5-1

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

FL/-/4/-/-/R/-

REF

23532

Scale = .25"/Ft. R8228-

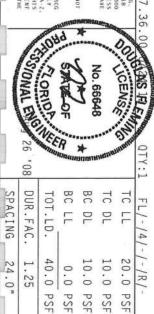
DATE

08/26/08

PLT TYP.

Wave

WARNING TRUSSES REQUIRE EXTREME CARE IN FABRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, RETER TO BCSS. [OBUILDING COMPORATED SAFETY INFORMATION], PHBLISHED BY TPT (TRUSS PLATE INSTITUTE, 218 MORTHLE SIREE, SUITE 312, ALEXANDRIA, VA, 227314) AND MICA (MOND TRUSS COMUCIL OF AMERICA, 63000 ERRIESPENS LANE, MADISON, MI \$3719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS, UNLESS OFHERMISE HOLDS HALL HAVE A PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTOM CHORD SHALL HAVE

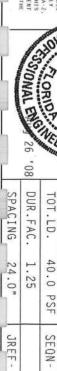

ANY INSECTION OF PLANTS THE STATE OF PROFESSIONAL ENGINEERING RESPONSIBILITY SOLILY FOR THE TRUSS AND, UNLESS OTHERWISE OCCURED BY HITS DESIGN, POSITION PER BRANTHGS 566A-Z.

DRAWING INDICATES ACCEPTANCE OF PROFESSIONAL ENGINEERING RESPONSIBILITY SOLILY FOR THE TRUSS FORMAT OF THE SUITABLITY AND USE OF THIS COMPONENT FOR ANY BUTLETER. **IMPORTANT**PURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG, INC. SHALL HOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN; ANY FAILURE TO BUILD THE TRUSS IN CONTONNAICE HITH THIS OF LARRICATION. AND THIS, HISTALLING, INSTALLING & BRACHING OF TRUSSES.

BESIGN CONFORMS WITH APPLICABLE PROVISIONS OF MOS (MAITOMAL DESIGN SPEC, BY AFRA) AND THIS. HITH REG CONNECTION PLATES ARE MOSE OF ZOJBAJSKA (M. H. MSSY) ASTH MASS DEADE 40/50 (M. F. MISS) AND STALL APPLY AND THE MADELY PLATES TO EACH FACE OF TRUSS AND. BULLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER DRAWINGS 160A-2

TW Building Components Group Haines City, FL 33844 FL COA #A 278

ALPINE



PSF

HC-ENG DF/DF

38762

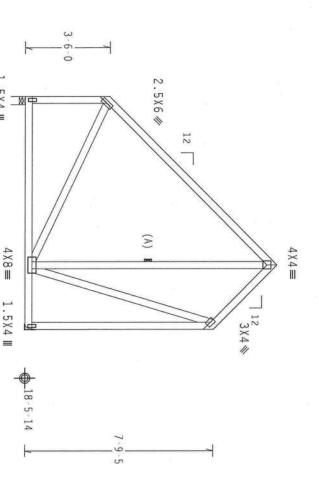
DRW HCUSR8228 08239097

1TKE8228Z02

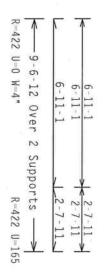
207 -- Fill in later DONNY WILLIAMS --*

8

p chord 2x4 SP t chord 2x4 SP Webs 2x4 SP #2 Dense #2 Dense #3


End verticals not exposed to wind pressure.

(A) Continuous lateral bracing equally spaced on member.


110 mph wind, 25.45 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi (+/-)=0.18

Wind reactions based on MWFRS pressures.

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

10

1.5X4 Ⅲ

Design Crit: TPI-2002 (STD) /FBC Cq/RT=1.00(1.25)/10(0)

PLT

TYP.

Wave

REFER TO BOSY (QUILDING COMPONENT SAFETY INFORMATION, HANDLING, SHIPPING, INSTALLING AND BRACING, BEFER TO BOSY (QUILDING COMPONENT SAFETY INFORMATION), PURLISHED BY FIT (FRUSS PLATE INSTITUTE, 210 HOSTH LEE STREET, SUITE 312, ALEXANDEA, VA. ZZIJA) AND NICA (MODO TRUSS COUNCIL OF AMERICA, 6300 ETRESPENSE LAME, MADISON, MI 53739) FOR SAFETY PRACTICES PRIOR TO PERFORMING HUSE FUNCTIONS. UNLESS OFFERNISE HOLDCARED FOR GOODS SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE

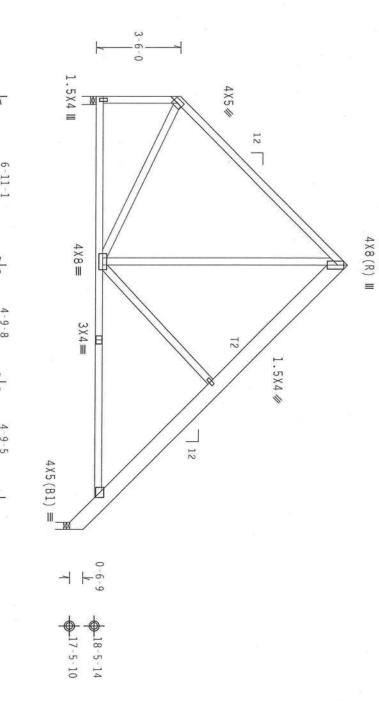
IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE BCG, INC. SHALL NOT BE RESPONSIBLE FOR ANY OFFICION FROM THIS DESIGN. ANY FAILURE TO QUILD THE BRUSS IN COMPORANCE WITH PI: OR FAREIGNATION, ANNOLUNG, SHEPPING, INSTALLING A BRACHE OF TRUSSES, AFATAN, AND TPI. THE BCG CONNECTOR PILES ARE AND OF 20189 JOING OF HOS SERVEN SPEC, BY ATATA, AND TPI. THE BCG CONNECTOR PILES ARE AND OF 20189 JOING OF HOS SERVEN, ASTAN ASSOCIATION OF SERVEN SPECE, APPLY PLATES TO EACH FACE OF TRUSS AND. DIMESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER BRAHINGS LOCATE, ANY HIS PETCH ON PILATES TO LACHE FACE OF TRUSS AND. DIMESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER BRAHINGS LOCATE. ANY HIS PETCH ON PILATES FOLLOWED BY 1) SHALL BE FER ANDRY AS OF THIS POSITION FOR THE TRUSS COMPORENT N. POSITION PER DRAWINGS 160A-Z.
07 SEC.3. A SEAL ON THIS
SOLELY FOR THE TRUSS COMPONENT
NG IS THE RESPONSIBILITY OF THE

ITW Building Components Group Inc

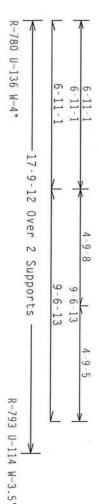
ALPINE

Haines City, FL 33844 FL COA #0 278

BUILDING DESIGNER PER ANSI/IPI I



DUR.FAC. SPACING 40.0 20.0 24.0" 10.0 PSF 1.25 10.0 PSF 0.0 PSF PSF PSF SEQN-DATE REF DRW HCUSR8228 08239100 JREF -HC-ENG R8228- 23533 1TKE8228Z02 DF / DF 38777 08/26/08


Scale = .25"/Ft.

Wind reactions based on MWFRS pressures

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

10-5-1

MARNING THUSSES REQUIRE EXPREME CARE IN FABRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, RETER TO BEST (MULLDING COMPONIENT SAFETY INFORMATION), PUBLISHED BY PT (TRUSS PLATE INSTITUTE, 219 NORTH LEE STREET, SHITE 312, ALEXANDRIA, VA, 22314) AND NICA (PROD TRUSS COUNCIL OF AMERICA, 6500 ENTERPRISE LANE, MADISON, HI 53719) FOR SAFETY PRACTICES PRIOR TO PREFORMING THESE FUNCTIONS. UNLESS OTHERATISE INDICATED TOP CHORD SMALL HAVE PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTOM CHORD SMALL HAVE PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTOM CHORD SMALL HAVE A PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTOM CHORD SMALL HAVE Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

FL/-/4/-/-/R/-

Scale = .25"/Ft.

R8228- 23534

08/26/08

PLT TYP.

Wave

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG, INC. SHALL NOT BE RESPONSIBLE FOR NAW DEVALION FROM THIS DESIGN ANY FAILURE FOR SHILD THE TRUSS IN COMPONNANCE WITH IN THIS DESIGN CONTRACTOR. JUNCIPLES, SUPPLIE, INSTALLING & BRACTING OF TRUSSES. AN ATRADA AND THIS DESIGN CONTROLS WITH APPLICABLE PROVISIONS OF RIDS (MATIONAL DESIGN SPEC, BY ATRADA) AND THIS DESIGN CONTROLS OF THIS APPLICABLE PROVISIONS OF RIDS (MATIONAL DESIGN SPEC), BY ATRADA AND THIS DESIGN CONTROLS ARE ARE AND OF 20/18/16/26 (M. 19/18/25) GALY. STEEL, APPLY DLATES TO EACH FACE OF TRUSS AND. UNLESS OTHERISE LOCATED ON THIS DESIGN, POSITION PER DRAFHINGS 166A-Z. ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE PER ABBYER AS OF PILISODOS SEC.3. ASSAL ON THIS DESIGN CONTROLS AND CONTROLS OF PILISODOS SEC.3.

RESPONSIBILITY OF

ITW Building Components Group Inc.

ALPINE

Haines City, FL 33844 FL COA #0 278

CONTRACT PROPERTY CENS No. 66648 80 BC LL BC DL TC DL TC LL DUR.FAC. SPACING TOT.LD. 40.0 10.0 20.0 1.25 10.0 PSF 24.0" 0.0 PSF PSF PSF PSF SEQN-DATE REF JREF -HC-ENG DRW HCUSR8228 08239096

DF / DF 38784

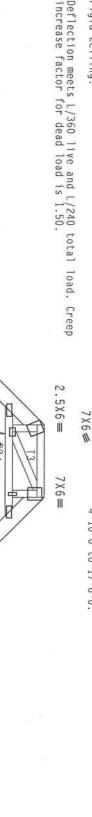
1TKE8228Z02

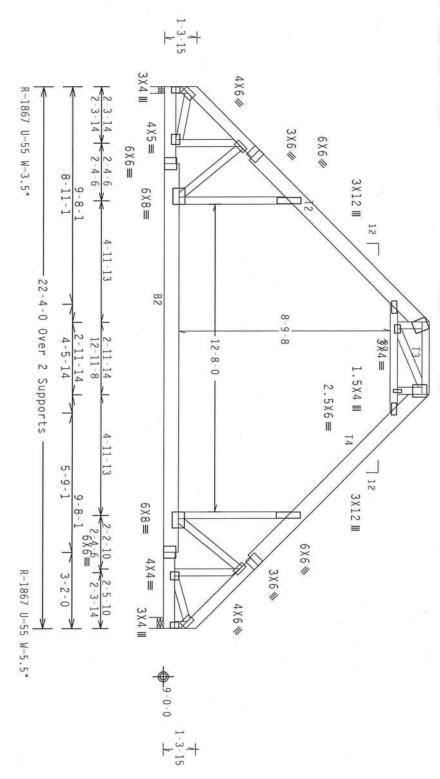
PLT TYP. Bot Note: All Plates not be cut or notched. Truss spaced at 24.0" OC designed to support 1-6-0 top chord outlookers. Cladding load shall not exceed 10.00 PSF. Top chord must Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50\,.$ Left end vertical not exposed to wind pressure 8-207--Fill in later TW Building Components Group chord Webs Haines City, FL 33844 FL COA #0 278 ALPINE 2x4 SP 2x4 SP 2x4 SP Wave #2 Dense #2 Dense #3 Are R-170 PLF U-24 PLF W-16-11-2 DONNY WILLIAMS 1.5X4 Except As Shown. **IMPORTANT**FURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITW BCG, INC. SHALL NOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN, ANY FAILURE TO BUILD THE TRUSS IN COMPORMANCE WITH IP: OR FABELGATING, MANULUG, SHEPPIG, INSTALLING A BRACHING OF TRUSSES, DESIGN CONFORRS, WITH APPLICABLE PROPYISIONS OF DOS (MATIONAL DESIGN SPEC, BY ANEA) AND IPI. THE RECONSISTENCE PROPYISION OF POLYSON, ASTA MASS GRADE 40/50 QH, K/M.SS) GALV. SITEL, APPLY PLATES TO EACH FACE OF TRUSS AND. UNLESS OTHERSISE LOCATED ON THIS DESIGN, POSITION PER DRAVINGS 160A-Z. ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE PER ARMEX A. OF PILL 2002 SEC.3. A SEAL ON THIS DRAVING INCLUDED BY (1) SHALL BE PER ARMEX AS OF PILL 2002 SEC.3. A SEAL ON THIS DRAVING INCLUDED BY (1) SHALL BE PER ARMEX AS OF PILL 2002 SEC.3. A SEAL ON THIS DRAVING INCLUDED BY (1) SHALL BE PER ARMEX AS OF PILL 2002 SEC.3. **WARNING** RUSSES BEOURE CYPERE CARE IN FABRICATION, MARDING, SHIPPING, INSTALLING AND BRACING. REFER TO BESS. (BUILDING COMPONER) SAFETY REPORMATION, PUBLISHED BY FPT (FRUSS PLATE INSTITUTE, 218 HORIN LEE STREET, SUITE 312. ALEXANDRIA, VA. 22314) AND WICA (1000) TRUSS COUNCIL OF AMERICA, 6300 ENTERPRIST LAME, MADISON, WI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THEST FUNCTIONS. UNLESS OTHERWIST INDICATED FOR DEBUS SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE DESIGN SHOWN. THE SUITABILITY AND USE BUILDING DESIGNER PER ANSI/IPI 1 SEC. 2. 12 16-11 EGE 2 Over 4 X 4 ≡ 3 Continuous Support 3 X 4 == 12 110 mph wind, 23.64 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18 THE BUILDING DESIGNER IS RESPONSIBLE FOR THE DESIGN OF THE ROOF, FLOOR AND CEILING DIAPHRAGMS, GABLE END SHEAR WALLS, AND SUPPORTING SHEAR WALLS. DIAPHRAGMS AND SHEAR WALLS MUST PROVIDE CONTINUOUS LATERAL RESTRAINT TO THE GABLE END. ALL CONNECTIONS ARE TO BE PROVIDED BY THE BUILDING DESIGNER. Wind reactions based on MWFRS pressures. See DWGS All030EE0207 & GBLLETIN0207 for more requirements (A) Continuous lateral bracing equally spaced on member 7.36.00 GOUGANS IFI. 2X4(D1) =CENS No. 66648 80 _18-5-14 TC DL DUR.FAC. TC SPACING TOT.LD. 14/-SEE 40.0 20.0 10.0 10.0 PSF 1.25 -/R/ 0.0 ABOVE PSF PSF REF SEQN-DRW DATE HC-ENG JREF -Scale = .25"/Ft. HCUSR8228 08239095 R8228-1TKE8228Z02 DF / DF 38790 08/26/08 10 23535

Top :T3 Bot :B3 chord 2x6 SP #2 :T2, T4 2x8 SP #1 Dense: 2x4 SP #2 Dense: chord 2x6 SP #2 :B2 2x8 SP #1 Dense: 2x4 SP #2 Dense: Webs 2x4 SP #3

Calculated horizontal deflection is 0.15" due to live load and 0.28" due to dead load.

Collar-tie braced with continuous lateral bracing at 24" OC. rigid ceiling.


00


Wind reactions based on MWFRS pressures.

110 mph wind, 15.16 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18

In lieu of structural panels use purlins to brace all flat TC @ 0C.

BC attic room floor loading: LL = 40.00 psf; DL = 10.00 psf; from 4-10-0 to 17-6-0.

11-0-0

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

TYP.

Wave

WARNING TRUSSES REQUIRE EXTREME CARE IN FARRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, REFER TO BOSI (BUILDING COMPONENT SAFETY INFORMATION), PUBLISHEE BY TPI (TRUSS PLATE HESTITHIT, 27B MORTH LEE STREIT, SUITE 312, ALEXANDRIA, VA, 22310) AND NICA (ANDD TRUSS COUNCIL OF AMERICA, 6300 ENTREPRENTES LANE, MADISON, HI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMENG THEST FUNCTIONS. UNLESS OFHERMISE INDICATED TOP CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE

BUILDING DESIGNER PER

TW Building Components Group Inc.

ALPINE

FL CO 4 MA 778

JREF - 1TKE8228Z02	JREI		24.0"	SPACING	
			1.25	DUR.FAC.	26 '08
N- 38868	SEQN	PSF	40.0 PSF	TOT.LD.	CINE
HC-ENG DF/DF	HC-I	PSF	0.0 PSF	BC LL	ER
HCUSR8228 08239094	DRW	PSF	10.0	BC DL	**************************************
08/26/08	DATE	PSF	10.0	TC DL	****
R8228- 23538	REF	PSF	20.0 PSF		B. S.

Scale = .25"/Ft.

Bot: In lieu of structural panels use OC. BC attic room floor 4-10-0 to 17-6-0. not PLT TYP. Note: THE BUILDING DESIGNER IS RESPONSIBLE FOR THE DESIGN OF THE ROOF, FLOOR AND CEILING DIAPHRAGMS, GABLE END SHEAR WALLS, AND SUPPORTING SHEAR WALLS. DIAPHRAGMS AND SHEAR WALLS MUST PROVIDE CONTINUOUS LATERAL RESTRAINT TO THE GABLE END. ALL CONNECTIONS ARE TO BE PROVIDED BY THE BUILDING DESIGNER. Truss spaced at 24.0" OC designed to support 1-6-0 top chord outlookers. Cladding load shall not exceed 10.00 PSF. Top chord must Roof overhang supports 2.00 psf Deflection meets L/360 live and L/240 total load. Creep increase factor for dead load is 1.50. TW Building Components Group MEMBER TO BE LATERALLY BRACED FOR OUT OF PLANE WIND LOADS TO TRUSS. BRACING SYSTEM TO BE DESIGNED AND FURNISHED BY OTHERS. chord 2x4 chord 2x6 8 2x4 SP #2 Webs 2x4 207 -- Fill in later DONNY WILLIAMS be cut or notched Haines City, FL 33844 FL COA #0 278 All Plates ALPINE Wave SP #2 1 SP #2 Dense: SP #3 Are 1.5X4 Except As Shown. loading: LL Dense :T3, :B2 2x8 SP **IMPORTANT**FURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITW BCG, INC. SHALL WE BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN. ANY FAILURE TO BUILD THE ROUSS IN COMPORMANCE WITH IP: OR FARBLECKING. HANDLING, SHAPPING, HISTALLING A BRACKING OF TRUSSES.

DESIGN CONFIDENCE WITH APPLICABLE PROVISIONS OF MOS (MATIONAL DESIGN SPECE, BY ALEXA) AND IP:

CONNECTOR PLATES ARE MADE OF ZO/18/166A (M.M.YSS/K) ASIM AGS3 GRADE 40/60 (M.K.M.SS) GALV. SITEL. APPL
PLATES TO LACH FACE OF TRUSS AND. UNLESS ONHEWSISE LOCATED ON THIS DESIGN, POSITION DET BOMANHAGS 160A
ANY INSPECTION OF PLATES FOLLOWED BY (T) SHALL BE FOR AMERX AS OF TPIL-2002 SEC.3. A SEAL OF ADDROBE **WARNING** IRUSSES REQUIRE EXTREME CARE IN FABRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING.

REFER TO BEST (BUILDING COMPONENT SAFETY INFORMATION), PURLISHED BY TH (TRUSS PLATE INSTITUTE, 278 HORTH LEE STREET, SUITE 372, ALEXANDRA, VA, 22314) AND WICA (MOOD TRUSS COURCIL OF AMERICA, 6300 CHIEBERISE LANE, MADISON, MI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE CHRICTIONS. UNLESS OTHERWISE INDICATED FOR CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE BUILDING DESIGNER PER ANSI/TPJ 1 DRAWING INDICATES R=485/-186 PLF U=65 PLF #15 soffit load purlins to brace 2x8 SP Dense: 40.00 psf; #1 Dense: Design Crit: PL 1-6-0 2X4 III 7X10(R ï 4X10(R) all flat TC @ 10.00 W=3-2-0 8 3X4 / psf; from 14 TPI-2002 (STD) /FBC 3X4W Cq/RT=1.00(1.25)/10(0) 4X10(R) W-11-2-0 3 X 4 == 2-4-6 W8XW R-217 PLF U-24 PLF 9-4-0 4X12(R) Ⅲ 12 13 3X4= -22-4-0 Over 3 Supports SHALL NOT 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18 Collar-tie braced with continuous lateral bracing at 24" OC. or rigid ceiling. Negative reaction(s) case requires uplift See DWGS All015EE0207 & GBLLETIN0207 for more requirements Wind reactions based on MWFRS pressures 3 \ 4 ≡ 82 7X6= 本 00 2-11-14 2-11-14 3-8-0 12-11-8 12 8 83 OOUGENS MAN 00 STONAL BAGINE 0 CENS No. 66648 7 X 6 ≡ connection. 0 -588# MAX. 3X4≡ 4-11-13 * 6-2-0 80 8-4-4X12(R) Ⅲ 12 BC LL BC DL TC DL DUR.FAC. C (See below) SPACING TOT.LD. FL/-/4/-/-/R 4X10(R) R-456 -4-6 7 X 8 / SEE 3 X 4 ≡ PLF U-23 PLF W-3-2-0 40.0 10.0 10.0 20.0 0.0 3X4// from ABOVE 25 0-2 PSF PSF PSF PSF PSF 3X4// a non-wind 8 2X4 III 73-8 7X10(R) 1-6-0 SEQN-DATE REF DRW HCUSR8228 08239088 JREF -HC-ENG Scale 0-0-0 load 4X10(R) R8228-1TKE8228Z02 =.25"/Ft. DF / DF 38873 08/26/08 10 23539

Top chord 2x4 SP # Bot chord 2x8 SP # Webs 2x4 SP # Dense :B3 Dense 2×4 SP #2 Dense:

End verticals not exposed to wind pressure

(A) Continuous lateral bracing equally spaced on member

BC attic room floor loading: LL = 40.00 psf; DL = 10.00 psf; from 4-10-0 to 17-6-0.

Truss must be installed as shown with top chord up

MEMBER TO BE LATERALLY BRACED FOR OUT OF PLANE WIND LOADS TO TRUSS. BRACING SYSTEM TO BE DESIGNED AND FURNISHED BY OTHERS BY OTHERS

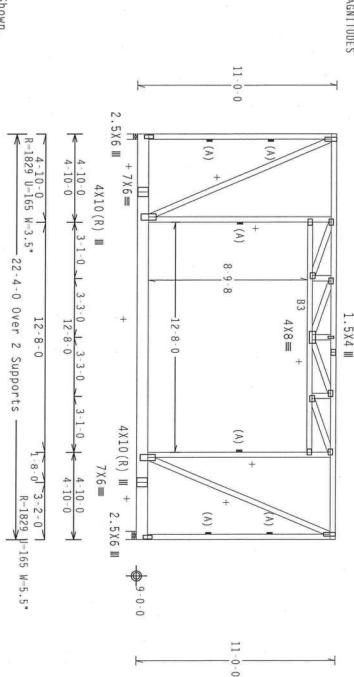
GABLE END IS DESIGNED TO SUPPORT 8" MAX RAKE OVERHANG

See DWGS All030EE0207 & GBLLETIN0207 for more requirements

THE BUILDING DESIGNER SHALL EVALUATE AND APPROVE LOAD MAGNITUDES AND LOCATIONS. TRUSS ENGINEER & FABRICATOR ARE NOT RESPONSIBLE FOR LOAD MAGNITUDES AND LOCATIONS.

2.5X8(R)

110 mph wind, 20.00 ft mean hgt, ASCE 7-02, CLOSED within 4.50 ft from roof edge, CAT II, EXP B, wind wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18 TC DL=5.0 psf, located


Wind reactions based on MWFRS pressures

Collar-tie braced with continuous lateral bracing at rigid ceiling. 0C. 0

Deflection meets L/360 live and L/240 total load. Creep increase factor for dead load is $1.50.\,$

in lieu of structural sheathing. The TC of this truss shall be braced with attached spans at 24" 00

THE BUILDING DESIGNER IS RESPONSIBLE FOR THE DESIGN OF THE ROOF, FLOOR AND CEILING DIAPHRAGMS, GABLE END SHEAR WALLS. AND SUPPORTING SHEAR WALLS. DIAPHRAGMS AND SHEAR WALLS MUST PROVIDE CONTINUOUS LATERAL RESTRAINT TO THE GABLE END. ALL CONNECTIONS ARE TO BE PROVIDED BY THE BUILDING DESIGNER. 2.5X8(R)

Note: All Plates Are 3X4 Except As Shown.

TYP.

Wave

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/ /10(0)

.36

FL/-/4/-

/-/R/-

Scale = .1875"/Ft.

R8228-

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG, INC. SHALL NOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN, ANY FALLUEE TO BUILD THE TRUSS IN COMPORMANCE WITH PI: OR FARRICATHO, MAND LIGH, SUPPING, INSTALLING A BRACHES OF TRUSSES, DESIGN CONTROLS WITH APPLICABLE PROMYSIONS OF THIS CONTROLS SPEC, BY ANDRAY AND FI. ITH BCG COMMECTOR PLATES ARE HADE OF 20/18/16/06A (M.H/SS/N) ASIM ASSI GRADE 40/50 (M. K/M.SS) GALV. STEEL, APPLY PLATES TO EACH FACE OF THUSS AND. UNLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER BRANNINGS IGA-Z, PLATES TO EACH FACE OF THUSS AND. UNLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER BRANNINGS IGA-Z, AND HIS STEEL AND FOR THE STEEL CONTROL OF THIS DESIGN. POSITION PER BRANNINGS IGA-Z, COMMECTOR OF THIS DESIGN. POSITION PER BRANNINGS IGA-Z, COMMECTOR OF THIS DESIGN. POSITION FOR BRANNINGS IGA-Z, COMBOUNT OF THIS DESIGN OF THIS DESIGN OF THIS DESIGN OF THIS DESIGN OF THE THIS COMPONENT.

A PROPERLY ATTACHED RIGID CEILING

DRAHING INDICATES ACCEPTANCE OF PROFESSIONAL BE PER ANNEX AS OF PETI-28
DESIGN SHOWN. THE SUITABILITY AND NO AS THE SPECIAL RESPONSIBILITY SOLELY FOR THE TRUSS COMPONENT

ITW Building Components Group

ALPINE

Haines City, FL 33844 FL COA #0 278

GOUBLAS! FLER STONAL ENGINE CENSE 80 BC DL TC LL DUR.FAC. TC SPACING TOT.LD. DL 1.25 40.0 10.0 20.0 24.0" 10.0 PSF 0.0

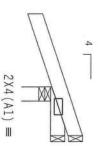
PSF PSF

SEQN-HC-ENG

JREF -

1TKE8228Z02

PSF PSF


DATE REF

08/26/08 23540

DRW HCUSR8228 08239011

DF / DF 38897

Roof overhang supports 2.00 psf Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50\,.$ Top chord 2x4 SP #2 Dense Bot chord 2x4 SP #2 Dense 8-207--Fill in later DONNY WILLIAMS -soffit load ** Wind reactions based on MWFRS pressures. 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18

R--52 Rw-27 8-3415-9-4-7 R=-18 Rw=16 U=14

1-6-0-1 1-0-0 Over 3 Supports R-248 U-69 W-3.5"

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

TYP.

Wave

WARNING TRUSSES REQUIRE EXTREME CARE IN FARRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, REFER TO BEST. (BUILDING COMPONENT SAFETY INFORMATION), PHULLING BY TPI (TRUSS PLATE INSTITUTE, ZIB HORTH LEE STREET, SHITE 375, ALEXANDRIA, VA, ZEJAL) AND NICA (HOND TRUSS COUNCIL OF AMERICA, 6300 ENTREMENTS LANE, MADISON, HI 53719) FOR SAFETY PRACTICES PRIOR TO PEFFORMING THESE FUNCTIONS, UNLESS OFHERITS LANE, MADISON, HI 53719) FOR SAFETY PRACTICES PRIOR TO PEFFORMING THESE FUNCTIONS, UNLESS OFHERITS LINDICATED TOP CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BCG, INC. SHALL NOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN AVE VALUES TO BUILD THE TRUSS IN CONTORNACE WITH IP: OR FABRICATION, HAND UNG, SHEPPURG, THISTALLING A BRACLING OF TRUSSES. DESIGN CONTROLATION, HAND UNG, SHEPPURG, THISTALLING A BRACLING OF TRUSSES. DESIGN CONTROLATED AND THE PUBLICABLE PROVISIONS OF NDS (MATURAL DISCUSSION SEC. BY ATRA) AND THE BCG CONNECTOR PLATES ARE MADE OF 20/18/16/366 (M.H/SS/N). ASIM A653 GRADE 40/50 (M.E.M.S.) GALY. SIEEL, APPLY PLATES TO EACH EACE OF TRUSS AND. UNLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION BER DEALHOS 160A-Z. ANY INSPECTION OF PLATES FOLLOWED BY (I) SHALL BE PER ANNEX A3 OF 1F11-2002 SEC.3. A SEAL ON THIS DRAINING INDICATES ACCEPTANCE OF TRUSS COMPONENT DESIGN SHOWN. THE SULTABILLITY AND USE OF THIS COMPONENT FOR ANY BUILDING IS THE RESPONSIBILLITY OF THE

ITW Building Components Group

ALPINE

Haines City, FL 33844 FL COA #0 278

BUILDING DESIGNER PER ANSI/TPI 1 SEC. 2

CONTRACT PLES No. 66648 80, BC LL BC DL TC DL TC LL DUR.FAC. SPACING TOT.LD. FL/-/4/-/-/R/-40.0 1.25 20.0 PSF 10.0 PSF 10.0 PSF 24.0" 0.0 PSF

PSF

SEQN-

HC-ENG

DF / DF 38569

JREF -

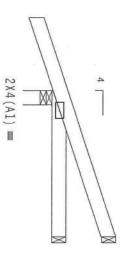
1TKE8228Z02

DATE REF

08/26/08

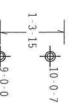
Scale = .5"/Ft.

R8228- 23541


DRW HCUSR8228 08239072

Top chord 2x4 SP Bot chord 2x4 SP 8-207--Fill in later DONNY WILLIAMS --#2 Dense #2 Dense J3 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18

Roof overhang supports 2.00 psf soffit load.


Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

Wind reactions based on MWFRS pressures

R-60 U-14

R=25 U=0

1-6-0-

3-0-0 Over 3- Supports

R=257 U=39 W=3.5"

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

7.36.00

CENS

TC LL

10.0 PSF 20.0 PSF

DATE REF

08/26/08

FL/-/4/-/-/R/-

Scale =.5"/Ft.

R8228- 23543

No. 66648

BC DL TC DL

10.0 PSF

DRW HCUSR8228 08239071

TYP.

Wave

WARNING TRUSSES BEQUIRE EXTREME CARE IN FABRICATION, HANDLING, SHIPPING, INSTALLING AND REACING, REFER TO BEST (BUILDING COMPONENT SAFETY IMPORMATION), PUBLISHED BY TPI (TRUSS PIALE INSTITUTE, 218 NORTH LEE STREET, SUITE 312, ALEXANDRIA, VA. 22314) AND WICA (MODE TRUSS COUNCIL OF AMERICA, 6300 CHIERDRISE CARE, MADISON, NI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE THORICIONS. UNLESS OTHERWISE INDICATED TOP CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PAMELS AND BOTTOM CHORD SHALL HAVE PROPERLY ATTACHED RIGID CEILING.

IMPORTANT THRRISH A COPY OF THIS BESIGN TO THE INSTALLATION CONTRACTOR. THE BEG, THE. SHALL NOT BE RESPONSIBLE FOR ANY DEPEATION FROM THIS BESIGN; ANY FAILURE TO BUILD THE TRUSS IN COMPORMANCE WITH TPI: ON FAREICATHO, HANDLIGG, SUPPING, INSTALLING A BRACHEG OF TRUSSES; IN COMPORANCE WITH TPI: ON FAREICATHO, THROUGH, THE PROVISIONS OF HIS GRATIONAL DESIGN SECTOR SPEC, BY ATAPA) AND TPI. IT IN BOC CONNECTION PLATES ARE MADE OF 20/18/19/GA (M. 18/25/X) ASTH AGADE 40/69 (M. Y.M.SS) GALV. STEEL, APRLY DATE: TO EACH FACE OF TRUSS AND. HURESS OTHERNISL LOCATED ON THIS DESIGN, POSITION PER BRAININGS 160A-Z, ANY MESPECTION OF PLATES TO ALORED BY (1) SHALL BE FER ARREX AS OF TPI.-2002 SEC.3. A SEA. ON THIS DEATH OF THE STEEL AS ACCEPTANCE OF PROFESSIONAL ENGINEERING RESPONSIBILITY OR DELETE THE STEEL STEEL ST

BUILDING DESIGNER PER ANSI/TPI 1 SEC.

ITW Building Components Group Inc.

ALPINE

Haines City, FL 33844 FL COA #0 278

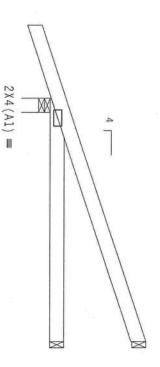
JREF -

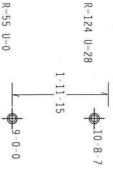
1TKE8228Z02

SEQN-

38574

HC-ENG DF/DF


Top chord 2x4 SP Bot chord 2x4 SP #2 Dense #2 Dense


Roof overhang supports 2.00 psf soffit load

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18

Wind reactions based on MWFRS pressures

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

TYP.

Wave

WARNING THUSSES REQUIRE EXTREME CARE IN FABRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, RETER TO BCS1 (BUILDING COMPONENT SAFETY INFORMATION), PUBLISHED BY TPJ (1803S PLATE INSTITULE, 218 MORTH LEE STREET, SUITE 317. ALEXANDRAN, VA. 22314) AND NICA (MODD TRUSS COUNCIL OF AMERICA, 6300 ERRIESPUS LAKE, MADISON, NJ 53719) FOR SAFETY PRACTICES PRIOR TO PERFORHER INSTITUTIONS. UNLESS OTHERHISE INDICATED STRUCTURAL PARELS AND BOTTON CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTON CHORD SHALL HAVE

IMPORTANT* FURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE BEGG, INC. SHALL NOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN, ANY FAILURE FOR BUILD THE TRUSS IN COMPORMANCE WITH THIS DESIGN CONTROLATION, ANDLING, SUPPPIG, INSTALLING A BRACTING OF TRUSSES. AN AFRAD, AND TRI. THIS DESIGN CONTROLATED THE AFRAD, AND TRI. ITH BOG CONTROLATE ARE MADE OF 20/18/166A (M. M.S.YS) ASTIM ASS. GRADE 40/60 (M. K.H., SS) GALV. STEEL, ANPLY DLATES TO EACH FACE OF TRUSS. AND. UNLESS OTHERNISE LOCATED ON THIS DESIGN, POSITION FOR DRAWHINGS 160A-Z. ANY INSPECTION OF PLATES FOLLOWED BY (1) SHALL BE FER ANEX AS OF FRIE-2002 SEC. 3. AS SEAL ON THIS DESIGN SHOWN AS ACCEPTANCE OF PROFESSIONAL ENGINEERING RESPONSIBILITY SOLELY FOR THE TRUSS COMPONENT DESIGN SHOWN. THE SUIT/ABLLITY AND USE OF THIS COMPONENT FOR ANY BUILDING IS THE RESPONSIBILITY AND USE OF THIS COMPONENT FOR ANY BUILDING DESIGNER PER ANS/FPI 1 SEC. 2.

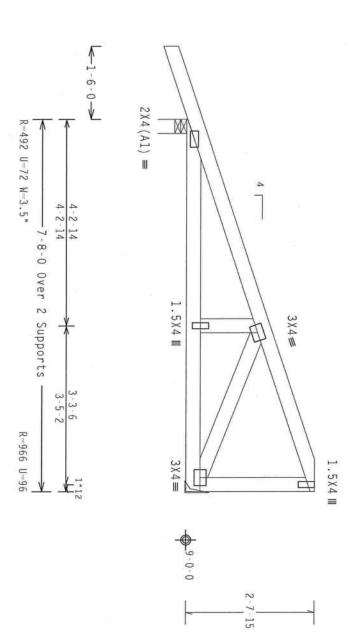
TW Building Components Group

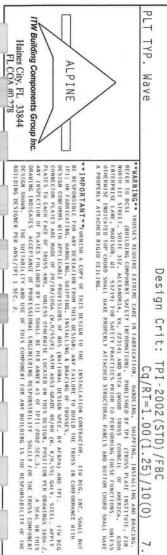
ALPINE

Haines City, FL 33844 FL CO⁴ 40 278

SPA	ω		ATE OF THE BC	≯ #HITES	10 TC	NS. TOWN
SPACING	DUR.FAC.	TOT.LD.	F	DL	DL	F
24.0"	1.25	40.0 PSF	0.0 PSF	10.0 PSF	10.0 PSF	20.0 PSF
JREF - 1TKE8228Z02		SEQN- 38578	HC-ENG DF/DF	DRW HCUSR8228 08239070	DATE 08/26/08	REF R8228- 23544

PLT TYP. Bot Roof overhang supports 2.00 psf soffit load Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50\,.$ ITW Building Components Group 8-207--Fill in later DONNY WILLIAMS chord 2x4 SP #2 Dense chord 2x4 SP #2 Dense Haines City, FL 33844 FL COA #0 278 ALPINE Wave **IMPORTANT** "DEBYS A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. IT N EGG. HALL NOT BE RESONSTANDE FOR ANY DEPARTMENT OF THE TRUSS IN COMPORANCE WITH PRESENT AND FAILS AND FAILS OF ANY FAILS TO BUILD THE TRUSS IN COMPORANCE WITH PRESENT AND THE CONTROL OF TRUSS IN COMPORANCE WITH APPLICABLE PROVISIONS OF MISS (MAY INMAD EASIER OF AFRA) AND THE CONTROL PLANTS AND. UNITES OFFERNIS GAME APPLO (M. K.M. XS.) GALY. STEEL APPLY PALTES TO FACIL FACE OF TRUSS AND. UNITES OFFERNIS CONTROL OF THE DESIGNA POSSITION FER BRANIFIES HAVE FAILS FOR THE SECOND OF THE PROVISION OF THE PROVINCE OF THE PROVISION OF THE PROVISION OF THE PROVISION OF THE PROVISION OF THE PROVINCE OF THE PROVISION OF THE PROVINCE OF THE PROVISION OF THE PROVISION OF THE PROVINCE OF THE PROVISION OF THE PROVINCE OF THE PROVISION OF THE PROVIS **WARNING** TRUSSES REQUIRE EXTREME CARE IN FABRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, RETER TO REST. (BUILDING COMPONENT SAFETY INFORMATION), PUBLISHED BY TPI (TRUSS PLATE INSTITUTE, ZUM MORTH LEE STREET, SHITE 31Z, ALEXANDRIA, VA, Z231A) AND NICA (MODO TRUSS COUNCIL OF AMERICA, 6300 ENTERPRISE LANE, MADISON, NI 53219) FOR SAFETY PRACTICES PRIOR TO PERFORMED THESE FUNCTIONS. UNLESS OTHERWISE HOLICATED TOP CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE DBANING INDICATES ACCEPTANCE OF PROPESSIONAL ENGINEERING RESPONSIBILITY DESIGN SHOWN. THE SUITABILITY AND USE OF THIS COMPONERT FOR ANY BUILDING DESIGNED DESIGNED FOR ANY BUILDING DESIGNER PER ANSI/FPT 1 SEC. Z. PROPERLY ATTACHED RIGID CEILING 1-6-0-▶ $2X4(A1) \equiv$ Design Crit: R=401 U=40 W=3.5" W J7 TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) 7-0-0 Over W. POSITION PER DRAWINGS 160A-Z
02 SEC.3. A SEAL ON THIS
SOLELY FOR THE TRUSS COMPONENT
NG IS THE RESPONSIBILITY OF THE 3 Supports Wind reactions based on MWFRS pressures. 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18 7.36 No. 66648 CENS R-83 U-0 R=182 U=41 80 BC LL BC DL TC DL DUR.FAC. TC LL SPACING -15 TOT.LD. FL/-/4/-/-/R/-40.0 1.25 10.0 PSF 20.0 PSF 24.0" 10.0 PSF 0.0 PSF PSF JREF -SEQN-DATE REF DRW HCUSR8228 08239073 HC-ENG Scale =.5"/Ft. R8228 - 23545 1TKE8228Z02 DF / DF 38582 08/26/08


Top chord 2x4 SP + Bot chord 2x6 SP + Webs 2x4 SP + Wind reactions based on MWFRS pressures 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18 PLT TYP. 8 TW Building Components Group Inc. -207 -- Fill in later DONNY WILLIAMS --Haines City, FL 33844 FL COA #0 278 ALPINE Wave #2 Dense #2 #3 **IMPORTANT**FURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITH BGG, INC. SHALL NOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN, ANY FAILURE TO BUILD THE TRUSS IN COMPORNANCE HITH TP: OR FABRICATING, HANDLING, SHEPPIG, HISTALLING A BRACHEG OF TRUSSES, DESIGN CONFORMS, HITH APPLICABLE PROVISIONS OF BNDS (RATIONAL DESIGN SEC. BY AREA), AND TPI. THE GC CONNECTION FACE OF TRUSS AND, UNLESS OTHERHISE LOCATED ON THIS DESIGN, POSITION PER DRAFHES 166A-Z, ANY INSPECTION OF EARLES FOLLOWED BY (1) SHALL BE FEW ARMIX AS OF TRIT-2002 SEC. 3. A SCAL ON THIS DESIGN SEC. BY ANY INSPECTION OF EARLES FOLLOWED BY (1) SHALL BE FEW ARMIX AS OF TRIT-2002 SEC. 3. A SCAL ON THIS DESIGN SHOWN, THE SHITMANE OF PROPESSIONAL BEGINNERS FORWARD AND THIS DESIGN SHOWN. "***MARNING** HUSSES REGURE EXTREME CARE IN FAMELACION, "MARLIAG, SHIPPING, INSTALLING AND BRACING,
REFER TO REST. (BUILDING GOMPONEMEN SAFETY HEPORAMICON), PUBLISHED BY THE (THUSS PLATE INSTITUTE, ZER
MORIH LEE SIBEET, SUITE 12, ALTXANDENA, YA., 22314) AND NICA, (MODO TRUSS COUNCIL OF AMERICA.
FOR SAFETY AND SOM, ALL SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNILESS
OTHERWISE INDICATED TOP CHORD SHALL HAVE PROPERTY ATTACHED STRUCTURAL PAREES AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED RIGID CEILING BUILDING DESIGNER PER 2.5X6(A1) =R = 1350U=78 W=5.5* Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/ 4-5-14 4-5-14 M-3 7-8-0 Over 2 2.5X8 5X4(R) ₩ Supports = 2-10-10 /10(0) 8-0-6 TC - From 61 PLF at 0.00 to 61 PLF at 7.67 BC - From 20 PLF at 0.00 to 20 PLF at 7.54 PLB- 661 LB Conc. Load at (1.56,9.04), (3.56,9.04), Right end vertical not exposed to wind pressure. Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50. SPECIAL LOADS 5 X 4 ≡ 1.5X4 Ⅲ \forall AND THE PROPERTY OF THE PROPER R=1251 U=76 9-0-0 CENS the case that the same extra case with the transfer of the same of 26 80 BC LL DUR.FAC. BC DL TC DL TC LL SPACING TOT.LD. FL/-/4/-/-/R/-40.0 20.0 10.0 PSF 1.25 10.0 PSF 0.0 PSF PSF PSF (5.56, 9.04)REF DATE SEQN-DRW HCUSR8228 08239065 HC-ENG Scale =.5"/Ft. R8228 - 23546 DF/DF 2-10-10 38662 08/26/08


24.0"

JREF -

1TKE8228Z02

Left side jacks have 7-0-0 setback with 0-0-0 cant and 1-6-0 overhang. End jacks have 7-0-0 setback with 0-0-0 cant and 1-6-0 overhang. Right side jacks have 0-0-0 setback with 0-0-0 cant and 0-0-0 overhang. Roof overhang supports 2.00 psf soffit load Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50\,\cdot$ #1 hip supports 7-0-0 jacks with no webs.

AND TOP OF THE PROPERTY OF THE

80

DUR.FAC.

SPACING

ABOVE

JREF -

1TKE8228Z02

ATJE OF

BC LL BC DL

PSF

TOT.LD.

40.0

PSF

SEQN-HC-ENG

38616

*

Design Crit:

7.36

OO LICENSE

No. 66648

TC DL TC LL

10.0 PSF 10.0 PSF 0.0

> DATE REF

08/26/08

DRW HCUSR8228 08239067

DF / DF

FL/-/4/-/-/R/-

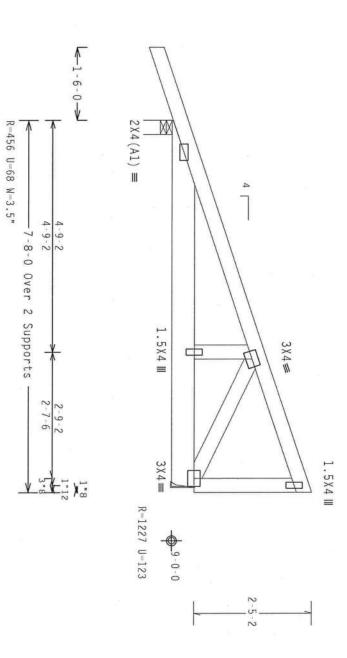
Scale =.5" R8228-

/Ft. 23547

20.0

PSF

110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18 Top chord 2x4 SP #2 Dense Bot chord 2x6 SP #2 Webs 2x4 SP #3


Wind reactions based on MWFRS pressures.

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

SPECIAL LOADS --(LUMBER DUR.FAC.=1.25 / PLATE DUR.FAC.=1.25)
From 61 PLF at -1.50 to 61 PLF at 7.67
From 4 PLF at -1.50 to 4 PLF at -0.00
From 20 PLF at -0.00 to 20 PLF at 7.54
966 LB Conc. Load at (7.06.9.04)

Right end vertical not exposed to wind pressure.

Roof overhang supports 2.00 psf soffit load.

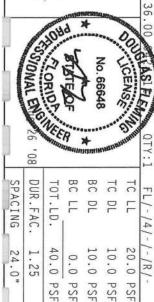
2-10-10

PROPERLY ATTACHED RIGID CEILING TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

Design Crit:

PLT TYP.

Wave


IMPORTANTFURMISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITW BCG, INC. SHALL NOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN, ANY FAILURE FO BUILD THE TRUSS IN COMPORMANCE WITH IP!; OR FARRICATING, HANGLING, SHAPPING, HISTALLING & BRACHING OF TRUSSES, DESIGN CONFORMS WITH APPLICABLE PROPUSIONS OF DNDS (HATIONAL DESIGN SPEC, BY ATERA) AND IP!. ITW BCG CONNECTOR PLATES ARE MADE OF 20/18/166A (M.H/SS/R) ASIM A653 GRADE 00/60 (M. K/M.SS) GALV STEEL. APPLY PLATES TO EACH FACE OF TRUSS AND. UNLESS OTHERHISE LOCATED ON THIS DESIGN, POSITION PER DRAWINGS 160A-Z. ANY INSPECTION OF BLATES FOLLOWED BY (I) SHALL BE PER ANNEX AS OF TENT-2002 SEC.3. A SEAL ON THIS DESIGN SHOWN. THE SULFABLLITY AND USE OF THIS COMPONENT FOR ANY BUILDING IS THE RESPONSIBILITY OF THE DESIGN SHOWN. THE SUITABILLIT AND BUILDING DESIGNER PER ANSI/TP) I SEC.

ITW Building Components Group Inc.

ALPINE

Haines City, FL 33844 FL COA #0 778

80 DUR.FAC. TOT.LD.

PSF

HC-ENG

DF / DF

DRW HCUSR8228 08239111

PSF

SEQN-

38635

JREF -

1TKE8228Z02

PSF

DATE REF

08/26/08 23548

PSF

Scale =.5"/Ft. R8228-

Top chord 2x4 SP | Bot chord 2x4 SP | Webs 2x4 SP | PLT Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50. Roof overhang supports 2.00 psf soffit load 8-207--Fill in later DONNY WILLIAMS ---TW Building Components Group Inc. TYP. Haines City, FL 33844 FL COA #0 278 ALPINE Wave #2 Dense #2 Dense #3 **IMPORTANT**FURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITW BCG, INC. SHALL N
BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN: ANY FAILURE TO BRILLD THE TRUSS IN COMFORMANCE WITH
TPI: OR FARICATING, INADLING, SHIPPING, INSTALLING & BRACING OF TRUSSES.
DESIGN COMPORED WITH APPLICABLE PROTYSIONS OF MOS (WATHOMA, DESIGN SPEC, BY AFRA) AND TPI. ITW B
CONNECTOR PLATES ARE MADE OF 20/IM/16CA (W.H/SS/P) ASTM AGES ORACE 40/60 (W.K/M.SS) GAA'R. STELL APPL "***MARNING** TRUSSES REQUIRE EXPREME CARE IN FARRICATION, IMADILAG, SHIPPING, INSTALLING AND BRACING, RETER TO BOSI (BUILDING COMPONENT SAFETY INFORMATION), PUBLISHED BY PI (IRUSS PLATE INSTITUTE, ZIB MORTH LEE STREET, SUITE 312, ALEXANDRIA, VA, ZZ313) AND WICA (MOOD TRUSS COUNCIL OF AMERICA, 6300 ETHERBYSE LANE, MAJSON, WI \$3719) FOR SAFETY PRACTICES PRIOR TO PERFORMING INESE FUNCTIONS. JUNESS OFFICENISS LANE, MAJSON WILL HAVE PROPERLY ATTACHED STRUCTURAL PANELS AND ROTION CHORD SHALL HAVE A PROPERLY ATTACHED REGIDE CELLING. DESIGN SHOWN. T 1-6-0-▶ 2X4(A1) = Design Crit: R = 421U=40 W=3.5" S (MATINAL DESIGN SEEC, BY ATRAD) AND TPL.

1) ASTM A653 GRADE 40/50 (W. K/H.SS) GALV. STELL APPLY

1SE LOCATED ON THIS DESIGN, POSITION PER DRAMINGS 160A-Z.

1: PER ARMEX A3 OF TPL 2002 SEC.3.

1: PER ARMEX A3 OF TPL 2002 SEC.3.

1: MERING RESONDERBILITY SOLELY FOR THE TRUSS COMPONENT

COMPONENT FOR ANY BUILDING IS THE RESPONSIBILITY OF THE TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/ 7-8-0 0ver 7-4-8 7-6-4 N Supports /10(0) Right end vertical not exposed to wind pressure. 110 mph wind, 15.00 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=5.0 psf, Iw=1.00 GCpi(+/-)=0.18 Wind reactions based on MWFRS pressures CENSE 1.5X4 III lo. 66648 2X4 III 3 k 1 k 8 \Box 80 BC LL BC DL DUR.FAC. TC DL TC LL SPACING TOT.LD. FL/-/4/-/-/R/-24.0" 1.25 40.0 10.0 PSF 20.0 PSF 10.0 PSF 0.0 PSF PSF DATE REF JREF -SEQN-DRW HCUSR8228 08239064 HC-ENG DF/DF Scale = .5"/Ft. R8228- 23549 1TKE8228Z02 2-10-10 38643 08/26/08

8-207--Fill in later DONNY WILLIAMS * BP)

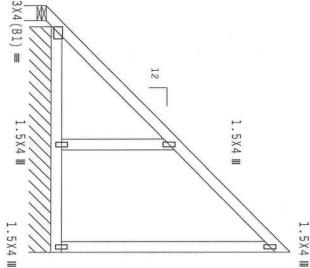
Top chord 2x4 SP #2 Dense Bot chord 2x4 SP #2 Dense Webs 2x4 SP #3

110 mph wind, 22.60 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=2.0 psf. Iw=1.00 GCpi(+/-)=0.18

In lieu of rigid ceiling use purlins to brace BC 0

Refer to DWG PIGBACKB0207 for piggyback details. PORTION OF TRUSS UNDER PIGGYBACK IS TO BE BRACED @ 24° OC, UNLESS OTHERWISE SPECIFIED.

TC - From 68 PLF at 0.00 to 68 PLF at 6.75 BC - From 4 PLF at 0.00 to 4 PLF at 6.75 SPECIAL LOADS


with the state of

parisonal constitute of these tilling

Wind reactions based on MWFRS pressures.

Right end vertical not exposed to wind pressure.

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

R=-36 Rw=264 U=125 W=4.95" R=83 PLF U=64 PLF W=6-2-1 6-9-0 Over 2 Supports -3-2-10--2-9-11-

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

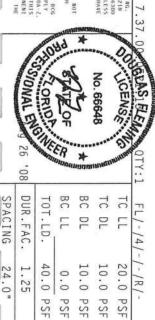
PLT

TYP.

Wave

WARNING IRUSKIS REQUIRE EXTREME CARE IN FABRICATION, MANDLING, SUPPLIED TO A CAPTURE OF SERVING COMPONENT SAFETY INFORMATION), PROBLING BUT BY CHARLING AND SERVING. THE STREET, SUITE 317. ALEXANDENAL, VA. 223-14) AND MICH. CHARLING THE STREET, SUITE 317. ALEXANDENAL, VA. 223-14) AND MICH. CHARLING COUNCIL OF AMERICA. GADO CHARLING AND MODIFIED BY THE ANDISON, MI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNICESS OFHERMISE INDICATED TOP CHORD SMALL MAYE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SMALL MAYE APROPERLY ATTACHED TO THE CHARLING MAY A PROPERLY ATTACHED BY THE ANDISON.

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITM BCG, INC. SHALL NOT BE RESPONSIBLE FOR NAY DEVIATION FROM THIS DESIGN FOR FAILURE TO BUILD THE TRUSS IN COMPORNANCE WITH FPI: OR FARBLEAGHING. HANDLING, HENDERGE, HENDELLING & BRACING OF TRUSSES.


DESIGN CONFORMS WITH APPLICABLE PROVISIONS OF DOS (MATONAL DESIGN SEC. BY ARRAYA AND TPI: IT BCG CONNECTOR PLATES AND DESIGN CONNECTOR PLATES AND DESIGN CONNECTOR PLATES AND THE SOLELY FOR THE DESIGN FACE OF TRUSS AND. UNLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION PER DRAWHELLS ARRAY INSPECTION OF PLATES FOLLOWED BY (I) SHALL BE PER ANNEX AS OF TPII: 2002 SEC. 3. A SEAL ON THIS DESIGN SECONDOWN THE DRAWHELD FOR THE SOLELY FOR THE TRUSS CORPORANT DESIGN SHOWN. THE SULFABLE THE RESPONSIBILITY OF THE

TW Building Components Group

ALPINE

Haines City, FL 33844 FL COA #0 278

DESIGN SHOWN. THE SUITABILITY AND USE OF THIS COMPONENT BUILDING DESIGNER PER ANSI/TPI I SEC. 2.

PSF

HC-ENG

DF / DF 35360

REV

DRW HCUSR8228 08239012

08/26/08 23551

PSF

REF DATE

Scale = .375"/ft. R8228-

SPACING 1.25 40.0 24.0" PSF JREF -SEQN-1TKE8228Z02

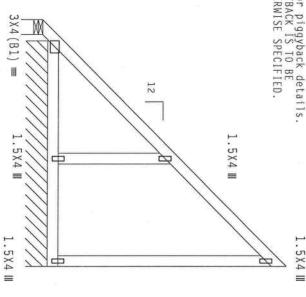
Top chord 2x4 SP Bot chord 2x4 SP Webs 2x4 SP SPECIAL LOADS #2 Dense #2 Dense #3

110 mph wind, 22.60 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=2.0 psf, Iw=1.00 GCpi(+/-)=0.18 From (LUMBER DUR.FAC.—1.25 / PLATE DUR.FAC.—1.25) rom 68 PLF at 0.00 to 68 PLF at 6.75 rom 4 PLF at 0.00 to 4 PLF at 6.75

In lieu of rigid ceiling use purlins to brace BC @ 24" OC

Refer to DWG PIGBACKB0207 for piggyback details. PORTION OF TRUSS UNDER PIGGYBACK IS TO BE BRACED @ 24" OC, UNLESS OTHERWISE SPECIFIED.

COMPLETE TRUSSES REQUIRED


Nailing Schedule: (10d_Box_or_Gun_(0. Top Chord: 1 Row @12.00" o.c.
Bot Chord: 1 Row @12.00" o.c.
Webs: 1 Row @ 4" o.c.
Use equal spacing between rows and stin each row to avoid splitting. (10d_Box_or_Gun_(0.128"x3",_min.)_nails)
@12.00" o.c.
@12.00" o.c.
@14" o.c.

stagger nails

Wind reactions based on MWFRS pressures

Right end vertical not exposed to wind pressure.

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

R=-36 Rw=264 U=125 W=4.95" R=83 PLF U=64 PLF W=6-2-1 -6-9-0 Over 2 Supports 3-2-10-

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

TYP.

Wave

WARNING RUSSES HOURE ESTREME CARE IN FARRICATION. IMADELING. SHIPPING, INSTALLING AND BRACING. RETER TO RCS1 (GUILDING COMPORATES SAFETY INFORMATION), PUBLISHED BY PET (FRUSS PLATE INSTITUTE, 219 MORTH LEE STREE, SUITE 32. ALEXANDRIA, VA. 22314) AND MICA (MODO) TRUSS COUNCIL OF AMERICA, 6300 ENTREPRESE LANE, MADISON, MI 53719) FOR SAFETY PRACTICES PRIOR TO PEFFORMING THESE FUNCTIONS. UNLESS OTHERWISE HOUGH, FOR THE SAFETY PRACTICES PRIOR TO PEFFORMING THESE FUNCTIONS. UNLESS OTHERWISE HOUGH, FOR THE GROUP SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE

IMPORTANTTURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE BCG. THC. SHALL NOT BE RESPONSIBLE FOR ANY DEVIATION FROM THIS DESIGN. ANY FALLURE TO BHILD THE TRUES IN COMPORNANCE WITH PI: OR FAREIGATHO, HANDLING, SHEPPING, INSTALLING & BRACING OF TRUESES.

DESIGN COMPORTS WITH APPLICABLE PROFISIONS OF MIS (MATIONAL DESIGN SPEC, BY AFAPA) AND THI. ITH BCG COMPORTS WEEKING DE 20/18/16GA (M. 1/18/SK) ASTALLING AND THIS DESIGN SPEC, BY AFAPA) AND THI. THE RELEGIANCE OF TRUESS AND. HURSES DIMENUS TO EACH FACE OF TRUESS AND. THE MATING TO THE TRUESS OF TH

TW Building Components Group

ALPINE

Haines City, FL 33844 FL COA #0 278

7.36.00 SOULCENS, LORIOT IE 80 BC LL BC DL TC DL TC LL DUR.FAC. SPACING TOT.LD. FL/-/4/-/-/R/-

20.0 PSF

Scale =.375"/Ft. R8228 - 23552

DATE REF

08/26/08

40.0 24.0" 10.0 PSF 1.25 10.0 PSF 0.0 PSF PSF

JREF -

1TKE8228Z02

SEQN-

HC-ENG

DF / DF 38671

DRW HCUSR8228 08239106

Refer to DWG PIGBACKB0207 for piggyback details. PORTION OF TRUSS UNDER PIGGYBACK IS TO BE BRACED @ 24" OC, UNLESS OTHERNISE SPECIFIED. Wind reactions based on MWFRS pressures. Bot PLT TYP. In lieu of rigid ceiling use purlins to brace BC SPECIAL LOADS TW Building Components Group Inc. From p chord 2x4 SP t chord 2x4 SP Webs 2x4 SP Haines City, FL 33844 FL COA #0 278 (LUMBER DUR.FAC.=1.25 / PLATE DUR.FAC.=1.25) rom 68 PLF at 0.00 to 68 PLF at 6.75 rom 4 PLF at 0.00 to 4 PLF at 6.75 ALPINE Wave ##2 Dense **IMPORTANT**FURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITN BCG, INC. SHALL NOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN, MY FALLUEE FO BUILD THE TRUSS IN COMPORNANCE WITH FPI; OR FARRICATHO, MANDLING, SURPPING, INSTALLING A BRACHIG OF TRUSSES,

DESIGN CONFORMS WITH APPLICABLE PROPYISIONS OF HOS (MATIONAL DESIGN SPEC, BY ATAYA) AND FPI. ITN REG CONNECTION FALLS ARE MADE OF 20/18/166A (MATICAS) AND THIS DESIGN SPEC, BY ATAYA) AND FPI. PROPERTY OF ACCUPATION OF THE PROPERTY OF THE PROPERTY AND THIS DESIGN POSITION FRE BRAJHGS (BOA-Z, ANY INSPECTION OF PLATES TOLUCHOUR BY (1) SHALL BE FPR ANNY AND OF PLATES OF PROPERTY AND THE TRUSS COMPONENT OF PLATES TO EACH FACE OF TRUSS AND, UNLESS OTHERWISE LOCATED ON THIS DESIGN POSITION FRE BRAJHGS (BOA-Z, ANY INSPECTION OF PLATES TOLUCHOUR BY (1) SHALL BE FPR ANNY AND OF PLATES TOROGO SPEC.3. A SEAL OR THIS DESIGN PROPERTY OF THE TRUSS COMPONENT OF PROPERTY AND THE PROPERTY AND A PROPERLY ATTACHED RIGID CEILING BUILDING DESIGNER PER ANSI/TPI 1 SEC. 2. R-83 PLF U-64 PLF W-6-2-1 3X4(B1) = 36 Rw-264 U-125 W-4.95" 6-9-0 Over 2 Supports 12 Design Crit: **@** 1.5X4 Ⅲ 1.5X4 ■ 24" TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0) 2-9-11-Nailing Schedule:
Top Chord: I Row @
Bot Chord: I Row @
Webs: I Row @ 110 mph wind, 22.60 ft mean hgt, ASCE 7-02, CLOSED bldg, not located within 4.50 ft from roof edge, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=2.0 psf, Iw=1.00 GCpi(+/-)=0.18 Deflection meets L/240 live and L/180 total load. Creep increase Right end vertical not exposed to wind pressure Use equal spacing between rows and stagger nails in each row to avoid splitting. factor for dead load is 1.50. COMPLETE COUSAS FLE No. 66648 CENS (10d Box_or_Gun_(0.128"x3",_min.)_nails)
@12.00" o.c.
@12.00" o.c.
@ 14" o.c. TRUSSES ENGINEER 80 REQUIRED BC LL BC DL TC DL DUR.FAC. TC LL TOT.LD. SPACING FL/-/4/-/-/R/ 20.0 40.0 10.0 10.0 24.0" 1.25 0.0 PSF PSF PSF PSF PSF SEQN-DATE DRW HCUSR8228 08239013 JREF -HC-ENG Scale R8228-=.375"/Ft. 1TKE8228Z02 DF / DF 35363 08/26/08 23553 REV

(8-207--Fill in later

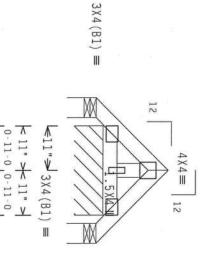
DONNY WILLIAMS ---

**

BP2)

Top chord 2x4 SP | Bot chord 2x4 SP | Webs 2x4 SP | #2 Dense #2 Dense #3

110 mph wind, 20.75 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=2.0 psf, lw=1.00 GCpi(+/-)=0.18


In lieu of rigid ceiling use purlins to brace BC @

Refer to DWG PIGBACKB0207 for piggyback details. PORTION OF TRUSS UNDER PIGGYBACK IS TO BE BRACED @ 24" OC, UNLESS OTHERWISE SPECIFIED.

TC - From TC - From BC - From SPECIAL LOADS (LUMBER DUR.FAC.=1.25 / PI rom 68 PLF at 0.00 to rom 68 PLF at 1.49 to rom 4 PLF at 0.00 to / PLATE DUR.FAC.=1.25)
0 to 68 PLF at 1.49
9 to 68 PLF at 2.99
0 to 4 PLF at 2.99

Wind reactions based on MWFRS pressures.

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

R=40 U=16 W=4R=980" U=16 W=4.95" R=58 PLF U=9 PLF W=1-10-0 -14 Over 3 Supports

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

TYP.

Wave

MARNING IRUSSES REQUIRE EXTREME CARE IN FARRICATION, HANDLING, SHIPPING, INSTALLING AND BRACING, RETER TO SECSI. (BUILDING COMPONENT SAFETY INFORMATION), PUBLISHED BY THE (TRUSS PHATE INSTITUTE, ZIS MORTH LEE SIREET, SUITE 312. ALEXANDRIA, VA. 22310) AND WITCA (MODOL TRUSS COUNCIL OF AMERICA, 6300 CHREBREISE LAME, MADISON, HI 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS, UNITES OTHERWISE INDICATED FOR CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL TAMELS AND BOSTOM CHORD SHALL HAVE A PROPERLY ATTACHED RIGHT CELLING.

O SPASIALEN

TC LL

20.0 PSF

DATE REF

08/26/08

FL/-/4/-/-/R/-

Scale =.5"/Ft.

R8228- 23554

IMPORTANTFURNISH A COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. ITW BCG, INC. SHALL NOT BE RESPONSIBLE FOR MAY DEVIATION FROM THIS DESIGN, ANY FAILURE TO BUILD THE TRUSS IN COMPORNANCE WITH IP: OR FARRICATING, HANDLING, SHEPPIG, HISTALLING & BRACHING OF TRUSSES, DESIGN CONFORNS WITH APPLICABLE PROVISIONS OF FIOS (MATIONAL DESIGN SPEC, BY ASKED, AND IPI. ITW BCG CONNECTOR PLAIRS. ARE HADE OF 20/18/1600A (M.H/SN), ASKED ASKED ON THIS DESIGN, POSITION FOR BUANTHOS 1850A-Z. ARY INSPECTION OF PLAIRS AND. UNLESS OTHERWISE LOCATED ON THIS DESIGN, POSITION FOR BUANTHOS 1850A-Z. ARY INSPECTION OF PLAIRS FOLLOWED BY (1) SHALL BE PER ANNEX A.O OF PRIL-2002 SEC. 3. SEAL ON THIS DRAWING INDICATES ACCEPTANCE OF PROPESSIONAL BERGINEERING RESPONSIBILITY SOLELY FOR THE TRUSS COMPONENT DESIGN SHOWN. THE SHITABLILITY AND USE OF THIS COMPONENT FOR ANY BUILDING IS THE RESPONSIBILITY OF THE

DESIGN SHOWN. THE SUITABILITY AND USE OF THIS COMPONENT FOR BUILDING DESIGNER PER ANSI/TPI 1 SEC. 2.

No. 66648 80 DUR.FAC. BC LL BC DL TC DL TOT.LD. SPACING 24.0" 1.25 40.0 10.0 PSF 10.0 PSF 0.0 PSF PSF

JRFF-

1TKE8228Z02

SEQN-

REV

HC-ENG

DF / DF 35357

DRW HCUSR8228 08239014

TW Building Components Group Haines City, FL 33844 FL CC^4 40 278 ALPINE

207--Fill in later DONNY WILLIAMS GPGE

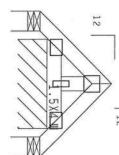
Bot p chord 2x4 SP t chord 2x4 SP Webs 2x4 SP #2 Dense #2 Dense #3

110 mph wind, 20.75 ft mean hgt, ASCE 7-02, CLOSED bldg, Located anywhere in roof, CAT II, EXP B, wind TC DL=5.0 psf, wind BC DL=2.0 psf. Iw=1.00 GCpi(+/-)=0.18

Wind reactions based on MWFRS pressures

See DWGS A11030EE0207 & GBLLETIN0207 for more requirements

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is $1.50\,.$


Refer to DNG PIGBACKB0207 for piggyback details. PORTION OF TRUSS UNDER PIGGYBACK IS TO BE BRACED @ 24" OC, UNLESS OTHERWISE SPECIFIED.

SPECIAL From 6 From 6 From 6 LOADS ER DUR.FAC. =1.25 / 68 PLF at 0.00 t 68 PLF at 1.49 t 4 PLF at 0.00 t to to PLATE E DUR.FAC.=1.25)
68 PLF at 1.49
68 PLF at 2.99
4 PLF at 2.99

Section 4

In lieu of rigid ceiling use purlins to brace BC @

THE BUILDING DESIGNER IS RESPONSIBLE FOR THE DESIGN OF THE ROOF, FLOOR AND CEILING DIAPHRAGMS, GABLE END SHEAR WALLS, AND SUPPORTING SHEAR WALLS. DIAPHRAGMS AND SHEAR WALLS MUST PROVIDE CONTINUOUS LATERAL RESTRAINT TO THE GABLE END. ALL CONNECTIONS ARE TO BE PROVIDED BY THE BUILDING DESIGNER.

4 X 4 ≡

3X4(B1) = 3X4(B1) =

-14 Over 3 Supports

R=66 U=68 W=4.955" U=68 W=4.95" R=100 PLF U=57 PLF W=1-10-0

Design Crit: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/10(0)

.00

PLT

TYP.

Wave

ALPINE

WARNING TRUSSES REQUIRE EXTREME CARE IN FARRICATION, IMADELMO, SHIPPING, INSTALLING AND BRACING, RETER TO BEST (BUILDING COMPONENT SAFETY INFORMATION), PUBLISHED BY IFT (TRUSS FLATE INSTITUTE, 218 NOTH LET STREET, SUITE 312, ALEXANDRA, VA. 223-314) AND NICA (MOND TRUSS COUNCIL OF AMERICA, 6300 ENTREPRISE LAME, MADISON, NI 53719) FOR SAFETY PHACTICES PRIOR TO PERFORMING THESE FUNCTIONS. UNLESS OFMERENTS INDICATED TOR CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PARELS AND BOTTOM CHORD SHALL HAVE

IMPORTANITFURMISH A COPY OF THIS DESIGN TO THE INSTALLATION.CONTRACTOR. ITH BCG, INC. SHALL NOT BE RESPONSIBLE FOR AWY DEVIATION FROM THIS DESIGN, MY FAILURE FO BHILD THE TRUSS IN COMPORMANCE MITH IP: OR FARREACHING, HANDLING, SHEPPING, HISTALLING A BRACING OF TRUSSES, DESIGN CONTRORS WITH APPLICABLE PAOPYSIONS OF ANDS (MATIONAL DESIGN SECE, N. MERNA) AND ITH. DESIGN CONNECTOR PLATES ARE HADDE OF 20/18/160A (M.H/NS/N), ASST GRADE 40/50 (M. K/M.SS) GALV SITEL. AMPLY PLATES TO EACH FACE OF TRUSS AND. UNLESS OTHERHISE LOCATED ON THIS DESIGN, POSITION PER DIRAMINES 160A.Z. ANY INSPECTION OF PLATES FOLLOWED BY (I) SHALL BE FOR ANKEX AS OF IPI1-2002 SEC.3. A SEAL ON THIS DESIGN SHOWN. THE SULFAME OF PROFESSIONAL MEDITERIES RESPONSIBILITY SOLELY FOR THE RESPONSIBILITY OF THE DESIGN SHOWN. THE SUITABILITY BUILDING DESIGNER PER ANSI/TPI I

ORIOP IS

08

DUR.FAC.

1.25

TOT.LD.

40 0.0

0

PSF PSF

SPACING

SEE

ABOVE

JREF -

1TKE8228Z02

BC DL BC

> 10.0 10.0 20.0

PSF PSF

10

D

2

PSF

14/-

/-/R

ITW Building Components Group

Haines City, FL 33844 FL COA #0 278

DATE SEQN-REF HC-ENG DRW HCUSR8228 08239090 Scale R8228-=.5"/Ft. DF / DF 38808 08/26/08 23555

bldg, not located TC DL-5.0 psf,

110 mph wind, 21.86 ft mean hgt, ASCE 7-02, CLOSED within 4.50 ft from roof edge, CAT II, EXP B, wind wind BC DL=5.0 psf. Iw=1.00 GCpi(+/-)=0.18

Provide for complete drainage of roof. Wind reactions based on MWFRS pressures

Bot t chord 2x4 t chord 2x4 Webs 2x4 SP SP #2 Dense #2 Dense #3

œ

Deflection meets L/240 live and L/180 total load. Creep increase factor for dead load is 1.50.

Truss must be installed as shown with top chord

THE ROOF, FLOOR AND CEILING DIAPHRAGMS, GABLE END SHEAR WALLS, AND SUPPORTING SHEAR WALLS. DIAPHRAGMS AND SHEAR WALLS MUST PROVIDE CONTINUOUS LATERAL RESTRAINT TO THE GABLE END. ALL CONNECTIONS ARE TO BE PROVIDED BY THE BUILDING DESIGNER. BUILDING DESIGNER IS RESPONSIBLE FOR THE DESIGN OF

MEMBER TO BE LATERALLY BRACED FOR OUT OF PLANE WIND LOADS TO TRUSS. BRACING SYSTEM TO BE DESIGNED AND FURNISHED BY OTHERS.

GABLE END IS DESIGNED TO SUPPORT 8" MAX RAKE OVERHANG

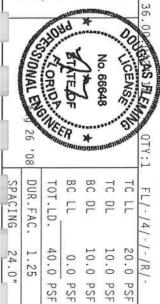
See DWGS All030EE0207 & GBLLETIN0207 for more requirements.

Refer to DWG PIGBACKB0207 for piggyback details. PORTION OF TRUSS UNDER PIGGYBACK IS TO BE BRACED @ 24" OC, UNLESS OTHERWISE SPECIFIED.

Note: All Plates Are 1.5X4 Except As Shown. Design Crit:

TYP.

Wave MORTH LE STREET, SUITE 312, ALEXANDRIA, VA.
ENTERPRISE LAME, MADISON, HI 53729) FOR SA
OTHERNISE INTEACHED DO CHONG SALL HAVE PROPERLY ATTACHED RIGID CEILING. 53719) FOR SAFETY PRACTICES PRIOR TO PERFORMING THESE FUNCTIONS SHALL HAVE PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTOM CHORD: TPI-2002(STD)/FBC Cq/RT=1.00(1.25)/ /10(0)CHORD SHALL HAVE


** IMPORTANT **PURNISH & COPY OF THIS DESIGN TO THE INSTALLATION CONTRACTOR. THE GREAT CONTRACTOR.

BE RESPONSIBLE TOR ANY DEVALUATION FROM THIS DESIGN; ANY FALLING TO BUILD THE TRUSS IN COMPORMANCE WITH PIP: OR FARBICATION, HANDLING, SHEPFING, S DESIGN SHOWN. THE SUITABILITY AND USE OF THIS COMP BUILDING DESIGNER PER ANSI/TPI I SEC. 2.

TW Building Components Group

ALPINE

Haines City, FL 33844 FL CC 4 40 778

JREF -

1TKE8228Z02

SEQN-HC-ENG FL/-/4/-

/-/R/-

Scale =.3125"/Ft. R8228-

DATE REF

08/26/08 23556

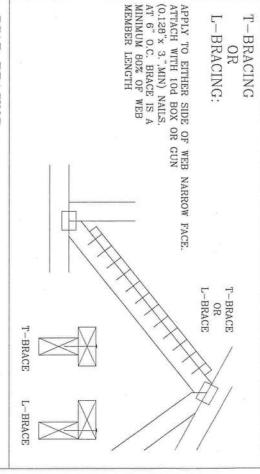
DRW HCUSR8228 08239109

DF / DF 38885

CLB WEB BRACE SUBSTITUTION

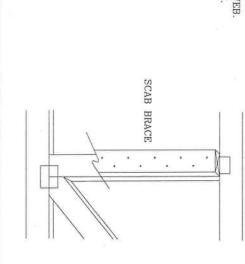
THIS DETAIL IS TO BE USED WHEN CONTINUOUS LATERAL BRACING (CLB) IS SPECIFIED ON AN ALPINE TRUSS DESIGN BUT AN ALTERNATIVE WEB BRACING METHOD IS DESIRED.

NOTES

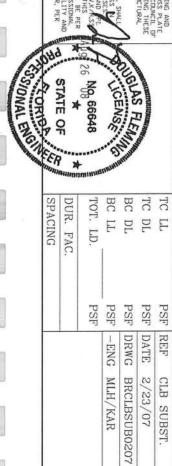

THIS DETAIL IS ONLY APPLICABLE FOR CHANGING THE SPECIFIED CLB SHOWN ON SINGLE PLY SEALED DESIGNS TO T-BRACING OR SCAB BRACING.

BRACING ALTERNATIVE BRACING SPECIFIED IN CHART BELOW MAY BE CONSERVATIVE. FOR MINIMUM ALTERNATIVE BRACING, RE-RUN DESIGN WITH APPROPRIATE

2-2X6(*)	2X6	2 ROWS	2X8
1-2X8	2X6	1 ROW	2X8
2-2X4(*)	2X6	2 ROWS	2X6
1-2X6	2X4	1 ROW	2X6
2-2X4	2X6	2 ROWS	2X3 OR 2X4
1-2X4	2X4	1 ROW	
SCAB BRACE	T OR L-BRACE	SPECIFIED CLB BRACING	SIZE SIZE


T-BRACE, L-BRACE AND SCAB BRACE TO BE SAME SPECIES AND GRADE OR BETTER THAN WEB MEMBER UNLESS SPECIFIED OTHERWISE ON ENGINEER'S SEALED DESIGN.

* CENTER SCAB ON WIDE FACE OF WEB. FACE OF WEB. APPLY (1) SCAB TO EACH



SCAB BRACING:

(0.128"x 3.",MIN) NAILS. AT 6" O.C. BRACE IS A MINIMUM 80% OF WEB MEMBER LENGTH NO MORE THAN (1) SCAB PER FACE. ATTACH WITH 10d BOX OR GUN APPLY SCAB(S) TO WIDE FACE OF WEB

THIS DRAWING REPLACES DRAWING 579,640

VARNING TRUSSES REQUIRE EXTREME CARE IN FABRICATING, HANDLING, BRACING, REFER TO BEST (BUILDING COMPONENT SAFETY IN GRAWATION), PUBLINSTITUTE, 218 NORTH LEE STR. SUITE 312, ALEXANDRIA, VA. 223140 AND VINSTITUTE, 6300 ENTERPRISE LN, MADISON, VI 537199 FOR SAFETY PRACTICES FABRICATING, HANDLING, SHIPPING, INSTALLING AND FABRICATING, PROPERTY OF THE STATE OF THE STATE

ITWBUILDING COMPONENTS GROUP, INC. POMPANO BEACH, FLORIDA WHINDER MAYER. FURNISH CEPY OF THIS DESIGN TO INSTALLATION CONTRACTOR. THE WAY BY ANY ANSI/TPI 1 SEC. 2.

ASCE 7-02: 110 MPH WIND SPEED, 30 MEAN HEIGHT, ENCLOSED, 11 1.00, EXPOSURE

		M	A	X		(7/	/I	3]		E		V	Е	F	Υ.	ľ	C	A	L		L	E	N	1(1	ГН	
	1	2	,,		0	.(ζ.			1	6	,,		0	. (ζ.			2	4	,,		0	. (С		SPACING	GABL
	L H H	1	U.)	TIT	I I	ひてワ	2			1	U.)	TIL	I I I	ひてっ			LH'L	1	U.)	TIT	T F	ברט		SPACING SPECIES	GABLE VERTICAL
STANDARD	STUD	#3	#2	#1	STANDARD	STUD	#3	#1 / #2	STANDARD	STUD	#3	#2	#1	STANDARD	STUD	#3	#1 / #2	STANDARD	STUD	#3	#2	#1	STANDARD	STUD	#3	#1 / #2	GRADE	BRACE
4' 7"	4' 9"	4' 9"	4' 11"	5 1"	4. 6.	4. 6"	4. 6"	4' 7"	4. 2.	4' 4"	4. 4"	4. 6.	4. 7"	1	4. 1."	4' 1"	4.	3' 8"	3, 9,	3, 9,	3' 11"	4. 0"	3' 7"	3' 7"	100	3, 8,	BRACES	NO
6' 9"	1 7	7' 11"	8' 0"	8, 0,	6' 7"	7' 8"		8' 0"			6' 10"	-	7' 3"	5' 8"	8' 0"		7' 3"	4′ 9″	5,	5' 7"	6' 4"	6' 4"	4' 8"	5 5	5	6' 4"	GROUP A	(1) 1X4 "L"
6' 9"	7' 9"	7' 11"		-		7' 8"	- 3	8 2	5' 10"	6' 9"	6' 10"		7' 9"	5, 8,	8' 0"	6' 8"	7' 5"	4' 9"	5, 6,	5' 7"	6' 10"	6' 10"	4' 8"	5 5"		6' 6"	GROUP B	" BRACE .
8' 10"	9' 5"	9' 5"	9' 5"	9' 5"	8' 8"	9' 5"	9' 5"	9' 5"	7' 8"	8' 7"	8' 7"		8. 7.	7' 6"	8' 7"	8' 7"	8' 7"	6' 3"	7' 3"	-	7' 6"	7' 6"	6′ 1″	7' 1"	7. 20.	7' 6"	GROUP A	(1) 2X4 "L"
8' 10"	9' 11"	9' 11"	10' 2"		8' 8"	9' 5"			7' 8"	8' 11"	9' 0"			7' 6"		8' 7"	8' 10"	6' 3"	7' 3"		8' 1"	8' 1"	6' 1"	7' 1"	7. 2."	7' 8"	GROUP B	." BRACE *
11' 3"	11' 3"	11' 3"	11' 3"	11' 3"	111' 3"	11' 3"	11' 3"	11' 3"	10' 3"	10' 3"	10' 3"	10' 3"	10' 3"	10' 1"	10' 3"	10' 3"	10' 3"	8' 5"	8' 11"	8' 11"	8' 11"	8' 11"	8' 3"	8' 11"	8' 11"	8' 11"	GROUP A	(2) 2X4 "L"
11' 7"	11' 10"	11' 10"	12' 1"	12' 1"	11' 3"	11' 3"	11' 3"	11' 7"	10' 4"	10' 9"	10' 9"	-	11' 0"	10' 1"	10' 3"		10' 6"	8' 5"	9' 5"	9' 5"	9' 7"	9' 7"	8' 3"	8' 11"	8' 11"	9' 2"	GROUP B	BRACE **
13' 10"	14' 0"	14' 0"	14' 0"	14' 0"	13' 6"	14' 0"	14' 0"	14' 0"	11' 11"	13' 5"	13' 5"		13' 5"	11' 8"		- 0	13' 5"			11' 5"	11' 9"	11' 9"	9' 6"	11' 1"	11' 2"	11' 9"	GROUP A	(1) 2X6 "L"
13' 10"	14' 0"		14' 0"				14' 0"	14' 0"	11' 11"	14' 0"	14' 0"	14' 0"	14' 0"	11' 8"	13′ 5″	13' 5"	13' 10"		11' 4"	11' 5"	12' 8"	12' 8"	9' 6"		11' 2"		GROUP B	BRACE .
14' 0"		14' 0"	5 - 21	14' 0"	100		14' 0"			14' 0"							14' 0"		14' 0"	14' 0"		14' 0"		14' 0"	14' 0"	14' 0"	B GROUP A GROUP	(2) 2X6 "L"
14' 0"	14' 0"				14' 0"	14' 0'	14' 0'			14' 0"		14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"		14' 0"	12' 11"		14' 0"	14' 0"	GROUP	," BRACE

DOUGLAS FIR-LARCH #3 STUD

SOUTHERN PINE

#3 STUD STANDARD

STANDARD

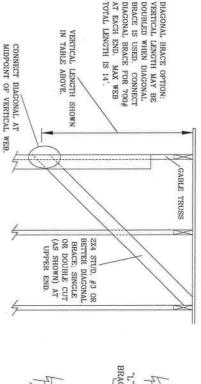
GROUP HEM-FIR #1 & BTR #1

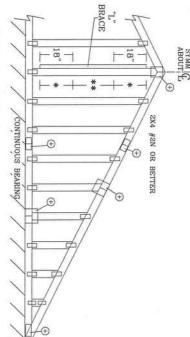
8

#1 / #2 STANDARD
#3 STUD

#3

STANDARD


BRACING GROUP SPECIES AND GRADES:


14

GROUP

A.

HEM-FIR

REFER TO CHART ABOVE FOR MAX GABLE VERTICAL LENGTH.

ITWBUILDING COMPONENTS GROUP, INC.
POMPANO BEACH, FLORIDA

WAMPORTANIAW FURNISH COPY OF THIS DESIGN TO INSTALLATION CONTRACTOR. ITY BGG INC., SHALL

NOT BE RESPONSIBLE FOR ANY DEVIATION FROM HIS DESIGN, ANY FAILURE OF BUILD THE FRUSS IN

DESIGN ANY FAILURE OF ANY DEVIATION FROM HIS DESIGN, ANY FAILURE OF BUILD THE FRUSS IN

DESIGN AND FOR CONNECTION OF ARRENDED TO FOR THE DEVIATION OF ANY FAILURE OF BRADING OF TRUSSES.

DESIGN AND FOR THE PROPERTIES OF FOR THE PROPERTIES AND LUCKES OF THE MADE OF AND AND TRI
TITY, BGG CONNECTION DE NATES ARE MADE OF FOR THE SUSSESSION OF ANY STEEL AND AND TRI
TITY, BGG CONNECTION DE NATES OF ANY BUILD FUNDED BY THE SUSSESSION OF THE PARTY OF THE PROPERTIES OF THE PARTY OF THE PROPERTIES OF THE PARTY OF THE PROPERTIES OF THE PARTY OF THE PARTY OF THE PARTY OF THE BUILDING DESIGNER, PER PARTY OF THE PARTY OF THE BUILDING DESIGNER, PER PARTY OF THE PARTY OF THE PARTY OF THE BUILDING DESIGNER, PER PARTY OF THE P

STATE OF

CORIO

THE THE R

MAX.

SPACING

24

0

*80.

MAX.

Ma. 66648

MANONAL

VARNING TRUSSES REQUIRE EXTREME CARE IN FABRICATING, HANDLING, SHIPPING, INSTALLING AND BRACING, SEFER TO BESS GBULDING COMPINENT SAFETY INFORMATION, PUBLISHED BY TELCRUSS PLATE INSTITUTE, 218 MORTH LEE STEW, SUITE 312, ALEXANDRIA, VA. 22314) AND VITA AUDID TRUSS COUNCIL BUSINESS COUNCIL BY AMERICA, 6300 ENTERPRISE LN, MADISON, VI 53719) FOR SAFETY PRACTICES PRIDE TO PERCONNING THESE FUNCTIONS. UNLESS OTHERWISE INDICATED. TOP CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTOM CHORD SHALL HAVE A PROPERLY ATTACHED STRUCTURAL.

AQUENAS FLEN

ALPINE

BLE
TRUSS
DETAIL
NOTES

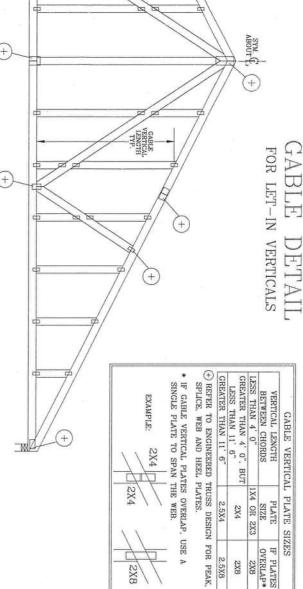
GA

SOUTHERN PINE

DOUGLAS FIR-LARCH

#2

#2


GABLE END SUPPORTS LOAD FROM 4' 0"
OUTLOOKERS WITH 2' 0" OVERHANG, OR 12" PROVIDE UPLIFT CONNECTIONS FOR 100 PLF OVER LIVE LOAD DEFLECTION CRITERIA IS L/240. PLYWOOD OVERHANG. CONTINUOUS BEARING (5 PSF TC DEAD LOAD).

- ATTACH EACH "L" BRACE WITH 10d NAILS.

 * FOR (1) "L" BRACE: SPACE NAILS AT 2" O.C.
 IN 18" END ZONES AND 4" O.C. BETWEEN ZONES.

 ** FOR (2) "L" BRACES: SPACE NAILS AT 3" O.C. MEMBER LENGTH. "L" BRACING MUST BE A MINIMUM OF 80% OF WEB IN 18" END ZONES AND 6" O.C. BETWEEN ZONES
- GABLE VERTICAL PLATE SIZES (3) E 8 ____

TOT.						_				
TOT. LD. 60 PSF					+ REFER TO PEAK, SPL	GREATER THAN 11' 6"	GREATER TI	LESS THAN 4' 0"	VERTICA	
	-ENG	DRWG AI	DATE 2,	REF AS	REFER TO COMMON TRUSS DESIGN FOR PEAK, SPLICE, AND HEEL PLATES.	HAN 11' 6"	LESS THAN 11' 6". BUT	4' 0"	VERTICAL LENGTH	
		A11030EE0207	2/23/07	ASCE7-02-GAB11030	S DESIGN FOR PLATES.	2.5X4	2X4	1X4 OR 2X3	NO SPLICE	

* IF GABLE VERTICAL PLATES OVERLAP, USE A 2X8

ATTACH EACH "T" REINFORCING MEMBER WITH PROVIDE CONNECTIONS FOR UPLIFT SPECIFIED ON THE ENGINEERED TRUSS DESIGN

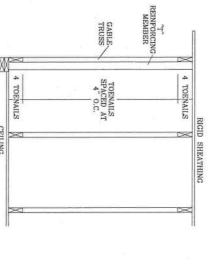
HAND DRIVEN NAILS:

GUN DRIVEN NAILS: 10d COMMON (0.148"X 3.",MIN) TOENAILS AT 4" O.C. PLUS (4) 16d COMMON (0.162" X 3.5",MIN) TOENAILS IN TOP AND BOTTOM CHORD.

Bd COMMON (0.131"X 2.5", MIN) TOENAILS AT 4" O.C. PLUS (4) TOENAILS IN TOP AND BOTTOM CHORD.

THIS DETAIL TO BE USED WITH THE APPROPRIATE ALPINE GABLE DETAIL FOR ASCE OR SECCI WIND LOAD ASCE 7-93 GABLE DETAIL DRAWINGS

ASCE 7-98 GABLE DETAIL DRAWINGS A11015EN0207, A10015EN0207, A09015EN0207, A08015EN0207, A07015EN0207, A11030EN0207, A09030EN0207, A09050EN0207, A09050EN0207, A09050EN0207, A09050EN0207, A09050EN0207, A09050EN0207, A09050EN0207, A0

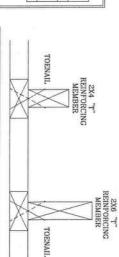

A13015EC0207, A12015EC0207, A11015EC0207, A10015EC0207, A08515EC0207 A13030EC0207, A12030EC0207, A11030EC0207, A10030EC0207, A08530EC0207

ASCE 7-02 GABLE DETAIL DRAWINGS A13030EE0207, A12030EE0207, A11030EE0207, A10030EE0207, A08530EE0207 A13015EE0207, A12015EE0207, A11015EE0207, A10015EE0207, A08515EE0207

ASCE 7-05 GABLE DETAIL DRAWINGS A13030E50207, A12030E50207, A11030E50207, A10030E50207, A08530E50207 A13015E50207, A12015E50207, A11015E50207, A10015E50207, A08515E50207

SEE APPROPRIATE ALPINE GABLE DETAIL (ASCE OR SBCCI WIND LOAD) FOR MAXIMUM UNREINFORCED GABLE VERTICAL LENGTH.

4 TOENAILS TOENAILS SPACED AT 4" O.C. TOENAILS RIGID SHEATHING CEILING



***VARNING** TRUSSES REDUIRE EXTREME CARE IN FABRICATING, HANDLING, SHIPPING, INSTALLING AND BRACING. RETER TO BESS (BUILDING COMPONENT SAFETY REPORACTING, PUBLISHED BY TPI CIRUSS PLATE INSTITUTE, 218 NORTH LEE STR., SUITE 312, ALEXANDRIA, VA. 22343 AND VTGA CAUDID INSUSS COUNCIL AGENCIA, 6300 ENTERPRISE LN, MADISON, VI 53719) FOR SAFETY PRACTICES PRIDE TO PERFORMING THESE FUNCTIONS. UNIESS DIMENSISE INDICATOR, DIP CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL PANELS AND BOTTOM CHORD SHALL HAVE PROPERLY ATTACHED STRUCTURAL.

WHITERFANITH FUNNISH COPY OF THIS DESIGN TO DISTALLATION CONTRACTOR. ITY BEG, DIC., SMALL NOT BE RESPONSIBLE FOR ANY EXCHAIGH SIDES ON ANY FALLINE I BRILL OF TRUSS IN CONFIDENCE OF AFRICATION CHANGE IN STREET, ANY FALLINE IN BRILL OF TRUSSES. IN EXCHANGE VALUE OF TRUSSES. IN THIS DISCON MAY FALLINE IN BRILL OF TRUSSES. IN EXCHANGE OF AFRICANTIAN CHANGE OF AFRICANTIAN CONTROL OF TRUSSES. IN THIS DESIGN AND AND THE SECOND CONTROL OF TRUSSES. IN THIS DESIGN AND AND THE SECOND CONTROL OF THIS DESIGN AND AND THE SECOND CONTROL OF THIS DESIGN AND AND THE SECOND CONTROL OF THE SECOND CONTROL OF THE SECOND CONTROL OF THIS DESIGN AND AND THE SECOND CONTROL OF T

ITW BUILDING COMPONENTS GROUP, INC. POMPANO BEACH, FLORIDA

ALPINE

2X8 8X2

TO CONVERT FROM "L" TO "T" REINFORCING MEMBERS. MULTIPLY "T" FACTOR BY LENGTH (BASED ON GABLE APPROPRIATE ALPINE GABLE DETAIL FOR ASCE OR 2X4 "L" BRACE, GROUP A. OBTAINED FROM THE VERTICAL SPECIES, GRADE AND SPACING) FOR (1)

MAXIMUM ALLOWABLE "T" REINFORCED GABLE VERTICAL LENGTH IS 14' FROM TOP TO BOTTOM CHORD.

WEB LENGTH INCREASE W/ "T" BRACE

30 FT	70 MPH	15 FT	70 MPH	30 FT	80 MPH	15 FT	80 MPH	30 FT	90 MPH	15 FT	90 MPH	30 FT	100 MPH	15 FT	100 MPH	30 FT	110 MPH	15 FT	110 MPH	WIND SPEED AND MRH
2x6	2x4	2x6	2x4	2x6	2x4	2x6	2x4	MBR. SIZE												
2 01	10 %	0 %	0 %	20 %	20 %	10 %	10 %	30 %	10 %	20 %	20 %	40 %	10 %	30 %	10 %	50 %	10 %	40 %	2 01	SBCCI
30 %	20 %	20 %	20 %	40 %	2 01	30 %	20 %		10 %	40 %	10 %	40 %	10 %	50 %	2 01	50 %	2 01	50 %	10 %	ASCE

THIS DRAWING REPLACES DRAWINGS GAB98117 876,719 & HC26294035

"T" BRACE INCREASE (FROM ABOVE) = 10% = 1.10 (1) 2X4 "L" BRACE LENGTH = 6' 7"

MAXIMUM "T" REINFORCED GABLE VERTICAL LENGTH
1.10 x 6' 7" = 7' 3"

GABLE VERTICAL = 24" O.C. SP #3

'T" REINFORCING MEMBER SIZE = 2X4

MEAN ROOF HEIGHT = 30 FT ASCE WIND SPEED = 100 MPH

NORION IN	-Ment	* 80°	SSAAA	ICENS OF	BAS FLEN	THE PARTICIPATE OF THE PARTICIPA
MAX	DUR	MAX				
MAX SPACING 24.0"	DUR. FAC. ANY	TOT.				
NG	A	LD.				
24	AN	60				
.0"		PSF				
			-ENG D	DRWG	DATE	REF
			DLJ/KAR	GBLLETIN0207	2/23/07	LET-IN VERT

O/ONAL ET

TOP CHORD BOT CHORD 2X4 2X4 2X4 非非非 OR OR BETTER BETTER BETTER

PIGGYBACK DETAII

4

6d BOX (0.099"X 2.",MIN) NAILS.

REFER TO SEALED DESIGN FOR DASHED PLATES

IS NOT DIRECTLY OVER ANOTHER. TOP AND BOTTOM CHORD SPLICES MUST BE STAGGERED SO THAT ONE SPLICE SPACE PIGGYBACK VERTICALS AT 4' OC MAX

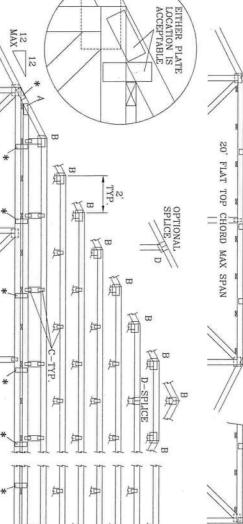
PIGGYBACK BOTTOM CHORD MAY BE OMITTED. TRUSS TOP CHORD WITH 1.5X3 PLATE. ATTACH VERTICAL WEBS

To

C8" X 8" X 1/2" FACE) MAY BE

ATTACH WITH (8) 6d BOX (0.099"X 2.",MIN) NAILS PER GUSSET.

(4) IN CAP BC AND (4) IN


ATTACH PURLINS TO TOP OF FLAT TOP CHORD. IF PIGGYBACK IS SOLID LUMBER OR THE BOTTOM CHORD IS OMITTED, PURLINS MAY BE APPLIED BENEATH THE TOP CHORD OF SUPPORTING TRUSS. REFER TO ENGINEER'S SEALED DESIGN FOR REQUIRED PURLIN SPACING.

THIS DETAIL IS APPLICABLE FOR THE FOLLOWING WIND CONDITIONS:

130 MPH WIND, 30' MEAN HGT, ASCE 7-98, ASCE 7-02 OR ASCE 7-05, CLOSED BLGD, LOCATED ANYWHERE IN ROOF, CAT II, EXP C, WIND TC DL=5 PSF, WIND BC DL=5 PSF

110 MPH WIND, 30' MEAN HGT, SBC ENCLOSED BLDG, LOCATED ANYWHERE IN ROOF WIND TC DL=5 PSF, WIND BC DL=5 PSF

FRONT FACE (E,*) PLATES MAY BE OFFSET FROM BACK FACE PLATES AS LONG AS BOTH FACES ARE SPACED 4' OC MAX. Ħ #2 OR BETTER MAX SIZE OF 2X12

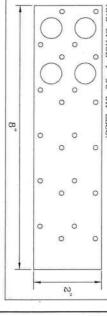
RATED SHEATHING GUSSETS (EACH USED IN LIEU OF TRULOX PLATES, BASE TRUSS FLAT TC. JOINT U A 0 W 4X6 5X4 .5X3 4X6 2X4 30 OR 3X6 TRULOX AT 4' ROTATED VERTICALLY 2.5X4 SPANS UP 5X5 .5X4 5X6 34 2.5X4 1.5X4 5X5 5X6 38 TO 5X6 .5X4 5X6 3X5 52 000

ATTACH TRULOX PLATES WITH (8) 0.120" X 1.375" NAILS, OR EQUAL, PER FACE PER PLY. (4) NAILS IN EACH MEMBER TO BE CONNECTED. REFER TO DRAWING 160 TL FOR TRULOX INFORMATION.

10 10 14	2		7'9" TO 10'	o. Lo	WEB LENGTH	
14	:		0 10'	7'9"	NGTH	
MEMBER. ATTACH WITH 16d BOX (0.135"X 3.5",MIN) NAILS AT 4" OC	2x4 "T" BRACE. SAME GRADE, SPECIES AS WI MEMBER, OR BETTER, AND 80% LENGTH OF WI	MEMBER. ATTACH WITH 8d BOX (0.113"X 2.5",MIN) NAILS AT 4" OC.	MEMBER, OR BETTER, AND 80% LENGTH OF WI	O' TO 7'9" NO BRACING	REQUIRED BRACING	HED DIVICING CHAIN

* PIGGYBACK SPECIAL PLATE

ATTACH TEETH TO THE PIGGYBACK AT THE TIME OF FABRICATION. ATTACH TO SUPPORTING TRUSS WITH (4) 0.120" X 1.375" NAILS PER FACE PER PLY. APPLY PIGGYBACK SPECIAL PLATE TO EACH TRUSS FACE AND SPACE 4' OC OR LESS.


海 C

烛C

海 C 烛 C 地の

中の

炖 C

THIS DRAWING REPLACES DRAWINGS 634,016 634,017 & 847,045

ITWBUILDING COMPONENTS GROUP, INC. POMPANO BEACH, FLORIDA

ALPINE

*ATTACH

PIGGYBACK WITH 3X8 TRULOX OR ALPINE PIGGYBACK SPECIAL PLATE

					_	
SDACING	47 1.15	1.20	50	1.33	55 PSF AT	MAX
va .	47 PSF AT 1.15 DUR. FAC.	DUK.	50 PSF AT	DUR.	PSF	MAX LOADING
"0 76	AT FAC.	FAC.	AT	FAC.	AT	DING
	g:		-ENG D	DRWG	DATE	REF
			D	ď	N	P

GBACKB0207

J/KAR

GGYBACK

23/07

SPACING

110 MPH WIND SPEED, 15' MEAN HEIGHT, ENCLOSED, I 11 1.00, EXPOSURE

SPRUCE-PINE-FIR
#1 / #2 STANDARD
#3 STUD

3 3

STANDARD

HEM-FIR 2 STUD

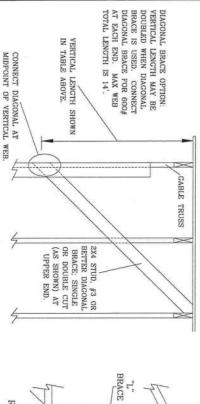
BRACING GROUP SPECIES AND GRADES:

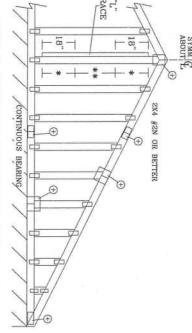
0

GROUP

A:

DOUGLAS FIR-LARCH #3 STUD


SOUTHERN PINE
#3
STUD
STANDARD


STANDARD

GROUP B:

#1 & BTR #1 HEM-FIR

-	-	VI 2		X	O		311233		3]	(-) <u>e</u>)(-)	6	,,			.(10.00		C.	A 2		-	L		1			CH Space	
	- 14						1241	400		()	_	_	-		. (F	_			_			CING S	GABLE V
1	<u> </u>		7)	TII	III.	OLL	J	-		1	7)	111	I I I	OFF	J			1	7.7)	TIL	I I I	STI	j	SPACING SPECIES	GABLE VERTICAL
STANDARD	STUD	#3	#2	#1	STANDARD	STUD	#3	#1 / #2	STANDARD	STUD	#3	#2	#1	STANDARD	STUD	#3	#1 / #2	STANDARD	STUD	#3	#2	#1	STANDARD	STUD	#3	#1 / #2	GRADE	L BRACE
	5, 0,	5' 0"	5' 3"	5 4"	4' 9"	4' 9"	4' 9"	4' 11"	4' 5"	4' 6"	4' 6"	4' 9"	4' 10"	4' 4"		4' 4"	4. 5"	3' 10"	4' 0"	4. 0.	4 2"	4' 3"	3' 9"			3' 10"	BRACES	NO
1	8, 5,	8' 5"	8, 5,	8 5"	7' 3"	8, 5,	8, 5,	8' 5"	6' 5"	7' 6"	7' 7"	7' 8"		6' 4"	7' 4"	7' 4"	7' 8"	5' 3"	6' 1"	6, 5,	6' 8"		5, 5,	6' 0"	6' 0"	6' 8"	GROUP A	r +vr (r)
	8' 7"	8, 5,	9' 1"	9' 1"	7' 3"	8, 5,		8' 8"	6' 5"	7' 6"	7' 7"	8' 3"	8' 3"	6' 4"	7' 4"		7' 10"	5' 3"	6' 1"	6, 5,	7' 2"	7' 2"	5' 2"		6' 0"	6' 10"	GROUP B	DRACE
		10' 0"		10' 0"	9' 7"	10' 0"	10' 0"	10' 0"	8' 6"	9' 1"	9' 1"	9' 1"	9' 1"	8' 4"	9' 1"	9' 1"	9' 1"	6' 11"	7' 11"	7' 11"	7' 11"	7' 11"	6' 9"	7' 11"	7' 11"	7' 11"	GROUP A	(1) 684 1
		10' 6"	10' 9"	10' 9"	9' 7"	10' 0"	10' 0"	10' 3"	8' 6"	9' 6"	9' 6"	9' 9"	9' 9"	8' 4"	9' 1"	9' 1"	9' 4"	6' 11"	8' 0"	8' 1"	8' 6"	8' 6"	6' 9"	7' 11"	7' 11"	8' 1"	GROUP B	DIVACE
	11' 11"	11. 11.	11' 11"	11' 11"	11, 11,	11' 11"	11' 11"	11' 11"	10' 10"	10' 10"	10' 10"	10' 10"	10' 10"	10' 10"	10' 10"		10' 10"	9' 4"	9' 5"	9' 5"	9' 5"	9' 5"	9' 1"	9' 5"	9' 5"	9' 5"	GROUP A	(8) 644 6
			12' 10"	12' 10"	11' 11"	11' 11"	11, 11,	12' 3"	11' 1"	11' 4"	11' 4"	11' 8"	11' 8"	10' 10"	10' 10"	10' 10"	11' 1"	9' 4"	9' 11"	9' 11"	10' 2"	10' 2"	9' 1"	9' 5"	9' 5"	9' 8"	GROUP B	BRACE
-	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	-	14' 0"	14' 0"	14' 0"		12' 11"	14' 0"	14' 0"	14' 0"	10' 10"	12' 5"		12' 5"		10, 2,,	12' 3"		12' 5"	GROUP A	(1) SXD L
		14' 0"	5-33	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	13' 3"		14' 0"	14' 0"	14' 0"	12' 11"	14' 0"	14' 0"	14' 0"	10' 10"	12' 6"	12' 8"	13' 5"	13' 5"	10' 7"	12' 3"	12' 4"	12' 9"	GROUP B	BRACE .
		14. 0"	- 23	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14. 0.	14' 0"	14' 0"	14' 0"	14′0″	14' 0"	14′0″	14' 0"	14' 0"	GROUP A	(2) 2X6 L
- 1	- 1	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"		14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14' 0"	14. 0.	14' 0"	14' 0"	14' 0"	GROUP	BRACE

ATTACH EACH "L" BRACE WITH 10d NAILS.

* FOR (1) "L" BRACE: SPACE NAILS AT 2" O.C.

** FOR (2) "L" BRACES: SPACE NAILS AT 3" O.C.

IN 18" END ZONES AND 6" O.C. BETWEEN ZONES. GABLE END SUPPORTS LOAD FROM 4' 0" PROVIDE UPLIFT CONNECTIONS FOR 80 PLF OVER CONTINUOUS BEARING (5 PSF TC DEAD LOAD). LIVE LOAD DEFLECTION CRITERIA IS L/240. PLYWOOD OVERHANG. OUTLOOKERS WITH 2' 0" OVERHANG, OR 12"

GABLE TRUSS DETAIL NOTES:

SOUTHERN PINE

DOUGLAS FIR-LARCH

#2

#2

MEMBER LENGTH. 95

"L" BRACING MUST BE A MINIMUM OF 80% OF WEB

+		-			
+ REFER TO COMMON TRUSS DESIGN FOR PEAK, SPLICE, AND HEEL PLATES.	GREATER THAN 11' 6"	GREATER THAN 4' 0", BUT LESS THAN 11' 6"	LESS THAN 4' 0"	VERTICAL LENGTH	GABLE VERTICAL PLATE SIZES
DESIGN FOR PLATES.	2.5X4	2X4	1X4 OR 2X3	NO SPLICE	CH7IC HI

WARNING TRUSSES REQUIRE EXTREME CARE IN FABRICATING, HANDLING, SHIPPING, INSTALLING AND BRACING, SEFER TO BESI (BUILDING COMPONENT SAFETY INFORMATION), PUBLISHED BY TET (TRUSS PLATE INSTITUTE, 218 MORTH LEE ST., SLITE 212, ALEXANDRIA, VA. 22314) AND YEAK AUDID TRUSS COUNCIL, USAFITUTE, CONTROL SHALL HANDISDN, WI 53719) FOR SAFETY PRACTICES PRIDE TO PERFORMING THESE FUNCTIONS. UNLESS DITHEMISE INDICATED, TOPORD SHALL HAVE PROPERTY ATTACHED STRUCTURAL PANELS AND BOTTOM CHORD SHALL HAVE PROPERTY ATTACHED STRUCTURAL

REFER

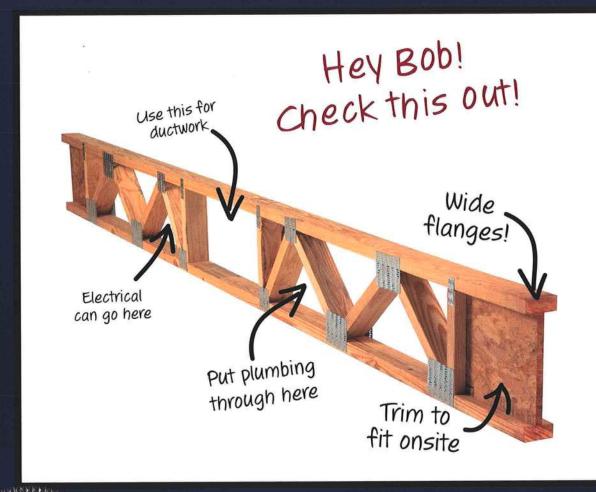
TO CHART ABOVE FOR MAX GABLE VERTICAL LENGTH

MADDETANIA FURNISH COPY OF THIS DESIGN TO INSTALLATION CONFRACTOR. IT BEG, INC. SHALD BE RESPONSIBLE FOR ANY DEVIATION FROM HIS DESIGN, ANY FAILURE TO BUILD THE TRUSS IN OUN TOBER AND THE TRUSS AND THE SECONDARY WITH THE OF THE TRUSS AND THE SECONDARY AND THE APPLICABLE PROVISIONS OF MIS CHATIONAL DESIGN SECO, BY ATSPAN AND THY BIG CONNECTOR PARTES ARE MORE OF 201/19/16/GA CALVASAN ASTE MASS GRADE ANG CAVADA AND THY BIG CONNECTOR PARTES ARE THE TRUSS AND, UNLESS OTHERWISE LUCATED ON THIS DESIGN, POSITION FOR ANALY BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE DESIGN, POSITION FOR DESIGNATION THE SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BE THE TRUSS COMPONENT DESIGN SHOULDED BY OR SHALD BY OR SH

ITWBUILDING COMPONENTS GROUP, INC. POMPANO BEACH, FLORIDA

ALPINE

GOUSIAS FLEA 26 SIONAL ENGLISH CENS No. 66648 '08 ★ * MAX. MAX.


TOT.

SPACING

24.0"

ĘĐ.				
60				
LD. 60 PSF				
	-ENG	DRWG	DATE	REF
		DRWG A11015EE0207	2/23/07	ASCE7-02-GAB11015

TrimJoist

If Bob tries TrimJoist, he'll find out why TrimJoist is the best choice for floor truss products.

IT'S CONTRACTOR-FRIENDLY.

The end sections can be trimmed onsite.

IT SAVES MONEY AND TIME.

With strut-webbing, there's no need for subcontractors to cut holes.

IT'S STRONGER.

You don't weaken the joist with holes.

IT HAS WIDE FLANGES.

With 3.5-inch flanges on the top and bottom, subfloor application is simple. Nailing and gluing are easier.

IT COMES WITH A TEAM OF ENGINEERS.

Just call our toll-free number for custom engineering.

1 800 844-8281 www.trimjoist.com

AT EACH END OF COMPONENT. LEND OF COMPONENT. AND ROOF AND FLOOR BEAM ONLY.

IT, NOTCH OR DRILL LP LVL REARINGS FOR FULL CONTACT. RENISIONS BEFORE CUTTING

IGN ASSUMES COMPONENTS CARRIED ARE LIBED TO TOP EDGE OF LY LIA, SUCH THAT DIS DISTRIBUTED EQUALTY TO EACH PLY CH THE TWO PLIES WITH 3 ROWS OF 184 TO NAILS AT 12" OC. STAGGER ROWS. ILS WITH A MINIMUM SHANK DIAMETER 17. 184 SINKERS (3-1/4") MAY BE 1UT HALF MUST BE DRIVEN FROM TRATED LOADS MUST BE EQUALLY IED TO ALL PLIES, ADDITIONAL REQUIRED, DRIVEN FROM ONE FACE OR HALF ICE NAILS MAY BE COMMON OR

WISCONSIN N.Y. CITY COMC CITY

200124-W MEA 97-94-E ME 1214D

NOTE: LOADS SHOWN ARE FOR INPUT LOAD CASE (1), OTHER LOAD CASE FOR PATTERN LIVE LOADING ARE CHECKED AS REQUIRED, (DIMENSIONS MEASURED FROM LEFT END OF SPAN OR CANTILEVER.)	LOAD TABLE
SES	

	DING ARE CHECKED AS REQUIRED. D FROM LEFT END OF SPAN OR CANTILEVER.)	E FOR INPUT LOAD CASE (1), OTHER LOAD CA
		ES
1035		TOGETHER (R
150	100000	(R

DESIGN CONSISTS OF 2 - PLIES FAST TOGETHER (REFER TO NOTES).
LIES FASTENED

FLOOR LIVE I

PSF

DESIGN CRITERIA :

OF/STDE	Tank.		FT-IN-SX FT-IN-SX	
TOP		Ę		1.00
TOP		Ę	•	0.90
TOP		Ę	•	0.90
1	16 P	FIG	00-00-00 21-00-00	0.90
dor		BS	04-00-00MINERG=2.50"	
agor.		28	16-00-00MINERG=2.50"	
3		SE	10-00-00MINERG=2.50"	
200	537 I	BS	12-00-00MINERG=2.50"	
		9	14-00-00MINERG=2.50"	
105			20 00 000	
1		9	OC OCIONES NEWSCON	

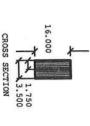
CONCENTRATED FLOOR	٠	,	0	CONCENTRATED FLOOR	'	•	7		SOUTH COMPANY	CONCENTRATED FLOOR	CONCENTRATED FLOOR			0	CONCENTRATED FLOOR			CONCENTRATED FLOOR		'	•	CONCENTRATED FLOOR			-	UNIFORM WALL	ONTE OF THE PERSON	and the	
1	-	משמח	DEAD	DEMO	1	DEAD	DEAD		DEAD	DEAD	LIVE	-	1	LIVE	TATA		LIVE	LIVE	TATA	1	TIVE	TIVE	MELTON	THE TOTAL	DEAD	DEAD		TTV	
P	1	3	TOP	-	3	TOP	TOP		dor	TOP	JOE		3	TOP	TOP		dor	TOP	-	3	dor	TOF			TOP	JOE.		POP	
-	50	97	.70							202																			
6	9	Seri	SG		SE	SET	0	90	BS	LBS	6	9	BS	SB	į	d	BS	200		200	88	0	9	A Te					
Children of the contract of th	OS-ON-ONTHEROMS 50"	06-00-00MINERGEZ.50	TO-OG-OGETHERES-F	TO OO OOMING SO	16-00-00MINBRG=2.50"	T4-00-00MIMDIO-2.50		13-00-00MTWBRG#2 50"	08-00-00MINERGEZ.50"	04-00-00MLNDRG-Z.JO	00-00-00-00-00-00-00-00-00-00-00-00-00-	00-00-00MTNBRG=2 50"	02-00-00MINBRG=2.50"	OB-OU-DOMINGMENT CO	50 CO CONTINUE SON	06-00-00MINBRG-2.50"	14-00-00MINERGEZ.50	TV-00-00ETERDENS-F-00	TO OO OOM	10-00-00MINERG=2.50"	TO-00-OURTHOUSEY-C. DO	000000000000000000000000000000000000000	OALON-ONTENBRES 50"	00-00-12 00-00	TZ-00-00 ZI-00-00	20 00 01 00 00	00-00-00 21-00-00	12-00-00 21-00-00	
90	0.90	0.90	9	0.90	0.90		0 00	0.90	0.90	0.00	9	1.00	1.00	3	1 00	1.00		3	1.00	1.00		1 00	1.00	0.50	9	0.90	0.90	1.00	8

DEFLECTION CRITERIA: LIVE LOAD DEFL: TOTAL LOAD DEFL:

CODE COMPLIANCES :

ICC-ES

REPORT # ESR-1254 RR 25167 11518-R


WARNING NOTES:

THIS COMPONIENT DESIGN IS SPECIFICALLY FOR L-P ENGINEERED WOOD PRODUCTS. USE OF THIS DESIGN FOR ANYTHING OTHER THAN L-P LVL. OR L-P LSL. OR L-P I-JUSITS IS STRETLLY PROVIDENTED, ANY MODIFICATION OF THIS DOCUMENT REQUIRES REVIEW BY A DESIGN PROFESSIONAL.

PROVIDE RESTRAINT AT CONCENTRATED LOAD TO ENSURE LATERAL STABILITY.

MINIMUM BEARING SIZES ARE SUFFICIENT TO PREVENT CRUSHING OF THE UP LYL. BEAM AS DESIGNIED, IT IS THE RESPONSIBILITY OF THE PROJECT ENGINEER, ARCHITECT OR DESIGNER TO YEATHY THAT THE SUPPORT STRUCTURE FOR THIS BEAM IS CAPABLE OF SUPPORTING THE REACTIONS.

ANCHOR LP LYL ROOF/FLOOR BEAM SECURELY TO BEARINGS OR HANGERS.

12- 0- 0 THIS DRAWING IS NOT TO SCALE *** 9 9

DOMN 7197 NUMBER

MIN BEARING SIZES (IN-SX) 2-0 5-8 3-8

DEST TREAT MAXIMUM DEFLECTIONS
CALCULATED ALLOWASIE
AD 0.03" 0.40"
AD 0.03" 0.60"

ited are in substantial sions of NDS and AITC. * Dead brent factor for creep. Total

 Supports and connections for LP LVL, LP LSL, CTR and LPI to be specific application on the distribution of 4" for 10d LP LVL, LP LSL and CTR, LP Hoist Specifications

orch, drill or alter LP LM., LP LSI, and CTR, LP Holets except as shown material from IP any use of LP LM., LSI, and CTR, LP Holets contarty set from hereomorphisms any express warranty of the product and LP implied warranties including the implied warranties of merchantability.

* A COPY OF THIS DRAWING IS TO BE GIVEN TO THE INSTALLING CONTRACTOR LP is a registered trademark of Louisiana-Pacific Corporation.

DWG

SHEET

LP Engineered Wood Products Software Provided By: 08/22/08

IBC

2706 Highway 421 North Warnington, NC 28401 Local 910,762,9878 National Wats 800,999,9105

File: C:\Documents and Settings\TKirksey.WOODFORDPLYWOOD\Desktop\WOODE.SPX

The *uniform load* span charts below indicate the maximum design spans (including a 1¾" minimum bearing evenly trimmed) for each family of *Trim*Joist floor joists. Each chart is divided into columns which represent common design loadings and rows which show typical spacings. Most residential designs require a minimum of 55 psf loading. Floors used for heavy traffic and/or heavy floor coverings (e.g. Tile) should be designed at 60 psf minimum. All loads are broken down into *Live*, *Top-dead* and *Bottom-dead* components. For example, the 55 psf column is really 40 psf live plus 10 psf top-dead plus 5 psf bottom-dead for a total of 55 psf. Dead loads are the weight of construction materials and are always present for the whole life of the structure. Live loads, on the other hand, are transient and are never constant over the life of the structure. Select the appropriate column based on the *dead* loads of your construction materials. These charts are for *uniformly loaded*, *clear span*, *simply supported* joists. For special applications requiring concentrated loads, asymmetric continuous loads, cantilevers, or special bearing conditions please consult a *Trim*Joist representative or authorized dealer. The TPDS computer program can be used to analyze almost any loading and/or bearing condition.

Deep	Lo	ading	55 PSF (40/10/5)	60 PSF (40/10/10)
		12	24'- 0" L/589	24'- 0" L/589
11 1/	ing	16	23' - 1" L/455	23' - 1" L/455
`	Spac	19.2	21'- 9" L/454	21'- 9" L/454
	S	24	20'- 5" L/461	20'- 0" L/465

Lo	pading	55 PSF (40/10/5)	60 PSF (40/10/10)
	12	28'- 0" L/731	28'- 0" L/731
ing	16	28'- 0" L/549	28'- 0" L/549
Spac	19.2	28'- 0" L/458	27'- 5" L/486
02	24	26'- 0" L/456	26'- 0" L/456

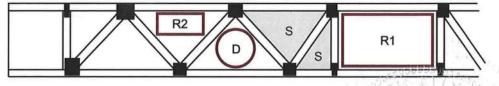
- D	12	26'- 0" I	L/688	26'-	0"	L/688
oin	16	26'- 0" 1	L/515	26'-	0"	L/515
Space	19.2	25' - 7" 1	L/450	25'-	7"	L/450
01	24	23' - 8" 1	L/451	23'-	8"	L/451

	12	30'- 0" L/768	30'- 0" L/768
ing	16	30'- 0" L/575	30'- 0" L/575
Spac	19.2	30'- 0" L/479	29'-10" L/488
W	24	27' - 4" L/504	26' - 5" L/579

Notes on Span Charts:

- 1. Spans are based on uniformly loaded joists and include allowances for repetitive use members.
- 2. Live loads of 40 psf are assumed, Additional dead loads should be chosen based on construction materials.
- 3. All TrimJoist floor joists have a TOP orientation and should not be installed upside-down.
- Stiffness factors (L/xxx) assume a minimum ¾-inch span-rated subfloor that has been both glued and nailed.
- 5. Limit total reaction (per end) to that indicated in the Maximum Reaction Table at the right.
- Do not apply center supports, cantilevers, concentrated, or asymmetrical continuous loads without first consulting a *Trim*Joist representative.

Maximum Reaction Table


Width	13/4"	31/2"	51/2"
Max	3000	3500	4000

Width is the width of the loaded wall above, or the bearing wall width whichever is less.

A Note About Floor Stiffness: Floor performance is greatly influenced by joist stiffness. Experience has shown that a floor system designed to minimum code acceptance may not meet the expectations of discerning owners. *Trim*Joist Corporation strongly recommends that floor spans be limited to those indicated in the charts above. The numbers in these charts far exceed minimum code requirements and are based on both gluing *and* nailing the subfloor. In cases where the subfloor is nailed only, spans remain the same, but the stiffness must be reduced by 20%. For optimal performance use screws in lieu of nails.

Opening Sizes

	J12	J14	J16	J18
н	111/4"	14"	16"	18"
D	5"	8"	9"	10"
R1	8×16	10x24	12x24	14x24
R2	4x9	4x10 6x6	4x12 6x8	4x14 6x10 8x8

- 1. All sizes given are in inches and denote maximum expected clearance.
- 2. Rectangular opening (R1) is provided at centerline of stock length.
- 3. Only opening D available in 4' stock length (one opening only).
- 4. Only opening R1 available in 6' and 8' stock length.
- 5. Openings R2 & D not applicable in shaded areas (s).

MAIIEN

Good Framing Practice...

- DO Install TrimJoists right side up. TOP is stamped on the top of each joist.
- **DO** Make sure that each *Trim*Joist bears on the bottom flange beneath the *Trim*End section or beneath the first metal plate if the *Trim*End section has been removed.
- **DO** Use strongback stiffeners. Although not required for structural performance, strongback adds additional resistance to impact loadings.
- **DO** Provide appropriate bearing width at each end of the *Trim*Joist. The required width can be found in the Maximum Reaction Table above. Use vertical web stiffeners where reactions exceed these values.
- **DO** Use *Trim*Joist approved hangers for flush-mounted bearing conditions. These may be purchased from your local *Trim*Joist dealer.
- **DO** Use an appropriately rated sub-floor that has been both glued and nailed/screwed to the top flange of the *Trim*Joist.
- **DO** Consult your *Trim* Joist dealer or representative about special loading or bearing conditions not addressed in this Application Guide.

- **DO NOT** cut any part of the *Trim*Joist except for the *Trim*End sections which are specifically designed to be field cut.
- **DO NOT** remove, cut or alter any metal plate connector on the *Trim*Joist without first consulting a factory engineer.
- **DO NOT** install the *Trim*Joist upside down without first consulting a *Trim*Joist factory engineer.
- **DO NOT** use a *Trim*Joist as a header or beam except as may be instructed by a *Trim*Joist engineer.
- ${\bf DO}$ NOT allow the ${\it Trim}$ Joist to be supported by the top flange. All support must be from under the bottom flange.
- **DO NOT** depend on "toe nailing" to provide adequate support capacity for flush-mounted framing. Consult your local *Trim*Joist dealer or a *Trim*Joist factory engineer for proper hanger selection.
- **DO NOT** apply special support or load conditions without first consulting a *Trim* Joist representative.

O Z Y A O O O O

COLUMBIA COUNTY, FLORIDA

Department of Building and Zoning Inspection
This Certificate of Occupancy is issued to the below named permit holder for the building and premises at the below named location, and certifies that the work has been completed in accordance with the Columbia County Building Code.

Parcel Number 12-4S-16-02935-122

Building permit No. 000027361

19.26

Fire:

50.25

Waste:

Use Classification SFD,UTILITY

Permit Holder DONNY WILLIAMS

Owner of Building VALERIE RYAN

69.51

Total:

Location: 130 SW WACO CT., LAKE CITY, FL

Date: 07/17/2009

Building Inspector

POST IN A CONSPICUOUS PLACE (Business Places Only)

Columbia County Building Permit Application

For Office Use Only Application # 0809-25 Date Received 9/15/08 By 4 Permit # 2736/
Zoning Official BLK Date 708.08 Flood Zone X Land Use RELL DEV Zoning RSF-2
FEMA Map # NA Elevation NA MFE WER River NA Plans Examiner Date 9/1608
comments / Der BK/issue (D)
Site Plan State Road Info Parent Parcel #
Dev Permit # In Floodway Letter of Auth, from Contractor F W Comp. letter
IMPACT FEES: EMS \$29.88 Fire \$78.63 Corr \$409.16 Road/Code \$1,046.00 \(\infty \)
School \$1,500.00 = TOTAL \$3,063.67
Septic Permit No. 04-11-85W
Name Authorized Person Signing Permit Donald E Williams Phone 755 ~0764
Address 541 SW Airpark Glen Lake City A
Owners Name John Ryan Valeric Ryan of Dead Phone 239-566-8008
911 Address 130 SW Waco Cf Lake City, FL
Contractors Name Donny Williams Coust Phone 755-0764
Address 541 SW ATTY park Glen Lake City, FL.
Fee Simple Owner Name & Address
Bonding Co. Name & Address
Architect/Engineer Name & Address Mark Disaway
Mortgage Lenders Name & Address
Circle the correct power company – FL Power & Light – Clay Elec. – Suwannee Valley Elec. – Progress Energy
Property ID Number 12-45-16-02935 - 122 Estimated Cost of Construction 175,000
Subdivision Name Cannor Creek Estates Lot 2 Block Unit Phase
Driving Directions SR 3415 to Lockheed Left Oa
waco, 1st house on Left
Number of Existing Dwellings on Property
Construction of House SFD Total Acreage 203 Lot Size
Do you need a - <u>Culvert Permit</u> or <u>Culvert Waiver</u> or <u>Have an Existing Drive</u> Total Building Height <u>30</u>
Actual Distance of Structure from Property Lines - Front 119 Side 87.5 Side 137.04 Rear 143
Number of Stories 2 Heated Floor Area 1922 Total Floor Area 3550 Roof Pitch 12/12
Application is hereby made to obtain a permit to do work and installations as indicated. I certify that no work or installation has commenced prior to the issuance of a permit and that all work be performed to meet the standards

of all laws regulating construction in this jurisdiction.

Page 1 of 2 (Both Pages must be submitted together.)

18/1 Messale - 9/18/08 W/ Donng Revised 1-10-08

Columbia County Building Permit Application

<u>TIME LIMITATIONS OF APPLICATION:</u> An application for a permit for any proposed work shall be deemed to have been abandoned 180 days after the date of filing, unless such application has been pursued in good faith or a permit has been issued; except that the building official is authorized to grant one or more extensions of time for additional periods not exceeding 90 days each. The extension shall be requested in writing and justifiable cause demonstrated.

FLORIDA'S CONSTRUCTION LIEN LAW: Protect Yourself and Your Investment

According to Florida Law, those who work on your property or provide materials, and are not paid-in-full, have a right to enforce their claim for payment against your property. This claim is known as a construction lien. If your contractor fails to pay subcontractors or material suppliers or neglects to make other legally required payments, the people who are owed money may look to your property for payment, even if you have paid your contractor in full. This means if a lien is filed against your property, it could be sold against your will to pay for labor, materials or other services which your contractor may have failed to pay.

NOTICE OF RESPONSIBILITY TO BUILDING PERMITEE:

<u>YOU ARE HEREBY NOTIFIED</u> as the recipient of a building permit from Columbia County, Florida, you will be held responsible to the County for any damage to sidewalks and/or road curbs and gutters, concrete features and structures, together with damage to drainage facilities, removal of sod, major changes to lot grades that result in ponding of water, or other damage to roadway and other public infrastructure facilities caused by you or your contractor, subcontractors, agents or representatives in the construction and/or improvement of the building and lot for which this permit is issued. No certificate of occupancy will be issued until all corrective work to these public infrastructures and facilities has been corrected.

<u>WARNING TO OWNER:</u> YOUR FAILURE TO RECORD A NOTICE OF COMMENCMENT MAY RESULT IN YOU PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. A NOTICE OF COMMENCEMENT MUST BE RECORDED AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR ATTORNEY BEFORE RECORDING YOUR NOTICE OF COMMENCEMENT.

<u>OWNERS CERTIFICATION:</u> I hereby certify that all the foregoing information is accurate and all work will be done in compliance with all applicable laws and regulating construction and zoning. I further understand the above written responsibilities in Columbia County for obtaining this Building Permit.

John Ryan Valerie Ryan Owners Signature

<u>CONTRACTORS AFFIDAVIT:</u> By my signature I understand and agree that I have informed and provided this written statement to the owner of all the above written responsibilities in Columbia County for obtaining this Building Permit.

Contractor's Signature (Permitee)

Contractor's License Number C6C 4692

Columbia County

Competency Card Number____

Affirmed under penalty of perjury to by the <u>Contractor</u> and subscribed before me this <u>loth</u>day of <u>Sept</u> 20 <u>08</u>.

Personally known v or Produced Identification______

Personally known or Produced Identification_____

____ SEAL:

State of Florida Notary Signature (For the Contractor)

This Instrument Prepared by & return to:

Nama:

administrator, an employee of

TITLE OFFICES, LLC

Address:

The state of the s

1089 SW MAIN BLVD.

LAKE CITY, FLORIDA 32025

04Y-03101JK

Parcel I.D. #: 02935-122

Inst: 2004007973 Date: 04/07/2004 Time: 16:31

Doc Stamp-Deed : 525.00 DC.P.Dewitt Ca

DC,P. Dewitt Cason, Columbia County B: 1011 P:2006

SPACE ABOVE THIS LINE FOR PROCESSING DATA

SPACE ABOVE THIS LINE FOR RECORDING DATA

THIS WARRANTY DEED Made the 20 day of April, A.D. 2004, by

WALTER SIMENDINGER and JEAN F. SIMENDINGER, HIS WIFE, hereinafter called the grantors, to VALERIE Y. RYAN, O. MOSTIED PERSON whose post office address is 691 YORK TERRACE, NAPLES, FL 34169, hereinafter called the grantee:

(Wherever used herein the terms "grantors" and "grantee" include all the parties to this instrument, singular and plural, the heirs, legal representatives and assigns of individuals, and the successors and assigns of corporations, wherever the context so admits or requires.)

Witnesseth: That the grantors, for and in consideration of the sum of \$10.00 and other valuable consideration, receipt whereof is hereby acknowledged, do hereby grant, bargain, sell, alien, remise, release, convey and confirm unto the grantee all that certain land situate in Columbia County, State of FLORIDA, viz:

A part of Lots1 and 2 of "Cannon Creek Estates" as per plat thereof recorded in Plat Book 5, Page 60 and 60a of the public records of Columbia County, Florida, more particularly described as follows: Begin at the SE corner of said Lot 2 and run S 87°59′09" W, along the North line of Cannon Bridge Road, 331.00 feet; thence N 03°39′46" W, 266.84 feet; thence N 87°59′09" E, 331.00 feet; thence S 00°39′46" E, 266.84 feet to the POINT OF BEGINNING, Columbia County, Florida. Subject to a 30.00 foot easement across the East side thereof and a 60.00 foot easement across the South side thereof.

Restrictions, conditions, reservations, easements, and other matters common to the subdivision or shown on the map or plat thereof recorded in Plat Book 5, Page60/60A, but omitting any covenant or restriction based on race, color, religion, sex, handicap, familial status or national origin.

Subject to Restrictions recorded in O.R. Book 574, page 462.

Easement granted to Clay Electric Cooperative by instrument recorded in O.R. Book, page 166 and O.R. Book 826, page 571.

Subject to easements recorded in O.R. Book 811, page 935, O.R. Book 873, page 296, O.R. Book 769, page 1393 SMEXIE SHOOK PRODUCTION OF THE PRODUCTION OF THE

Subject to a 30 foot easement across the East side SEA SEA CONTRACT MANAGEMENT and a 60 foot easement across the South side.

Together with all the tenements, hereditaments and appurtenances thereto belonging or in anywise appertaining.

To Have and to Hold the same in fee simple forever.

And the grantors hereby covenant with said grantee that they are lawfully seized of said land in fee simple; that they have good right and lawful authority to sell and convey said land, and hereby fully warrant the title to buil land and will defend the same against the lawful claims of all persons whomsoever, and that said land is free of all encumbrances, except taxes accruing subsequent to December 31, 2003.

In Wimess Whereof, the said grantors have signed and sealed these presents, the day and year first above written.

Signed, sealed and delivered in the presence of:

Witness Signature

Ofting Lifeth

Printed Name

Witness Signature

Kristia Luchu

WALTER SEARNDENGER Address:

226 OCEAN AVE., NORTHPORT, NY 11768

JESN F. SIMENDINGER

Jeguv P. Szmernidengen Andress:

226 OCEAN AVE., NORTHPORT, NY 11768

Inst:2004007973 Date:04/07/2004 Time:16:31
Doc Stamp-Deed: 525.00
_____DC,P.DeWitt Cason,Columbia County B:1011 P:2087

COUNTY OF SUFFER

The state of the s

The foregoing instrument was acknowledged before me this 2 day of April, 2004, by WALTER SIMENDINGER and JEAN F. SIMENDINGER, who are known to me or who have produced A N SIME OULVERS CREME as identification.

NOTINCY PUBLIC State of New York
No Orland/16000
Countries in Newson Country
Countries in Newson Country

Notary Public

My commission expires

APRIL 30 200

Columbia County Property Appraiser DB Last Updated: 8/5/2008

2008 Proposed Values

Tax Record

Property Card

Interactive GIS Map

Search Result: 1 of 1

Print

Parcel: 12-4S-16-02935-122

Owner & Property Info

Owner's Name	RYAN VALERI	RYAN VALERIE Y						
Site Address	CANNON CRE	CANNON CREEK ESTATES						
Mailing Address	691 YORK TE NAPLES, FL 3							
Use Desc. (code)	SINGLE FAM	(000100)						
Neighborhood	12416.02	Tax District	2					
UD Codes	МКТА06	Market Area	06					
Total Land Area	2.030 ACRES							
Description	S/D, RUN W 3 266.84 FT TO	BEG SE COR OF LOT 2 CANNON CREEK ESTATES S/D, RUN W 331 FT, N 266.84 FT, E 331 FT, S 266.84 FT TO POB. ORB 769-1436, 909-2336, 912-1693, 959-321, WD 1011-2886.						

GIS Aerial

Property & Assessment Values

Mkt Land Value	cnt: (1)	\$65,975.00
Ag Land Value	cnt: (0)	\$0.00
Building Value	cnt: (1)	\$111,477.00
XFOB Value	cnt: (1)	\$5,768.00
Total Appraised Value		\$183,220.00

Just Value	\$183,220.00
Class Value	\$0.00
Assessed Value	\$183,220.00
Exempt Value	\$0.00
Total Taxable Value	\$183,220.00

Sales History

Sale Date	Book/Page	Inst. Type	Sale VImp	Sale Qual	Sale RCode	Sale Price
4/2/2004	1011/2886	WD	٧	Q		\$75,000.00
5/21/2002	959/321	WD	V	Q		\$78,000.00
10/18/2000	912/1693	WD	V	U	01	\$100.00

Building Characteristics

Bldg Item	Bldg Desc	Year Blt	Ext. Walls	Heated S.F.	Actual S.F.	Bldg Value		
1	SINGLE FAM (000100)	2005	Above Avg. (10)	(560)	2810	\$111,477.00		
Note: All S.F. calculations are based on exterior building dimensions.								

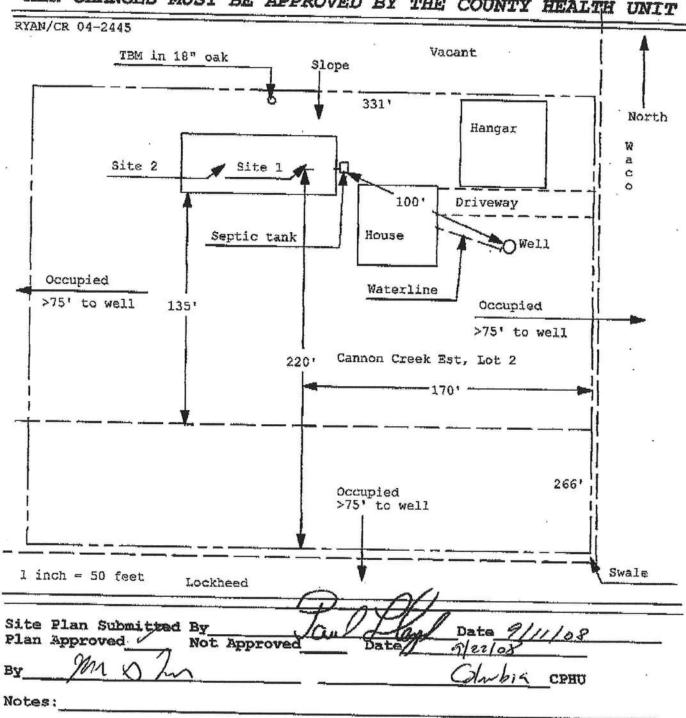
Extra Features & Out Buildings

Code	Desc	Year Blt	Value	Units	Dims	Condition (% Good)
0166	CONC,PAVMT	2005	\$5,768.00	2307.000	0 x 0 x 0	CO Beck POld Col

Land Breakdown

Lnd Code	Desc	Units	Adjustments	Eff Rate Lnd Value
000100	SFR (MKT)	2.030 AC	1.00/1.00/1.00/1.00	\$32,500.00 Code\$65,975.00

Columbia County Property Appraiser


DB Last Updated: 8/5/2008

for

12

Application for Onsite Sewage Disposal System Construction Permit. Part II Site Plan Permit Application Number: 08-01029

ALL CHANGES MUST BE APPROVED BY THE COUNTY HEALTH UNIT

Project Name:

Address:

Owner:

DATE:

City, State:

Ryan Residence

SW Waco Court

Jon Ryan

Lake City, FL 32055-

FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION

Florida Department of Community Affairs
Residential Whole Building Performance Method A

Builder:

Permitting Office:

Jurisdiction Number: 121000

Permit Number:

Donny Williams Const.

Columbia Co

2736/

Climate Zone: North	
1. New construction or existing New 2. Single family or multi-family Single family 3. Number of units, if multi-family 1 4. Number of Bedrooms 3 5. Is this a worst case? No 6. Conditioned floor area (ft²) 1922 ft² 7. Glass area & type Single Pane Double Pane a. Clear glass, default U-factor 0.0 ft² 258.0 ft² b. Default tint 0.0 ft² 0.0 ft² c. Labeled U or SHGC 0.0 ft² 0.0 ft² 8. Floor types a. Slab-On-Grade Edge Insulation R=0.0, 192.0(p) ft b. N/A c. N/A 9. Wall types a. Frame, Wood, Exterior R=19.0, 1521.0 ft² b. Frame, Wood, Exterior R=13.0, 672.0 ft² c. Frame, Wood, Exterior R=30.0, 1400.0 ft² d. N/A e. N/A 10. Ceiling types	12. Cooling systems a. Central Unit b. N/A c. N/A 13. Heating systems a. Electric Heat Pump b. N/A c. N/A 14. Hot water systems a. Electric Resistance b. N/A 15. N/A 16. N/A 17. Pooling systems cap: 35.0 kBtu/hr HSPF: 7.90 cooling systems ca
Glass/Floor Area: 0.13 Total as-built p	points: 22870 points: 30319 PASS Code Code Code Compliance Code Compliance Code Compliance Code Code Compliance Code Code Code Compliance Code Code Code Code Code Code Code Cod
I hereby certify that the plans and specifications covered by this calculation are in compliance with the Florida Energy Code. PREPARED BY: Tim Delberg DATE: I hereby certify that this building, as designed, is in compliance with the Florida Energy Code. OWNER/AGENT:	Review of the plans and specifications covered by this calculation indicates compliance with the Florida Energy Code. Before construction is completed this building will be inspected for compliance with Section 553.908 Florida Statutes.

DATE: _

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: SW Waco Court, Lake City, FL, 32055- PERMIT #:

BASE	AS-BUILT					
GLASS TYPES .18 X Conditioned X BSPM = Points Floor Area	■ Company of the Com	Overhang rnt Len	Hgt Area >	SPM X	SOF	= Points
.18 1922.0 20.04 6933.0	Double, Clear	N 2.0	5.0 3.0	19.20	0.87	50.2
	Double, Clear	N 2.0	7.0 15.0	19.20	0.92	265.6
	Double, Clear	N 2.0	7.0 30.0	19.20	0.92	531.2
	Double, Clear	S 10.0	7.0 30.0	35.87	0.48	514.2
	Double, Clear	S 20.0	9.0 12.0	35.87	0.45	191.7
	Double, Clear	S 2.0	7.0 12.0	35.87	0.82	353.0
	Double, Clear	E 10.0	7.0 30.0	42.06	0.44	557.2
	Double, Clear	E 2.0	7.0 15.0	42.06	0.89	559.0
	Double, Clear	E 24.0	9.0 12.0	42.06	0.36	181.9
	Double, Clear	E 2.0	7.0 30.0	42.06	0.89	1117.9
		W 10.0	7.0 30.0	38.52	0.46	528.2
		W 14.0	9.0 24.0	38.52	0.44	408.9
		W 2.0	7.0 15.0	38.52	0.89	512.4
	1 1					
	As-Built Total:		258.0			5771.3
WALL TYPES Area X BSPM = Points	Туре	R-	Value Are	a X SPN	/I =	Points
Adjacent 0.0 0.00 0.0	Frame, Wood, Exterior		19.0 1521.0	0.90		1368.9
Exterior 2511.0 1.70 4268.7	Frame, Wood, Exterior	25	13.0 672.0	1.50		1008.0
	Frame, Wood, Exterior		13.0 318.0	1.50		477.0
Base Total: 2511.0 4268.7	As-Built Total:		2511.0			2853.9
DOOR TYPES Area X BSPM = Points	Туре		Are	a X SPN	1 =	Points
Adjacent 21.0 2.40 50.4	Adjacent Insulated		21.0	1.60		33.6
Exterior 0.0 0.00 0.0						
Base Total: 21.0 50.4	As-Built Total:		21.0			33.6
CEILING TYPES Area X BSPM = Points	Туре	R-Valu	ie Area X	SPM X SC	CM =	Points
Under Attic 1400.0 1.73 2422.0	Under Attic		30.0 1400.0	1.73 X 1.00		2422.0
Base Total: 1400.0 2422.0	As-Built Total:		1400.0			2422.0
FLOOR TYPES Area X BSPM = Points	Туре	R-		a X SPN	1 =	Points
Slab 192.0(p) -37.0 -7104.0	Slab-On-Grade Edge Insulation		0.0 192.0(p	-41.20		-7910.4
Raised 0.0 0.00 0.0	Olab-Oli-Grade Edge Ilisulation		0.0 132.0(p	-41.20		-1310.4
5.5 5.55 6.65						
Base Total: -7104.0	As-Built Total:		192.0			-7910.4

SUMMER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: SW Waco Court, Lake City, FL, 32055- PERMIT #:

BASE					AS-E	BUILT			
INFILTRATION Are	ea X BSPM = I	Points				Area	X SPM	=	Points
192	22.0 10.21 1	9623.6				1922.0	10.21		19623.6
Summer Base Points: 26193.8			Summer As-	-Built	Points:			22	2794.0
	5.70 mg () () () () () () () () () (oling oints	Total X Component	Cap Ratio	X Duct X Multiplier (DM x DSM x AF	Multiplier	Credit Multiplier		Cooling Points
26193.8 0.	.4266 111	74.3	22794.0 22794.0	1.000 1.00	(1.090 x 1.147 x 1.138	0.91) 0.244 0.244	0.902 0.902		5705.7 705.7

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: SW Waco Court, Lake City, FL, 32055-

PERMIT #:

BASE		AS-	BUI	LT			
GLASS TYPES .18 X Conditioned X BWPM = Points Floor Area	The control of the co	Overhang rnt Len	Hgt	Area X	WPM	x wo	F = Points
.18 1922.0 12.74 4407.5	Double, Clear Double, Clear	N 2.0 N 2.0	5.0 7.0	3.0 15.0	24.58 24.58	1.01	74.2 369.9
	Double, Clear	N 2.0	7.0	30.0	24.58	1.00	739.8
	Double, Clear	S 10.0	7.0	30.0	13.30	3.22	1285.0
	Double, Clear	S 20.0	9.0	12.0	13.30	3.55	
	Double, Clear						566.8
			7.0	12.0	13.30	1.17	186.8
	Double, Clear	E 10.0	7.0	30.0	18.79	1.38	776.8
	Double, Clear	E 2.0	7.0	15.0	18.79	1.05	294.7
	Double, Clear	E 24.0	9.0	12.0	18.79	1.50	338.5
	Double, Clear	E 2.0	7.0	30.0	18.79	1.05	589.4
		W 10.0	7.0	30.0	20.73	1.20	746.4
		W 14.0	9.0	24.0	20.73	1.21	600.6
	Double, Clear	W 2.0	7.0	15.0	20.73	1.03	320.6
	As-Built Total:			258.0			6889.7
WALL TYPES Area X BWPM = Points	Туре	R-	Value	Area	X W	/PM =	Points
Adjacent 0.0 0.00 0.0	Frame, Wood, Exterior		19.0	1521.0	2	.20	3346.2
Exterior 2511.0 3.70 9290.7	Frame, Wood, Exterior		13.0	672.0	3	.40	2284.8
The section of the se	Frame, Wood, Exterior		13.0	318.0		.40	1081.2
Base Total: 2511.0 9290.7	As-Built Total:			2511.0			6712.2
DOOR TYPES Area X BWPM = Points	Туре			Area	x v	/PM =	Points
Adjacent 21.0 11.50 241.5	Adjacent Insulated			21.0	8	.00	168.0
Exterior 0.0 0.00 0.0							
Base Total: 21.0 241.5	As-Built Total:			21.0			168.0
CEILING TYPES Area X BWPM = Points	Туре	R-Value	e Are	ea X W	/PM X	WCM =	Points
Under Attic 1400.0 2.05 2870.0	Under Attic		30.0	1400.0	2.05 X 1	.00	2870.0
Base Total: 1400.0 2870.0	As-Built Total:		8	1400.0			2870.0
FLOOR TYPES Area X BWPM = Points	Туре	R-	Value	Area	x v	/PM =	Points
Slab 192.0(p) 8.9 1708.8	Slab-On-Grade Edge Insulation		0.0 1	192.0(p	18	.80	3609.6
Raised 0.0 0.00 0.0				/F	,,,		- 300.0
Base Total: 1708.8	As-Built Total:			192.0			3609.6

WINTER CALCULATIONS

Residential Whole Building Performance Method A - Details

ADDRESS: SW Waco Court, Lake City, FL, 32055- PERMIT #:

BASE	AS-BUILT							
INFILTRATION Area X BWPM	= Points				Area 2	X WPM	=	Points
1922.0 -0.59	-1134.0				1922.0	-0.59		-1134.0
Winter Base Points:	17384.6	Winter As-E	Built P	oints:			19	115.5
Total Winter X System = F Points Multiplier	leating Points	Total X Component	Cap Ratio	X Duct X Multiplier (DM x DSM x AH	Multiplier	Credit Multiplier		Heating Points
17384.6 0.6274 1	0907.1	19115.5 19115.5	1.000 1.00	(1.069 x 1.169 x 0 1.162	0.93) 0.432 0.432	0.950 0.950		9109.9 109.9

WATER HEATING & CODE COMPLIANCE STATUS

Residential Whole Building Performance Method A - Details

ADDRESS: SW Waco Court, Lake City, FL, 32055- PERMIT #:

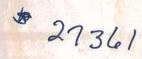
BASE			AS-BUILT										
WATER HEA Number of Bedrooms	X	Multiplier	=	Total	Tank Volume	EF	Number of Bedrooms	X	Tank X Ratio	Multiplier		redit ultiplie	
3		2746.00		8238.0	30.0	0.90	3		1.00	2684.98		1.00	8054.9
560					As-Built To	otal:							8054.9

	CODE COMPLIANCE STATUS												
	BASE				AS-BUILT								
Cooling Points	+	Heating Points	+	Hot Water Points	=	Total Points	Cooling Points	+	Heating Points	+	Hot Water Points	=	Total Points
11174		10907		8238		30319	5706		9110		8055		22870

PASS

Code Compliance Checklist

Residential Whole Building Performance Method A - Details


ADDRESS: SW Waco Court, Lake City, FL, 32055- PERMIT #:

6A-21 INFILTRATION REDUCTION COMPLIANCE CHECKLIST

COMPONENTS	SECTION	REQUIREMENTS FOR EACH PRACTICE	CHECK
Exterior Windows & Doors	606.1.ABC.1.1	Maximum: 3 cfm/sq.ft. window area; .5 cfm/sq.ft. door area.	V
Exterior & Adjacent Walls	606.1.ABC.1.2.1	Caulk, gasket, weatherstrip or seal between: windows/doors & frames, surrounding wall; foundation & wall sole or sill plate; joints between exterior wall panels at corners; utility penetrations; between wall panels & top/bottom plates; between walls and floor. EXCEPTION: Frame walls where a continuous infiltration barrier is installed that extends from, and is sealed to, the foundation to the top plate.	V
Floors	606.1.ABC.1.2.2	Penetrations/openings >1/8" sealed unless backed by truss or joint members. EXCEPTION: Frame floors where a continuous infiltration barrier is installed that is sealed to the perimeter, penetrations and seams.	/
Ceilings	606.1.ABC.1.2.3	Between walls & ceilings; penetrations of ceiling plane of top floor; around shafts, chases, soffits, chimneys, cabinets sealed to continuous air barrier; gaps in gyp board & top plate; attic access. EXCEPTION: Frame ceilings where a continuous infiltration barrier is installed that is sealed at the perimeter, at penetrations and seams.	~
Recessed Lighting Fixtures	606.1.ABC.1.2.4	Type IC rated with no penetrations, sealed; or Type IC or non-IC rated, installed inside a sealed box with 1/2" clearance & 3" from insulation; or Type IC rated with < 2.0 cfm from conditioned space, tested.	V
Multi-story Houses	606.1.ABC.1.2.5	Air barrier on perimeter of floor cavity between floors.	1
Additional Infiltration reqts	606.1.ABC.1.3	Exhaust fans vented to outdoors, dampers; combustion space heaters comply with NFPA, have combustion air.	~

6A-22 OTHER PRESCRIPTIVE MEASURES (must be met or exceeded by all residences.)

COMPONENTS	SECTION	REQUIREMENTS	CHECK
Water Heaters	612.1	Comply with efficiency requirements in Table 6-12. Switch or clearly marked circuit breaker (electric) or cutoff (gas) must be provided. External or built-in heat trap required.	i
Swimming Pools & Spas 612.1 Spas & heated pools must have covers (except solar		Spas & heated pools must have covers (except solar heated). Non-commercial pools must have a pump timer. Gas spa & pool heaters must have a minimum thermal efficiency of 78%.	NA
Shower heads	612.1	Water flow must be restricted to no more than 2.5 gallons per minute at 80 PSIG.	V
Air Distribution Systems			V
HVAC Controls	607.1	Separate readily accessible manual or automatic thermostat for each system.	V
Insulation	604.1, 602.1	Ceilings-Min. R-19. Common walls-Frame R-11 or CBS R-3 both sides. Common ceiling & floors R-11.	V

Cal-Tech Testing, Inc.

- · Engineering
- · Geotechnical
- Environmental Laboratories

P.O. Box 1625 • Lake City, FL 32056-1625 • Tel(386)755-3633 • Fax(386)752-5456

4784 Rosselle St., Jacksonville, FL 32254 • Tel(904)381-8901 • Fax(904)381-8902

REPORT OF IN-PLACE DENSITY TEST

JOB NO .:

08-00497

DATE TESTED:

9/29/08

DATE REPORTED:

9/29/08

PROJECT:

Cannon Creek Estates, Lot 2

CLIENT:

Donnie Williams Construction, 541 SW Airpark Glen, Lake City, FL 32025

GENERAL CONTRACTOR:

Donnie Williams Construction

EARTHWORK CONTRACTOR:

Donnie Williams Construction

INSPECTOR:

David Brown

SOIL USE

(D-2922) Nuclear

ASTM METHOD

nde Creamer, CEO, DBE

BUILDING FILL

SPECIFIED REQUIREMENTS:

95%

TEST NO.	TEST LOCATION	TEST	WET DENSITY (lb/ft ³)	MOISTURE PERCENT	DRY DENSITY (lb/ft³)	PROCTOR TEST NO.	PROCTOR VALUE	MAXIMUM DENSITY
1 1	North East Corner	0-12"	108.9	10.1	98.9	1 1	102.6	96%
	THOMAS COUNTY	0 12	100.5	10.1	30.3	1 1	102.0	20 70

DO	- BA	AF	NS.
RE	· IWI	44	CM 24.

The Above Tests Meet Specified Requirements.

PROCTORS							
PROCTOR NO.	SOIL DESCRIPTION	MAXIMUM DRY UNIT WEIGHT (lb/ft³)	OPT. MOIST.	TYPE			
1	Light Gray Silty Fine Sand	102.6	11.8	MODIFIED (ASTM D-1557) ▼			

Respectfully Submitted, CAL-TECH TESTING, INC.

Reviewed By:

Dáta:

7

Licensed, Florida No: 57842

President - CEO

The test results presented in this report are specific only to the samples tested at the time of testing. The tests were performed in accordance with generally accepted methods and standards. Since material conditions can vary between test focations and change with time, sound judgement should be exercised with regard to the use and interpretation of the data.

COLUMBIA COUNTY, FLORIDA

THE UNDERSIGNED hereby gives notice that improvement will be made to certain real property, and in accordance with Chapter 713, Florida Statutes, the following information is provided in this Notice of Commencement.

Tax Parcel ID Number 12-4S-16-02935-122	Inst:290812017765 Date:9/26/2008 Time:1:06 PM 4 DC,P.DeWitt Cason,Columbia County Page 1 of 1 B:1159 P:434
1. Description of property: (legal description of the property and	street address or 911 address)
120 CW WACO CT LAVE CITY EL 22025	
2. General description of improvement: NEW HOUSE	
3. Owner Name & Address VALERIE Y RYAN of P.O. BOX 430,	
130 SW Waco Ct, Lake City FL 32025 Interes	st in Property 100%
4. Name & Address of Fee Simple Owner (if other than owner):	NA
5. Contractor Name DONNY WILLIAMS CONSTRUCTION LLC	Phone Number 386-755-0764
Address 541 SW AIRPARK GLEN, LAKE CITY, FL 32055	
6. Surety Holders Name NA	Phone Number
Address	
Amount of Bond NA	
7. Lender Name NA	
Address	20-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
8. Persons within the State of Florida designated by the Owner u served as provided by section 718.13 (1)(a) 7; Florida Statutes:	pon whom notices or other documents may be
Name DONALD E. WILLIAMS	Phone Number 386-755-0764
Address 541 SW AIRPARK GLEN, LAKE CITY, FL 32055	
9. In addition to himself / herself the owner designates	of
to receive a copy of the L	ienor's Notice as provided in Section 713.13 (1) -
(a) 7. Phone Number of the designee	
10. Expiration date of the Notice of Commencement (the expiration	on date is 1 (one) year from the date of recording,
(Unless a different date is specified)	
NOTICE AS PER CHAPTER 713, Florida Statutes: The owner must sign the notice of commencement and no one els	se may be permitted to sign in his/her stead.
Talerie 7 Ryan OVCE STEINER NEW YORK	Sworn to (or affirmed) and subscribed before day of 33 Spire M DCR, 20 08
Signature of Owner Notary Public # 015 Foods Course Nov.	Doge Steiner