

Wyssling Consulting

76 North Meadowbrook Drive Alpine, UT 84004 office (201) 874-3483 swyssling@wysslingconsulting.com

August 5, 2021

Ken Trappen Advanced Solar Solutions 39650 Mallard Bass Lake, CA 93604

Re: Engineering Services

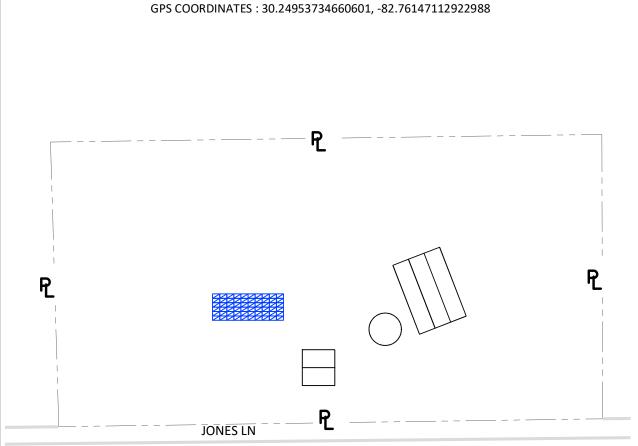
King Residence

1357 NW Ogden Loop, Lake City FL

19.500 kW Šystem

Pursuant to your request, we have reviewed the following information regarding ground mount solar panel installation at the above referenced location:

- 1. Structural calculations/requirements prepared by IronRidge identifying specific site requirements for the proposed ground mount system.
- Design drawings of the proposed system including a site plan, and details for the solar panels. This information was prepared by Advanced Solar Solutions and will be utilized for approval and construction of the proposed system.


Based on our review of the Photovoltaic Array installed at 6 modules high and 5 modules wide. The PV array shall have an East/West spacing of 13'-4" feet on center and a North/South spacing of 7'-6" feet max. Based on a wind speed of 117 mph, Exposure C, it was determined that the minimum required footing depth is 48 inches below grade with a 18" diameter pier footing and the min post size is 2" Dia. The footing size based upon the worst case loading due to horizontal and vertical wind loading.

Based on the above evaluation, it is the opinion of this office that with appropriate construction the footing and post assembly will adequately support the proposed solar array. This evaluation is in conformance with the FBC 2020, 7th Edition, current industry and standards, and based on information supplied to us at the time of this report.

Should you have any questions regarding the above or if you require further information do not hesitate to contact me.

Scott E. Wyssling, PE Florida License No. 81559

PARCEL MAP

PROJECT APN:

GENERAL PROJECT & JURISDICTIONAL NOTES

INSPECTION REQUIREMENTS

- 1. A LADDER SHALL BE IN PLACE FOR INSPECTION IN COMPLIANCE WITH ALL
- 2. PENDING LOCAL JURISDICTIONAL REQUIREMENTS AND WHEN APPLICABLE ALL ELECTRICAL ENCLOSURE DEAD FRONTS, COVERS, DOORS, ETC. SHALE BE OPEN AND ACCESSIBLE FOR INSPECTIONS. WHEN TRENCH AND ROOF INSPECTIONS ARE REQUIRED WORK SHALL BE OPEN AND ACCESSIBLE FOR INSPECTOR

JURISDICTIONAL & LISTING REQUIREMENTS

- 1. WHEN APPLICABLE A SMOKE DETECTOR, APPROVED AND LISTED BY THE STATE FIRE MARSHAL OR ANSI/UL 217 CERTIFIED TO NATIONAL FIRE ALARM AND SIGNALING CODE. NFPA 72 SHALL BE VERIFIED FUNCTIONAL OR INSTALLED IN ALL APPLICABLE CODE REQUIRED LOCATIONS.
- 2. ALL APPLICABLE EQUIPMENT TO BE UL LISTED OR LISTED BY OTHER JURISDICTIONAL AND UTILITY APPROVED ASSOCIATION OR NATIONALLY RECOGNIZED ORGANIZATION
- 3. FULL SCOPE OF WORK SHALL COMPLY WITH ALL APPLICABLE CODES LISTED IN GOVERNING CODES SECTION, ALL MANUFACTURES' LISTINGS, INSTALLATION INSTRUCTIONS AND SPECIFICATIONS AND JURISDICTIONAL REQIREMENTS.
- 4. REVISED PLANS WILL BE REQUIRED TO BE RESUBMITTED TO THE LOCAL JURISDICTION IF THE INSTALLED ARRAY AND ASSOCIATED EQUIPMENT DOES NOT MATCH THE APPROVED BUILDING PLANS. ADDITIONAL FEES MAY ALSO APPLY.
- 5. THE PLACEMENT OF A UTILITY PV PRODUCTION METER SHALL BE PROVIDED AND PLACED BY THE CONTRACTOR AS PER APPLICABLE UTILITY OR AHJ

COPYRIGHT NOTICE

1. UNAUTHORIZED USE OF THIS DRAWING SET WITHOUT EXPRESSED WRITTEN PERMISSION FROM THE CONTRACTOR AND ADVANCED SOLAR SOLUTIONS IS A VIOLATION OF U.S. COPYRIGHT LAWS AND WILL BE SUBJECT TO CIVIL DAMAGES AND PROSECUTION.

GOVERNING CODES APPLICABLE BUILDING CODES:

2018 INTERNATIONAL BUILDING CODE 2018 INTERNATIONAL RESIDENTIAL CODE

2018 INTERNATIONAL FIRE CODE 2017 NATIONAL ELECTRIC CODE 2020 FLORIDA BUILDING CODE

2020 FLORIDA RESIDENTIAL CODE

RISK CATEGORY: Risk Category II **ASCE 7-16 WIND SPEED: 117 EXPOSURE CATEGORY:** Exposure C

DESIGN CRITERIA

SNOW LOAD: 0 **SNOW EXPOSURE: N/A CONSTRUCTION TYPE: N/A**

BUILDING OCCUPANCY: U

SCOPE OF WORK

GROUND MOUNTED PV (SOLAR) PROJECT GRID-TIED W/O BATTERY STORAGE

	PROPOSE	D SOLAR EQUIPMENT	SITE / PROJ	ECT DETAILS			
QTY.	EQUIPMENT	DESCRIPTION/MFG/MODEL	CONNECTION	WIRE TAP			
60	MODULES	PEIMAR SM325M (FB)	SYSTEM SIZE DC	19.500 KW			
2	INVERTER(S)	SolarEdge SE10000H-US (240V)	SYSTEM SIZE AC	17.398 KW			
N/A	RACKING	IronRidge Ground Mt W/ XR1000 Rail	QTY. STRING/CKT.	4			
0	STANCHIONS		ELECT. SERVICE	120/240V - 1Φ			
N/A	RSD DEVICE	INTEGRATED IN INV & OPT	ROOF COVERING	N/A			
0	BATTERIES		MAX ARRAY HGT.	8.6 FEET			
0	COMBINER(S)		TILT	20°			
(E)	MSP RATINGS	200A BUS/200A MAIN BREAKER	AZIMUTH	180°			
	PROJECT TEAM LIST						

CONTRACTOR:

Daybreak Install LLC 2100 N Main St Ste. 212 Fort Worth, TX 76164 **CONTRACTOR LIC #: CVC56966 PHONE:** (817) 995-9572 **CONTACT NAME:** James Blakely

PHONE: (817) 995-9572 **EMAIL:** james@daybreakinstall.com

DESIGN BY:

James Blakely **PHONE:** (817) 995-9572

EMAIL: james@daybreakinstall.com

PROJECT DRAFTER:

Advanced Solar Solutions 39650 Mallard Bass Lake, CA 93604

PHONE: 559-321-7000 **EMAIL:** info@advpermits.com

HOME OWNER PROJECT LOCATION:

King, Daniel

1357 NW Ogden Loop, Lake City, FL 32055

CONTACT NAME: King, Daniel

PHONE: **EMAIL:**

ELECTRICAL UTILITY:

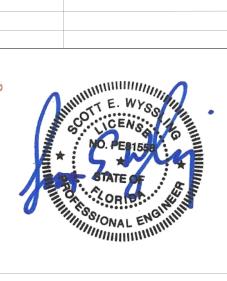
Suwanee County Electric COOP METER NUMBER: 1194401 PHONE:

AUTHORITY HAVING JURISDICTION:

BUILDING: County of Columbia

PHONE:

ENGINEERED BY:


Scott E. Wyssling

76 North Meadowbrook Dr

Alpine, UT 84004 **LICENSE #:** 81558 **LICENSE TYPE:** Civil **PHONE:** (202) 874-3483

EMAIL: swyssling@wysslingconsulting.com

THIS PLAN HAS BEEN ELECTRONICALLY SIGNED AND SEALED BY SCOTT WYSSLING, PE USING A DIGITAL SIGNATURE AND DATE. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES

PROJECT LOCATION

SHEET INDEX

COVER SHEET

PV-100G PV ARRAY LAYOUT

GENERAL NOTES

DETAILED LAYOUT

EQUIP. CALCULATION

THREE LINE DIAGRAM

STANDARD PLACARDS

DYNAMIC PLACARDS

EQUIP.CUT SHEETS

ELECTRICAL LAYOUT

WIRE AND COND. CALCS

SHEET TITLE

GROUND RACKING LAYOUT

SHEET

NUMBER

PV-001

N-001

PV-101G

E-001

E-002

E-003

E-100

P-001

P-002

R-1xx

2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572

Daybreak

SHEET

OVER

PV-001

RELEASE SUBMIT FOR PERMIT

PLANS

PHOTOVOLTAIC

≷

19.

King, Daniel 1357 NW Ogden L Lake City, FL 3205

NAME ADDRESS ADDRESS

GENERAL NOTES:*

PROPER ACCESS AND WORKING CLEARANCE AROUND EXISTING AND PROPOSED ELECTRICAL EQUIPMENT WILL BE PROVIDED AS PER SECTION NEC 110.26.

PV SYSTEM COMPONENTS; INCLUDING BUT NOT LIMITED TO, MODULES, INVERTERS AND SOURCE CIRCUIT COMBINERS ARE IDENTIFIED AND LISTED FOR USE IN PV SYSTEMS IN COMPLIANCE WITH NEC 690.4 AND 690.6 AND ALL UL, IEC, IEEE CLASSIFICATIONS AS REQUIREMENTS.

RAPID SHUTDOWN NOTES:*

PV SYSTEM CIRCUITS INSTALLED ON OR IN BUILDIDNG SHALL INCLUDE A RAPID SHUTDOWN FUNCTION THAT CONTROLS SPECIFIC PV CONDUCTORS IN ACCORDANCE WITH 2017 NEC 690.12(A)-(D)

EQUIPMENT LOCATIONS & ELECTRICAL NOTES:*

JUNCTION AND PULL BOXES ARE PERMITTED TO BE INSTALLED UNDER PV MODULES IN COMPLIANCE WITH NEC 690.34.

ADDITIONAL AC DISCONNECT(S) SHALL BE PROVIDED WHERE THE INVERTER IS NOT WITHIN SIGHT OF THE AC SERVICING DISCONNECT. 2017 NEC 690.15(A)

ALL EQUIPMENT SHALL BE INSTALLED ACCESSIBLE TO QUALIFIED PERSONNEL IN COMPLIANCE WITH NEC APPLICABLE CODES.

ALL COMPONENTS ARE LISTED FOR THEIR INTENDED **PURPOSE AND RATED FOR OUTDOOR USAGE WHEN** APPLICABLE.

STRUCTURAL AND INSTALLATION **NOTES:***

RACKING SYSTEM & PV PANELS MOUNTED ON A ROOFTOP SHALL BE LISTED AND LABELED IN ACCORDANCE WITH *UL 1703* AND SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER INSTALLATION INSTRUCTIONS.

ALL PV RACKING ATTACHMENT POINTS SHALL NOT EXCEED THE PRE-ENGINEERED MAX SPANS OUTLINED BY THE RACKING MANUFACTURES ENGINEER OF RECORD.

GROUNDING NOTES:*

IN UNGROUNDED SYSTEMS ONLY THE DC CONDUCTORS ARE UNGROUNDED AND REQUIRE AN EQUIPMENT GROUNDING CONDUCTOR. ALL METAL ELECTRICAL EQUIPMENT AND STRUCTURAL COMPONENTS BONDED TO GROUND, IN COMPLIANCE WITH NEC 250.134 AND NEC 250.136(A).

PV EQUIPMENT INCLUDING MODULE FRAMES AND OTHER **METAL PARTS SHALL BE GROUNDED** IN COMPLIANCE WITH NEC 690.43 AND MINIMUM GROUND CONDUCTORS SIZED IN ACCORDANCE WITH NEC TABLE *250.122*.

CONDUCTIVE PARTS OF MODULE FRAMES, MODULE RACKING, AND ENCLOSURES SHALL BE GROUNDED IN COMPLIANCE WITH *NEC 250.134 AND NEC 250.136(A)*.

UL2703 APPROVED **MODULE AND RACK GROUNDING** SHALL BE USED AND INSTALLED PER MANUFACTURER'S INSTALLATION MANUAL. IF **UL2703** APPROVED GROUNDING IS NOT USED, MODULE GROUNDING LUGS MUST BE INSTALLED AT THE SPECIFIED GROUNDING LUG HOLES PER THE MANUFACTURER'S INSTALLATION REQUIREMENTS.

THE GROUNDING CONNECTION TO A MODULE SHALL BE ARRANGED SUCH THAT THE REMOVAL OF A MODULE DOES NOT INTERRUPT A GROUNDING CONDUCTOR TO ANOTHER MODULE.

THE GROUNDING ELECTRODE SYSTEM COMPLIES WITH NEC 690.47 AND NEC 250.50 THROUGH NEC 250.106. IF EXISTING SYSTEM IS INACCESSIBLE OR INADEQUATE, A GROUNDING ELECTRODE SYSTEM WILL BE PROVIDED IN COMPLIANCE WITH NEC 250, NEC 690.47 AND AHJ.

PV SYSTEMS SHALL BE PROVIDED WITH DC GROUND-**FAULT PROTECTION 2017 NEC 690.41(B)**

INTERCONNECTION / POC NOTES:*

ALL LOAD-SIDE INTERCONNECTIONS ARE IN COMPLIANCE WITH 2017 NEC 705.12(B)

THE TOTAL RATING OF ALL OCPD IN SOLAR LOAD CENTERS SHALL NOT EXCEED THE RATED AMPACITY OF THE BUSBAR **EXCLUDING THE OCPD PROTECTING THE BUSBAR IN** COMPLIANCE WITH *NEC 705.12(B)(2)(3)(c)*

ALL FEEDER TAP (LOAD SIDE) INTERCONNECTIONS ARE IN COMPLIANCE WITH 2017 NEC 705.12(B)(2)(1)

THE PV SYSTEM BACK-FEED BREAKER SHALL BE INSTALLED ON THE OPPOSITE END OF THE BUS BAR AND IT SHALL ALSO BE SIZED APPROPRIATELY AS PER 2017 NEC 705.12(B)(2)(3)(b)

SUPPLY SIDE TAP INTERCONNECTIONS ARE IN COMPLIANCE WITH NEC 705.12(A) WITH SERVICE ENTRANCE CONDUCTORS IN COMPLIANCE WITH NEC 230.42

BACKFEEDING BREAKER FOR INVERTER OUTPUT IS EXEMPT FROM ADDITIONAL FASTENING 2017 NEC 705.12(B)(5)

MICROINVERTER BRANCH CIRCUITS SHALL BE CONNECTED TO A SINGLE OCPD IN ACCORDANCE WITH THEIR INSTALLATION INSTRUCTIONS AND NEC 690.9

DISCONNECTS AND OCPD NOTES:*

ALL DISCONNECTING SWITCHES WILL BE CONFIGURED SO THAT ALL ENERGIZED CONDUCTORS WHEN DISCONNECT IS OPEN SHALL BE ON THE TERMINALS MARKED, "LINE SIDE" (TYPICALLY THE UPPER TERMINALS)

ALL AC DISCONNECTS SHALL BE LABELED, LOCKABLE, OF VISIBLE BREAK TYPE SWITCH WITH EXTERNAL HANDLE AND ACCESSIBLE TO QUALIFIED UTILITY PERSONNEL.

AC DISCONNECTS SHALL BE A "KNIFE BLADE" TYPE DISCONNECT. IF EXTERIOR, RATED TO NEMA 3R OR BETTER PER *NEC 110.28*

ADDITIONAL AC DISCONNECTS SHALL BE PROVIDED WHERE THE INVERTER IS NOT ADJACENT TO THE UTILITY AC DISCONNECT, OR NOT WIHTIN SIGHT OF THE UTILITY AC DISCONNECT. 2017 NEC 690.15(A)

BOTH POSITIVE AND NEGATIVE PV CONDUCTORS REMAIN UNGROUNDED. THEREFORE, BOTH SHALL REMAIN OPEN WHERE A DISCONNECT IS REQUIRED IN COMPLIANCE WITH 2017 NEC 690.15(D)

ALL OCPD RATINGS AND TYPES SPECIFIED SHALL BE IN COMPLIANCE WITH *NEC* 690.8, 690.9, 705.12 AND 240.

BOTH POSITIVE AND NEGATIVE DC PV CONDUCTORS ARE **UNGROUNDED**; BOTH REQUIRE OVERCURRENT PROTECTION IN COMPLIANCE WITH NEC 690.9

ARC FAULT (AFCI) DC CIRCUIT PROTECTION IS REQUIRED FOR ALL PV SYSTEMS ON OR PENETRATING A BUILDING WITH A MAXIMUM SYSTEM VOLTAGE OF 80 VOLTS OR GREATER. ALL DC PV CIRCUITS INSTALLED IN OR ON BUILDINGS WILL BE ARC-FAULT CIRCUIT PROTECTED IN COMPLIANCE WITH NEC 690.11, UL1699B AND SHALL BE LISTED AND LABELED IN ACCORDANCE WITH UL 1699 (B).

WIRING & CONDUIT NOTES:*

ALL CONDUIT AND CONDUCTORS SHALL BE APPROVED FOR THEIR INTENDED PURPOSE INCLUDING WET LOCATIONS AND EXPOSED TO SUNLIGHT. CONDUIT AND CONDUCTOR SIZE SPECIFICATIONS ARE BASED ON THE MINIMUM CODE REQUIREMENTS AND ARE NOT LIMITED TO UP SIZING.

ALL CONDUCTORS SHALL BE SIZED IN COMPLIANCE WITH NEC 690.8, NEC 690.7.

ALL CONDUCTORS SHALL BE DERATED AS APPLICABLE TO THEIR RESPECTIVE ENVIRONMENT INCLUDING DIRECT

SUNLIGHT IN ACCORDANCE WITH 2017 NEC 310.15(B)(3)(4)(c)

EXPOSED UNGROUNDED DC PV SOURCE AND OUTPUT CIRCUITS SHALL USE CONDUCTORS LISTED AND IDENTIFIED AS PHOTOVOLTAIC (PV) WIRE IN COMPLIANCE 2017 NEC 690.31(C)(1). PV MODULES WIRE LEADS SHALL BE LISTED FOR USE WITH UNGROUNDED SYSTEMS IN COMPLIANCE WITH 2017 NEC 690.4(B)

PV WIRE BLACK WIRE MAY BE FIELD-MARKED WHITE IN COMPLIANCE WITH NEC~200.6~(A)(6).

PV MODULE CONDUCTORS LOCATED UNDER ARRAYS WILL BE SECURED IN A WORKMANLIKE MANNER IN COMPLIANCE WITH NEC 110.12.

WATERPROOFING:*

ALL NEW ROOFTOP PENETRATIONS SHALL BE SEALED AND MADE WEATHER TIGHT WITH APPROVED CHEMICAL SEALANT AND FLASHINGS WHERE REQUIRED PER CODE AND GENERAL BUILDING AND ROOFING WORKMANSHIP STANDARDS BY A LICENSED CONTRACTOR.

ALL EXTERIOR ELECTRICAL EQUIPMENT, SHALL BE NEMA **3R** OR BETTER RATED. ALL EXTERIOR CONDUIT AND CONNECTORS SHALL BE RATED FOR WET LOCATIONS.

*ALL NOTES ARE AS APPLICABLE TO THIS PROJECT. DISREGARD ANY NOTES THAT DO NOT APPLY TO THIS PROJECT.

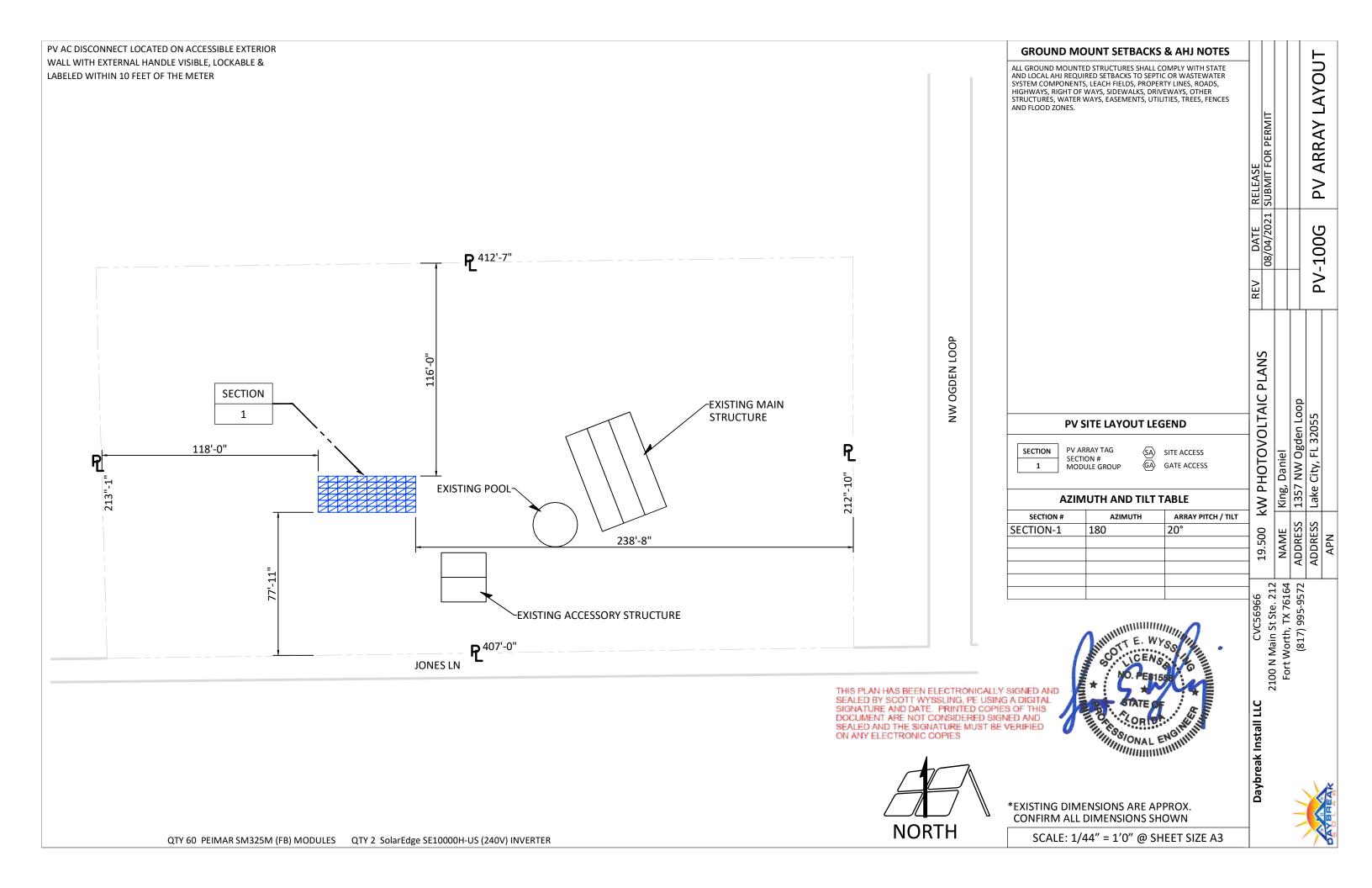
> THIS PLAN HAS BEEN ELECTRONICALLY SIGNED AND SEALED BY SCOTT WYSSLING, PE USING A DIGITAL SIGNATURE AND DATE. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES

PHOTOVOLTAIC King, Daniel 1357 NW Og Lake City, FL NAME ADDRESS ADDRESS 2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572

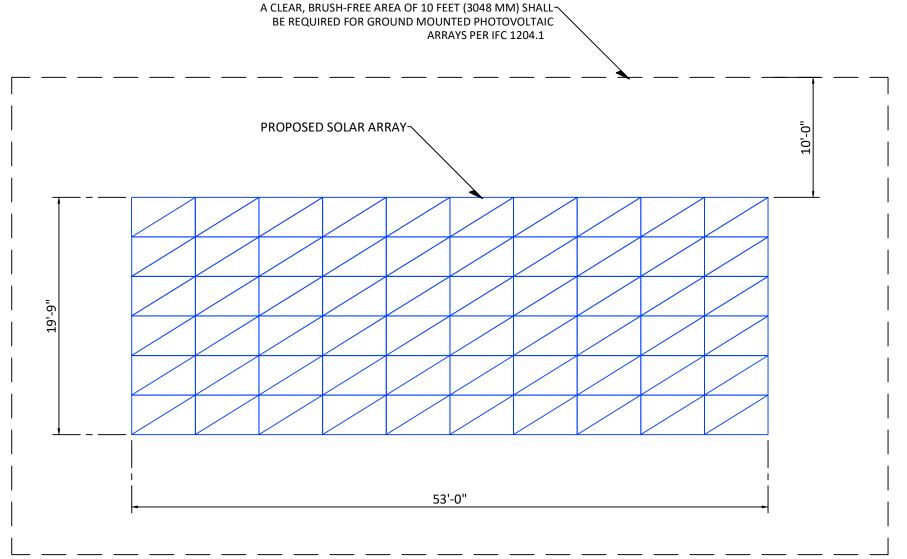
Ogden Lo

NOTES

ENERAL


N-001

RELEASE SUBMIT


DATE 08/04/2021

PLANS

Daybreak

NOTE: ALL ELECTRICAL LAYOUT DETAILS ON SHEET E-100

THIS PLAN HAS BEEN ELECTRONICALLY SIGNED AND SEALED BY SCOTT WYSSLING, PE USING A DIGITAL SIGNATURE AND DATE. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES

DAVBREAK

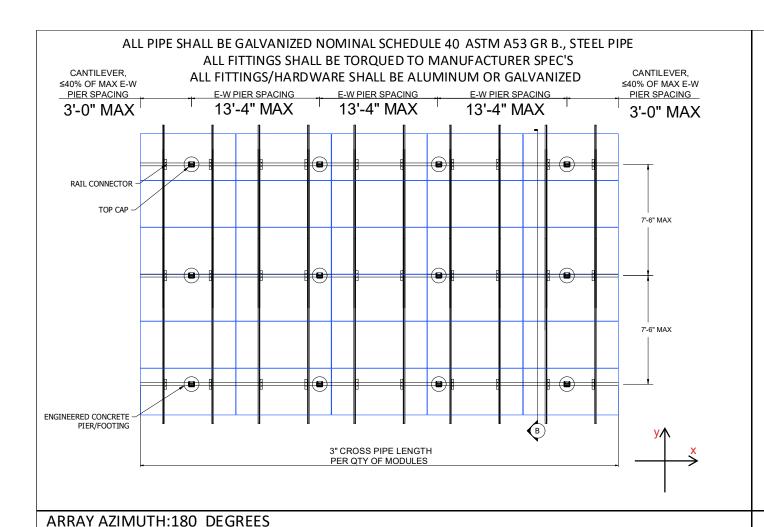
LAYOUT

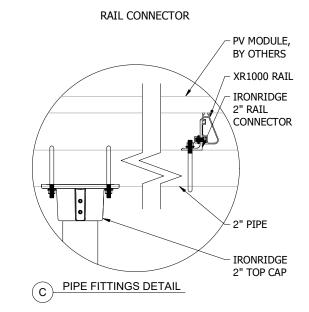
DETAILED

PV-101G

DATE 08/04/2021

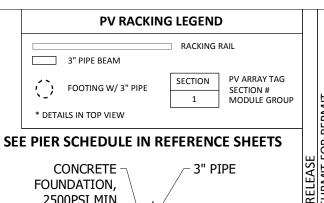
kW PHOTOVOLTAIC PLANS

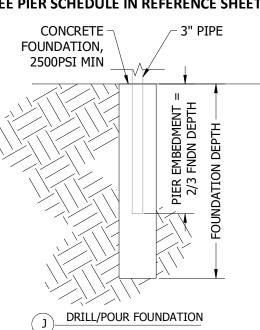

19.500


CVC56966 2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572

Daybreak Install LLC

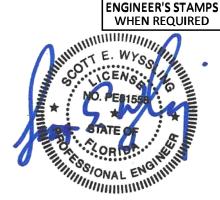
King, Daniel 1357 NW Ogden Loop Lake City, FL 32055


NAME ADDRESS ADDRESS APN



CYLINDRICAL CONCRETE PIER SCHEDULE						
FRONT REAR						
DIAMETER DEPTH DIAMETER DEPTH						
18 48 18 48						
NOTE: ALL FOOTING DEPTHS REPRESENT REQUIRED						

EMBEDDED DEPTH INTO FIRM, NATIVE SOIL



	<u> </u>	<u> </u>
IRONRIDGE UNIVERSAL PV MODULE, BY OTHERS XR1000 RAIL IRONRIDGE 3" RAIL CONNECTOR	IRONRIDGE RAIL PV MODULE FRAME IRONRIDGE UNIVERSAL FASTENING OBJECT IRONRIDGE STOPPER SLEEVE G DETAIL, END CLAMP PLAN	IRONRIDGE UNIVERSAL FASTENING OBJECT PV MODULE FRAME IRONRIDGE RAIL FASTENING OBJECT PV MODULE FRAME IRONRIDGE RAIL FASTENING OBJECT PV MODULE FRAME IRONRIDGE RAIL
IRONRIDGE 2" TOP CAP 2" PIPE D PIPE FITTINGS DETAIL	PV MODULE FRAME IRONRIDGE UNIVERSAL FASTENING OBJECT E DETAIL, MID CLAMP PLAN	IRONRIDGE STOPPER SLEEVE IRONRIDGE UNIVERSAL FASTENING OBJECT PV MODULE FRAME IRONRIDGE RAIL H DETAIL, END CLAMP FRONT

PIPE FITTIN

THIS PLAN HAS BEEN ELECTRONICALLY SIGNED AND SEALED BY SCOTT WYSSLING, PE USING A DIGITAL SIGNATURE AND DATE. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES

Daybreak Install LLC CVC56966

2100 N Main St Ste. 212
Fort Worth, TX 76164
(817) 995-9572

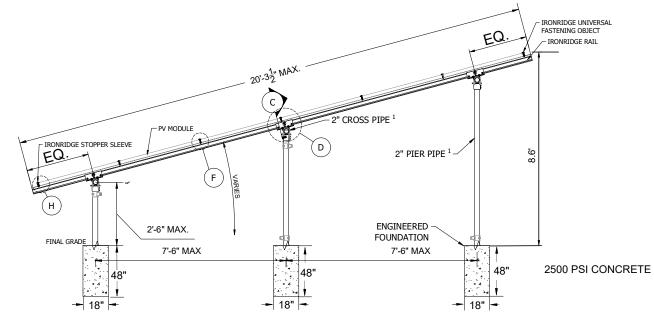
PLANS

kw PHOTOVOLTAIC

19.500

King, Daniel 1357 NW Ogden Loop Lake City, FL 32055

NAME ADDRESS ADDRESS


DAYEREAK

LAYOUT

RACKING

300

ARRAY TILT: 20 DEGREES

6-UP - PV SYSTEM SIDE SECTION
Scale: NTS

NOTE: PORTLAND TYPE V CEMENT CONFORMING TO ASTM C150 SHALL BE USED IN CONCRETE IN CONTACT WITH SOIL.

SOIL PARAMETERS TO BE FIELD VERIFIED BY THE INSTALLER
SEE ENGINEERING TABLES AND DETAILS IN REFERENCE SHEETS
QTY 60 PEIMAR SM325M (FB) MODULES
QTY 2 SolarEdge SE10000H-US (240V) INVERTER

PV MODULE #1 SPECIFICATIONS						
MANUFACTURER PEIMAR						
MODEL NUMBER	SM325M (I	FB)				
WEIGHT	41.01	Ibs				
DIMENSIONS	65.55 x 39.45 x 1.57	L" x W" x D"/THICK				
PEAK POWER @ STC (Pmax)	325	WATTS				
Voc (OPEN-CIRCUIT VOLTAGE)	41.67	VOLTS DC				
Vmp (MAX-POWER VOLTAGE)	34.15	VOLTS DC				
isc (SHORT-CIRCUIT CURRENT)	10.08	AMPS				
imp (OPERATING CURRENT)	9.52	AMPS				
MFR. Voc TEMP COEFFICIENT	0.28	%/K				
MAX SERIES FUSE RATING	20.0	AMPS				
TEMP. CORRECTED Voc	38.34	VOLTS DC				

DC/DC OPTIMIZER (IF APPL.)						
MANUFACTURER SolarEdge Technologies						
MODEL NUMBER	P370 Single (240V)					
WEIGHT	1.5	Ibs				
RATED OUTPUT isc	15	AMPS				
MAX OUTPUT VOLTAGE	60	VOLTS				
MAX INPUT VOLTAGE Voc	60	VOLTS				

DC COMBINER /	DISCONNECT #1
MANUFACTURER	
MODEL NUMBER	
OCPD (DISCONNECT TYPE)	
WEIGHT	Ibs
NEMA RATING	
LOCATION OF COMPONENT	·
DC IN	IPUT
SERIES FUSE RATING FOR PV MODULES	AMPS (OCPD)
QUANTITY OF PV SOURCE CIRCUITS	QTY
MAX PV MODULE Voc	VOLTS DC
MAX # OF MODULES IN CIRCUIT	QTY
MAX ALLOWED INPUT VOLTAGE	VOLTS DC
MAX INPUT FUSE/BREAKER RATING	AMPS
DC OU	JTPUT
MAX CIRCUIT OUTPUT CURRENT	AMPS
MAX CONT. OUTPUT CURRENT	AMPS

DC COMBINER / DIS	SCONNECT #2 (IF APPL.)
MANUFACTURER	
MODEL NUMBER	
OCPD (DISCONNECT TYPE)	
WEIGHT	Ibs
NEMA RATING	
LOCATION OF COMPONENT	
DC II	NPUT
SERIES FUSE RATING FOR PV MODULES	AMPS (OCPD)
QUANTITY OF PV SOURCE CIRCUITS	QTY
MAX PV MODULE Voc	VOLTS DC
MAX # OF MODULES IN CIRCUIT	QTY
MAX ALLOWED INPUT VOLTAGE	VOLTS DC
MAX INPUT FUSE/BREAKER RATING	AMPS
DC OL	JTPUT
MAX CIRCUIT OUTPUT CURRENT	AMPS
MAX CONT. OUTPUT CURRENT	AMPS

DC COMBINER / DISCONNECT #3 (IF APPL.)					
MANUFACTURER					
MODEL NUMBER					
OCPD (DISCONNECT TYPE)					
WEIGHT	Ibs				
NEMA RATING					
LOCATION OF COMPONENT					
DC II	NPUT				
SERIES FUSE RATING FOR PV MODULES	AMPS (OCPD)				
QUANTITY OF PV SOURCE CIRCUITS	QTY				
MAX PV MODULE Voc	VOLTS DC				
MAX # OF MODULES IN CIRCUIT	QTY				
MAX ALLOWED INPUT VOLTAGE	VOLTS DC				
MAX INPUT FUSE/BREAKER RATING	AMPS				
DC OI	JTPUT				
MAX CIRCUIT OUTPUT CURRENT	AMPS				
MAX CONT. OUTPUT CURRENT	AMPS				

THIS PLAN HAS BEEN ELECTRONICALLY SIGNED AND SEALED BY SCOTT WYSSLING, PE USING A DIGITAL SIGNATURE AND DATE. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES

		• •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
	PV SYSTEM MAXIMUM VOLTAGE (MODULE Voc _{MAX})													
DATA :	DATA SOURCE SOLARABCS.ORG/ABOUT/PUBLICATIONS/REPORTS/ EXPEDITED-PERMIT/MAP/					MAP/								
EXTREME MIN. TEMP. [°C]	STC TEMPERATURE [°C]		CORRECTED TEMPERATURE		MFR. P _{MAX} TE COEFFICIEN [-0.#%/C] * 2	NT	FORM	ИULA		CORRECTED TEMP. COEFFICIENT		MODULE Voc [VDC]		TEMPERATURE CORRECTED OPEN CIRCUIT VOLTAGE
-5	- 25	=	-30	*	0.28%	=	-0.08	+	1	0.92	*	41.67	=	38.34

STRING INVERTE	R #1 SPECIFICA	TIONS					
MANUFACTURER	SolarE	dge					
MODEL NUMBER	SE10000H-U	JS (240V)					
QUANTITY	2	INVERTER(S)					
NOMINAL POWER RATING	10000	WATT AC					
WEIGHT	38.8	lbs.					
D	DC INPUT						
Max INPUT DC VOLTAGE	480	VOLTS DC					
Min. MPPT VOLTAGE RANGE	400	VOLTS DC					
Max. MPPT VOLTAGE RANGE	480	VOLTS DC					
Max INPUT CURRENT	27.0	AMPS					
MPPT QTY	N/A						
INTEGRATED DC DISCONNECT	Yes	COMPLY W/NEC 690.17					
INTEGRATED AC DISCONNECT	NO	COMPLY W/NEC 090.17					
AC	OUTPUT						
NOMINAL VOLTAGE OUTPUT	240	VOLTS AC					
MAX. AC APPARENT POWER	10000	WATTS					
MAX OVERCURRENT PROTECTION (OCPD)	60	AMPS					
MAX. OUTPUT CURRENT	42	AMPS - MAX					

STRING INVERTER #	2 SPECIFICATIO	NS (IF APPL.)
MANUFACTURER		
MODEL NUMBER		
QUANTITY		INVERTER(S)
NOMINAL POWER RATING		WATT AC
WEIGHT		lbs.
D	C INPUT	
Max INPUT DC VOLTAGE		VOLTS DC
Min. MPPT VOLTAGE RANGE		VOLTS DC
Max. MPPT VOLTAGE RANGE		VOLTS DC
Max INPUT CURRENT		AMPS
MPPT QTY		
INTEGRATED DC DISCONNECT		COMPLY W/NEC 690.17
INTEGRATED AC DISCONNECT		COMPLY W/NEC 090.17
AC	OUTPUT	
NOMINAL VOLTAGE OUTPUT		VOLTS AC
MAX. AC APPARENT POWER		WATTS
MAX OVERCURRENT PROTECTION (OCPD)		AMPS
MAX. OUTPUT CURRENT		AMPS - MAX

AC COMBINER #1 (SOLAR LOAD CENTER)							
MANUFACTURER GENERIC							
TBD 125A							
240	VOLTS						
125	AMPS						
2	Р						
3R							
N/A	AMPS						
84.0	AMPS						
2	CIRCUITS						
	GENERIO TBD 125 240 125 2 3R N/A						

AR LOAD CENTER)	AC COMBINER #2 (SO
	MANUFACTURER
	MODEL NUMBER
VOLTS	RATED OPERATIONAL VOLTAGE
AMPS	RATED CURRENT
P	NUMBER OF POLES
	NEMA RATING
AMPS	MAIN BREAKER SIZE
AMPS	TOTAL INPUT CURRENT
CIRCUITS	NUMBER OF BRANCH CIRCUITS

AC DISCO	NNEC	T #1 (IF	APPL)					<u>~</u>)
MANUFACTURER			are D						ATION	
MODEL NUMBER		D224	4NRB						\vdash	
QUANTITY		1	А	C DISCO.(S)					A	:
DISCONNECT DEVICE TYPE		Fus	ible						=	i
RATED OPERATIONAL VOLTAGE		240	٧	OLTS		ИТ			٦	'n
RATED CURRENT		200		MPS		:RN			A	ļ
NUMBER OF POLES		2	P		4	J DE			Č	j
NEMA RATING		3R				OR			0	•
FUSE RATING		110.0	А	MPS	SE	ΙF			Ξ	:
TOTAL INPUT CURRENT		84	А	MPS	₽Ē	M			\overline{c}	Ś
AC DISCO	NNFC	T #2 (1F	Ε ΔΡΡΙ	1	RELEASE	SUBMIT FOR PERM			й	i
MANUFACTURER	VIVLC	π	/\\	,	-	21				
MODEL NUMBER					Ψ	08/04/2021				
QUANTITY			Ι,	C DISCO.(S)	DATE	7/			_	1
DISCONNECT DEVICE TYPE			A	C DI3CO.(3)	-	ე/8			\subseteq)
RATED OPERATIONAL VOLTAGE			\ <u>\</u>	OLTS	_	80			_	J
RATED CURRENT				MPS	-				Ц	J
NUMBER OF POLES			P		REV					
NEMA RATING					┖					_
FUSE RATING			А	MPS						ĺ
TOTAL INPUT CURRENT			А	MPS						
AC SUB-P	A NIFI	# 1 /IE /	\DDL\		ي	2				
		# 1 (II /	4FFL.)		{	KW PHOLOVOLIAIC PLAINS				l
NEW OR I					ן ⊦	Ĺ				ĺ
	/ MODEL				ت ⊢)		d		
	FPANEL			T _B	│	1		1357 NW Ogden Loop	١٨	ĺ
NUMBER C				P	- F	-		7	Lake City, FL 32055	
	RATING				5 ⊦	5		ğ	32(
BUSS BAR				AMPS	≨ ا	>	_) <u>8</u> (يزا	ĺ
SUB-PANEL MAIN E				AMPS	Է	ر	King, Daniel	>	7.	ĺ
MAIN SERVICE PANEL P.O.C. I				AMPS	خ إ)	Da	ĺ≥	ij	ĺ
SUM OF EXISTING CIRCUIT BI				AMPS	٦ إ	Ε.	g, l	1,5	ا ا	
MAX ALLOWABLE SOLAR C				AMPS	5	>	(in	135	 #	
PV BACKFEED BRE				AMPS (Imax)	↓ ₹	>	_		-	H
PV BACKFEED BRE				AMPS (Imax)				SS	SS	ĺ
PV BACKFEED BRE				AMPS (Imax)	վ Է	รั	M	RE	RE	3
PV BACKFEED BRE	AKER #4			AMPS (Imax)	10 100		NAME	AD DRESS	ADDRESS	1
	UCE D	ANIEL	/·=	D	່ ໂ			⋖	₹	
MAIN SERV	ICE P	ANEL	(IF API	PL.)						ļ

			ANEL (IF APPL.)	MAIN SERVICE F
4 6	12		EXISTING	NEW OR EXISTING
TX 76164	2100 N Main St Ste. 212	99	120/240V Single Phase	ELECTRICAL SERVICE
× ;	Ste	CVC56966	200 AMPS	BUSS BAR RATED CURRENT
	St	\C	200 AMPS	MAIN BREAKER RATED CURRENT
Fort Worth,	.⊑	C	AMPS	SUM OF EXISTING CIRCUIT BREAKERS
રુ ઽ	Ĕ		O AMPS	MAX ALLOWABLE SOLAR CURRENT 100%
É	z		40 AMPS (Imax)	MAX ALLOWABLE SOLAR CURRENT 120%
Ъ	00		AMPS (Imax)	PV BACKFEED BREAKER #1
	21		AMPS (Imax)	PV BACKFEED BREAKER #2
		LLC	AMPS (Imax)	PV BACKFEED BREAKER #3
			AMPS (Imax)	PV BACKFEED BREAKER #4
		Ē	AMPS (Imax)	ALT. ENERGY BACKFEED BREAKER (IF APPL.)
		Daybreak Install		
-		Day		

WIRE AND CONDUCTOR NOTES

- ANY CONDUCTOR LENGTH UNDER 50' DOESN'T REQUIRE VOLTAGE DROP CALCULATIONS
 BECAUSE WE ARE UNABLE TO DETERMINE THE EXACT PATH THE INSTALLER WILL RUN CONDUCTORS; WORST CASE SCENARIOS, ROUNDING UP SIZES OF CONDUCTORS THAT ARE
 DEEMED QUESTIONABLE TO PREVENT ISSUES RELATED TO USING CONDUCTORS THAT ARE IMPROPERLY SIZED.
- WIRING METHODS IN THESE CALCULATIONS DON'T EXCEED 1000 VOLTS
- 4. CEC/NEC 310.15(A)(2) (AS APPLICABLE) WHERE TWO DIFFERENT AMPACITIES APPLY TO ADJACENT PORTIONS OF A CIRCUIT, THE HIGHER AMPACITY SHALL BE PERMITTED TO BE USED BEYOND THE POINT OF TRANSITION, A DISTANCE EQUAL TO 10'-0" (3 METERS) OR 10% OF THE CIRCUIT LENGTH FIGURED AT THE HIGHER AMPACITY, WHICHEVER IS LESS. WHEN LESS THAN 10'-0" OR 10% OF THE CIRCUIT LENGTH; THE LESSER AMPACITY MAY BE USED.

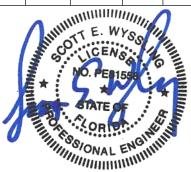
∥ v	VIRE COLOR CODING (2017)) NEC SECTIONS	S 250.119 & 200.6							
F	PV DC WIRING	AC WIRING								
EQUIPMENT GROUND	GREEN OR BARE, OR GREEN/YELLOW	EQUIPMENT GROUND	GREEN OR BARE, OR GREEN/YELLOW							
GROUNDED CONDUCTOR. TYPICALLY NEGATIVE	WHITE OR GRAY	GROUNDED CONDUCTOR (NEUTRAL)	WHITE OR GRAY							
	ANY COLOR OTHER THAN GREEN OR WHITE/GRAY	UNGROUNDED	ANY COLOR OTHER THAN GREEN OR WHITE/GRAY ALLOWED.							
UNGROUNDED CONDUCTOR(S). TYPICALLY POSITIVE	CONVENTION IS RED FOR GROUNDED SYSTEMS	CONDUCTOR(S) HOT:	CONVENTION IS L1 BLACK							
	RED (+) AND BLACK (-) FOR UNGROUNDED SYSTEMS	L1 AND L2	CONVENTION IS L2 RED							

CALCS.

WIRE AND COND.

E-002

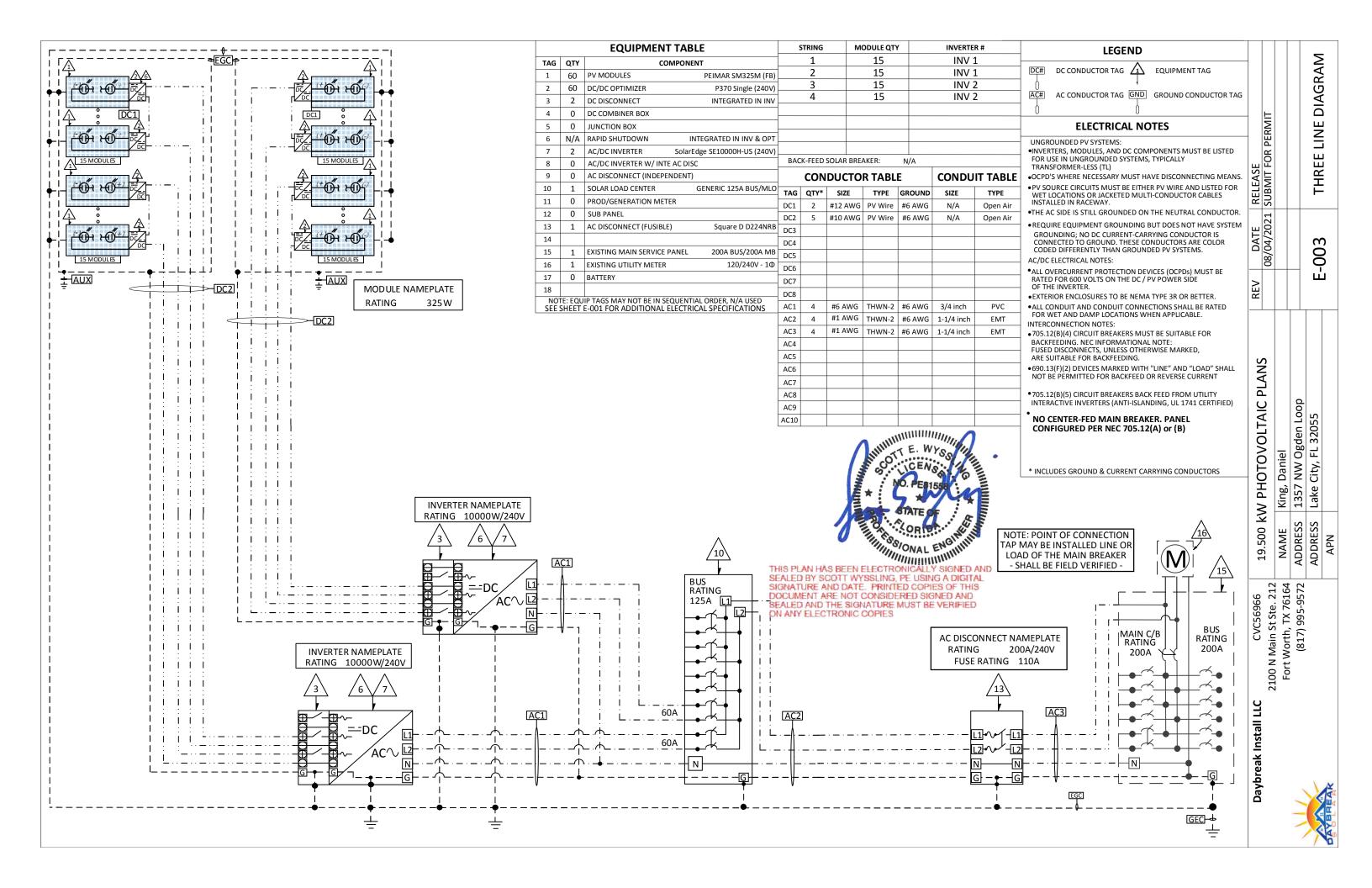
King, Daniel 1357 NW Ogden Loop Lake City, FL 32055

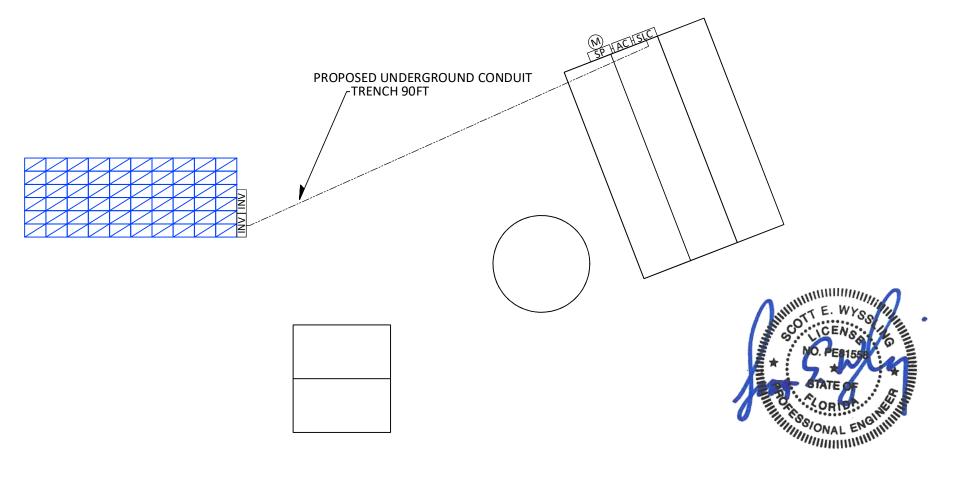

NAME ADDRESS ADDRESS

19.500

DC WIRE AND CONDUIT SIZING CHART [SEE SHEET E-003 FOR THREE LINE DIAGRAM]

1 Д	(F(/NF(-310)15/A	JULI LOS APPLICARIE	1 WHERE 1 W/)) FFFR	FNI AMI	TOTAL PARTY	Υ Ι() ΔΙ)ΙΔ(Έ	וואן ווא-	$R \cap C \cap $	CIRCI	III THE BUGS	HFR /	ΔΙΛΙΡΔ(ΤΙΥ ΚΙ	ΙΔΙΙ	RE DERIVITI	1FI) I() RF 1																		
	USED BEYOND THE	POINT OF TRANSIT	ION, A DISTAI	NCE EQU	AL TO 10'-	0" (3 METER	S) OR 10% O	F THE								ER IS LESS.			I	ANY COLOI	R OTHER THAN O	GREEN OR W	/HITE/GRAY	UNG	GROUN	DED	ANY	COLOR OT	THER T	THAN GREEN	OR WHITE/	GRAY A	ALLOWED.] ⊨
	WHEN LESS THAN	10'-0" OR 10% OF TH	HE CIRCUIT LE	NGTH; T	HE LESSE	R AMPACITY I	MAY BE USEI	D.										NDED CONDU ICALLY POSIT		CONVENT	TION IS RED FOR	GROUNDED	SYSTEMS	CONDU	CTOR(S) HOT:			СО	NVENTION IS	L1 BLACK			PERMIT
																			R	ED (+) AND	D BLACK (-) FOR I	UNGROUND	ED SYSTEMS	LI	L AND I	-2			C	ONVENTION I	S L2 RED			
								DC V	VIRE A	NE	CON	DU	JIT SIZ	IN	G CHA	RT [SEE S	SHEE	T E-00	3 FOR	THRE	E LINE D	IAGR	AM]											RELEASE SUBMIT FOR F
				CONE	ОСТО	R																	DUIT FILL	CODE	DECT	ED ANAD		ITV CAL		LATION	ANADA	CITY	CLIECK	
1	CIRCUIT	CIRCUIT	SI	PECIFI	CATIO	NS		KE	QUIRED	COI	NDUCIO	JK A	AIVIPACII	Y		CON	DUCIC	OK LEIVIP	ERATUR	E DEKA		DEI	RATING	COR	KECI	ED AIVIP	ACI	IIY CAL	_CU	LATION	AIVIPA	- H I I I	CHECK	118
TAG		DESTINATION	QTY IN PARALLEL & MATERIAL	TEMP RATING (°C)	TRADE SIZE	AMPACITY @ 30°C PER 310.16	Isc (AMPS OR COMPONEN (AMPS)	` v	#OF COMBINED PARALLEL STRINGS		MAX CURRENT 690.8 (A)(1)		CONT. OPERATION 690.8 (B)(1)		REQUIRED AMPACITY		AMBIEN TEMP (°C)		TEMP. ADDER PE 310.15 (B)(2)(c)	R OPERATEMP (°C)		# OF UNGRND COND.	AMPACITY CORRECTION 310.15 (B)(3)(a)	COND		TEMP. DERATING	. x	CONDUIT FILL DERATING	=	CORRECTED AMPACITY	REQUIRED AMPACITY	< C'	ORRECTED AMPACITY	DATE 08/04/202
DC1	PV MODULE	DC/DC CONVERTER	(1) CU	90	#12 AWG	30	10.08	х	1	х	1.25	х	1.25	=	15.75	OPEN AIR	35	N/A	0	35	0.96	2	N/A	30	x	0.96	х	1.0	=	28.8	15.75	<	28.8	/80
DC2	DC/DC CONVERTER	INVERTER	(1) CU	90	#10 AWG	40	15	х	1	х	1	х	1.25	=	18.75	OPEN AIR	35	N/A	0	35	0.96	4	N/A	40	х	0.96	х	1.0	=	38.4	18.75	<	38.4	
DC3								х		х		х		=											х		х		=			<		~
DC4								х		х		х		=											х		х		=			<		
DC5								х		х		х		=											х		х		=			<		
DC6								Х		х		х		=											х		х		=			<		PLANS
DC7								х		х		х		=											x		х		=			<		
DC8								х		x		x		=											x		x		=			<		
										SE/ SIG DOI SE/	ALED BY S INATURE I CUMENT I ALED AND	AND ARE	TT WYSSI DATE. P NOT CON	LINC RIN ISID URE	G, PE USII TED COP DERED SI E MUST B	Y SIGNED AN NG A DIGITAL NES OF THIS GNED AND E VERIFIED	Ď	THE STATE OF THE PARTY OF THE P	OTT E. V	VYSS 155	8	COND	VOL = (0.2 x D JCTOR RI TER TO LO	ISTAN UN	CE >	Imp x I	DC	or AC F	RES SE \	TIONS ISTANCE V-DROP	E) / Vm	C		kW PHOTOVOLTAIC


THIS PLAN HAS BEEN ELECTRONICALLY SIGNED AND SEALED BY SCOTT WYSSLING, PE USING A DIGITAL SIGNED AND SEALED BY SCOTT WYSSLING, PE USING A DIGITAL SIGNATURE AND DATE. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES

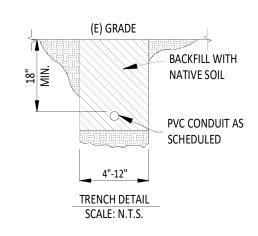


	CALCULATIONS	
%VD = (0.2 x DISTANCE x Imp :	x DC or AC RESISTANCI	E) / Vmp
CONDUCTOR RUN	WORST CASE V-DROP	AC/DC
INVERTER TO LOAD CENTER	1.7%	AC
TOTAL	1.7%	AC

AC WIRE AND CONDUIT SIZING CHART [SEE SHEET E-003 FOR THREE LINE DIAGRAM]

		CIDCUIT	11		UCTO CATIO		REQ		ED CONDUMPACITY		DR	CON	IDUCTO	R TEMPE	RATURE	DERATIN	NG		UIT FILL ATING	CORR	ECTE	ED AMPAC	CITY CAL	CULATION	AMPAC	ITY CHECK	36	. 212 6164 9572
TAG	CIRCUIT ORIGIN	CIRCUIT DESTINATION	QTY IN PARALLEL & MATERIAL	TEMP RATING (°C)	TRADE SIZE	AMPACITY @ 30°C PER 310.16	CONT. OPERATION 690.8 (B)(1)	x c	IAX INV. OUTPUT CURRENT (AMPS) OR COMPONENT (AMPS))	REQUIRED	CIRCUIT ENVIRONMENT	AMBIENT TEMP. (°C)	HGT. ABOVE ROOF (in)	TEMP. ADDER PER 310.15 (B)(2)(c)	OPERAT. TEMP. (°C)	AMPACITY CORRECTION 310.15 (B)(2)(a)	# OF UNGRND. COND.	AMPACITY CORRECTION 310.15 (B)(3)(a)	COND. AMPACIT	YX	TEMP. DERATING X	CONDUIT FILL DERATING	= CORRECTED AMPACITY	REQUIRED AMPACITY	< CORRECTED AMPACITY	56	in St Ste th, TX 7 17) 995-
AC1	INVERTER	SOLAR LOAD CENTER	(1) CU	75	#6 AWG	65	1.25	х	42.0	=	52.5	UNDERGROUND	30	N/A	0	30	1.00	3	1.0	65	x	1.00 X	1.0	= 65.0	52.5	< 65.0		
AC2	SOLAR LOAD CENTER	AC DISCONNECT	(1) CU	75	#1 AWG	130	1.25	х	84.0	=	105.0	EXT WALL	35	N/A	0	35	0.94	3	1.0	130	х	0.94 X	1.0	= 122.2	105.0	< 122.2		100 N Fort
AC3	AC DISCONNECT	EXISTING SERVICE PANEL	(1) CU	75	#1 AWG	130	1.25	х	84.0	=	105.0	EXT WALL	35	N/A	0	35	0.94	3	1.0	130	x	0.94 X	1.0	= 122.2	105.0	< 122.2], ?	21
AC4								х		=											х	х		=		<		
AC5								х		=											x	x		=		<	ıstal	
AC6								х		=											х	х		=		<	ak Ir	
AC7								х		=											х	х		=		<	bre	×
AC8								х		=											x	х		=		<	Day	
AC9								х		=											х	х		=		<		
AC10								х		=											х	х		=		<		

THIS PLAN HAS BEEN ELECTRONICALLY SIGNED AND SEALED BY SCOTT WYSSLING, PE USING A DIGITAL SIGNATURE AND DATE. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND SEALED AND THE SIGNATURE MUST BE VERIFIED ON ANY ELECTRONIC COPIES


EQUIPMENT GROUNDING

- 1. METAL PV MODULE FRAMES MUST BE CONNECTED TO THE EGC (EQUIPMENT GROUNDING CONDUCTOR).
- 1.1. WEEBS MAY BE USED IN LIEU OF MODULE GROUND CLAMPS OR LUGS, WITH APPROVAL OF AHJ AND RACKING MFG. WEEBS ARE ONE TIME USE ONLY. SEE "we-llc.com" FOR RACKING SPECIFIC WEEB, INSTALL INSTRUCTIONS, AND UL 2703 CERT.
- 1.2. FOR "LAY-IN" LUG MODULE GROUNDING; CORRECT HARDWARE OF PROPER METAL MATERIAL TO AVOID CORROSION MUST BE USED. TYPICALLY DIRECT BURIAL RATED, TINNED, OR STAINLESS STEEL. GROUNDING LUGS MUST BE ATTACHED AT MARKED LOCATION ON EACH MODULE.
- 2. THE EGC (EQUIPMENT GROUNDING CONDUCTOR) IS USED TO BOND ALL NON-CURRENT CARRYING CONDUCTORS AND EXPOSED METAL PARTS THAT MIGHT COME INTO CONTACT WITH CURRENT-CARRYING CONDUCTORS, INCLUDING THE FOLLOWING:
- 2.1. PV MODULES FRAMES, ARRAY MOUNTING RACKING; THE METAL CHASSIS OF EQUIPMENT SUCH AS INVERTERS, DISCONNECTS, METERS, JUNCTION BOXES AND COMBINER BOXES; AND METAL CONDUIT HOLDING CIRCUITS > 250 VOLTS TO GROUND PER NEC 250.97
- 3. THE GEC (GROUNDING ELECTRODE CONDUCTOR) IS THE CONDUCTOR USED TO CONNECT THE GE OR GE SYSTEM TO THE SYSTEM GC, TO THE EGC, OR TO BOTH.
- 4. THE GE (GROUNDING ELECTRODE) IS A CONDUCTING OBJECT, OFTEN A ROD, RING, OR PLATE ESTABLISHING A DIRECT CONNECTION TO EARTH. THE AC SYSTEM GROUND IS EXISTING, USUALLY AT THE EXISTING MAIN PANEL AND/OR UTILITY METER. THE GROUND CAN ONLY OCCUR IN ONE PLACE AND MUST NOT BE DUPLICATED IN SUB-PANELS OR ANYWHERE ELSE ON AC SIDE.

ELECTRICAL SYMBOL LEGEND

CB	DC C	OMBINER BOX	ATF	AUTO TRANSFORMER
DCB	DC D	ISCONNECTING	SLC	SOLAR LOAD CENTER
	COM	BINER BOX	ACC	AC COMBINER
DC	DC D	ISCONNECT	BATT	BATTERY
INV#	DC/A	C STRING INVERTER	AC	AC DISCONNECT
CLP	CRITI	CAL LOADS PANEL	SP	SERVICE PANEL
RSD	RAPI	D SHUTDOWN	P	PERFORMANCE METER
SUB	SUB-	PANEL	M	UTILITY METER
SECT	ION	PV ARRAY TAG	XFMR	TRANSFORMER
	-	SECTION #	JB	JUNCTION BOX
1		MODULE GROUP	ATS	AUTO TRANSFER SWITCH
	DCB INV# CLP RSD SUB	DCB DC D COM DC DC D DC D INV# DC/A CLP CRITI	DCB DC DISCONNECTING COMBINER BOX DC DISCONNECT INV# DC/AC STRING INVERTER CLP CRITICAL LOADS PANEL RSD RAPID SHUTDOWN SUB SUB-PANEL SECTION PV ARRAY TAG SECTION #	DCB DC DISCONNECTING COMBINER BOX ACC DC DC DISCONNECT BATT INV# DC/AC STRING INVERTER AC CLP CRITICAL LOADS PANEL SP RSDD RAPID SHUTDOWN SUB SUB-PANEL W SECTION PV ARRAY TAG SECTION # JB

PV AC DISCONNECT LOCATED ON ACCESSIBLE EXTERIOR WALL WITH EXTERNAL HANDLE VISIBLE, LOCKABLE & LABELED WITHIN 10 FEET OF THE METER.

NORTH

CTRICAL LAYOUT

ELE

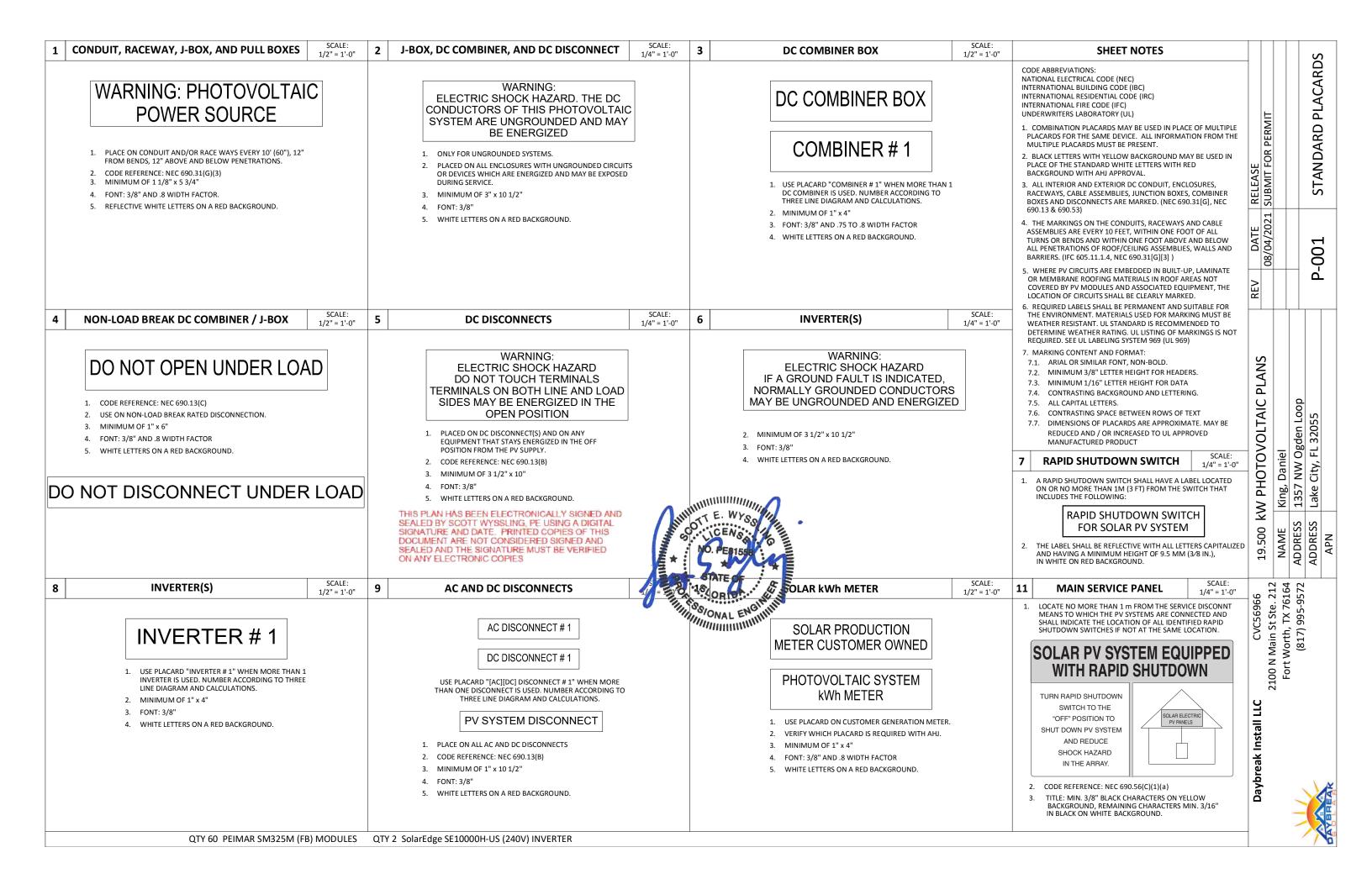
-100

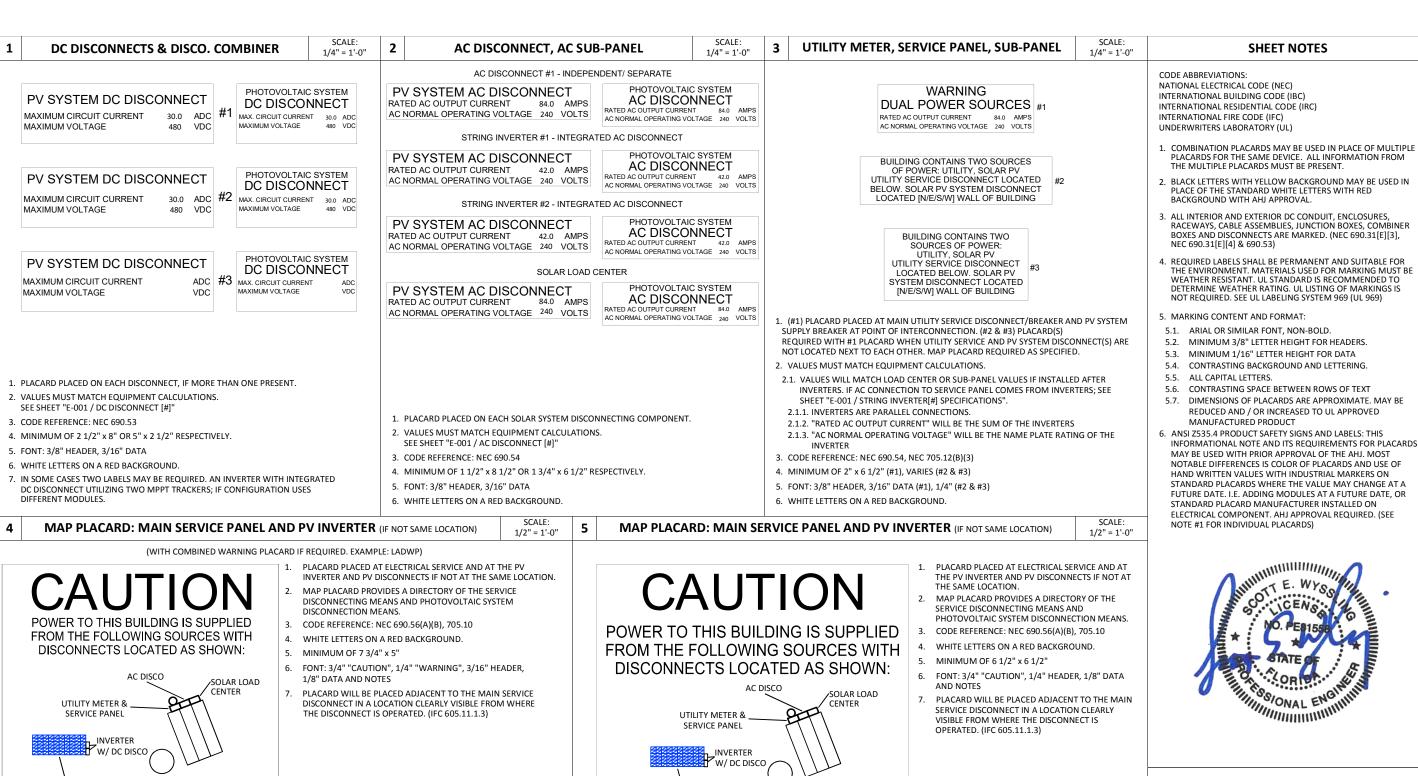
DA/ 04/

PLANS

PHOTOVOLTAIC

≷


19.500


Daybreak Install

King, Daniel 1357 NW Ogden Loop Lake City, FL 32055

NAME ADDRESS ADDRESS APN

2100 N Main St Ste. 212 | Fort Worth, TX 76164 | (817) 995-9572 |

SOLAR ARRAY

SOLAR ARRAY

ON ROOF TOP

ELECTRIC SHOCK HAZARD - DO NOT TOUCH TERMINALS

TERMINALS ON BOTH THE LINE AND LOAD SIDES

MAY BE ENERGIZED IN THE OPEN POSITION

RESPONSIBILITY NOTES

1. PRIME CONTRACTOR / PERMIT APPLICANT SIGNER IS RESPONSIBLE FOR THE DESIGN AND SPECIFICATIONS OF THE PHOTOVOLTAIC SYSTEM INSTALLATION. PRIME CONTRACTOR / PERMIT APPLICANT SIGNER WILL BE RESPONSIBLE FOR COLLECTION OF EXISTING ONSITE INFORMATION REQUIREMENTS TO DESIGN, SPECIFY, AND INSTALL THE EXTERIOR MOUNTED PORTION OF THE PHOTOVOLTAIC SYSTEM DETAILED IN THIS DOCUMENT.

THIS PLAN HAS BEEN ELECTRONICALLY SIGNED AND

SEALED BY SCOTT WYSSLING, PE USING A DIGITAL

SIGNATURE AND DATE. PRINTED COPIES OF THIS DOCUMENT ARE NOT CONSIDERED SIGNED AND

SEALED AND THE SIGNATURE MUST BE VERIFIED

ON ANY ELECTRONIC COPIES

2. ADVANCED SOLAR SOLUTIONS, INC IS RESPONSIBLE FOR APPLYING SUPPLIED INFORMATION INTO A SET OF PERMIT DRAWINGS. ANY CHANGES TO DRAWINGS ARE SUBJECT TO CONTRACT CONDITIONS BETWEEN THE CLIENT AND ADVANCED SOLAR SOLUTIONS, INC. IN ACCORDANCE WITH THE REQUIREMENTS OF THE AH I

Daybreak Install LLC CVC56966
2100 N Main St Ste. 212
Fort Worth, TX 76164
(817) 995-9572

DAY BREAK

DYNAMIC PLACARDS

P-00

DAT 08/04/

PLANS

PHOTOVOLTAIC

≷

500

19.

King, Daniel 1357 NW Ogden L Lake City, FL 3205

NAME ADDRESS ADDRESS

60-CELL LINE

SM325M (FB)

60-CELL LINE

MADE IN ITALY MODULE

Peimar monocrystalline solar panels, produced using a combination of innovative production processes and advanced engineering techniques, provide custom ers with maximum output and super high performance.

This allows fewer panels to be used to generate more energy, ideal if space is restricted or environmental conditions are challenging. Modern design using matching black cells and frames and a very long lifespan ensure this monocrystalline are a great option.

CELLS

158.75x158.75mm / 6.25x6.25"

PERC TECHNOLOGY

PID FREE

MODULE FIRE PERFORMANCE: CLASS 1

30 YEAR LINEAR POWER WARRANTY

20 YEAR PRODUCT WARRANTY

ANTI-REFLECTIVE GLASS

QBE INSURANCE

MONO 5BB / 9BB M3 | **PERC**

FRAME

COMPACT AND STURDY | 40mm

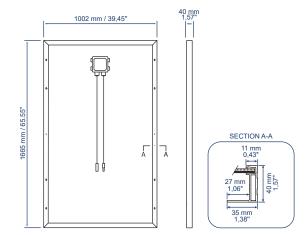
ANCHORABLE ALSO ON THE SHORT

□ (€

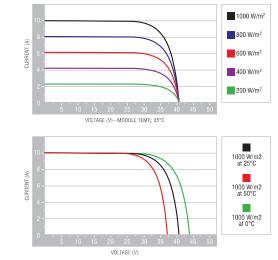
SM325M (FB) **ELECTRICAL CHARACTERISTICS (STC)** (1) Nominal Output (Pmax) (2 325 W Sorting Tolerance 0/+5 W Voltage at Pmax (Vmp) 34.15 V Current at Pmax (Imp) 9.52 A Open Circuit Voltage (Voc) 41.67 V Short Circuit Current (Isc) (2 10.08 A 1500 V Maximum System Voltage Maximum Series Fuse Rating 15 A Module Efficiency 19.48% Class II Protection class against electric shock

MECHANICAL CHARACTERISTICS

Solar Cells	60 (6x10) M3 monocrystalline PERC
Solar Cells Size	158.75x158.75 mm / 6.25x6.25"
Front Cover	3.2 mm / 0.13" thick, low iron tempered glass
Back Cover	TPT (Tedlar-PET-Tedlar)
Encapsulant	EVA (Ethylene vinyl acetate)
Frame	Anodized aluminium alloy, double wall
Frame finishing	Black
Backsheet finishing	Black
Diodes	3 Bypass diodes serviceable
Junction Box	IP67 rated
Connector	MC4 or compatible connector
Cables Lenght	900 mm / 35.43"
Cables Section	4.0 mm ² / 0,006 in ²
Dimensions	1665x1002x40 mm / 65.55x39.45x1.57"
Weight	18.6 Kg / 41.01 lbs
Max Load (Test Load) - SF	5400 Pa - 1.5 (5)


TEMPERATURE CHARACTERISTICS

NMOT (3)	45±2 °C
Temperature Coefficient of Pmax	-0.37 %/°C
Temperature Coefficient of Voc	-0.28 %/°C
Temperature Coefficient of Isc	0.042 %/°C
Operating Temperature	-40 °C ~ +85°C
PACKAGING (3)	


Pallet dimensions	1720x1200x1210 mm / 67.72x47.24x47.64"
Pieces per pallet	27
Weight	535 Kg / 1179 lbs
CERTIFICATIONS	

Fire Resistance Rating	Class of reaction to fire 1 (UNI 9177)
PID free	IEC TS 62804-1:2015
Salt mist	IEC 61701:2011
Ammonia	IEC 62716:2013

DIMENSIONS

CURRENT/VOLTAGE CHARACTERISTICS

1. STC: (Standard Test Condition) Irradiance 1000W/m²; Module Temperature 25°C; Air Mass 1.5 2. Pmax, Voc, Isc measurement tolerance: ±3%

(4. Pallets can be stacked up to two

3. NMOT: Nominal Module Operating Temperature: Irradiance 800W/m²; Air 20°C; Wind speed 1m/s 5. Consult the installation manual for the relative mounting configurations

SHEET

CUT

EQUIP.

R-100

RELEASE SUBMIT FOR PERMIT

DATE 08/04/2021

kW PHOTOVOLTAIC PLANS

19.500

King, Daniel 1357 NW Ogden Loop Lake City, FL 32055

NAME ADDRESS ADDRESS

CVC56966 2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572

Daybreak Install LLC

Single Phase Inverter with HD-Wave Technology

for North America

SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US / SE7600H-US / SE10000H-US / SE11400H-US

Optimized installation with HD-Wave technology

- Specifically designed to work with power optimizers
- Record-breaking efficiency
- Fixed voltage inverter for longer strings
- Integrated arc fault protection and rapid shutdown for / Optional: Revenue grade data, ANSI C12.20 NEC 2014 and 2017, per article 690.11 and 690.12
- Extremely small
- Built-in module-level monitoring
- Outdoor and indoor installation
 - Class 0.5 (0.5% accuracy)

12-25

UL1741 SA certified, for CPUC Rule 21 grid compliance

Single Phase Inverter with HD-Wave Technology for North America SE3000H-US / SE3800H-US / SE5000H-US / SE6000H-US/

SE7600H-US / SE10000H-US / SE11400H-US

	SE3000H-US	SE3000H-US SE3800H-US SE5000H-US SE6000H-US SE7600H-US SE10000H-US								
OUTPUT							SE11400H-US			
Rated AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	VA		
Maximum AC Power Output	3000	3800 @ 240V 3300 @ 208V	5000	6000 @ 240V 5000 @ 208V	7600	10000	11400 @ 240V 10000 @ 208V	VA		
AC Output Voltage MinNomMax. (211 - 240 - 264)	✓	√	√	✓	✓	✓	√	Vac		
AC Output Voltage MinNomMax. (183 - 208 - 229)	-	√	-	✓	-	-	√	Vac		
AC Frequency (Nominal)				59.3 - 60 - 60.5 ⁽¹⁾				Hz		
Maximum Continuous Output Current @240V	12.5	16	21	25	32	42	47.5	А		
Maximum Continuous Output Current @208V	-	16	-	24	-	-	48.5	А		
GFDI Threshold				1				А		
Utility Monitoring, Islanding Protection, Country Configurable Thresholds				Yes						
INPUT										
Maximum DC Power @240V	4650	5900	7750	9300	11800	15500	17650	W		
Maximum DC Power @208V	-	5100	-	7750	-	-	15500	W		
Transformer-less, Ungrounded		Yes								
Maximum Input Voltage		480								
Nominal DC Input Voltage		380 400								
Maximum Input Current @240V ⁽²⁾	8.5					27	30.5	Vdc Adc		
Maximum Input Current @208V ⁽²⁾	-	9	-	27	Adc					
Max. Input Short Circuit Current	- 9 - 13.5 27 45									
Reverse-Polarity Protection		45 Yes								
Ground-Fault Isolation Detection				600kΩ Sensitivity						
Maximum Inverter Efficiency	99			9	9.2			%		
CEC Weighted Efficiency			9	9			99 @ 240V 98.5 @ 208V	%		
Nighttime Power Consumption				< 2.5			,	W		
ADDITIONAL FEATURES	1									
Supported Communication Interfaces			RS485, Etherne	t, ZigBee (optional), C	Cellular (optional)					
Revenue Grade Data, ANSI C12.20				Optional ⁽³⁾	· · · · · · · · · · · · · · · · · · ·					
Rapid Shutdown - NEC 2014 and 2017 690.12			Automatic Rapi	d Shutdown upon AC	Grid Disconnect					
STANDARD COMPLIANCE										
Safety		UL174	11, UL1741 SA, UL1699B,	CSA C22.2, Canadiar	n AFCI according to T.I	I.L. M-07				
Grid Connection Standards			IEEE	1547, Rule 21, Rule 14	4 (HI)					
Emissions				FCC Part 15 Class B						
INSTALLATION SPECIFICAT	TIONS									
AC Output Conduit Size / AWG Range		3	3/4" minimum / 14-6 AV	VG		3/4" minimu	ım /14-4 AWG			
DC Input Conduit Size / # of Strings / AWG Range		3/4" m	inimum / 1-2 strings / 1-	4-6 AWG		3/4" minimum / 1-	3 strings / 14-6 AWG			
Dimensions with Safety Switch (HxWxD)		17.7	x 14.6 x 6.8 / 450 x 370) x 174		21.3 x 14.6 x 7.3	/ 540 x 370 x 185	in / mm		
Weight with Safety Switch	22 .	/ 10	25.1 / 11.4	26.2	/ 11.9	38.8	/ 17.6	lb / kg		
Noise		-	< 25			<50		dBA		
Cooling				Natural Convection						
Operating Temperature Range			-40 to +140 /	-25 to +60 ⁽⁴⁾ (-40°F /	-40°C option)(5)			°F / °C		
Protection Rating			NEMA 4	IX (Inverter with Safet	ty Switch)					

For other regional settings please contact SolarEdge support
A higher current source may be used; the inverter will limit its input current to the values stated
Revenue grade inverter P/N: SExxxXH-US000NNC2

RoHS

Saybreak Install LLC	CVC56966 2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572	19.500 kW PHOTOVOLTA NAME King, Daniel ADDRESS 1357 NW Ogden Lo ADDRESS Lake City, FL 32055	19.500 kW PHOTOVOLTAIC PLANS NAME King, Daniel DDRESS 1357 NW Ogden Loop DDRESS Lake City, FL 32055	REV DATE RELEASE 08/04/2021 SUBMIT FINAL PROPERTY OF THE PROPE	4/2021 S	DATE RELEASE 08/04/2021 SUBMIT FOR PERMIT -101 EOUIP, CUT SHEETS
----------------------	---	--	--	--	----------	--

solaredge.com

Power Optimizer

For North America

P320 / P340 / P370 / P400 / P401 / P405 / P485 / P505

PV power optimization at the module-level

- Specifically designed to work with SolarEdge inverters
- ✓ Up to 25% more energy
- Superior efficiency (99.5%)
- Mitigates all types of module mismatch losses, from manufacturing tolerance to partial shading
- Flexible system design for maximum space utilization

- / Fast installation with a single bolt
- Next generation maintenance with modulelevel monitoring
- Meets NEC requirements for arc fault protection (AFCI) and Photovoltaic Rapid Shutdown System (PVRSS)
- Module-level voltage shutdown for installer and firefighter safety

solaredge.com

/ Power Optimizer For North America

For North P320 / P340			′ P401 /	P405 / F	P485 / P	505					PERMIT
Optimizer model (typical module compatibility)	P320 (for 60-cell modules)	P340 (for high- power 60-cell modules)	P370 (for higher- power 60 and 72- cell modules)	P400 (for 72 & 96-cell modules)	P401 (for high power 60 and 72 cell modules)	P405 (for high- voltage modules)	P485 (for high- voltage modules)	P505 (for higher current modules)		RELEASE	10,
INPUT			modules	•		I	l				121
Rated Input DC Power ⁽¹⁾	320	340	370	4	00	405	485	505	W		2 5
Absolute Maximum Input Voltage (Voc at lowest temperature)	4	48 60 80 60 125(2) 83(2)								DATE	08/04/2021
MPPT Operating Range	8 -	8 - 48 8 - 60 8 - 80 8 - 60 12.5 - 105 12.5 - 83									õ
Maximum Short Circuit Current (Isc)		11 10.1 11.75 11 14								7	>
Maximum DC Input Current		13.75 12.5 14.65 12.5 17.5								P.F.	-
Maximum Efficiency		99.5									
Weighted Efficiency		98.8 98.6 98.6									
Overvoltage Category OUTPUT DURING OPER	L ATION (POW	ER OPTIMI	ZER CONNEC			AREDGE IN	VERTER)				
Maximum Output Current		15 / A									
Maximum Output Voltage		60 85									S
OUTPUT DURING STAND	DBY (POWER	OPTIMIZER	DISCONNECT	TED FROM SO	DLAREDGE IN	NVERTER OR	SOLAREDGI	E INVERTER O	OFF)		₹
Safety Output Voltage per Power Optimizer				1 ±	0.1				Vdc		kW PHOTOVOLTAIC PLANS
STANDARD COMPLIANO	CE										$\underline{\circ}$
EMC			FCC Pa	art15 Class B, IEC6	1000-6-2, IEC6100	0-6-3					⋖
Safety				IEC62109-1 (class	II safety), UL1741						\Box
Material				UL94 V-0 , l	JV Resistant						Ó
RoHS				Ye	rs .						\geq
INSTALLATION SPECIFIC	CATIONS										\succeq
Maximum Allowed System Voltage				100	00				Vdc		오
Compatible inverters			All SolarE	dge Single Phase	and Three Phase	inverters					Δ
Dimensions (W x L x H)	129 >	153 x 27.5 / 5.1 ›	(6 x 1.1	129 x 153 x 33.5 / 5.1 x 6 x 1.3	129 x 153 x 29.5 /5.1 x 6 x 1.16	129 x 159 x 49.5	5 / 5.1 x 6.3 x 1.9	129 x 162 x 59 / 5.1 x 6.4 x 2.3	mm / in		⋛
Weight (including cables)		630 / 1.4		750 / 1.7	655 / 1.5	845	/ 1.9	1064 / 2.3	gr / lb		
Input Connector			MC	4(3)			Single or dual MC4 ⁽³⁾⁽⁴⁾	MC4 ⁽³⁾			9.500
Input Wire Length				0.16 /	0.52				m / ft		6
Output Wire Type / Connector			T	Double Insul							⊣
Output Wire Length	0.9 /	2.95			1.2 /	3.9			m / ft		
Operating Temperature Range ⁽⁵⁾				-40 - +85 /					°C / °F		, 0
Protection Rating				IP68 / N					0/	990	2 5
Relative Humidity				0 -	IUU				%	10	8 ,

(1) Rated power of the module at STC will not exceed the optimizer "Rated Input DC Power". Modules with up to +5% power tolerance are allowed

⁽²⁾ NEC 2017 requires max input voltage be not more than 80V

PV System D a SolarEdge	esign Using Inverter ⁽⁶⁾⁽⁷⁾	Single Phase HD-Wave Single phase		Three Phase for 208V grid	Three Phase for 277/480V grid	
Minimum String Length	P320, P340, P370, P400, P401	8	3	10	18	
(Power Optimizers)	P405, P485, P505	6	5	8	14	
Maximum String Length (Pow	er Optimizers)	2	5	25	50(8)	
Maximum Power per String		5700 (6000 with SE7600-US - SE11400- US)	5250	6000 ⁽⁹⁾	12750 ⁽¹⁰⁾	W
Parallel Strings of Different Ler	ngths or Orientations		,	Yes		

⁽⁶⁾ For detailed string sizing information refer to: http://www.solaredge.com/sites/default/files/string_sizing_na.pdf
(7) It is not allowed to mix P405/P485/P505 with P320/P340/P370/P400/P401 in one string
(8) A string with more than 30 optimizers does not meet NEC rapid shutdown requirements; safety voltage will be above the 30V requirement
(9) For 2080 rgid: it is allowed to install up to 6,500W per string when the maximum power difference between each string is 1,000W
(10) For 277/480V grid: it is allowed to install up to 15,000W per string when the maximum power difference between each string is 2,000W

2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572

Daybreak Install LLC

SHEET

EQUIP.

R-102

King, Daniel 1357 NW Ogden Loop Lake City, FL 32055

⁽²⁾ Net. 2017 Feduries max imput values be not mice than not vision of the content of the conten

AC DISCONNECT CUT SHEET

Product data sheet Characteristics

D224NRB SWITCH FUSIBLE GD 240V 200A 2P NEMA3R

Product availability: Stock - Normally stocked in distribution facility

Main	
Product	Single Throw Safety Switch
Line Rated Current	200 A
Certifications	UL listed
Enclosure Rating	NEMA 3R
Disconnect Type	Fusible disconnect
Factory Installed Neutral	Neutral (factory installed)
Short Circuit Current Rating	100 kA maximum depending on fuse H, K or R
Mounting Type	Surface
Number of Poles	2
Electrical Connection	Lugs
Duty Rating	General duty
Width	19 in
Height	29.25 in
Wire Size	8.5 in

Ordering and shipping details

Category	00106 - D & DU SW,NEMA3R, 30-200A
Discount Schedule	DE1A
GTIN	00785901460763
Nbr. of units in pkg.	1
Package weight(Lbs)	42.70000000000003
Returnability	Υ
Country of origin	US

Offer Sustainability

California proposition 65	WARNING: This product can expose you to chemicals including:
Substance 1	Lead and lead compounds, which is known to the State of California to cause cancer and birth defects or other reproductive harm.
More information	For more information go to www.p65warnings.ca.gov

Contractual warranty

18 month

DATE RELEASE 08/04/2021 SUBMIT FOR PERMIT EQUIP. R-103 19.500 kW PHOTOVOLTAIC PLANS King, Daniel 1357 NW Ogden Loop Lake City, FL 32055 NAME ADDRESS ADDRESS CVC56966 2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572

Daybreak Install LLC

CUT SHEETS

Ground Mount System

Mount on all terrains, in no time.

The IronRidge Ground Mount System combines our XR1000 rails with locally-sourced steel pipes or mechanical tubing, to create a cost-effective structure capable of handling any site or terrain challenge.

Installation is simple with only a few structural components and no drilling, welding, or heavy machinery required. In addition, the system works with a variety of foundation options, including concrete piers and driven piles.

Rugged Construction

Engineered steel and aluminum components ensure durability.

UL 2703 Listed System

Meets newest effective UL 2703 standard.

Flexible Architecture

Multiple foundation and array configuration options.

PE Certified

Pre-stamped engineering letters available in most states.

Design Software

Online tool generates engineering values and bill of materials.

20-Year Warranty

Twice the protection offered by competitors.

Top Caps

Bonded Rail Connectors Diagonal Braces

UFOs 😑

Attach and bond Rail Assembly to cross pipes.

Optional Brace provides additional support.

Stopper Sleeves 😑

Cross Pipe & Piers

Steel pipes or mechanical tubing for substructure.

Accessories

Rail Assembly

XR1000 Rails

pipes.

Connect vertical and cross

Curved rails increase spanning capabilities.

Universal Fastening Objects bond modules to rails.

Snap onto the UFO to turn into a bonded end clamp.

Wire Clips and End Caps provide a finished look.

Resources

Design Assistant Go from rough layout to fully

engineered system. For free.

Go to ironridge.com/design

NABCEP Certified Training

Earn free continuing education credits, while learning more about our systems.

Go to ironridge.com/training

SHEET

CUT

EQUIP.

R-104

RELEASE SUBMIT FOR PERMIT

DATE 08/04/2021

kW PHOTOVOLTAIC PLANS

19.500

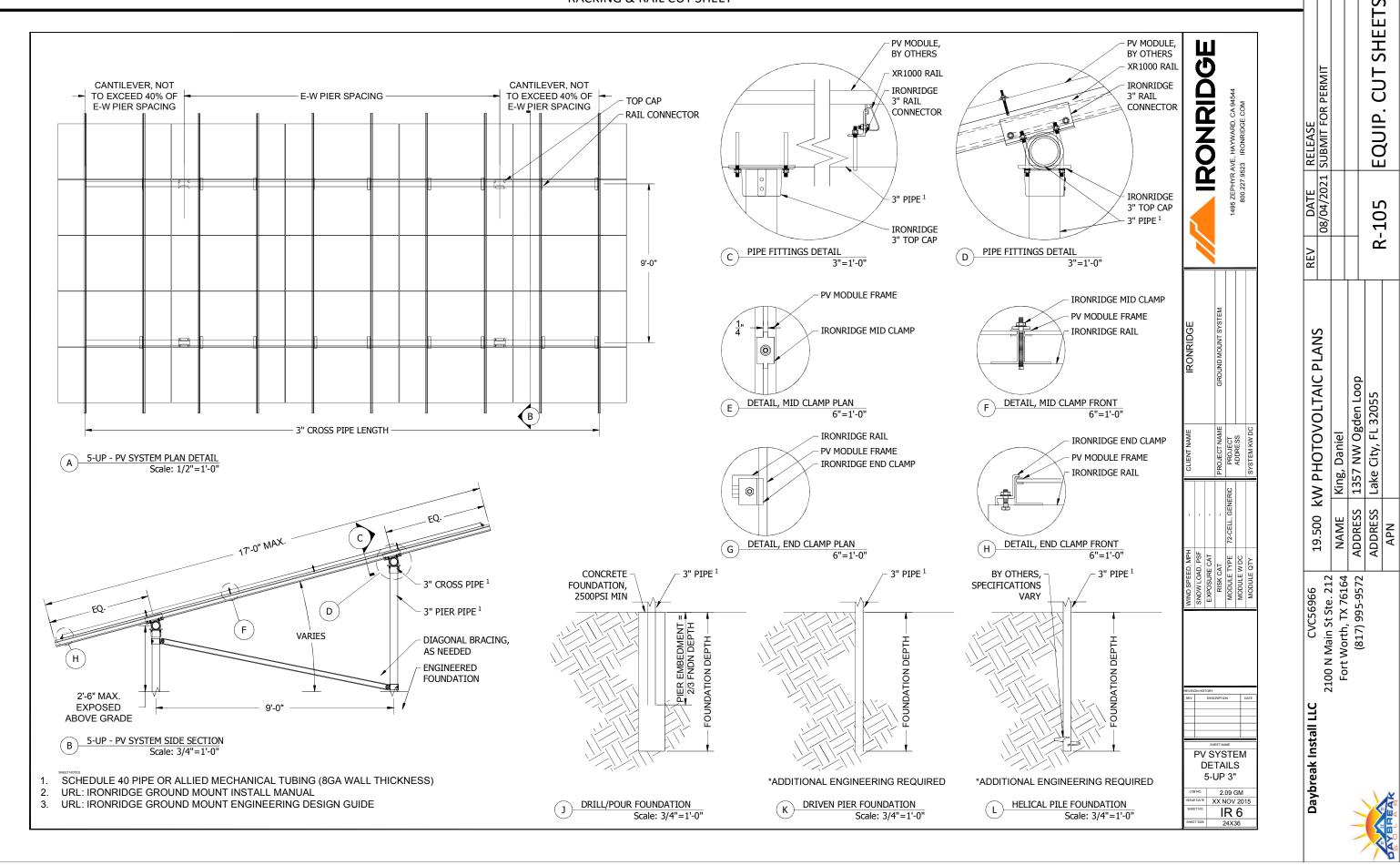
King, Daniel 1357 NW Ogden Loop Lake City, FL 32055

NAME ADDRESS ADDRESS

CVC56966 2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572

Daybreak Install LLC

RACKING & RAIL CUT SHEET


SHEET

CUT

EQUIP.

2

R-10

Starling Madison Lofquist, Inc.

5224 South 39th Street, Phoenix, Arizona 85040 tel: (602) 438-2500 fax: (602) 438-2505 ROC#291316 www.smleng.com

IronRidge 28357 Industrial Boulevard Hayward, CA 94545 July 1, 2019 Page 1 of 52

Attn: Mr. Corey Geiger, VP New Markets, IronRidge Inc.

Subject: Ground Mounting System – Structural Analysis – 5 Module (XR 1000)

Dear Sir:

We have analyzed the subject ground mounted structure and determined that it is in compliance with the applicable sections of the following Reference Documents:

Codes: ASCE/SEI 7-16 Min. Design Loads for Buildings & Other Structures

Florida Building Code, 2020 Edition

Other: AC428, Acceptance Criteria for Modular Framing Systems Used to Support PV

Modules, dated Effective November 1, 2012 by ICC-ES

Aluminum Design Manual, 2015 Edition

IronRidge Exhibit EX-0002

The structure is a simple column (pier) and beam (cross pipe) system. The piers & cross pipes are ASTM A53 Grade B standard weight (schedule 40) steel pipes or Allied Mechanical Tubing. Please refer to Exhibit EX-0002 for approved pipe geometry and material properties. The tops of the piers are connected in the E-W direction by the cross pipes which cantilever over and extend past the end piers. The cross pipes are connected by proprietary IronRidge XR1000 Rails spanning up and down the slope which cantilever over and extend past the top and bottom cross pipes. There are typically two rails per column of modules. The modules are clamped to the rails by the IronRidge Module Mounting Clamps as shown in the attached Exhibit.

Gravity loads are transferred to the piers and foundations by the rails and cross pipes acting as simple beams. For lateral loads the system is either a cantilever structure or, when diagonal braces are provided, a braced frame. The effect of seismic loads (for all design categories A-F) have been determined to be less than the effect due to wind loads in all load conditions and combinations.

The pier spacing in the N-S direction is 9'-0". The pier spacing in the E-W direction is selected from load tables determined by the structural design for the specified slope, wind load, and snow load. The governing criteria for the pier spacing is either the spanning capacity of the cross pipes or the cantilever capacity of the pier. Simplified Load Tables 1A-F & 2A-F are included herein for reference.

More comprehensive information covering all load combinations is available at the IronRidge website, IronRidge.com.

IronRidge Mr. Corey Geiger

Ground Mounting System – Structural Analysis – 5 Module (XR1000)

July 1, 2019 Page 11 of 52

Table 2D - MAXIMUM PIER SPACING (in)											
3" Braced Pipe Frame	Snow					Slope	(deg)				
Wind Speed & Exposure Category	psf	0	5	10	15	20	25	30	35	40	45
	0	206	206	202	196	187	179	172	172	173	174
	10	182	182	180	178	176	175	172	172	173	174
100 mph	20	155	155	155	154	155	157	158	163	170	174
Exposure B	30	145	146	145	144	146	149	152	158	165	172
Exposure B	40	133	133	133	132	135	139	142	149	157	166
	50	121	121	122	123	126	130	135	142	150	160
	60	111	111	112	113	119	123	128	135	144	154
	0	206	206	194	189	179	172	165	165	166	166
	10	182	182	176	174	172	170	165	165	166	166
105 mph	20	155	155	152	151	152	153	154	159	165	166
Exposure B	30 40	145 133	146	143	142	144	146	148	153	160	166 161
1			133	131	131	133 125	136	140	146	153	
	50 60	121 111	121 111	122 112	122 113		128	132	139	147 141	156
	0	206	206	187	182	118 173	122 165	126 158	133 158	159	151 160
	10	182	182	172	170	167	165		158	159	160
110 mph	20	155	155	149	148	149	149	158 150	155		
										159	160 160
Exposure B	30	145	146	141	140	141	143	145	150	156	
	<u>40</u> 50	133 121	133 121	129 120	129 120	131 123	134 126	137 130	142 136	149 144	157 152
	0	198	203	174	169	160	153	147	146	147	148
	10	178	180	164	162	158	153	147	146	147	148
120 mph	20	153	154	144	143	143	143	143	146	147	148
Exposure B	30	143	145	136	135	136	137	138	142	147	148
Exposure B	40	131	132	126	125	127	129	131	136	142	148
	50	121	121	118	117	119	122	125	130	137	144
	0	186	191	163	158	149	143	137	136	137	137
	10	171	174	157	154	149	143	137	136	137	137
130 mph	20	148	150	139	138	137	136	135	136	137	137
Exposure B	30	140	141	132	131	131	131	131	135	137	137
Exposure B	40	128	130	123	122	123	124	125	130	135	137
	50	119	120	115	114	116	118	120	125	131	137
	0	175	180	153	148	140	133	128	127	128	128
	10	164	167	150	147	140	133	128	127	128	128
140 mph	20	144	146	134	133	131	130	128	127	128	128
Exposure B	30	136	138	128	127	126	126	125	127	128	128
'	40	125	127	119	118	119	119	120	124	128	128
	50	117	118	112	111	113	114	115	120	125	128
	0	165	170	144	139	132	125	120	119	120	120
150 mph	10	158	161	143	139	132	125	120	119	120	120
	20	140	142	130	128	126	124	120	119	120	120
Exposure B	30	132	134	124	122	121	120	120	119	120	120
	40	123	124	116	115	115	115	115	118	120	120
	0	157	161	136	131	124	118	113	112	113	113
160 mph	10	152	155	136	131	124	118	113	112	113	113
Exposure B	20	136	138	125	123	121	118	113	112	113	113
Lyposule B	30	129	131	120	118	117	116	113	112	113	113
	40	120	121	113	111	111	111	110	112	113	113

Notes: see page 14

Starling Madison Lofquist, Inc.

Consulting Structural and Forensic Engineers

DAYBREAK

SHEET

CUT

EQUIP.

R-106

RELEASE SUBMIT FOR PERMIT

kW PHOTOVOLTAIC PLANS

19.500

Daybreak Install LLC

2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572

King, Daniel 1357 NW Og Lake City, FL

RACKING & RAIL CUT SHEET

IronRidge July 1, 2019 Mr. Corey Geiger Page 14 of 52

Ground Mounting System – Structural Analysis – 5 Module (XR1000)

IronRidge Mr. Corey Geiger Ground Mounting System – Structural Analysis – 5 Module (XR1000) July 1, 2019

Page 25 of 52

SHEETS

QUIP.

R-10]

kW PHOTOVOLTAIC PLANS

19.500

2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572

King, Daniel 1357 NW Ogc Lake City, FL

Notes for Tables 1 & 2:

- = Indicated region denotes the requirement for (3) three XR1000 rails.
 - = Indicated region denotes special requirements for XR1000 rails contact IronRidge.
- 2. Cross pipe splices not permitted in outer 2/3 of end spans, or the middle 1/3 of interior spans based on the installed attachment spacing (Linstall). See Figure A
- 3. End cantilever span of pipe rails (max) = 0.40 x maximum span (L_{max}) from above tables. See
- 4. When installations occur on a N-S grade, the design slope of the array shall be determined as the slope relative to level ground. Code required topographic effects have not been considered. Topographic (Wind) Factor = 1.0 (no topographic effects)
- 5. Dead Load (Weight) = 3 psf
- 6. Maximum PV Module Dimension = 80"

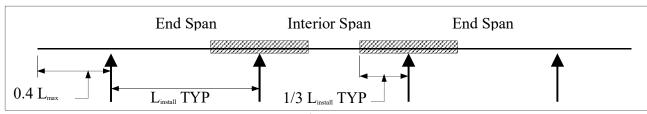


Figure A

 L_{max} = Maximum pier spacing provided in the tables above for the project design criteria

 $L_{install}$ = Actual installed pier spacing

= Indicates region of the pipe rail where splice may be installed

To avoid potential problems from the effects of thermal expansion, a maximum total continuous cross pipe length of 100 ft is recommended.

Notes for CAMO module clamp installation:

- 1. Single module installation ("orphan modules") shall not be permitted with the ground mount system when CAMO clamp is used. Reference Figure 1 on following page for "Orphan Module" installation.
- 2. CAMO clamps will function within a module's design load ratings. Be sure the specific module being used with the CAMO clamp meets the dimensional requirements shown in Figure 2 on the following page, is a module listed in IronRidge's installation manual, and that the module selected is suitable for the environmental conditions of a particular project.

- 14 -

				Soil Cl	ass 2						
	Table	4D - I	MINIM	UM FO	UNDA	TION D	EPTHS	(in)			
3" Pipe Frame Braced	Pier Dia		Slope (deg)								
Wind Speed & Exposure Category	(in)	0	5	10	15	20	25	30	35	40	45
	12	36	36	36	36	42	48	48	54	60	60
100 mph	16	36	36	36	36	36	42	42	48	54	54
Exposure B	20	36	36	36	36	36	36	42	42	48	48
	24	36	36	36	36	36	36	36	42	42	48
	12	36	36	36	36	42	48	54	54	60	66
105 mph	16	36	36	36	36	36	42	48	48	54	54
Exposure B	20	36	36	36	36	36	36	42	42	48	48
	24	36	36	36	36	36	36	36	42	42	48
	12	36	36	36	42	42	48	54	54	60	66
110 mph	16	36	36	36	36	36	42	48	48	54	60
Exposure B	20	36	36	36	36	36	36	42	48	48	54
	24	36	36	36	36	36	36	42	42	42	48
	12	36	36	36	42	48	48	54	60	66	66
120 mph	16	36	36	36	36	36	42	48	54	54	60
Exposure B	20	36	36	36	36	36	42	42	48	48	54
	24	36	36	36	36	36	36	42	42	48	48
	12	36	36	36	48	48	54	60	60	66	72
130 mph	16	36	36	36	36	42	48	48	54	60	60
Exposure B	20	36	36	36	36	36	42	48	48	54	54
	24	36	36	36	36	36	36	42	48	48	54
	12	36	42	36	48	54	54	60	66	66	72
140 mph	16	36	36	36	42	42	48	54	54	60	66
Exposure B	20	36	36	36	36	36	42	48	48	54	60
	24	36	36	36	36	36	42	42	48	48	54
	12	36	42	48	54	60	60	60	66	72	78
150 mph	16	36	36	36	42	48	48	54	60	60	66
Exposure B	20	36	36	36	36	42	42	48	54	54	60
	24	36	36	36	36	36	42	48	48	54	54
	12	42	48	48	54	60	60	66	66	72	78
160 mph	16	36	36	36	42	48	48	54	60	66	72
Exposure B	20	36	36	36	36	42	48	48	54	60	60
-	24	36	36	36	36	36	42	48	48	54	60

Notes: see page 52

Starling Madison Lofquist, Inc.

Consulting Structural and Forensic Engineers

Starling Madison Lofquist, Inc.

Consulting Structural and Forensic Engineers

- 25 -

Daybreak Install LLC

IronRidge July 1, 2019 Mr. Corey Geiger Page 15 of 52

Ground Mounting System – Structural Analysis – 5 Module (XR1000)

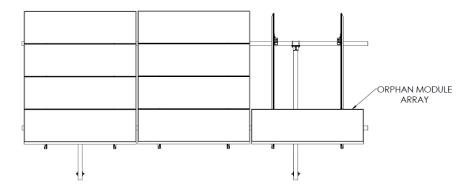


Figure 1: Orphan Module Installation

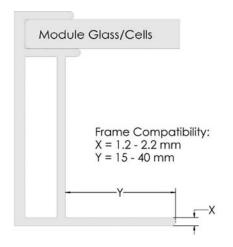


Figure 2: CAMO Clamp Module Frame Dimensional Requirements

Foundation Requirements

The foundation requirements for a cast-in-place drilled concrete pier system and for each soil class 2, 3, & 4 may be obtained from the tables below. The soil class is noted at the top of the tables. For each soil class Tables 3A-3F and 4A-4F are provided for the 2in and 3in systems respectively. These tables are based on the piers being installed at their maximum allowable spacing. For spacing values less than maximum and for loads cases with snow > 0 psf, the requirements can be determined by using the online Design Assistant at IronRidge.com.

IronRidge July 1, 2019 Mr. Corey Geiger Page 52 of 52 Ground Mounting System - Structural Analysis - 5 Module (XR1000)

Notes for Tables 3 & 4:

- 1. Concrete Weight = 145 pcf/fc = 2500 psi
- 2. Provide Air Entraining Admixture for freeze and thaw cycles as required for colder climates.
- 3. Skin Friction per 2020 FBC 1810.3.3.1.4 & 5
- 4. Top 1'-0" of soil neglected for Skin Friction
- 5. Snow Load = 0 psf tabulated values are conservative for Snow Loads > 0 psf
- 6. * indicates special foundation required. Contact IronRidge
- 7. Resistance to corrosion and/or sulfate attack, along with possible adverse effects due to expansive soils has not been considered in these foundation recommendations. SML Engineers assumes no liability with regard to these items.
- 8. Soil classification is to be determined and verified by the end user of this certification letter.

The analysis assumes that the array, including the connections and associated hardware, are installed in a workmanlike manner in accordance with the IronRidge Ground Mount Installation Manual and generally accepted standards of construction practice. Verification of PV Module capacity to support the loads associated with the given array shall be the responsibility of the Contractor or Owner and not IronRidge or Starling Madison Lofquist.

- 52 -

Please feel free to contact me at your convenience if you have any questions.

Respectfully yours,

Tres Warner, P.E. Design Division Manager

Tres J

Digitally signed by Tres **J Warner** DN: c=US, o=Starling Madison Lofquist Inc, ou=A01410C00000174 6F7B4222000053B6, Date: 2021.02.25

13:15:45 -07'00'

Starling Madison Lofquist, Inc.

Consulting Structural and Forensic Engineers

SHEET

CUT

EQUIP.

R-108

RELEASE SUBMIT FOR PERMIT

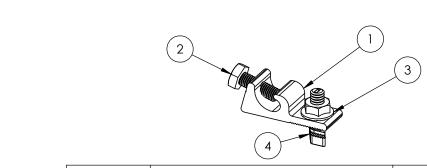
DATE 08/04/2021

kW PHOTOVOLTAIC PLANS

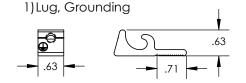
19.500

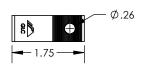
Daybreak Install LLC

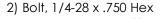
King, Daniel 1357 NW Ogc Lake City, FL 3

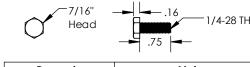

NAME ADDRESS ADDRESS

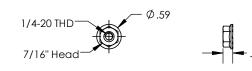
2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572

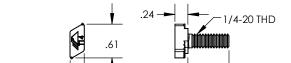

Grounding Lug




ITEM NO.	DESCRIPTION	QTY. IN KIT
1	LUG, GROUNDING, LAY-IN - LOW PROFILE	2
2	BOLT, 1/4-28 X .750" HEX CS SST	2
3	NUT, FLANGE HEX 1/4-20 SST	2
4	BOLT, T CSTM 1/4-20 X 1.188" LOCK SS	2


Part Number	Description	Wire Size Range (AWG)
GD-LUG-003	KIT, 2PCS, GROUNDING LUG, LOW PROFILE	4-10


Property	Value
Material	Tin Plated Copper
Finish	Clear Matte

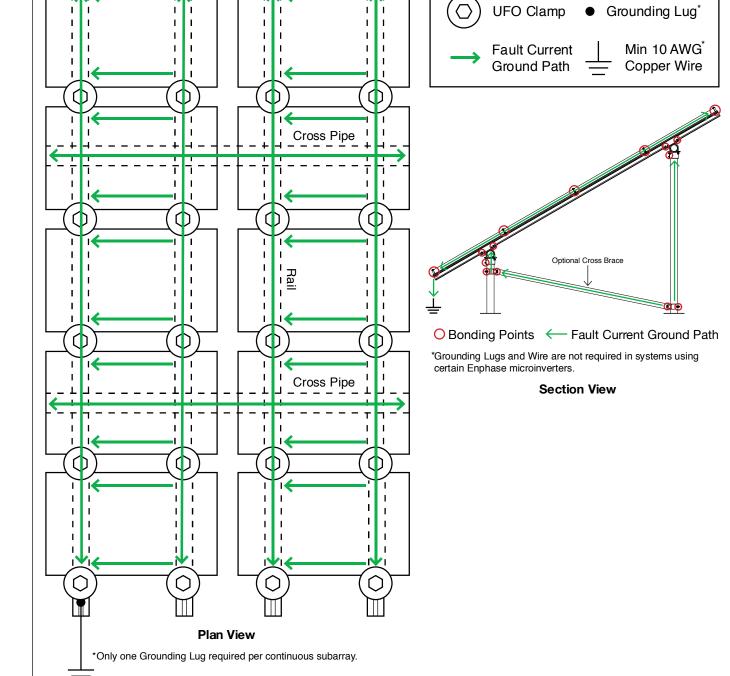

Property	Value
Material	300 Series Stainless Steel
Finish	Clear

3) Nut, Flange Hex 1/4-20

4) Bolt, T CSTM 1/4-20 x .750

Property	Value
Material	300 Series Stainless Steel
Finish	Clear

Property	Value
Material	300 Series Stainless Steel
Finish	Clear


kW PHOTOVOLTAIC PLANS King, Daniel 1357 NW Ogden Loop Lake City, FL 32055 19.500 CVC56966 2100 N Main St Ste. 212 Fort Worth, TX 76164 (817) 995-9572 Daybreak Install LLC

CUT SHEETS

EQUIP.

R-110

DATE 08/04/2021

© 2018 IRONRIDGE, INC. VERSION 1.60

ELECTRICAL DIAGRAM

GROUND MOUNT INSTALLATION MANUAL - 7