

RE: 2344397 - BLAKE CONST. - REITER RES.

MiTek USA, Inc. 6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: Blake Const. Project Name: Reiter Res. Model: Custom

Lot/Block: N/A Subdivision: N/A

Address: TBD, TBD

City: Columbia Cty State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name: License #:

Address:

City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Loading Conditions):

Design Code: FBC2017/TPI2014 Design Program: MiTek 20/20 8.2

Wind Code: ASCE 7-10

Wind Speed: 130 mph
Roof Load: 37.0 psf

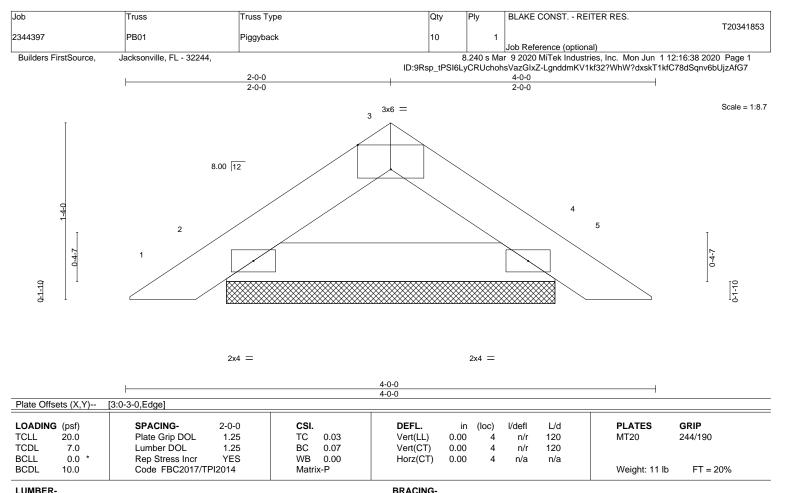
Floor Load: N/A psf

This package includes 18 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No. 1 2 3 4 5 6 7	Seal# T20341853 T20341854 T20341855	Truss Name PB01 PB01G PB02	Date 6/1/20 6/1/20 6/1/20
4	T20341856	PB02G	6/1/20
5	T20341857	T01	6/1/20
6	T20341858	T01G	6/1/20
	T20341859	T02	6/1/20
8	T20341860	T03	6/1/20
9	T20341861	T03G	6/1/20
10	T20341862	T04	6/1/20
11	T20341863	T04G	6/1/20
12	T20341864	<u>T</u> 06G	6/1/20
13	T20341865	<u>T</u> 07	6/1/20
14	T20341866	T08	6/1/20
15	T20341867	<u>T</u> 08G	6/1/20
16	T20341868	T10	6/1/20
17	T20341869	T10G	6/1/20
18	T20341870	V01	6/1/20



The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville.


Truss Design Engineer's Name: Velez, Joaquin

My license renewal date for the state of Florida is February 28, 2021.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

June 1,2020

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2

2x4 SP No.2 BOT CHORD

(size)

Max Horz 2=36(LC 11) Max Uplift 2=-50(LC 12), 4=-50(LC 13) Max Grav 2=118(LC 1), 4=118(LC 1)

2=2-5-12, 4=2-5-12

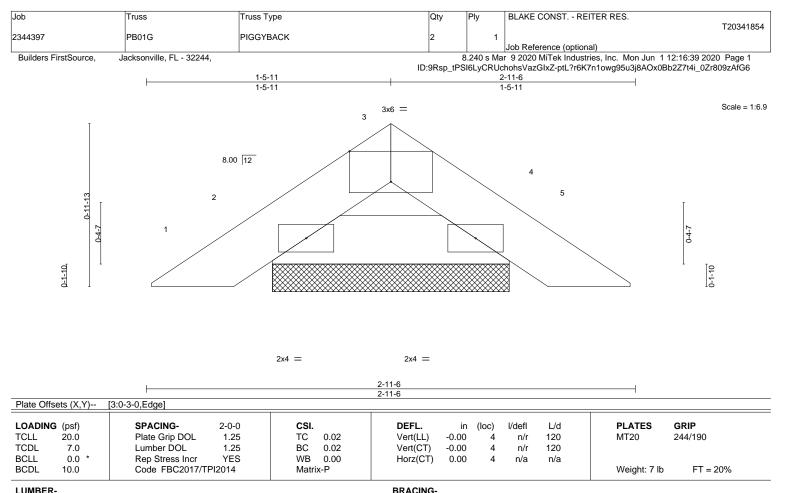
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 2 and 50 lb uplift at joint 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 4-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.


June 1,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILES REPRETIVE FAGE MILES AND INCLUDED MILES REPRETIVE FAGE MILES AND INCLUDED MILES AND INCL fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

> (size) 2=1-5-2, 4=1-5-2 Max Horz 2=-25(LC 10)

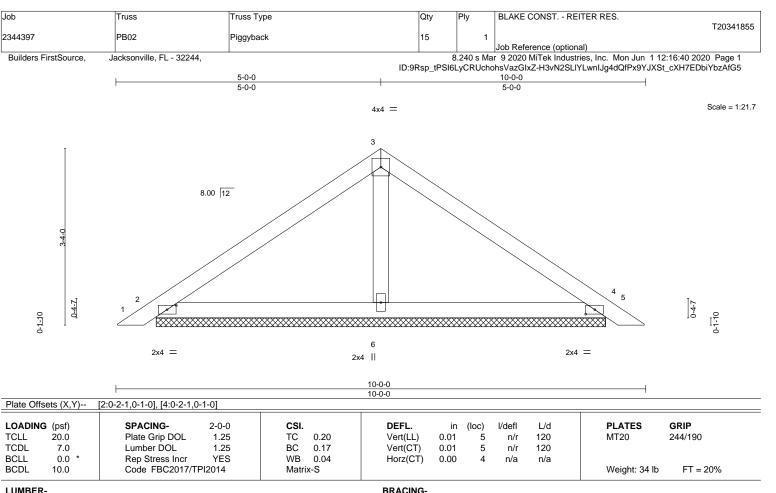
Max Uplift 2=-37(LC 12), 4=-37(LC 13) Max Grav 2=79(LC 1), 4=79(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 2 and 37 lb uplift at joint 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 2-11-6 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

June 1,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

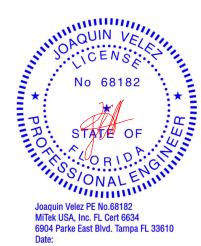
BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD **OTHERS** 2x4 SP No.3

REACTIONS.

(size) 2=8-5-12, 4=8-5-12, 6=8-5-12


Max Horz 2=-98(LC 10)

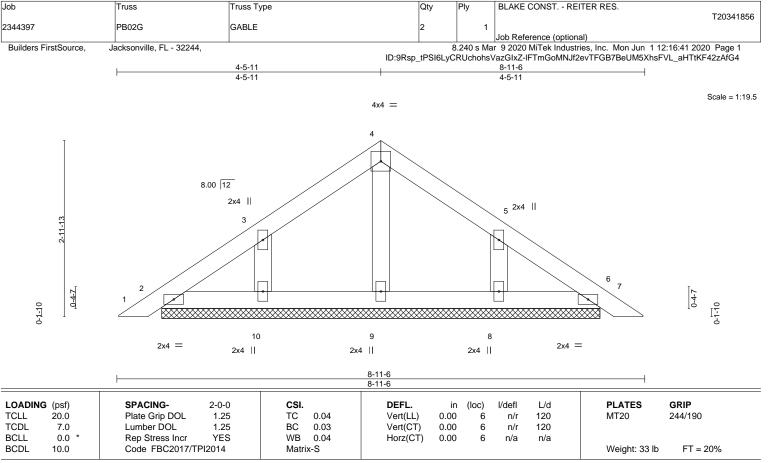
Max Uplift 2=-86(LC 12), 4=-99(LC 13), 6=-87(LC 12) Max Grav 2=181(LC 1), 4=181(LC 20), 6=318(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 2, 99 lb uplift at joint 4 and 87 lb uplift at joint 6.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

June 1,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 OTHERS

BRACING-

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 7-5-2.

Max Horz 2=-87(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-121(LC 12), 8=-121(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=121, 8=121
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

June 1,2020

🛝 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

BLAKE CONST. - REITER RES. Job Truss Truss Type Qty Ply T20341857 5 2344397 T01 Common 1 Job Reference (optional) 8.240 s Mar 9 2020 MiTek Industries, Inc. Mon Jun 1 12:16:42 2020 Page 1 Builders FirstSource. Jacksonville, FL - 32244. ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-DR18T7N?4yAVXdqTlrit0aeVRGMA4JIQiX4odUzAfG3 11-0-8 6-2-7 15-10-10 22-1-0 1-6-8 6-2-7 4-10-2 4-10-2 6-2-7 1-6-8 Scale = 1:49.7 4x6 || 5 8.00 12 2x4 | 2x4 || Bracing 4x4 // 4x4 <> 1-0-5 11 21 22 12 10 4x6 = 3x12 MT20HS 3x4 = 3x4

9-8-3 LOADING (psf) SPACING-2-0-0 CSI. DEFL. 20.0 Plate Grip DOL 1.25 TC 0.88 **TCLL** Vert(LL) **TCDL** 7.0 Lumber DOL 1.25 вс 0.96 Vert(CT) **BCLL** 0.0 Rep Stress Incr WB 0.52 NO Horz(CT) BCDL 10.0 Code FBC2017/TPI2014 Matrix-MS

6-2-7

BRACING-

15-10-10

TOP CHORD Structural wood sheathing directly applied or 3-3-3 oc purlins.

L/d

240

180

n/a

22-1-0

PLATES

MT20HS

Weight: 146 lb

MT20

GRIP

244/190

187/143

FT = 20%

BOT CHORD Rigid ceiling directly applied or 4-11-3 oc bracing. **WEBS** 1 Row at midpt 5-10. 5-12

I/defI

>496

>587

n/a

(loc)

8

0.53 10-12

0.45 10-12

-0.05

REACTIONS. (size) 2=0-3-0, 8=0-3-0

2x4 SP No.2

2x6 SP No.2

2x4 SP No.3

Max Horz 2=261(LC 11)

3x12 MT20HS II

Max Uplift 2=-477(LC 12), 8=-477(LC 13) Max Grav 2=1191(LC 1), 8=1191(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1558/1869, 4-5=-1559/2019, 5-6=-1559/2019, 6-8=-1558/1869

BOT CHORD 2-12=-1367/1232, 10-12=-754/810, 8-10=-1372/1219

WEBS 5-10=-1191/858, 6-10=-320/325, 5-12=-1191/858, 4-12=-320/325

Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

NOTES-

LUMBER-TOP CHORD

WFBS

SLIDER

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-5=-54, 5-9=-54, 12-13=-20, 10-12=-80(F=-60), 10-17=-20

6904 Parke East Blvd. Tampa FL 33610 Date:

June 1,2020

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Job Truss Truss Type Qty Ply BLAKE CONST. - REITER RES. T20341858 2344397 T01G Common Supported Gable 1 Job Reference (optional) 8.240 s Mar 9 2020 MiTek Industries, Inc. Mon Jun 1 12:16:43 2020 Page 1 Builders FirstSource. Jacksonville, FL - 32244. ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-heaWhTOerGIM9nPfIYD6ZnArqgwppsOZwBpM9wzAfG2 11-0-8 1-6-8 11-0-8 11-0-8 1-6-8 Scale = 1:51.4 9 10 8 8.00 12 11 12 6 3x4 🗸 13 3x4 ≫ 5 3x6 || 15 3x8 II 3x8 || 29 28 27 26 25 24 23 22 21 20 19 18 4x6 = 22-1-0 Plate Offsets (X,Y)--[3:0-0-9,0-1-0], [15:0-0-9,0-1-0], [16:Edge,0-2-6]

	· · · · · · · · · · · · · · · · · · ·											
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.13	Vert(LL)	-0.01	17	n/r	120	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.04	Vert(CT)	-0.01	17	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.00	16	n/a	n/a		
BCDL	10.0	Code FBC2017/TPI2	2014	Matri	x-S						Weight: 166 lb	FT = 20%

LUMBER-BRACING-

2x4 SP No.2 TOP CHORD 2x6 SP No.2 **BOT CHORD OTHERS** 2x4 SP No.3 TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 22-1-0.

Max Horz 2=-250(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 16 except 2=-114(LC 8), 24=-113(LC 12), 26=-113(LC 12), 27=-113(LC 12), 28=-104(LC 12), 29=-139(LC 12), 22=-111(LC 13), 21=-114(LC 13), 20=-113(LC 13),

19=-106(LC 13), 18=-122(LC 13)

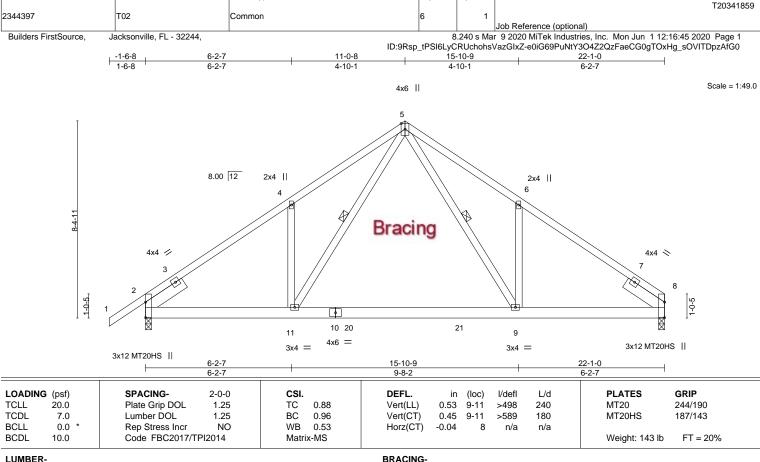
Max Grav All reactions 250 lb or less at joint(s) 2, 16, 23, 24, 26, 27, 28, 29, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-280/191

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (|t=|b|) 2=114, 24=113, 26=113, 27=113, 28=104, 29=139, 22=111, 21=114, 20=113, 19=106, 18=122.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 16.



June 1,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

BOT CHORD

WEBS

Qty

Ply

BLAKE CONST. - REITER RES.

Structural wood sheathing directly applied or 3-3-1 oc purlins.

5-9. 5-11

Rigid ceiling directly applied or 4-10-0 oc bracing.

1 Row at midpt

LUMBER-

Job

2x4 SP No.2 TOP CHORD 2x6 SP No.2 **BOT CHORD** WFBS 2x4 SP No.3

SLIDER Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

REACTIONS. (size) 8=0-3-0, 2=0-3-0

Max Horz 2=250(LC 11)

Truss

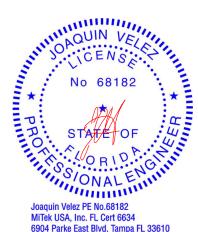
Truss Type

Max Uplift 8=-424(LC 13), 2=-477(LC 12) Max Grav 8=1104(LC 1), 2=1194(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-4=-1562/1872, 4-5=-1562/2022, 5-6=-1558/2028, 6-8=-1572/1877 TOP CHORD

BOT CHORD 2-11=-1414/1222, 9-11=-799/815, 8-9=-1419/1232

WEBS 5-9=-1198/854, 6-9=-319/328, 5-11=-1188/856, 4-11=-320/325

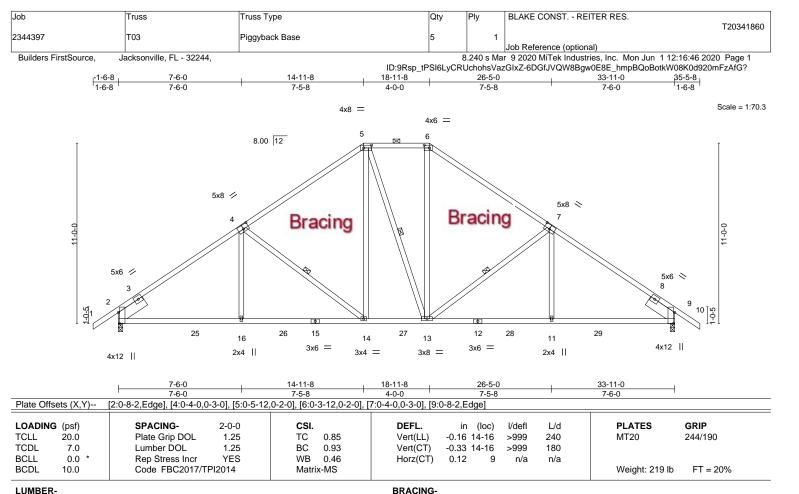

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-5=-54, 5-8=-54, 11-16=-20, 9-11=-80(F=-60), 9-12=-20


6904 Parke East Blvd. Tampa FL 33610 Date:

June 1,2020

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

BOT CHORD

WEBS

Structural wood sheathing directly applied, except

Rigid ceiling directly applied or 2-2-0 oc bracing.

4-14, 5-13, 7-13

2-0-0 oc purlins (5-3-12 max.): 5-6.

1 Row at midpt

LUMBER-

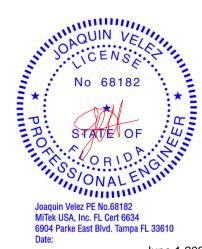
TOP CHORD 2x4 SP No.2 *Except*

1-4,7-10: 2x4 SP M 31 **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.3

Left 2x8 SP 2400F 2.0E 1-11-8, Right 2x8 SP 2400F 2.0E 1-11-8 **SLIDER**

REACTIONS. (size) 2=0-3-0, 9=0-3-0 Max Horz 2=343(LC 11)

Max Uplift 2=-486(LC 12), 9=-486(LC 13) Max Grav 2=1391(LC 19), 9=1388(LC 20)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

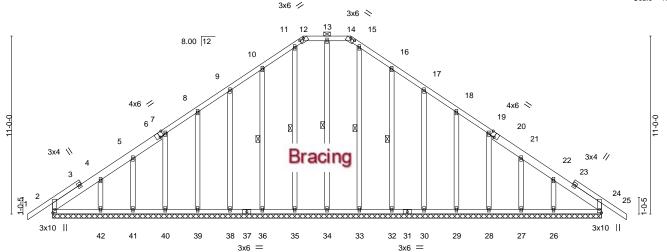
TOP CHORD $2-4=-1749/756,\ 4-5=-1317/706,\ 5-6=-1112/678,\ 6-7=-1313/707,\ 7-9=-1745/755$

BOT CHORD 2-16=-531/1589, 14-16=-531/1587, 13-14=-216/1115, 11-13=-453/1368, 9-11=-452/1370 **WEBS** $4\text{-}16\text{=}0/302,\ 4\text{-}14\text{=-}602/400,\ 5\text{-}14\text{=-}205/534,\ 6\text{-}13\text{=-}185/498,\ 7\text{-}13\text{=-}602/400,\ 7\text{-}11\text{=}0/302}$

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 1,2020


Job Truss Truss Type Qty Ply BLAKE CONST. - REITER RES. T20341861 2344397 T03G Piggyback Base Supported Gable 1 Job Reference (optional) 8.240 s Mar 9 2020 MiTek Industries, Inc. Mon Jun 1 12:16:48 2020 Page 1

Builders FirstSource. Jacksonville, FL - 32244.

1-6-8

ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-2bOPkBRmgoweFYHc56pHGruibhdiU7aJ4SX7p8zAfFz 18-5-3 33-11-0 15-5-13 2-11-6 15-5-13

Scale = 1:71.2

33-11-0

					00 11 0					
Plate Offsets (X,Y) [2:Edge,0-1-8], [6:0-3-0,Edge], [12:0-3-0,0-0-2], [14:0-3-0,0-0-2], [20:0-3-0,Edge], [24:Edge,0-1-8]										
		1 2 1	U 1/ L	7 27 27 27 27 27 27 27 27 27 27 27 27 27	7 0 1/1 0 /					
LOADIN	G (psf)	SPACING-	2-0-0	CSI.	DEFL. in	(loc)	I/defl L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC 0.13	Vert(LL) -0.01	25	n/r 120	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC 0.06	Vert(CT) -0.01	25	n/r 120			
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.15	Horz(CT) 0.01	24	n/a n/a			

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 *Except*

2-6,20-24: 2x6 SP No.2 **BOT CHORD** 2x4 SP No.2

OTHERS 2x4 SP No.3

10.0

BCDL

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 12-14.

Weight: 278 lb

FT = 20%

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 13-34, 11-35, 10-36, 15-33, 16-32

REACTIONS. All bearings 33-11-0.

Max Horz 2=-343(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 34, 35, 41, 24 except 2=-118(LC 8), 36=-128(LC 12), 38=-110(LC

Matrix-S

12), 39=-114(LC 12), 40=-117(LC 12), 42=-173(LC 12), 32=-133(LC 13), 30=-109(LC 13), 29=-114(LC 13),

28=-113(LC 13), 27=-104(LC 13), 26=-165(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 34, 35, 36, 38, 39, 40, 41, 42, 33, 32, 30, 29, 28, 27,

26. 24

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code FBC2017/TPI2014

TOP CHORD 2-4=-346/283, 9-10=-184/250, 10-11=-256/304, 11-12=-236/281, 12-13=-238/287,

13-14=-238/287, 14-15=-236/281, 15-16=-256/301

2-42=-180/264, 41-42=-180/264, 40-41=-180/264, 39-40=-180/264, 38-39=-180/264, 36-38=-180/264, 35-36=-180/264, 34-35=-180/264, 33-34=-180/264, 32-33=-180/264,

30-32=-180/264, 29-30=-180/264, 28-29=-180/264, 27-28=-180/264, 26-27=-180/264,

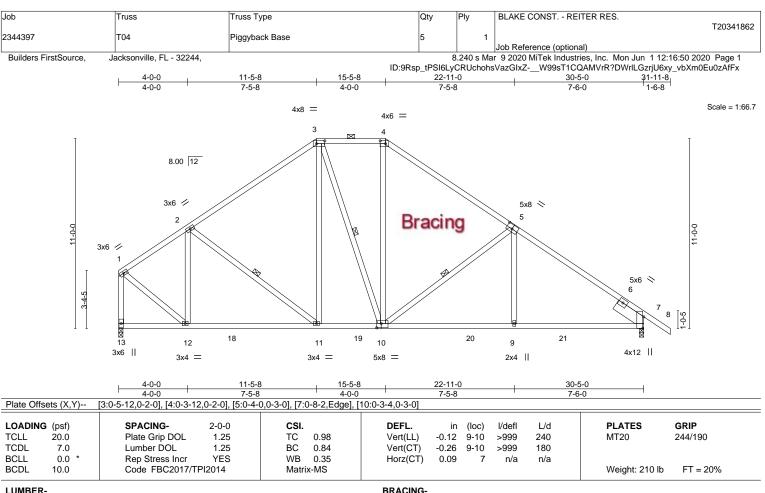
24-26=-180/264

NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 34, 35, 41, 24 except (jt=lb) 2=118, 36=128, 38=110, 39=114, 40=117, 42=173, 32=133, 30=109, 29=114, 28=113, 27=104, 26=165.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

June 1,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

BOT CHORD

WEBS

TOP CHORD

2x4 SP No.2

2x4 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3 SLIDER

Right 2x8 SP 2400F 2.0E 1-11-8

REACTIONS. (size) 13=0-3-0, 7=0-3-0 Max Horz 13=-396(LC 10)

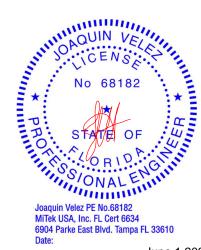
Max Uplift 13=-364(LC 12), 7=-449(LC 13) Max Grav 13=1118(LC 1), 7=1251(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-882/446, 2-3=-1030/582, 3-4=-935/595, 4-5=-1081/606, 5-7=-1518/659,

1-13=-1102/497

BOT CHORD 12-13=-306/353, 11-12=-290/937, 10-11=-172/859, 9-10=-366/1180, 7-9=-366/1182 WEBS


2-12=-445/310, 3-10=-184/279, 4-10=-138/363, 5-10=-623/406, 5-9=0/308,

1-12=-418/931

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=364, 7=449.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied, except end verticals, and

2-11, 3-10, 5-10

2-0-0 oc purlins (5-9-9 max.): 3-4.

Rigid ceiling directly applied or 6-0-0 oc bracing.

June 1,2020

Job Truss Truss Type Qty Ply BLAKE CONST. - REITER RES. T20341863 GABLE 2344397 T04G 1 Job Reference (optional) 8.240 s Mar 9 2020 MiTek Industries, Inc. Mon Jun 1 12:16:51 2020 Page 1 Builders FirstSource. Jacksonville, FL - 32244. ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-SA3YMCUfzjlD6?0BmEM_tTWDqufLhTzlmQlnQSzAfFw 31-11-8 1-6-8 11-11-13 14-11-3 11-11-13 2-11-6 15-5-13 Scale = 1:67.4 3x6 × 8 9 10 11 8.00 12 12 5 13 4x6 <> 15 16 Ø 3x6 Ø 3x10 || Bracing 18

30-5-0

30 29 28

31

Plate Offsets (X,Y) [7:0-2-0,0-2-3], [9:0-3-0,0-0-2], [15:0-3-0,Edge], [19:0-7-11,0-1-4], [20:Edge,0-1-8], [29:0-3-0,0-3-0]												
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.13	Vert(LL)	-0.01	21	n/r	120	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.06	Vert(CT)	-0.01	21	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.01	20	n/a	n/a		
BCDL	10.0	Code FBC2017/TI	PI2014	Matri	x-S						Weight: 272 lb	FT = 20%

5x6 =

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

3-0-2

37

36

3x4 =

35

34

33

32

15-20: 2x6 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 **OTHERS** 2x4 SP No.3 BRACING-

TOP CHORD

27

26

25

24

23

BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-9. Rigid ceiling directly applied or 10-0-0 oc bracing.

19

22

21

3x10 ||

 $10\text{-}29,\,12\text{-}27,\,11\text{-}28,\,6\text{-}32,\,7\text{-}31,\,8\text{-}30$

REACTIONS. All bearings 30-5-0.

Max Horz 37=-330(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 23, 28, 31, 30, 20 except

37=-275(LC 10), 22=-157(LC 13), 24=-122(LC 13), 25=-110(LC 13), 26=-111(LC

13), 27=-120(LC 13), 36=-342(LC 12), 35=-112(LC 12), 34=-111(LC 12),

33=-115(LC 12), 32=-112(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 29, 22, 23, 24, 25, 26, 27, 28, 35, 34, 33, 32, 31, 30, 20 except 37=316(LC 9), 36=346(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-37=-309/288, 5-6=-218/260, 6-7=-280/332, 7-8=-251/304, 8-9=-251/304, TOP CHORD

9-10=-236/285, 10-11=-284/338, 11-12=-236/281, 19-20=-273/185

BOT CHORD 36-37=-297/328, 35-36=-168/273, 34-35=-168/273, 33-34=-168/273, 32-33=-168/273,

31-32=-168/273, 30-31=-168/273, 29-30=-168/273, 28-29=-168/273, 27-28=-168/273. 26-27=-168/273, 25-26=-168/273, 24-25=-168/273, 23-24=-168/273, 22-23=-168/273,

20-22=-158/262

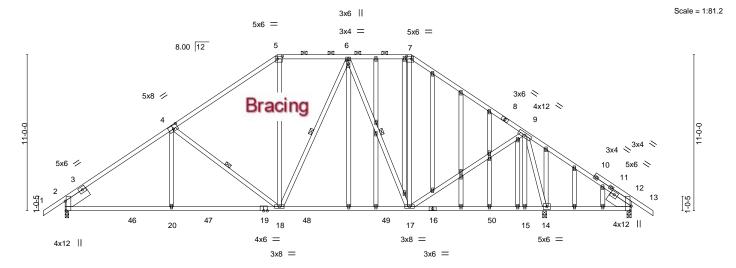
1-36=-265/277

WEBS NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 28, 31, 30, 20 except (jt=lb) 37=275, 22=157, 24=122, 25=110, 26=111, 27=120, 36=342, 35=112, 34=111, 33=115, 32=112.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

June 1,2020


🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Jacksonville, FL - 32244.

		7-6-0	14-1	1-8		24-5-3	- 1	32-5-0	33-8-Y	39-11-0	
		7-6-0	7-5-	-8		9-5-11	7	-11-13	1-3-0	6-3-0	
Plate Offse	ets (X,Y)	[2:0-8-2,Edge], [4:0-4-0,0-	3-0], [5:0-4-4,0)-2-4], [6:0-2-	12,0-1-8], [7	:0-4-4,0-2-4], [12:0	-3-15,Edge]				
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.81	Vert(LL)	-0.34 17-18	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.91	Vert(CT)	-0.49 17-18	>831	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.95	Horz(CT)	-0.05 2	n/a	n/a		
BCDL	10.0	Code FBC2017/TF	12014	Matrix	-MS	(-)				Weight: 364 lb	FT = 20%
										3	

BRACING-

TOP CHORD

BOT CHORD

WEBS

24 5 2

22 = 0

Structural wood sheathing directly applied, except

Rigid ceiling directly applied or 6-0-0 oc bracing.

4-18, 6-18, 6-17

2-0-0 oc purlins (5-7-12 max.): 5-7.

LUMBER-TOP CHORD

2x4 SP No.2 *Except*

1-4: 2x4 SP M 31 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3

Left 2x8 SP 2400F 2.0E 1-11-8, Right 2x8 SP 2400F 2.0E 1-9-3 SLIDER

760

2=0-3-0, 12=0-3-8, 14=0-3-8 REACTIONS. (size)

Max Horz 2=355(LC 11)

Max Uplift 2=-483(LC 12), 12=-181(LC 13), 14=-434(LC 13) Max Grav 2=1322(LC 19), 12=167(LC 24), 14=1765(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1674/760, 4-5=-1265/708, 5-6=-1019/679, 6-7=-846/598, 7-9=-1014/605,

9-12=-92/494

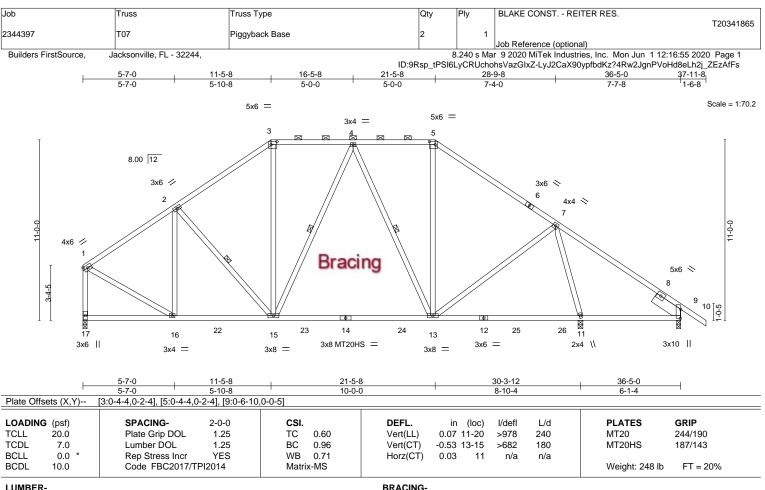
BOT CHORD 2-20=-526/1487, 18-20=-526/1485, 17-18=-307/920, 12-14=-350/130 **WEBS**

4-20=0/264, 4-18=-587/403, 5-18=-146/377, 6-18=-132/350, 6-17=-483/303,

7-17=-89/297, 9-17=-257/793, 9-14=-1661/549

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=483, 12=181, 14=434.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


6904 Parke East Blvd. Tampa FL 33610 Date:

June 1,2020

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

BOT CHORD

WEBS

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3

SLIDER Right 2x8 SP 2400F 2.0E 1-11-8

REACTIONS. (size) 17=0-3-0, 11=0-3-8, 9=0-3-0

Max Horz 17=-324(LC 8)

Max Uplift 17=-387(LC 12), 11=-160(LC 12), 9=-418(LC 13) Max Grav 17=1152(LC 1), 11=1210(LC 2), 9=495(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1025/549, 2-3=-1064/697, 3-4=-879/650, 4-5=-871/688, 5-7=-1024/722,

7-9=-477/649, 1-17=-1099/588

BOT CHORD 16-17=-283/328, 15-16=-351/928, 13-15=-289/851, 11-13=-418/532, 9-11=-372/355 **WEBS** 2-16=-343/245, 3-15=-184/336, 4-15=-205/284, 4-13=-313/270, 5-13=-168/282,

7-13=-188/572, 7-11=-1016/200, 1-16=-417/901

NOTES-

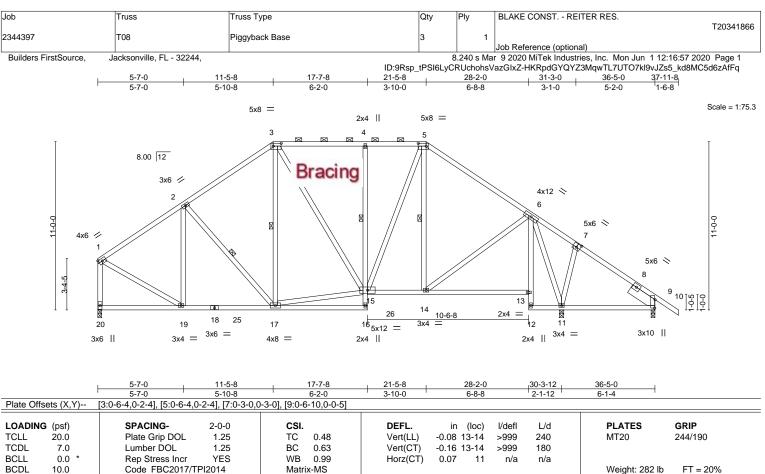
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 17=387. 11=160. 9=418.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 4-10-11 oc purlins,

2-15, 4-15, 4-13

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5.


Rigid ceiling directly applied or 2-2-0 oc bracing.

June 1,2020

M WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

BRACING-

TOP CHORD

BOT CHORD

WEBS

BCDL Code FBC2017/TPI2014 10.0

2x4 SP No.2

TOP CHORD 2x4 SP No.2 *Except* BOT CHORD 4-16,6-12: 2x4 SP No.3

WEBS 2x4 SP No.3

Right 2x8 SP 2400F 2.0E 1-11-8 **SLIDER**

REACTIONS. (size) 20=0-3-0, 9=0-3-0, 11=0-3-8

Max Horz 20=-324(LC 8)

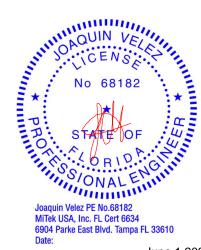
Max Uplift 20=-365(LC 12), 9=-245(LC 13), 11=-312(LC 13) Max Grav 20=1076(LC 1), 9=144(LC 24), 11=1568(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-955/492, 2-3=-951/625, 3-4=-828/633, 4-5=-827/631, 5-6=-901/598, 6-7=-45/416,

7-9=-226/368, 1-20=-1027/530

BOT CHORD 19-20=-284/328, 17-19=-346/847, 4-15=-309/246, 14-15=-184/652


WEBS 2-19=-296/220, 15-17=-288/702, 5-15=-284/428, 6-14=-212/603, 6-11=-1288/268,

7-11=-259/199, 1-19=-362/825

NOTES-

LUMBER-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl.. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 20=365, 9=245, 11=312,
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 5-1-3 oc purlins,

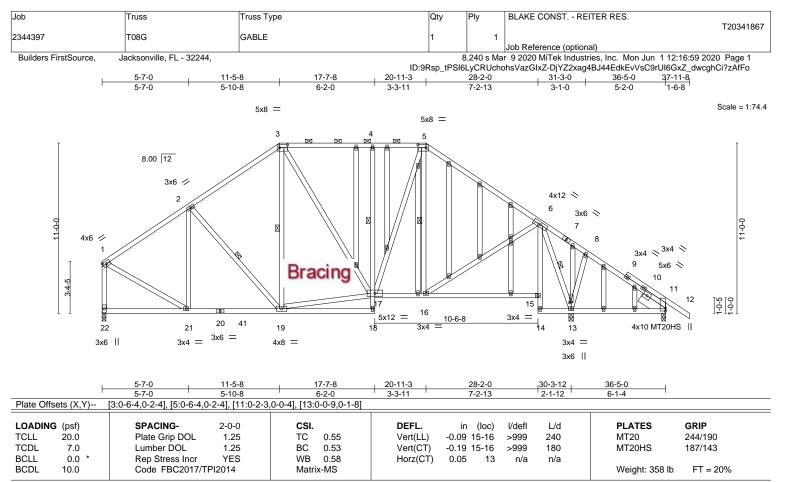
2-17, 3-17, 5-14

except end verticals, and 2-0-0 oc purlins (5-11-9 max.): 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 12-13,9-11.

1 Row at midpt


1 Row at midpt

June 1,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

BRACING-

TOP CHORD

BOT CHORD

WEBS

1 Row at midpt

1 Row at midpt

LUMBER-

2x4 SP No.2

TOP CHORD 2x4 SP No.2 *Except* BOT CHORD 4-18,6-14: 2x4 SP No.3

WEBS 2x4 SP No.3 2x4 SP No.3 **OTHERS**

Right 2x8 SP 2400F 2.0E 1-9-3 SLIDER

22=0-3-0, 11=0-3-0, 13=0-3-8 REACTIONS. (size)

Max Horz 22=-322(LC 13)

Max Uplift 22=-359(LC 12), 11=-226(LC 17), 13=-381(LC 13) Max Grav 22=1053(LC 1), 11=53(LC 20), 13=1705(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-933/469, 2-3=-921/594, 3-4=-791/592, 4-5=-789/589, 5-6=-884/544, 6-8=-59/539, 8-11=-73/506, 1-22=-1004/505

21-22=-296/320, 19-21=-352/814, 4-17=-295/240, 16-17=-191/631, 11-13=-362/102 **BOT CHORD WEBS** 2-21=-285/208, 17-19=-292/647, 5-17=-289/414, 6-16=-220/612, 6-13=-1476/431,

1-21=-339/804

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 22=359. 11=226. 13=381.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 4-10-10 oc purlins,

2-19, 3-19, 5-16, 6-13

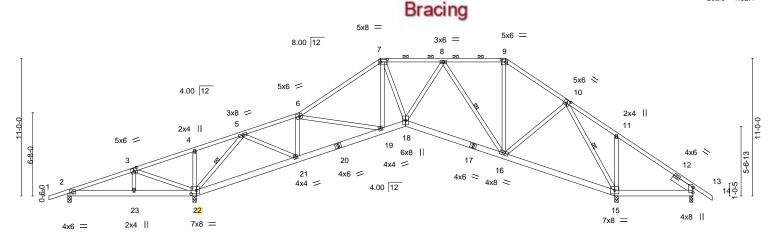
except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5.

Rigid ceiling directly applied or 6-0-0 oc bracing. Except:

June 1,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid for use only with release controlled in the controlle


Date:

Job Truss Truss Type Qty Ply BLAKE CONST. - REITER RES. T20341868 10 2344397 T10 Piggyback Base 1 Job Reference (optional) 8.240 s Mar 9 2020 MiTek Industries, Inc. Mon Jun 1 12:17:01 2020 Page 1

Builders FirstSource. Jacksonville, FL - 32244.

Scale = 1:92.1

	5-3			25-0-0	27-0-0	35-0-0	43-8-8	43-10-4 49-11-8		
	5-3	i-9 ' 4-10-3 0-1 <u>'</u> 1	2 8-2-8	6-6-0	2-0-0	8-0-0	8-8-8	0-1-12 6-1-4		
Plate Offsets (X,Y) [3:0-3-0,0-3-0], [7:0-6-4,0-2-4], [9:0-4-4,0-2-4], [10:0-3-0,0-3-0], [22:0-5-4,0-3-8]										
LOADING (p:	osf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	I/defl L/d	PLATES	GRIP	
TCLL 20	0.Ó	Plate Grip DOL	1.25	TC 0.74	Vert(LL)	-0.09 18	>999 240	MT20	244/190	
TCDL 7	7.0	Lumber DOL	1.25	BC 0.37	Vert(CT)	-0.17 16-18	>999 180			
	0.0 *	Rep Stress Incr	YES	WB 0.54	Horz(CT)	0.13 15	n/a n/a			
BCDL 10	0.0	Code FBC2017/TF	PI2014	Matrix-MS				Weight: 333 lb	FT = 20%	

LUMBER-BRACING-

2x4 SP No.2 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except

2x6 SP No.2 2-0-0 oc purlins (4-9-9 max.): 7-9.

WEBS 2x4 SP No.3 **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc bracing. SLIDER Right 2x6 SP No.2 1-11-8 **WEBS** 5-22, 8-16, 10-15 1 Row at midpt

REACTIONS. All bearings 0-3-8 except (jt=length) 13=0-3-0.

Max Horz 2=377(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) except 2=-273(LC 8), 22=-833(LC 12), 15=-372(LC 12),

13=-233(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 13 except 22=2132(LC 1), 15=1654(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 2-3=-250/703, 3-4=-643/1318, 4-5=-567/1317, 5-6=-1194/552, 6-7=-1579/686

7-8=-1420/698, 8-9=-792/567, 9-10=-974/604, 10-11=-181/543, 11-13=-306/483

BOT CHORD $2\text{-}23\text{-}610/224, 22\text{-}23\text{-}610/224, 19\text{-}21\text{-}405/1211, 18\text{-}19\text{-}-439/1300, 16\text{-}18\text{-}-410/1261, }$

15-16=-119/420, 13-15=-373/143

WEBS 3-22=-646/766, 5-22=-1927/914, 5-21=-468/1264, 6-21=-783/411, 7-18=-142/544,

8-18=-152/500, 8-16=-826/423, 9-16=-143/301, 10-16=-213/558, 10-15=-1431/321,

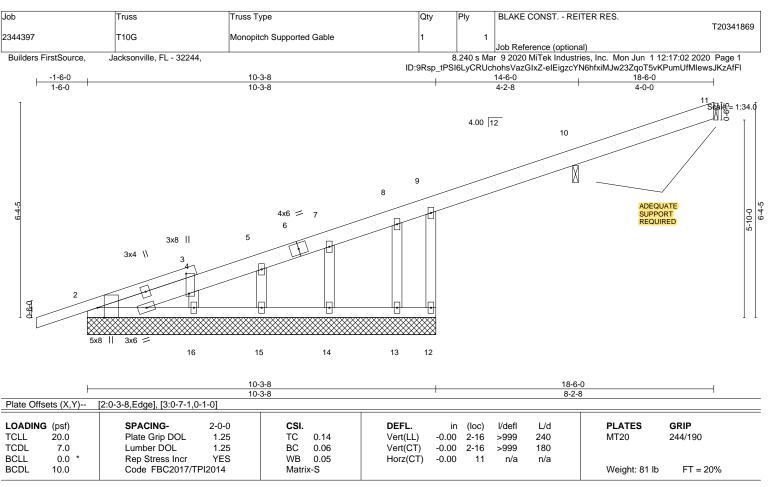

11-15=-348/288

NOTES-

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 273 lb uplift at joint 2, 833 lb uplift at joint 22, 372 lb uplift at joint 15 and 233 lb uplift at joint 13.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



June 1,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

LUMBER-BRACING-

TOP CHORD 2x6 SP No.2 *Except*

1-4: 2x4 SP No.2 2x4 SP No.2

BOT CHORD WEBS 2x4 SP No.3

OTHERS 2x4 SP No.3

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 10-3-8 except (jt=length) 11=Mechanical, 10=0-2-0.

Max Horz 2=309(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 11, 2, 15, 14, 13 except 12=-188(LC 12), 16=-106(LC 12),

10=-172(I C 12)

Max Grav All reactions 250 lb or less at joint(s) 11, 12, 2, 15, 16, 14, 13, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-356/138, 3-5=-310/113, 5-7=-275/102, 9-12=-223/253

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 10.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 2, 15, 14, 13 except (it=lb) 12=188, 16=106, 10=172,
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 10.

June 1,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.

Job Truss Truss Type Qty Ply BLAKE CONST. - REITER RES. T20341870 GABLE 2344397 V01 1 Job Reference (optional) 8.240 s Mar 9 2020 MiTek Industries, Inc. Mon Jun 1 12:17:03 2020 Page 1 Builders FirstSource. Jacksonville, FL - 32244. ID:9Rsp_tPSI6LyCRUchohsVazGIxZ-6Uo4tJdA8PpWYrxVTlaoN??HSkj6VwwWXIgQrmzAfFk 11-10-14 11-10-14 11-10-14 Scale: 1/4"=1' TRUSS DESIGNED FOR WIND LOADS IN THE PLANE OF THE TRUSS ONLY. FOR STUDS EXPOSED TO WIND (NORMAL TO THE FACE), SEE STANDARD INDUSTRY GABLE END DETAILS AS APPLICABLE, OR CONSULT 8 QUALIFIED BUILDING DESIGNER AS PER ANSI/TPI 1. 9 5 8.00 12 10 11 3 5-8-0 13 3x6 / 3x6 > 22 21 20 19 18 17 16 15 14 3x6 =23-9-12 LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES** GRIP 20.0 Plate Grip DOL 1.25 0.09 244/190 **TCLL** TC Vert(LL) n/a n/a 999 MT20 **TCDL** 7.0 Lumber DOL 1.25 вс 0.19 Vert(CT) n/a n/a 999 **BCLL** 0.0 WB Rep Stress Incr YES 0.11 Horz(CT) 0.00 13 n/a n/a **BCDL** 10.0 Code FBC2017/TPI2014 Matrix-S Weight: 123 lb FT = 20%LUMBER-BRACING-

TOP CHORD

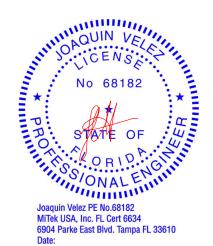
BOT CHORD

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

2x4 SP No.3 **WEBS OTHERS** 2x4 SP No.3

REACTIONS. All bearings 23-9-12.

Max Horz 1=-226(LC 8) (lb) -


Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 18, 21, 17, 15 except 19=-113(LC 12), 22=-167(LC 12),

16=-117(LC 13), 14=-167(LC 13)

All reactions 250 lb or less at joint(s) 1, 13, 19, 21, 22, 16, 15, 14 except 18=365(LC 19), 17=326(LC Max Grav

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

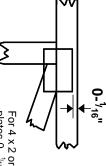
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp C; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 18, 21, 17, 15 except (jt=lb) 19=113, 22=167, 16=117, 14=167.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

June 1,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.



Symbols

PLATE LOCATION AND ORIENTATION

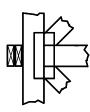
offsets are indicated. Center plate on joint unless x, y and fully embed teeth Apply plates to both sides of truss Dimensions are in ft-in-sixteenths.

plates 0- 1/16" from outside For 4 x 2 orientation, locate edge of truss.

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request

PLATE SIZE


to slots. Second dimension is width measured perpendicular the length parallel to slots. The first dimension is the plate

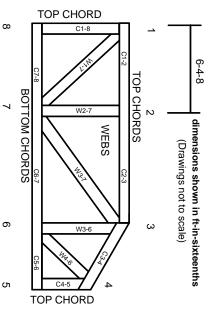
LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. Indicated by symbol shown and/or

BEARING

Min size shown is for crushing only reaction section indicates joint Indicates location where bearings number where bearings occur. (supports) occur. Icons vary but

Industry Standards:


Guide to Good Practice for Handling **Building Component Safety Information** Design Standard for Bracing. Connected Wood Trusses. Installing & Bracing of Metal Plate

ANSI/TPI1:

National Design Specification for Metal Plate Connected Wood Truss Construction.

DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 10/03/2015

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Ņ Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI Truss bracing must be designed by an engineer. For
- bracing should be considered may require bracing, or alternative Tor I wide truss spacing, individual lateral braces themselves
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- designer, erection supervisor, property owner and all other interested parties. Provide copies of this truss design to the building
- Cut members to bear tightly against each other

Ģ

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the camber for dead load deflection responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer
- 17. Install and load vertically unless indicated otherwise
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- 19. Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.