

RE: 2733930 - IC CONST - DRAWDY RES. MiTek USA, Inc. 6904 Parke East Blvd. Site Information: Tampa, FL 33610-4115 Customer Info: IC Construction Project Name: Drawdy Res. Model: Custom Lot/Block: N/A Subdivision: N/A Address: 874 SW Mandiba Drive, N/A City: Columbia Cty State: FL Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address: City: State: General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special

Loading Conditions):

Design Code: FBC2020/TPI2014

Wind Code: N/A Roof Load: 37.0 psf

T23611266

T23611267

T23611268

T23611269

T23611270

T23611271

T23611272

T23611273

T05

T06

T07

T08

T09

T10

T08G

T05G

20 21 22

Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 33 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T23611252	EJ01G	4/19/21	23	T23611274	T10G	4/19/21
2	T23611253	EJ02	4/19/21	24	T23611275	T11	4/19/21
3	T23611254	EJ02G	4/19/21	25	T23611276	T11G	4/19/21
4	T23611255	EJ03	4/19/21	26	T23611277	T12	4/19/21
5	T23611256	EJ03G	4/19/21	27	T23611278	T13	4/19/21
6	T23611257	PB01	4/19/21	28	T23611279	T14	4/19/21
7	T23611258	PB01G	4/19/21	29	T23611280	TG01	4/19/21
8	T23611259	PB02	4/19/21	30	T23611281	V01	4/19/21
9	T23611260	PB02G	4/19/21	31	T23611282	V02	4/19/21
10	T23611261	T01G	4/19/21	32	T23611283	V03	4/19/21
11	T23611262	T02	4/19/21	33	T23611284	V04	4/19/21
12	<u>T23611263</u>	<u>T02</u> G	4/19/21				
13	T23611264	103	4/19/21				
14	T23611265	104	4/19/21				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville.

4/19/2

4/19/2

4/19/2

4/19/2

4/19/2

4/19/2

4/19/2[.]

4/19/21

Truss Design Engineer's Name: Velez, Joaquin

My license renewal date for the state of Florida is February 28, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Velez, Joaquin

Plate Offsets (X,Y)	[2:0-3-8,Edge], [2:Edge,0	-3-3]									
LOADING (ps TCLL 20. TCDL 7. BCLL 0. BCDL 10.	f) 0 .0 .0 * 0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2020/T	2-0-0 1.25 1.25 YES PI2014	CSI. TC BC WB Matriz	0.10 0.11 0.07 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 -0.00	(loc) 2-11 2-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%
BCDL 10.0 Code FBC2020/TPI2014 Matrix-S Weight: 62 lb FT = 20% LUMBER- TOP CHORD 2x6 SP No.2 *Except* 1-3: 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD 2x4 SP No.2 BOT CHORD BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 2x4 SP No.3 BOT CHORD BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. All bearings 8-3-8 except (jt=length) 8=Mechanical, 7=0-1-8. (lb) - Max Horz 2=182(LC 8) Max Uplift Mat uplift All uplift Max Uplift All uplift 10 b or less at joint(s) 2, 8, 11, 10 except 9=-110(LC 12), 7=-104(LC 8) Max Grav All reactions 250 lb or less at joint(s) 2, 8, 9, 10, 7 except 11=283(LC 1)												
FORCES. (Ib TOP CHORD) - Max. 2-4≕	Comp./Max. Ten All for -346/109, 4-5=-272/74, 6-	ces 250 (lb) or 9=-210/282	less except v	when shown.							
NOTES-												

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 15-9-11 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 7.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 11, 10 except (jt=lb) 9=110, 7=104.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

 	6 6	-5-1 -5-1		11 5-	-8-0 2-15
Plate Offsets (X,Y)	[2:0-3-5,Edge]				
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0 *	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode FBC2020/TPI2014	CSI. TC 0.34 BC 0.54 WB 0.65 Matrix-MS	DEFL. i Vert(LL) -0.0 Vert(CT) -0.1 Horz(CT) 0.0	n (loc) l/defl L/d 8 6-9 >999 240 6 6-9 >875 180 2 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 48 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ctly applied or 4-8-9 oc purlins, 8-4-3 oc bracing.

REACTIONS. (size) 5=0-3-2, 2=0-3-8 Max Horz 2=74(LC 8) Max Uplift 5=-119(LC 8), 2=-149(LC 8) Max Grav 5=424(LC 1), 2=483(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1272/437

BOT CHORD 2-5=-1272/437 BOT CHORD 2-6=-490/1244, 5-6=-490/1244

WEBS 3-5=-1234/476

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 11-6-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=119, 2=149.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

<u> </u>					
DEFL. in (loc) //defl L/d Vert(LL) -0.13 6-11 >999 240 Vert(CT) -0.24 6-11 >570 180 Horz(CT) 0.03 5 n/a n/a Weight: 50 lb FT = 20%					
BRACING- TOP CHORD Structural wood sheathing directly applied or 3-8-5 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-11-12 oc bracing.					

FORCES. (Ib) - Max. Comp./Max. 1en. - All forces 250 (Ib) or less except when show

TOP CHORD 2-3=-1745/642

BOT CHORD 2-6=-693/1713, 5-6=-693/1713

WEBS 3-5=-1673/667

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 11-6-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are MT20 plates unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=224, 5=127.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

			8-0-0		
			8-0-0		
Plate Offsets (X,Y)	[2:0-3-5,Edge], [4:Edge,0-2-0]				
LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0 *	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2020/TPI2014	CSI. TC 0.62 BC 0.62 WB 0.43 Matrix-MR	DEFL. Vert(LL) 0.2 Vert(CT) 0.2 Horz(CT) -0.0	n (loc) l/defl L/d 8 4-8 >343 240 3 4-8 >405 180 1 2 n/a n/a	PLATES GRIP MT20 244/190 Weight: 28 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.2 P No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct except end verticals. Rigid ceiling directly applied or	ctly applied or 6-0-0 oc purlins, 6-4-3 oc bracing.

REACTIONS. (size) 2=0-3-8, 9=0-1-8 Max Horz 2=51(LC 8) Max Uplift 2=-180(LC 8), 9=-132(LC 8) Max Grav 2=350(LC 1), 9=263(LC 1)

2x4 SP No.3

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-316/426, 4-5=-255/149, 3-5=-255/149

BOT CHORD 2-4=-457/296

WEBS 3-9=-326/490

NOTES

OTHERS

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 7-6-12 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 9.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=180, 9=132.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

LOADING (p TCLL 20 TCDL 7 BCLL 0 BCDL 10	osf) 0.0 7.0 0.0 * 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code FBC2020/TF	2-0-0 1.25 1.25 YES Pl2014	CSI. TC BC WB Matrix	0.61 0.30 0.00 <-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 0.02 -0.00	(loc) 1 1 6	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP 2x4 SP 2x4 SP 2x4 SP	No.2 No.2 No.3 No.3				BRACING- TOP CHOR BOT CHOR	D S e D F	Structur except e Rigid ce	al wood s and vertic iling dire	sheathing dire als. ctly applied o	ectly applied or 6-0-0 c r 10-0-0 oc bracing.	oc purlins,	

REACTIONS. All bearings 8-0-0.

(lb) - Max Horz 2=53(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 5 except 4=-558(LC 1), 6=-362(LC 12), 2=-100(LC 8)

Max Grav All reactions 250 lb or less at joint(s) 5 except 4=263(LC 12), 6=639(LC 1), 2=270(LC 1), 7=294(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-804/979

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 8-0-0 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb)
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb)
 4=558, 6=362, 2=100.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

BRACING-

TOP CHORD

BOT CHORD

FORCES.	(lb) - Max. Comp./Max.	Ten All forces 250 (lb) of	or less except when shown.
---------	------------------------	----------------------------	----------------------------

BCDL

LUMBER-

OTHERS REACTIONS.

TOP CHORD

BOT CHORD

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

(size)

Max Horz 2=55(LC 11)

NOTES-

1) Unbalanced roof live loads have been considered for this design.

Code FBC2020/TPI2014

2=6-5-13, 4=6-5-13, 6=6-5-13

Max Uplift 2=-50(LC 12), 4=-57(LC 13), 6=-16(LC 12) Max Grav 2=156(LC 1), 4=156(LC 1), 6=219(LC 1)

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,

GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Interior(1) 3-3-5 to 4-0-0, Exterior(2R) 4-0-0 to 7-2-15, Interior(1) 7-2-15 to 7-8-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-P

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Weight: 27 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 20%

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

REACTIONS. (size) 2=5-5-3, 4=5-5-3, 6=5-5-3 Max Horz 2=-47(LC 10)

Max Uplift 2=-44(LC 12), 4=-50(LC 13), 6=-13(LC 12) Max Grav 2=136(LC 1), 4=136(LC 1), 6=182(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,
- GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. (size) 2=2-10-6, 4=2-10-6, 6=2-10-6 Max Horz 2=-39(LC 10)

Max Uplift 2=-25(LC 12), 4=-29(LC 13), 6=-1(LC 12) Max Grav 2=84(LC 1), 4=84(LC 1), 6=83(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten, - All forces 250 (lb) or less except when shown,

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,
- GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3

REACTIONS. (size) 2=2-0-8, 4=2-0-8, 6=2-0-8

Max Horz 2=30(LC 11) Max Uplift 2=-21(LC 12), 4=-24(LC 13)

Max Grav 2=66(LC 1), 4=66(LC 1), 6=59(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,

GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 3-2-2 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

MiTek

April 19,2021

6904 Parke East Blvd Tampa, FL 36610

6904 Parke East Blvd Tampa, FL 36610

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=177, 9=177.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-8 to 1-11-4, Exterior(2N) 1-11-4 to 9-10-7, Corner(3E) 9-10-7 to 13-0-9, Corner(3R) 13-0-9 to 16-0-9, Exterior(2N) 16-0-9 to 23-11-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 21, 17, 26, 22 except (jt=lb) 16=123, 18=112, 19=106, 27=127, 25=112, 24=107.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

April 19,2021

April 19,2021

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=237, 6=237.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

								Structur	alwood	shoothing d	irectly applied or 6.0.0 a	
BCDL	10.0	Code FBC2020/T	PI2014	Matr	ix-S	1012(01)	0.01	20	Π/a	n/a	Weight: 204 lb	FT =
TCDL	7.0 0.0 *	Lumber DOL Rep Stress Incr	1.25 VES	BC	0.05	Vert(CT)	-0.00	20 20	n/r	120 p/a		
TCLL	20.0	Plate Grip DOL	1.25	TC	0.06	Vert(LL)	-0.00	20	n/r	120	MT20	244/1
LOADING	j (pst)	SPACING-	2-()-()	CSI.		DEFL.	ın	(loc)	l/detl	l/d	PLATES	GRIP

BOT CHORD

WFBS

Rigid ceiling directly applied or 10-0-0 oc bracing.

11-28, 10-30, 12-27

1 Row at midpt

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 29-6-0.

(lb) - Max Horz 2=-224(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 30, 31, 32, 33, 34, 35, 27, 26, 25, 24, 23, 22, 20

Max Grav All reactions 250 lb or less at joint(s) 2, 28, 30, 31, 32, 33, 34, 35, 27, 26, 25, 24, 23, 22, 20

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 14-9-0, Corner(3R) 14-9-0 to 17-9-0, Exterior(2N) 17-9-0 to 30-6-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 30, 31, 32, 33, 34, 35, 27, 26, 25, 24, 23, 22, 20.

20%

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-9-0, Interior(1) 2-9-0 to 22-9-0, Exterior(2R) 22-9-0 to 26-6-0, Interior(1) 26-6-0 to 38-6-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=182, 15=378, 8=236.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

LOADING (psf) TCLL 20.0 TCDL 7.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code FBC2020/TPI2014	CSI. TC 0.39 BC 0.84 WB 0.45 Matrix-MS	DEFL. in (loc) l/defl L/d Vert(LL) -0.18 16-18 >999 240 Vert(CT) -0.30 16-18 >999 180 Horz(CT) 0.07 12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 255 lb FT = 20%
LUMBER-			BRACING-	

LUMBER-		BRACING-			
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheat	hing directly applied or 3-8-0 oc purlins,	
BOT CHORD	2x4 SP No.2		except end verticals, a	and 2-0-0 oc purlins (5-2-4 max.): 6-8.	
WEBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly a	pplied or 10-0-0 oc bracing, Except:	
	10-12: 2x6 SP No.2		8-7-8 oc bracing: 2-18		
		WEBS	1 Row at midpt	5-16, 7-15, 7-16	
REACTIONS	(size) 2=0-3-8 12=0-3-0				

Max Horz 2=294(LC 11) Max Uplift 2=305(LC 12), 12=-279(LC 13) Max Grav 2=1548(LC 19), 12=1559(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2296/453, 3-5=-2164/457, 5-6=-1576/387, 6-7=-1256/366, 7-8=-1108/317,

8-9=-1409/317, 9-10=-1300/245, 10-12=-1480/291

BOT CHORD 2-18=-465/2043, 16-18=-307/1660, 15-16=-183/1212, 13-15=-155/1034

WEBS 3-18=-279/188, 5-18=-102/576, 5-16=-628/269, 6-16=-122/646, 7-15=-394/173,

8-15=-114/530, 9-13=-433/116, 10-13=-148/1188, 7-16=-90/252

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,

GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 2-7-2, Interior(1) 2-7-2 to 16-3-3, Exterior(2R) 16-3-3 to 21-4-3, Interior(1) 21-4-3 to 24-3-3, Exterior(2R) 24-3-3 to 29-4-3, Interior(1) 29-4-3 to 37-0-0 zone; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=305, 12=279.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

MiTek

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6)
- will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 171 lb uplift at joint 2, 439 lb uplift at joint 20 and 236 lb uplift at joint 13.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

MiTek

BRACING-TOP CHORD

BOT CHORD

WEBS

	18		
ட	JIN		κ-

LOWIDER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 11-13: 2x6 SP No.2

REACTIONS. (size) 2=0-3-8, 19=0-3-8, 13=0-3-0 Max Horz 2=312(LC 11) Max Uplift 2=-243(LC 8), 19=-411(LC 12), 13=-214(LC 13) Max Grav 2=439(LC 25), 19=2037(LC 2), 13=1261(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-508/524, 3-4=-353/466, 4-5=-306/72, 5-6=-353/123, 6-7=-929/314, 7-8=-727/296,

- TOP CHORD 8-9=-787/352, 9-10=-1026/345, 10-11=-1028/283, 11-13=-1183/334
- BOT CHORD 2-21=-507/458, 19-21=-501/453, 18-19=-421/413, 17-18=-116/695, 15-17=-118/794, 14-15=-146/802 WEBS
- 3-21=-378/306, 3-19=-915/895, 6-18=-929/429, 6-17=-93/304, 7-17=-71/346
 - 9-15=-43/329, 10-14=-303/113, 11-14=-142/917, 4-19=-1639/466, 4-18=-332/1369, 8-17=-267/162

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-0-0 to 3-4-12, Interior(1) 3-4-12 to 24-3-3, Exterior(2R) 24-3-3 to 28-7-15, Interior(1) 28-7-15 to 32-3-3, Exterior(2R) 32-3-3 to 36-7-15, Interior(1) 36-7-15 to 45-0-0 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 243 lb uplift at joint 2, 411 lb uplift at ioint 19 and 214 lb uplift at joint 13.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 5-6-6 oc purlins,

6-18, 8-15, 10-15, 8-17

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-9.

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway. Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

MiTek

April 19,2021

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 April 19,2021

Job	Truss	Truss Type	Qty	Ply	IC CONST - DRAWDY RES.	
					T23	3611280
2733930	TG01	Flat Girder	1	2		
				_	Job Reference (optional)	
Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244,		FL - 32244,		8.430 s Ma	ar 22 2021 MiTek Industries, Inc. Fri Apr 16 12:26:29 2021 Pa	age 2

ID:?batxm1y7s36M6H7BYML76yubcf-d8KMnbjl_7cD_PcnBJz2DkP62kf?p6Gb9zy2L5zQ8Wu

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 1=-416 3=-416 8=-370 9=-370 10=-370 12=-624(B) 13=-620(B) 14=-620(B) 15=-624(B)

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 12=144, 13=169, 9=144, 8=169.

6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

REACTIONS. All bearings 13-9-6.

Max Horz 1=95(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-142(LC 12), 6=-142(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=298(LC 19), 6=298(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,

GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 6-11-1, Exterior(2R) 6-11-1 to 9-11-1, Interior(1) 9-11-1 to 13-4-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=142, 6=142.

Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

REACTIONS. (size) 1=7-9-6, 3=7-9-6, 4=7-9-6 Max Horz 1=-51(LC 8) Max Uplift 1=-33(LC 12), 3=-40(LC 13), 4=-35(LC 12) Max Grav 1=125(LC 1), 3=125(LC 1), 4=260(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl.,

GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 3-11-1, Exterior(2R) 3-11-1 to 6-11-1, Interior(1) 6-11-1 to 7-4-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

April 19,2021

