

Scale: 1/8" = 1 ft

ENGINEERING REPORT INDEX SHEET

pursuant to Rule 61G15-23.001(4)(b), F.A.C.

SUPPLEMENTAL INFORMATION TO THE SUBJECT RESIDENTIAL POOL/SPA PERMIT APPLICATION meeting 2020 FBC 7th Ed, Section 454.2 Private Swimming Pools

SPECIFICALLY:

- WORKSHEET SHOWING COMPLIANCE WITH ANSI 15
- SITE SPECIFIC INFORMATION SHOWING COMPLIANCE WITH ANSI 7
- TDH CALCULATION SUPPORTING ANSI 7 SUCTION OUTLET INFORMATION
- ATTACHED PRODUCT SHEETS WITH INFORMATION SUPPORTING
 ANSI 7 AND 15 WORK SHEETS

PROJECT INFORMATION

PROJECT CLIENT: SOUTHERN ESCAPES

PROJECT NAME: LEWIS WALKER

PROJECT ADDRESS: 11394 SE CR 245

LOT: AREA:

> Jeffrey Wanko, PE, #79935 Professional Engineer

SKS

This document has been electronically upned & staled by Johny Warks, PE employed by Free Expressing on the other kines to from Expressing on the other kines are about using a digital signature. Printed topes of this document are not considered spread & stated and the signature must be yet-field on any electronic copies.

for Code

CLIENT SOUTHERN ESCAPES
NAME LEWIS WALKER
ADDRESS 11394 SE CR 245
LOT:

AREA:

of the Control of the Control of Assembly and the Control of the C	WORKSHEET SHOW	ING DATA FOR CON	1PLIAN	ICE WITH	ANSI/AP	SP- 15		
ANSI 15 Filtration -				\$-00-100-100-100-100-100-100-100-100-100	anterior for a sector remains a file of sector of the	The state of the s		
Volume of Pool Area	392 SF x Avg	Depth 4.75 FT	= Vol		1,86	62 <i>CF</i>		
		Vol in CF x 7.4	18 gal/0	CF =	13,92	29 GALLOI	VS	
Calculate Maximum Filtrat	tion Flow Rate: Pool	Volume/ 360 =		39	GPM [if <	:13,000 MA	Y use 36 gp.	m]
ANSI 15 Auxiliary Flow MAY USE LESS THAN THIS MAXIMUM							мим	
Calculate Maximum Auxiliary Load Design Flow Rate: IF AT LEAST ANSI 5 12 HR TURNOVER							OVER	
	Number of Spa J	ets 0 @ 10 gpi	n ea.=	0	GPM			
	Or Water Featur	e Flow:		60	GPM	SHEER		
ANSI 15 Flow:								
[maximum ANSI	15 Filtration Flow, m	inimum 12 hour turr	over]	39	GPM			
	Actual	Turnover at ANSI 15	Flow	6.0	HR			
PUMP FROM APSP LIS	STING		ι	······································				
Select a pump with Curve	A (pools <17,000 gal)	or Curve C (pools >1	7,000	gal) flow	equal to	or less than	ANSI 15 F	iltration
Flow . May select a multi								ie A or C
listed flows. Curve A or C	flows listed have no r	elationship or requir	ement	related t	o ANSI 1	5 Auxiliary	Flow .	
Pump Make & Model:	PENITATO TH	TELLIFLO VS :	RLIP					٦
•		1		CDMA P	a wah c	2004	7	 4
Pump Flow Rate(s) from I		·			@ High S _l	1	- 7	TIGPINI
Pump Control: Filtration F	*	·) ·		be installe		CONT AT	NICK.
Filtration	Filtration Pump with auxiliary load: Control for low speed default w/in 24 hrs: SELF CONTAINED							NED
Size filter on "FILTRATION Flow"								
Filter Rates: Cartridge= 0.		5 gpm/sf; DE= 2 gpn	n/sf					
Filter size: ANSI 15 Flow		$M / [0.375]_{gp}$			103.2	SF Min File	ter Size	
See	pool plan for filter m	odel or show here:	PENT	AIR CCR	P150, 150)SF		٦

ANSI 7 Flow: See Site Spec						<i>~</i>		
ANSI 5 Flow: Depending on the pipe, use any of the ANSI 15 Filtration, or ANSI 15 flows or the flow at 60 ft TDH on the								
See flow vs velocity vs pipe size on Standard Engineering. See summary of pipe sizes on ANSI 7 Site Specific Information Sheet								
Table and the second of the se								
HEATER MODEL:		N/A						
GAS HEATER EFFICIENC	CY RATING:			wit	h no pilot	 : light [min :	82%]	
HEAT PUMP EFFICIENC	CY C.O.P.:			[mi	n 4.0]			

CLIENT SOUTHERN ESCAPES NAME LEWIS WALKER ADDRESS 11394 SE CR 245

Lot:

Area:

	SITE SPECIFIC INFORMA	ATION FOR CO	MPLIANCE W	ITH ANSI,	/APSP-	7		
METHOD OF DETER	MINING ANSI 7 PUMP FLOW		Detailed		<	the management of the company to	***************************************	er, er, far fri er
			Curve 8	k Calc	`			
	SUCTION OUTLET FOR:	FILTRAT	ION PUMP				•	
	Manufacturer & Model:	PENTAIR	INTELLIF	LO VS	3HP			
	Pu	mp Flow from	Pump Curve v	ith meth	od indi	cated:	1:	1 4 <i>GPM</i>
ANSI/APSP/ICC-7 2	013 ADOPTED IN 2020 FBC 7TH E					ION BA	SED ON	I ANSI 7 FLOW
	LISTED SUCTION		•		T			
DRAIN INFO:		CMP CH	IANNEL DE	RAIN				.
	APPROVED Maximum Outlet I	Flow (GPM)	Floor:	182	GPM	Wall:	14	1 4 GPM
			BRANC	H DRAIN		NA		
-	TRUNK SUCTION 6 FPS @ ANSI:	15 FLOW	2 (in) ·	- USE		2.5	(in)	
	SUCTION OUTLET FOR:	NOT USE	D					
	Manufacturer & Model							
	Pu	mp Flow from	Pump Curve v	ith meth	od indi	cated:		GPM
		·	•				***************************************	
ANSI/APSP/ICC-7 20	13 ADOPTED IN 2020 FBC 7TH E	D NO LONGER :	SIZES BRANCH	OR TRUN	K SUCT	ION BA	SED ON	I ANSI 7 FLOW
	LISTED SUCTION	OUTLET COVE	R/GRATE- SPA	OUTLET	S			
DRAIN INFO:								
	APPROVED Maximum Outlet I	Flow (GPM)	Floor:		GPM	Wall:		GPM
			BRANC	H DRAIN				
	TRUNK SUCTION 6 FPS @ ANSI:	15 FLOW	(in) -	- USE			(in)	
ANSI 15 FLOW=	39 GPM							
	MINIMUM CIRCULATION LI		r		1			
	T	RUNK/SKIMM	ER SUCTION:	2	(in) Al	ISI 15 F	low @	6 FPS
		FILTRATIO	N RETURNS:	1,5	(in) AN	ISI 15 F	low @	8 FPS
SPA AUX. FLOW	0 GPM	SPA AUXILIA	RY RETURN:		(in) Al	ISI 5 Flo	ow @ 8	FPS
2 ND AUX. FLOW	60 <i>GPM</i>	2 ND AUXILIAI	RY RETURNS:	2	(in) Al	ISI 5 Flo	w @ 8	FPS
•	OPTIONAL	.VACUUM OR	SWEEP LINE:	1,5	(in) Al	ISI 5 Flo	ow @ 8	FPS
NOTES: SUCTION	OULET COVER/GRATE AN	D BRANCH SI	ZE MEETS	ANSI 7	FLOW			
FOR POO	L USE CMP CHANNEL DRAI	N - NO BRAI	NCH REQUIR	RED				
•								
	SUCTION TO PUMP							
NO CHAI	NGE TO ENGINEERING WIT	HOUT APPRO	WAL OF TH	E ENGIN	IEER			

- For Client Use Only © 2023 Kimes Engineering and Management Services, Inc.
1925 Worth Ct | Bradenton, Florida 34211 | ph: (941)749-0311
C.A. 27189

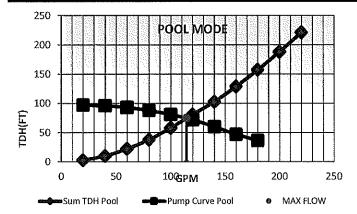
CLIENT SOUTHERN ESCAPES NAME LEWIS WALKER ADDRESS 11394 SE CR 245

LOT: AREA:

	POOL ONLY					
	Suction	Pressure	Equipment			
Pipe Size (in.)	2.5"	2"	2"			
Pipe Length (100% flow)	37	27	15			
#EL fittings	5	5	5			
#T Run fittings	2	2	1			
#T Branch fittings	1	1	1			
Gate Valves	0	0	0			
#3 Way valves	1	1	1			

This calculation assumes worst case with 100% suction from drain and none from skimmer.

This calculation is conservative in that it omits the velocity head on the pressure side beyond the first split of return lines.


Pump Curve PENTAIR INTELLIFLO VS 3HP

Filter: PENTAIR CCRP150, 150SF

Heater: NA
Return Fittings 3

Head loss based on Hazen-Williams equation, where c=150 Head Loss per 100 ft =0.2083 (100/c) $^{1.852}$ * $^{4.8655}$

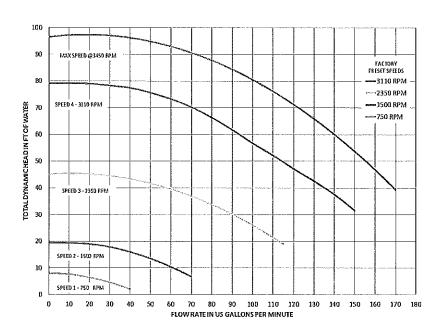
· · · · · · · · · · · · · · · · · · ·											
	DETAILED TDH POOL MODE										
Sum of Pipe Friction	2,1	7.5	15.9	27.0	40.9	57.3	76.2	97.6	121.4	147.6	176.1
Filter(s)	0.0	0.4	1.7	3.7	6.5	9.3	10.3	12.2	14.1	16.0	17.9
Return Fitting(s)	8.0	1.5	3,3	5.0	7.4	10.0	11.2	13.1	14.9	16.8	18.7
Salt System	0.0	0.7	1.4	2.3	3,3	4.3	5.0	5.9	6.7	7.6	8.5
Heater(s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sum TDH (FT H ₂ O)	2.9	10.1	22,3	38.0	58.1	80.9	102.7	128,8	157.2	188.0	221.1
Flow (GPM)	20	40	60	80	100	120	140	160	180	200	220

POOL MODE

MAXIMUM: 114 GPM @ 75' TDH

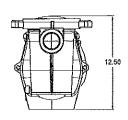
REQUIRED BRANCH SUCTION

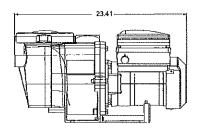
NA (in)


RECOMMENDED MIN. TRUNK SUCTION TO EQUIP:

- For Client Use Only -

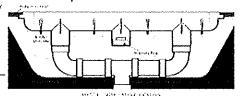
INTELLIFLO® VARIABLE SPEED


HIGH PERFORMANCE PUMP (CONT'D)


Dimensions and Performance

Note: IntelliFlo VS+SVRS minimum speed is 1100 RPM

.... (75)


B. SIZING & SPECIFICATION REFERENCE

- · Suction fitting-configuration specific flow ratings NOT be exceeded at any time the pool is open to bathers.
- A system must install a suction fitting, or combination of multiple suctions, such that the resulting individual suction system flow rating is greater than the pumping system's maximum system flow rate.
- To reduce the risk of drowning from hair and body entrapment, install suction fittings with a marked flow rate in gallons
 per minute that exceeds the flow rate of your system by at least 25%, Increasing size of the pump may increase flow rate
 of suction beyond rated safety limits causing entrapment or death.
- Any modification that increases the flow rate of the circulation system shall require reevaluation of the cover/grate and sump to ensure that the flow rating of the Suction Outlet Fitting Assembly is not exceeded.
- The flow rating for pools with single, or multiple unblockable SOFAs shall be determined by combining the flow rating of all SOFAs piped together in one body of water.
- NOTICE: No modification shall be made to a SOFA structure or flow path unless the new configuration has been certified
 as new SOFA.

TABLE 1: IAPMO LISTED MAX FLOW RATES

PLUMBING SIZE	FORTS	WALL FLOW RATE	FLOOR FLOW PARE
2.5*	CUTER	212 GPM 159	293 GFM 224
2.5*	CENTER	168 GPM 126	200 GFM 150
2'	CUTER	192 GPM 144	242 GPM 182
2*	CENTER	168 GPM 126	ાથ લ્લા 138
	FROM PATE VEID 1 6 MAY	Antipore granina	

** INSTALL ONLY WITH MIN 16" BEFORE CHANGE IN PIPE SIZE

TABLE 2: SPECIFICATIONS

PIPE SIZE

2.5' SPIGOT / 2' SOCKET

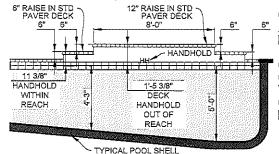
DO NOT adapt suction fitting to any pipe size smaller than ASTM 2' SCH 40 PVC.

OPEN AREA	38 79in ¹				
DRAIN COVER LIFE	7 Years Replace drain cover and screws every seven years				
SUMP BODY LIFE	30 Years				

- Single or multiple drain use
- Floor of wall installation
- PVC Sump Body. Use PVC glue to attach plumbing fittings

All Custom Molded Products main drains are listed and tested in strict accordance to the requirements of ANSI/APSP -16 2017, the current standard of reference for the Virginia Graeme Baker Act, and compliant to the latest Consumer Product Safety Commission (CPSC) requirements.

**ANNOTATION BY KIMES ENGINEERING



** IAPMO Listed VGB Suction: Compliant to ANSI/APSP~16 2017 & CPSC Requirements

RESIDENTIAL POOL AND SPA PLAN REVIEW CHECKLIST FOR CRITICAL SAFETY CODE REQMTS

HANDHOLDS REQUIRED

HANDHOLD(S) PROVIDED WHEN REQUIRED AT RAISED DECK AREAS MORE THAN 12 INCH FROM WATER LINE AND WATER DEPTH MORE THAN 4 FEET FOR LENGTH OF 8 FEET. [2011 ANSI/APSP-5, 17.1]

ON PAVER COPING A 6" RISE STILL HAS HANDHOLD

ON CONCRETE OVER POUR MORE THAN 5" RISE IS OUT OF REACH FOR HANDHOLD.

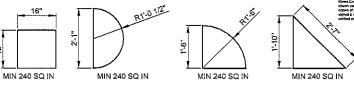
HANDHOLDS REQUIRED

WHEN POOL WATER CLOSER THAN 5 FT

WINDOWS, DOORS OR OTHER GLASS WITHIN 5 FT OF WATER'S EDGE: MUST HAVE MANUFACTURER'S DESIGNATION OF SAFETY GLAZING AND BE VISIBLY MARKED

ALL FIXED METAL PARTS WITHIN 5 FT HORIZONTAL OR 12 FT VERTICAL- DOOR AND WINDOW FRAMES, CAGE AND FENCE STRUCTURES, STATIONARY EQUIPMENT, METAL AWNINGS-SHALL BE BONDED UNLESS PERMANENT BARRIER

ENERGY CODE REQUIREMENTS RESTATED:


- GAS HEATER ELECTRICAL FEED SHALL BE THROUGH GFCI.
- 4X PIPE DIAMETER STRAIGHT PIPE REQUIRED STRAIGHT INTO PUMP, 8" FOR 2" FITTING, 10" FOR 2.5" FITTING.
- MIN 18" STRAIGHT PIPE REQUIRED AFTER FILTER AN BEFORE HEATER, IF HEATER PROVIDED.

PLAN REVIEWER AND INSPECTOR MUST VERIFY SUCTION OUTLET COVER RATED FLOW GREATER THAN DETAILED TOH CALCULATION AT MAXIMUM PUMP SPEED OR AT LEAST EXCEEDS MAXIMUM FLOW OF PUMP CURVE AND PARTICULARLY VERIFIED FOR SPA SIDEWALL SUCTIONS AND RATED "WALL" FLOWS

(1) "Plans shall meet the mandatory energy consumption requirements of Section R403.10, FBC 7th Edition (2020) - Ene Conservation Code" (2)"Plans shall meet the Residential Swimming Barrier Requirements, in conformance with Section R4501.17, FBC 7th Edition (2020) - Residential (3) Plans shall comply with Sect R4501 FBC 7th Ed 2020-Residential

SPA STEP REQUIRED

UNLESS A SPA IS RAISED 12" OR MORE FROM DECK, A SPA STEP IS REQUIRED ON THE BENCH FOR THE MAXIMUM 12" FROM DECK TO ENTRY, [2014 ANSI/APSP-3, 5.6.1]

SPA DECK

STEP

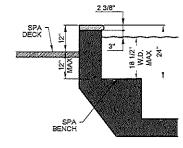
REQUIRED

2 3/8"

8" RAISED SPA

7 1/2" WD

-6 5/8" WD


STEP REQD.

SCALE: N.T.S.

1 1/2" TRAV

STD 2 3/8" PAVER

EXAMPLE 240 SQ IN STEP DIMENSIONS

12" RAISED SPA

NO STEP

SCALE: N.T.S.

DIGITAL SIGNATURE INDEX SHEET FOR SHEETS S1 S2 S3 PER RULE 61G15-23.001(4)(b),F.A.C.

SUN SHELF AS FIRST STEP

MAXIMUM 12" DECK TO SUN SHELF AS 1ST STEP, LIMITS WATER DEPTH UNLESS ADDED STEP ON SHELF.

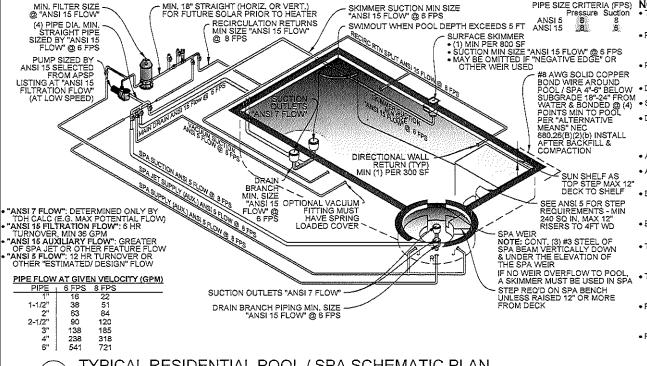
4" CONC DECK -5" WD [2011 ANSI/APSP-5, 6.2.2] SUN SHELF AS 1ST STEP SCALE: N.T.S.

SS/ONAL EN William W

DWG BY:

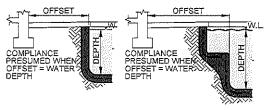
, BY: JKK

ÇĶ


TYPICAL PLAN & SECTIONS FOR RESIDENTIAL POOL/SPA SOUTHERN ESCAPES

SHEET

SE CR 245


11394

SHEET 1 OF 3

TYPICAL RESIDENTIAL POOL / SPA SCHEMATIC PLAN

FBC NO LONGER REQUIRES EXCAVATIONS OUT OF THE "ANGLE OF REPOSE PLUS 1 FT". THE CURRENT REQUIREMENT IN 7TH ED (2020) FBC. SECTION 1804.1 STATES THAT "EXCAVATIONS SHALL NOT REMOVE VERTICAL OR LATERAL SUPPORT FROM ANY FOUNDATION." THEREFORE THE FOLLOWING IS REQUIRED:

"ANGLE OF REPOSE" OR SEE CONTRACTOR PLAN

- WHEN THE POOL DECK DISTANCE IS EQUAL TO OR GREATER THAN WATER DEPTH, NO MITIGATION OF THE SHELL STRUCTURE IS REQUIRED, AND NO SHORING OR FOUNDATION SUPPORT INITIALLY REQUIRED.
- WHEN THE POOL DECK DISTANCE IS LESS THAN THE WATER DEPTH, THE ENGINEER SHALL PROVIDE A MITIGATION SPECIFICATION, EITHER TO PROTECT THE FOUNDATION DURING EXCAVATION OR STRENGTHEN THE SHELL FROM STRUCTURE LOADS.
- IF DURING EXCAVATION, SOIL CONDITIONS APPEAR TO LEAD TO LOSS OF FOUNDATION SUPPORT, THE CONTRACTOR SHALL CEASE EXCAVATION AND CONTACT THE ENGINEER FOR MITIGATION SPECIFICATIONS.
- IF AFTER EXCAVATION THE CONTRACTOR FINDS A LOSS OR THREATENED LOSS OF SOIL SUPPORT AT THE FOUNDATION, CONTACT THE ENGINEER FOR A MITIGATION SPECIFICATION.

NOTES:

THIS PLAN IS SCHEMATIC & PIPING SHALL BE CONNECTED TO PROVIDE A FUNCTIONING SYSTEM.

 POOL PIPING SHALL HOLD A STATIC WATER OR AIR PRESSURE NOT LESS THAN 35 PSI FOR 15 MINUTES, PER R4501.12.1

 POOLS SHALL HAVE PUMPS SELECTED TO PROVIDE MINIMUM 12 HR. TURNOVER & MAXIMUM 6 HOUR TURNOVER.

• DETERMINE PIPE SIZING FROM ATTACHED ANSI WORK SHEETS.

ANSI WORK SHEETS.

SPA PIPING DETERMINED FROM
ATTACHED WORK SHEETS.

DUAL MAIN DRAINS SHALL HAVE A
MINIMUM SEPARATION OF 3 FT, UNLESS
ONE IS LOCATED ON A VERTICAL WALL
ON A SHOULT LINED COLUBE TO BE AND IN OR A SINGLE UNBLOCKABLE DRAIN IS

USED.

• ALL SUCTION COVERS SHALL MEET ANSI/APSP/ICC-16 2017

 ALL PIPING SHALL BE NSF-PW APPROVED & MEET THE REQUIREMENTS OF 7TH ED.

(2020) FBC.
• ELECTRICAL EQUIPMENT, WIRING, & INSTALLATION SHALL CONFORM TO THE NATIONAL ELECTRICAL CODE 2017

EDITION.

BONDING OF POOL STEEL & LIGHT TO FOOTING STEEL SHALL BE CONTINUED TO & INCLUDE ALL PLUMPS & HEATERS.

 TEMPORARY FENCING SHALL BE INSTALLED & MAINTAINED UNTIL PERMANENT CHILD SAFETY FEATURES ARE INSTALLED.

 THERE SHALL BE A PASSING ELECTRICAL
 CHILD SAFETY FINAL INSPECTION PRIOR TO FILLING THE POOL OR SPA WITH WATER

POOL SHALL MEET THE APPLICABLE
 CRITERIA IN ANSI/APSP 3,4,5,6, 7 & 15
 STANDARDS ADOPTED IN 7TH ED. (2020)

 REGARDLESS OF THE CRITERIA HERE, THE PROJECT SHALL COMPLY WITH ALL SECTIONS OF THE 7TH ED. (2020) FBC -RESIDENTIAL, BUILDING, MECHANICAL, PLUMBING & GAS CODES, AS APPLICABLE RESPECTIVELY & AMENDED.

SEE INFORMATION ATTACHED TO THIS PERMIT PACKAGE FOR SITE SPECIFIC DETAILS SHOWING ANSI 7 & 15 AND FBC COMPLIANCE

NOTE TO REVIEWER: DETAILED TDH CALCULATIONS ARE REOUIRED TO DETERMINE ANSI 7-SUCTION ENTRAPMENT **COMPLIANCE**

> COMPLIES WITH 7TH ED. (2020) FBC, ALL VÒLUMES

SEE DIGITAL SIGNATURE ON INDEX SHEET S1

DESCRIPTION

DBY: DRAWING:

JKK 01-3an-21 02022 Kinos Engineering a state property of Kinos Engineer aced or copied in whole of in par-rein & is not to be used on any or

Š 0446

DATE REV. DATE PROJ, NO.: KE_RSTD

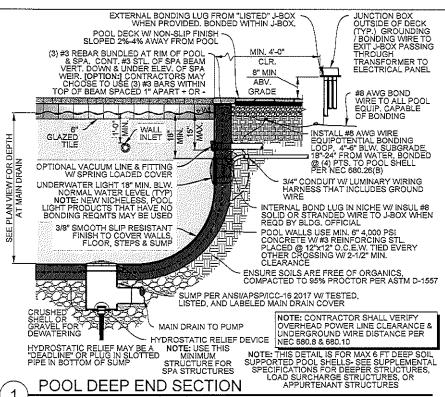
This drawing is the produce Mentified herein 2-3-2022

TYPICAL PLAN & SECTIONS FOR RESIDENTIAL POOL/SPA

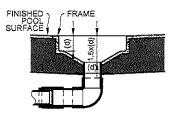
SHEED

SOUTHERN ESCAPES

H


SE

1394


SHEET 2 OF 3

PROXIMITY TO STRUCTURE

SCALE: N.T.S.

BENCH OR OTHER METHOD REQUIRED WHEN WATER

(d) 1.5x(d)

(d)

SPECIFIED PVC PIPE SIZE MIN. SUMP DEPTH MIN. LEDGE DEPTH

OR -FOR FIELD BUILT SUMPS SEE PRODUCT INSTALLATION INSTRUCTIONS

DRAIN COVERS & SUMPS a.k.a. SUCTION OUTLET FITTING

ASSEMBLIES (SOFA)
ANSI/APSP/ICC-16 2017
FOLLOW THE PRODUCT SPECIFICATIONS
AND/OR INSTALLATION INSTRUCTIONS
FOR MIN./MAX. SUMP DIMENSIONS, DRAIN
COVER/GRATE, AND FRAME FASTENING
MEETING MFGR'S SOFA CERTIFICATION.

MEETING MFGR'S SOFA CERTIFICATION.
DO NOT USE POWER TOOLS TO INSTALL
FASTEMERS
FIELD MODIFICATIONS TO ANY SOFA NOT
AUTHORIZED BY MFGR INSTALLATION
INSTRUCTIONS SHALL VOID THE SOFA
CERTIFICATION
HAND CHECK COVER/GRATE SNUGNESS
TO SUMP/FRAME AFTER INSTALLATION
SOFA COMPONENTS HELD IN PLACE BY
INTERIOR FINISH OF THE POOL SHALL BE
FREE OF DETERIORATION AND VOIDS

KNOW WEAT'S BELOW ALWAYS CALL 811 BEFORE YOU DIG

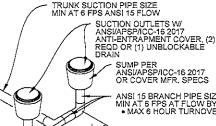
NOTES:

APPROVED PRODUCT SPECIFICATION MAY DIFFER FROM FIELD BUILT SUMPS SHOWN ON THIS PAGE

ADDITIONAL STRUCTURAL NOTES: • USE MINIMUM ASTM A815 GRADE 40 STEEL • LAP #3 BARS MINIMUM 15"

LAP #5 BARS MINIMUM 25"

 LAP #5 BARS MINIMUM 25"
 6" SHELL THICKNESS AND 2-1/2"
 CONCRETE COVERAGE ARE MINIMUMS
 USE 4,000 PSI CONCRETE
 CONTRACTOR / OWNER REQUIRED TO:
 CONTACT ENGINEER IF POOL NOT PLACED ON UNDISTURBED AND DE-WATERED EARTH THAT CAN MEET 2,000 PSF BEARING CAPACITY.


WHEN BURIED DEBRIS IS ENCOUNTERED OR QUESTIONABLE CONDITIONS ARE INDICATED AT THE WORK SITE PRIOR / DURING CONSTRUCTION, A SUBSURFACE CONSULTANT SHALL CONDUCT BORING(S) IN THE AREA OF THE POOL TO CONFIRM SOIL BEARING CAPACITY, CLEAR OF BURIED DEBRIS, & CLEAR OF BURIED DEBRIS, &

VERIFYING GROUND WATER LEVEL ALL MODIFIED SOILS & EARTH FILL UNDER PERSPECTIVE POOL AREA SHALL MEET A SOIL DENSITY AND COMPACTION MINIMUM OF 95% MODIFIED PROCTOR WITHOUT SETTLEMENT.

8" 3" L VERT, W/ MIN. (2) #3 BARS CONT. @ TOP . -#3 BARS @ 12"O.C. HORIZ., TYP. U.N.O. #3 BARS 6"

FIELD BUILT SUMP

SCALE: N.T.S.

ANSI 15 BRANCH PIPE SIZE MIN AT 6 FPS AT FLOW BY: • MAX 6 HOUR TURNOVER

MAIN DRAINS MAY BE OMITTED ENTIRELY

BRANCH PIPING

POOL BEAM 8"x12" OPTION

SCALE: N.T.S.

NOTE: THIS DETAIL IS FOR MAX 6 FT DEEP SOIL SUPPORTED POOL SHELLS-SEE SUPPLEMENTAL SPECIFICATIONS FOR DEEPER STRUCTURES, LOAD SURCHARGE STRUCTURES, OR APPURTENANT STRUCTURES

> COMPLIES WITH 7TH ED. (2020) FBC, ALL VOLUMES

SEE DIGITAL SIGNATURE ON INDEX SHEET S

1925 Worth Ct nton, FL 34211 : 941-749-0311 C.A. 27189 2022 Kimos Engineering and Management Services, Inc., projectly of Kimose Engineering and Management Services, projects in whole of in part. If its only for the project is are is rock to be used on any other project. It is to be interned.

DESCRIPTION
BY: DRAWING:
JKK 01-Jan-21

CKD BY: MCM 2-3-2022 REVISED DWG

DATE PROJ. NO.: KE_RSTD REV.

TYPICAL SECTIONS RESIDENTIAL POOL/SPA FOR

ESCAPES

OUTHERN

245

CK

SE

11394

SHEET

SHEET 3 OF 3

DEPTH EXCEEDS 5 FT MIN. 6" CONCRETE SHELL & STEEL T WD OTHERWISE THIS DETAIL ACCORDING TO STANDARD COMPLIES WITH BOTH 7TH ED. SPECIFICATIONS (2020) FBC CHAPTER 454.2.1.18 & ANSI / APSP / ICC-5 2011 & SHOOT TO UNDISTURBED OPTIONAL CONTAINS ALL RELATED REQUIREMENTS STATED IN THOSE CODES. EARTH PLACE FOOTING STRUCTURE ON UNDISTURBED EARTH MEETING 2,000 PSF OR COMPACTED FILL MEETING 95% MODIFIED PROCTOR

BENCH SECTION

SCALE: N.T.S.

MIN 12"

MAY VARY

4