

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

RE: 3046319 - DAVID - TBD FOREST COUNTRY

MiTek USA, Inc.

6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info: Ron David Project Name: Spec Hse Model: Custom

Lot/Block: N/A

Subdivision: Forest Country

Address: TBD SW Long Leaf Drive, N/A

City: Columbia Cty

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name:

Address:

City:

State:

License #:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special

Loading Conditions):

Design Code: FBC2020/TPI2014

Wind Code: ASCE 7-16

Roof Load: 37.0 psf

Design Program: MiTek 20/20 8.4

Wind Speed: 130 mph Floor Load: N/A psf

This package includes 18 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet

conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

		175	
No.	Seal#	Truss Name	Date
1	T26758972 T26758973	CJ01 CJ03	2/8/22 2/8/22
3	T26758974	CJ05	2/8/22
1 2 3 4 5 6 7 8 9	T26758975 T26758976	EJ01 HJ10	2/8/22 2/8/2 2
6	T26758977 T26758978	T01 T01G	2/8/22
8	T26758979	T02	2/8/22
10	T26758980 T26758981	T03 T03G	2/8/22 2/8/22
11 12	T26758982 T26758983	T04 T04A	2/8/22 2/8/22
13 14	T26758984	T04G T05	2/8/22
15	T26758985 T26758986	T05G	2/8/22 2/8/22
16 17	T26758987 T26758988	T06 T07	2/8/22 2/8/22
18	T26758989	V01	2/8/22

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Lake City, FL.

Truss Design Engineer's Name: ORegan, Philip

My license renewal date for the state of Florida is February 28, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

February 8,2022

DAVID - TBD FOREST COUNTRY Job Truss Truss Type Qty Ply T26758972 3046319 CJ01 Jack-Open Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:03:59 2022 Page 1 $ID: 9Rsp_tPSI6LyCRUchohsVazGlxZ-LxUcUQQmsL37GxK6NgmDFi1NjgFphjRWtALunzncvE$ 1-6-0 Scale = 1:8.2 6.00 12 1-0-0

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC	0.13	Vert(LL)	0.00	7	>999	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.03	Vert(CT)	0.00	7	>999	180	agotto-sec.		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a	0.00		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MP	no diverse statem.					Weight: 6 lb	FT = 20%	

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No 2 BRACING-

TOP CHORD **BOT CHORD** Structural wood sheathing directly applied or 1-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=38(LC 12)

Max Uplift 3=-6(LC 1), 2=-64(LC 12), 4=-19(LC 1) Max Grav 3=8(LC 8), 2=179(LC 1), 4=18(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint 3, 64 lb uplift at joint 2 and 19 lb uplift at joint 4.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

February 8,2022

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MT eNs connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing individual to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Truss Type Qty DAVID - TBD FOREST COUNTRY Job Truss T26758973 CJ03 Jack-Open 2 3046319 Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:00 2022 Page 1 ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-SXVspqR2XATwkQWWf5B?ITEC77?rY8yalXwvQDzncvD -1-6-0 3-0-0 Scale = 1:13.3 6.00 12 0-4-B 3-0-0 Plate Offsets (X,Y)-- [2:0-1-9,0-1-0] **PLATES** GRIP SPACING-CSI DEFL l/defl 1/d LOADING (psf) 2-0-0 in (loc) 244/190 20.0 Vert(LL) -0.00 >999 TCLL Plate Grip DOL 1.25 TC 0.13 4-7 240 MT20 >999 TCDL 7.0 Lumber DOL 1.25 BC 0.07 Vert(CT) -0.01 4-7 180 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a n/a BCLL 3

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

10.0

2x4 SP No.2

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Code FBC2020/TPI2014

Max Horz 2=70(LC 12)

Max Uplift 3=-34(LC 12), 2=-55(LC 12)

Max Grav 3=60(LC 1), 2=210(LC 1), 4=50(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 2-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Matrix-MP

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 3 and 55 lb uplift at joint 2.

FT = 20%

Weight: 12 lb

Structural wood sheathing directly applied or 3-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 8,2022

Job Truss Type Truss DAVID - TBD FOREST COUNTRY Qty T26758974 3046319 **CJ05** Jack-Open 2 Job Reference (optional) Builders FirstSource (Lake City,FL), 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:01 2022 Page 1 ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-wk3E1ASglTbnMa5iDoiElgnLZXJSHbCkzBfSyfzncvC Lake City, FL - 32055. 1-6-0 5-0-0 Scale = 1:18.2 6.00 12 0-4-8 LOADING (psf) SPACING-2-0-0 CSI DEFL. GRIP I/defl L/d PLATES (loc) TCLL 20.0 Plate Grip DOL 1.25 TC 0.28 Vert(LL) 0.03 4-7 >999 MT20 244/190 240 TCDL 7.0 Lumber DOL 1.25 BC 0.24 -0.05 Vert(CT) >999 180 BCLL 0.0 Rep Stress Incr WB 0.00 YES Horz(CT) 0.00 3 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-MF FT = 20%Weight: 18 lb

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=104(LC 12)

Max Uplift 3=-64(LC 12), 2=-61(LC 12)

Max Grav 3=113(LC 1), 2=276(LC 1), 4=88(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 4-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 3 and 61 lb uplift at joint 2.

Structural wood sheathing directly applied or 5-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE Mil-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and its for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Qty DAVID - TBD FOREST COUNTRY Job Truss Truss Type T267589%5 13 3046319 EJ01 Jack-Partial Job Reference (optional) 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:01 2022 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-wk3E1ASglTbnMa5iDoiElgnG7XE7HbCkzBfSyfzncvC 7-0-0 7-0-0 Scale = 1:23.2 6.00 12 0-4-8 3x4 = 7-0-0 Plate Offsets (X,Y)-[2:0-1-13,0-1-8] **PLATES** GRIP LOADING (psf) DEFL l/defl L/d SPACING-2-0-0 CSI (loc) 244/190 0.10 240 MT20 TCLL 20.0 Plate Grip DOL 1.25 TC 0.63 Vert(LL) 4-7 >818 TCDL 7.0 Lumber DOL 1 25 BC 0.51 Vert(CT) -0.224-7 >385 180 0.00 0.01 n/a BCLL 0.0 Rep Stress Incr YES WB Horz(CT) n/a FT = 20% Code FBC2020/TPI2014 Weight: 25 lb

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

10.0

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=133(LC 12)

Max Uplift 3=-82(LC 12), 2=-72(LC 12) Max Grav 3=164(LC 1), 2=346(LC 1), 4=126(LC 3)

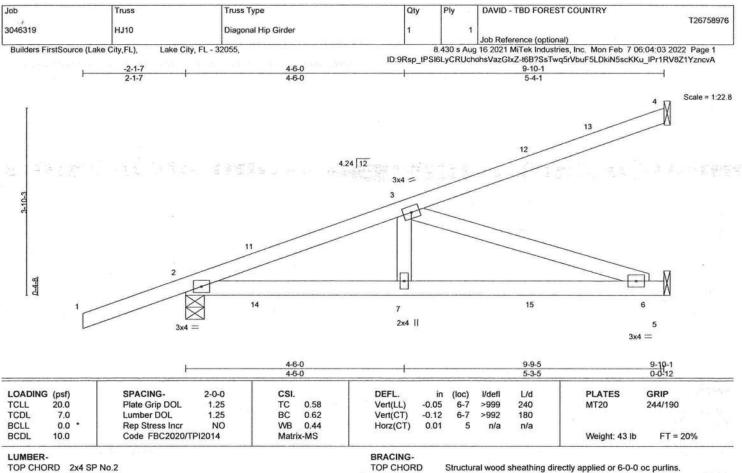
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 6-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Matrix-MS

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 3 and 72 lb uplift at

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

February 8,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

2x4 SP No.3 WEBS

REACTIONS.

(size) 4=Mechanical, 2=0-4-9, 5=Mechanical

Max Horz 2=144(LC 22)

Max Uplift 4=-76(LC 4), 2=-135(LC 4), 5=-47(LC 8) Max Grav 4=149(LC 1), 2=527(LC 1), 5=299(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

2-3=-799/159

BOT CHORD

2-7=-198/729, 6-7=-198/729

WEBS

3-7=0/281, 3-6=-767/209

NOTES-

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 4, 135 lb uplift at joint 2 and 47 lb uplift at joint 5.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 60 lb down and 63 lb up at 1-6-1, 60 lb down and 63 lb up at 1-6-1, 21 lb down and 37 lb up at 4-4-0, 21 lb down and 37 lb up at 4-4-0, and 42 lb down and 75 Ib up at 7-1-15, and 42 lb down and 75 lb up at 7-1-15 on top chord, and 17 lb down and 39 lb up at 1-6-1, 17 lb down and 39 lb up at 1-6-1, 22 lb down at 4-4-0, 22 lb down at 4-4-0, and 41 lb down at 7-1-15, and 41 lb down at 7-1-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 5-8=-20

Concentrated Loads (lb)

Vert: 7=-6(F=-3, B=-3) 12=-73(F=-36, B=-36) 15=-59(F=-29, B=-29)

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

February 8,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

DAVID - TBD FOREST COUNTRY Job Truss Truss Type Qty Ply T26758977 T01 COMMON 6 3046319 Job Reference (optional) 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:03 2022 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-t6B?SsTwq5rVbuF5LDkiN5sfuKp_IRH1RV8Z1YzncvA 22-0-0 1-6-0 Scale = 1:41.3 4×4 = 6.00 12 2x4 // 2x4 \\ 10 9 21 22 8 23 3x6 = 3x4 = 3x6 = 3x6 = 3x4 = 7-5-9 Plate Offsets (X,Y)-[6:0-2-15,Edge] LOADING (psf) SPACING-DEFL I/defl L/d PLATES GRIP 2-0-0 CSI. (loc) -0.18 240 MT20 244/190 Plate Grip DOL 1.25 TC 0.42 Vert(LL) 8-10 >999 20.0 TCLL 180 Lumber DOL 1.25 BC 0.94 Vert(CT) -0.33 8-10 >801 TCDL 7.0

0.05

n/a

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 4-2-3 oc purlins.

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

0.0

10.0

REACTIONS.

(size) 2=0-3-8, 6=0-3-8 Max Horz 2=90(LC 16)

Max Uplift 2=-229(LC 12), 6=-231(LC 13) Max Grav 2=1081(LC 2), 6=1088(LC 2)

Rep Stress Incr

Code FBC2020/TPI2014

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1818/453, 3-4=-1683/440, 4-5=-1697/445, 5-6=-1833/458

BOT CHORD 2-10=-345/1615, 8-10=-155/1078, 6-8=-340/1614

WEBS

4-8=-168/748, 5-8=-291/175, 4-10=-160/723, 3-10=-291/175

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 11-0-0, Exterior(2R) 11-0-0 to 14-0-0, Interior(1) 14-0-0 to 23-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-MS

0.28

- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
 to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

NO

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 229 lb uplift at joint 2 and 231 lb uplift at joint 6.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

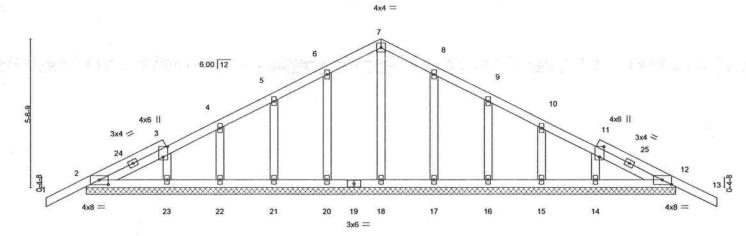
LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-7=-54, 10-11=-20, 10-23=-60(F=-40), 14-23=-20

Weight: 103 lb

FT = 20%


Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 8,2022

DAVID - TBD FOREST COUNTRY Job Truss Truss Type Qty Ply T26758978 3046319 T01G GABLE Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:05 2022 Page 1 ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-pVJlsXVBLi5DrBPUSenASWy4w8jADPMKupdf5Qzncv8 22-0-0 1-6-0 11-0-0 23-6-0 11-0-0

Scale = 1:41.4

- 1					22-0-0						1	
					22-0-0		7111-072					
sets (X,Y)-	[2:0-4-0,0-2-1], [3:0-4-10,	0-2-0], [11:0-4-	-10,0-2-0], [1	2:0-4-0,0-2-1	1							100
(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defi	L/d	PLATES	GRIP	
20.0	Plate Grip DOL	1.25	TC	0.13	Vert(LL)	-0.01	13	n/r	120	MT20	244/190	
7.0	Lumber DOL	1.25	BC	0.06	Vert(CT)	-0.01	13	n/r	120			
0.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	12	n/a	n/a	and the second s		
10.0	Code FBC2020/T	PI2014	Matri	x-S	100000					Weight: 120 lb	FT = 20%	
	7.0 0.0	(psf) SPACING- 20.0 Plate Grip DOL 7.0 Lumber DOL 0.0 Rep Stress Incr	SPACING- 2-0-0 20.0 Plate Grip DOL 1.25 1.25	G (psf) SPACING- 2-0-0 CSI. 20.0 Plate Grip DOL 1.25 TC 7.0 Lumber DOL 1.25 BC 0.0 Rep Stress Incr YES WB	SPACING- 2-0-0 CSI. 20.0 Plate Grip DOL 1.25 TC 0.13 7.0 Lumber DOL 1.25 BC 0.06 0.0 Rep Stress Incr YES WB 0.05	22-0-0 sets (X,Y)— [2:0-4-0,0-2-1], [3:0-4-10,0-2-0], [11:0-4-10,0-2-0], [12:0-4-0,0-2-1] (Fig. 1) SPACING- 2-0-0 CSI. DEFL. 20.0 Plate Grip DOL 1.25 TC 0.13 Vert(LL) 7.0 Lumber DOL 1.25 BC 0.06 Vert(CT) 0.0 Rep Stress Incr YES WB 0.05 Horz(CT)	22-0-0	22-0-0	22-0-0	22-0-0 Sets (X,Y)- [2:0-4-0,0-2-1], [3:0-4-10,0-2-0], [11:0-4-10,0-2-0], [12:0-4-0,0-2-1]	Sets (X,Y)- [2:0-4-0,0-2-1], [3:0-4-10,0-2-0], [11:0-4-10,0-2-0], [12:0-4-0,0-2-1] DEFL. in (loc) I/deft L/d PLATES 20.0 Plate Grip DOL 1.25 TC 0.13 Vert(LL) -0.01 13 n/r 120 MT20 7.0 Lumber DOL 1.25 BC 0.06 Vert(CT) -0.01 13 n/r 120 0.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 12 n/a n/a	22-0-0 sets (X,Y)— [2:0-4-0,0-2-1], [3:0-4-10,0-2-0], [11:0-4-10,0-2-0], [12:0-4-0,0-2-1] 6 (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP 20.0 Plate Grip DOL 1.25 TC 0.13 Vert(LL) -0.01 13 n/r 120 MT20 244/190 7.0 Lumber DOL 1.25 BC 0.06 Vert(CT) -0.01 13 n/r 120 0.0 * Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 12 n/a n/a

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 22-0-0.

(lb) - Max Horz 2=85(LC 16)

Max Uplift All uplift 100 lb or less at joint(s) 2, 12, 20, 21, 22, 23, 17, 16, 15, 14

Max Grav All reactions 250 lb or less at joint(s) 2, 12, 18, 20, 21, 22, 23, 17, 16, 15, 14

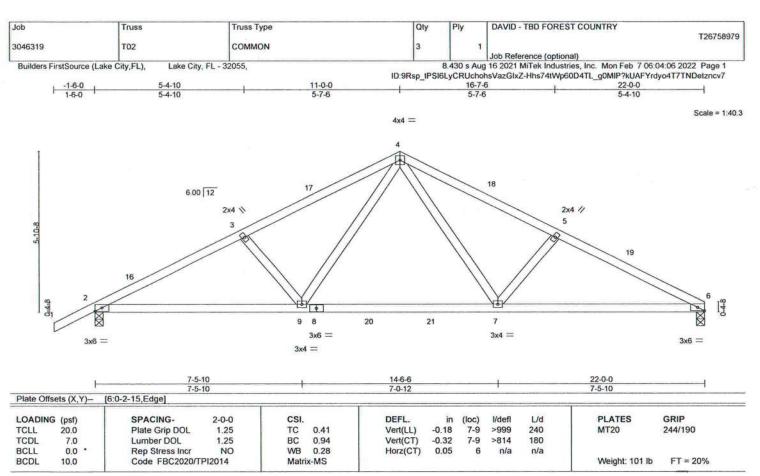
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 11-0-0, Corner(3R) 11-0-0 to 14-0-0, Exterior(2N) 14-0-0 to 23-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 20, 21, 22, 23, 17, 16, 15, 14.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


February 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and fruss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WEBS

REACTIONS. (size) 6=0-3-8, 2=0-3-8 Max Horz 2=101(LC 16)

Max Uplift 6=-195(LC 13), 2=-227(LC 12) Max Grav 6=1006(LC 2), 2=1076(LC 2)

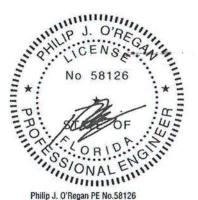
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1808/455, 3-4=-1672/442, 4-5=-1681/452, 5-6=-1817/464

BOT CHORD 2-9=-362/1595, 7-9=-182/1061, 6-7=-362/1603 WEBS 4-7=-168/734, 5-7=-300/180, 4-9=-160/722, 3-9=-291/175

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 11-0-0, Exterior(2R) 11-0-0 to 14-0-0, Interior(1) 14-0-0 to 22-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=195, 2=227
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-4=-54, 4-6=-54, 9-13=-20, 7-9=-60(F=-40), 7-10=-20

Structural wood sheathing directly applied or 4-2-2 oc purlins.

Rigid ceiling directly applied or 9-9-0 oc bracing.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

February 8,2022

▲ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

DAVID - TBD FOREST COUNTRY Job Truss Type Qty Truss T26758980 3046319 T03 Common Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:07 2022 Page 1 ID:9Rsp_tPSi6LyCRUchohsVazGlxZ-luQVHDXRtJLx4VZsa3peXx1HvyEKhFxcM76mAJzncv6 15-8-0 31-4-0 7-11-9 23-4-8 32-10-0 7-8-8 Scale = 1:55.0 4x6 = 6.00 12 3x6 = 3x6 > 1 6 3x4 > 12 11 10 3x6 = 2x4 || 5x8 = 2x4 || 3x6 = 15-8-0 23-4-8 Plate Offsets (X,Y)-[8:0-2-15,Edge], [11:0-4-0,0-3-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL I/defl L/d **PLATES** GRIP (loc) TCLL 20.0 Plate Grip DOL 1.25 TC 0.67 Vert(LL) -0.11 10-18 >999 240 MT20 244/190 TCDL Lumber DOL 1.25 BC 0.72 Vert(CT) -0.24 10-18 >999 180 7.0 BCLL 0.0 Rep Stress Incr YES WB 0.30 Horz(CT) 0.08 n/a n/a BCDL 10.0 Code FBC2020/TPI2014 Matrix-MS Weight: 151 lb FT = 20%**BRACING-**

TOP CHORD

BOT CHORD

WEBS

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **WEBS**

2x4 SP No.3

Max Horz 2=-124(LC 13) Max Uplift 2=-258(LC 12), 8=-258(LC 13) Max Grav 2=1240(LC 1), 8=1240(LC 1)

(size) 2=0-3-8, 8=0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-2084/390, 3-5=-1412/323, 5-7=-1412/323, 7-8=-2084/390 2-12=-374/1795, 11-12=-374/1795, 10-11=-256/1795, 8-10=-256/1795 TOP CHORD **BOT CHORD** 5-11=-121/800, 7-11=-720/278, 7-10=0/328, 3-11=-720/277, 3-12=0/328 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 15-8-0, Exterior(2R) 15-8-0 to 18-8-0, Interior(1) 18-8-0 to 32-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=258, 8=258.

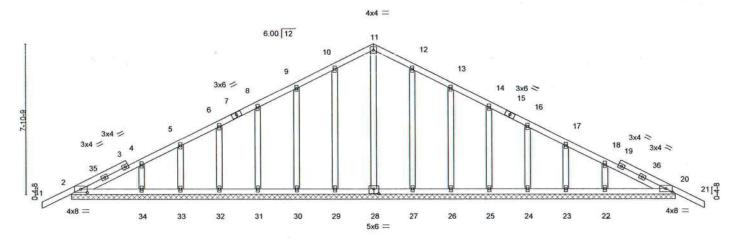
Structural wood sheathing directly applied or 3-4-2 oc purlins.

7-11 3-11

Rigid ceiling directly applied or 9-5-0 oc bracing.

1 Row at midpt

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


February 8,2022

₩ARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTeWs connectors. This design is based only upon parameters and properly discovered building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSIPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	Job	Truss	Truss Type	Qty	Ply	DAVID - TBD FOREST COUNTRY	T26758981
1	3046319	T03G	Common Supported Gable	1	- 1	NAMES AND ADDRESS OF ADDRESS	
1		(Alexander)				Job Reference (optional)	
	Builders FirstSource (Lake (City,FL), Lake C	City, FL - 32055,		8.430 s Au	g 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04	:08 2022 Page 1
				ID:9Rsp_tP	SI6LyCRUC	hohsVazGlxZ-D4_uVZX3edToif737mKt49abALjR0	komansKilzncv5
	, -1-6-0 ,		15-8-0			31-4-0	32-10-0
	1-6-0		15-8-0	E:		15-8-0	1-6-0

Scale = 1:57.8

4					31-4-0						
1					31-4-0		244 11	1=1			
sets (X,Y)-	[2:0-4-0,0-2-1], [20:0-4-0,	0-2-1], [28:0-3	-0,0-3-0]								
G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
20.0	Plate Grip DOL	1.25	TC	0.13	Vert(LL)	-0.00	21	n/r	120	MT20	244/190
7.0	Lumber DOL	1.25	BC	0.09	Vert(CT)	-0.00	21	n/r	120		
0.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.01	20	n/a	n/a	V 4500 (TE 000A) (100A)	
10.0	Code FBC2020/T	PI2014	Matri	x-S	100000000000000000000000000000000000000					Weight: 191 lb	FT = 20%
	G (psf) 20.0 7.0 0.0	(psf) SPACING- 20.0 Plate Grip DOL 7.0 Lumber DOL 0.0 Rep Stress Incr	SPACING- 2-0-0	G (psf) SPACING- 2-0-0 CSI. 20.0 Plate Grip DOL 1.25 TC 7.0 Lumber DOL 1.25 BC 0.0 Rep Stress Incr YES WB	G (psf) SPACING- 2-0-0 CSI. 20.0 Plate Grip DOL 1.25 TC 0.13 7.0 Lumber DOL 1.25 BC 0.09 0.0 Rep Stress Incr YES WB 0.14	31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0	31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 DEFL. in Vert(LL) -0.00 7.0 Lumber DOL 1.25 BC 0.09 Vert(CT) -0.00 0.0 * Rep Stress Incr YES WB 0.14 Horz(CT) 0.01	Sets (X,Y)- [2:0-4-0,0-2-1], [20:0-4-0,0-2-1], [28:0-3-0,0-3-0] S (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) 20.0 Plate Grip DOL 1.25 TC 0.13 Vert(LL) -0.00 21 7.0 Lumber DOL 1.25 BC 0.09 Vert(CT) -0.00 21 0.0 * Rep Stress Incr YES WB 0.14 Horz(CT) 0.01 20	Sets (X,Y)- [2:0-4-0,0-2-1], [20:0-4-0,0-2-1], [28:0-3-0,0-3-0] 31-4-0	31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 3	31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 31-4-0 3

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD OTHERS

2x4 SP No.2 2x4 SP No.3 BRACING-

31.4.0

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. **BOT CHORD**

REACTIONS. All bearings 31-4-0.

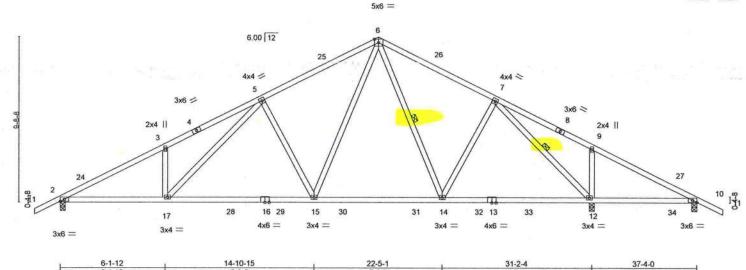
Max Horz 2=119(LC 16) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 29, 30, 31, 32, 33, 34, 27, 26, 25, 24, 23, 22, 20 Max Grav All reactions 250 lb or less at joint(s) 2, 28, 29, 30, 31, 32, 33, 34, 27, 26, 25, 24, 23, 22, 20

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-6-0 to 1-6-0, Exterior(2N) 1-6-0 to 15-8-0, Corner(3R) 15-8-0 to 18-8-0, Exterior(2N) 18-8-0 to 32-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 29, 30, 31, 32, 33, 34, 27, 26, 25, 24, 23, 22, 20.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


February 8,2022

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Job Truss Truss Type DAVID - TBD FOREST COUNTRY Qty T26758982 Common 3046319 T04 10 1 Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:09 2022 Page 1 5-8-2 6-10-3 6-10-3

Scale = 1:65.1

Plate Offse	ets (X,Y)	0:0-2-15,Edge]	8-9-3			7-6-3			8-	9-3	6-1-1	2	
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	Kin.
TCLL	20.0	Plate Grip DOL	1.25	TC	0.48	Vert(LL)	0.09 1	2-23	>848	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.88	Vert(CT)	-0.42 1	5-17	>891	180	40000000		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.63	Horz(CT)	0.07	12	n/a	n/a			
BCDL	10.0	Code FBC2020/Ti	PI2014	Matri	x-MS	100-2006- 3 0000360					Weight: 204 lb	FT = 20%	

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING-

TOP CHORD **BOT CHORD** WEBS

Structural wood sheathing directly applied or 3-6-8 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt 6-14. 7-12

REACTIONS.

(size) 2=0-3-8, 12=0-3-8, 10=0-3-8 Max Horz 2=-145(LC 17)

Max Uplift 2=-263(LC 12), 12=-282(LC 13), 10=-83(LC 8) Max Grav 2=1316(LC 2), 12=1830(LC 2), 10=200(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

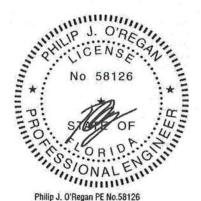
TOP CHORD 2-3=-2344/404, 3-5=-2338/508, 5-6=-1527/347, 6-7=-1185/295, 7-9=-28/446,

9-10=-90/427

BOT CHORD 2-17=-422/2067, 15-17=-285/1560, 14-15=-82/997, 12-14=-62/848, 10-12=-318/111 WEBS

7-14=-0/404, 7-12=-1693/252, 9-12=-326/190, 6-15=-208/882, 5-15=-552/273,

5-17=-200/737, 3-17=-293/184

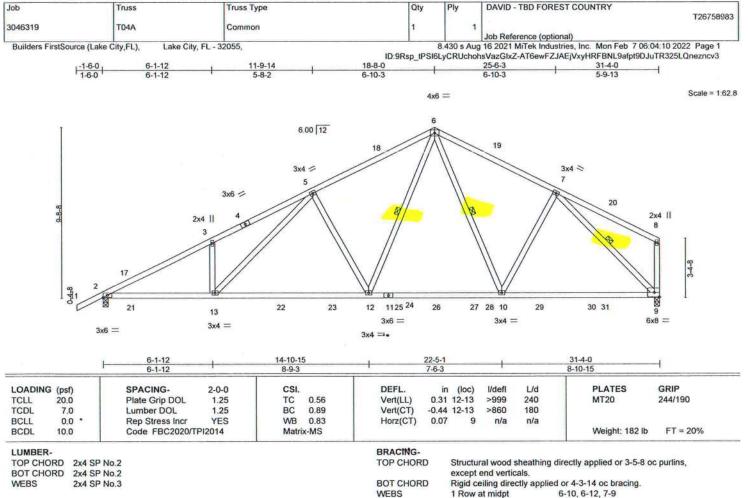

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 18-8-0, Exterior(2R) 18-8-0 to 21-8-0, Interior(1) 21-8-0 to 38-10-0 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 2=263, 12=282.



Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

February 8,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

(size) 2=0-3-8, 9=0-3-8

Max Horz 2=214(LC 12) Max Uplift 2=-310(LC 9), 9=-253(LC 9)

Max Grav 2=1361(LC 2), 9=1321(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

REACTIONS.

2-3=-2443/1793, 3-5=-2436/1872, 5-6=-1625/1288, 6-7=-1344/1083 2-13=-1640/2135, 12-13=-1197/1628, 10-12=-744/1067, 9-10=-742/1040

BOT CHORD

6-10=-246/271, 7-10=-188/304, 6-12=-753/875, 5-12=-552/378, 5-13=-642/737,

WEBS 3-13=-291/184, 7-9=-1432/1004

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 18-8-0, Exterior(2R) 18-8-0 to 21-8-0, Interior(1) 21-8-0 to 31-2-4 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

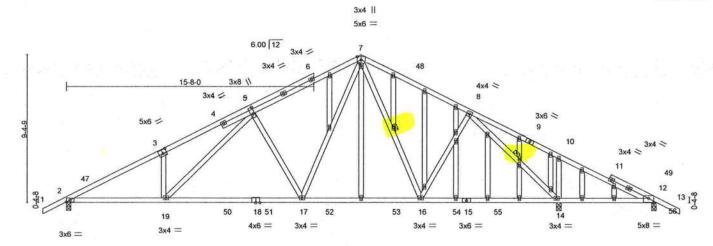
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=310. 9=253.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

February 8,2022


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for on individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty DAVID - TBD FOREST COUNTRY T26758984 3046319 T04G GABLE Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:12 2022 Page 1 ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-6rEOKxaaiszDBGRqMcPpE?k40zv4MR?MVPqXrWzncv1 18-8-0 31-2-4 37-4-0 6-10-2

Scale = 1:70.3

		6-1-12	1.	4-10-15	- 1	22-5-1		1	3	1-0-8	31,2-4	37-4-0		
		6-1-12		8-9-3	1	7-6-2		1		8-7-7	0-1-12	6-1-12		
Plate Off	sets (XAY)-	[3:0-3-0,0-3-0], [5:0-5-0,0)-1-4], [7:0-1-12	2,0-1-8], [12:0	0-4-0,0-3-1]									
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATE	S	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC	0.84	Vert(LL)	-0.22	17-19	>999	240	MT20		244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.87	Vert(CT)	-0.41	17-19	>921	180				
BCLL	0.0	Rep Stress Incr	YES	WB	0.64	Horz(CT)	0.07	14	n/a	n/a	1 - 1			
BCDL	10.0	Code FBC2020/T	PI2014	Matri	x-MS						Weigh	: 275 lb	FT = 20%	

BRACING-TOP CHORD

WEBS

BOT CHORD

LUMBER-

OTHERS

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

2x4 SP No.3 2x4 SP No.3

(size) 2=0-3-8, 12=0-3-8, 14=0-3-8 Max Horz 2=141(LC 12)

Max Uplift 2=-263(LC 12), 12=-58(LC 8), 14=-305(LC 13) Max Grav 2=1311(LC 2), 12=179(LC 24), 14=1820(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2323/403, 3-5=-2282/493, 5-7=-1541/342, 7-8=-1230/265, 8-10=-73/468, 10-12=-164/469

BOT CHORD 2-19=-417/2051, 17-19=-295/1593, 16-17=-88/1030, 14-16=-68/892, 12-14=-367/194

WEBS 8-16=0/377, 8-14=-1777/297, 10-14=-305/180, 7-17=-206/864, 5-17=-547/272,

5-19=-168/650

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 18-8-0, Exterior(2R) 18-8-0 to 21-8-0, Interior(1) 21-8-0 to 38-10-0 zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (it=lb) 2=263, 14=305.

Structural wood sheathing directly applied or 2-2-0 oc purlins.

7-16, 8-14

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

February 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and fruss systems, see

ANSITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

DAVID - TBD FOREST COUNTRY Job Truss Truss Type Qty Ply T26758985 3046319 T05 Common Job Reference (optional) 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:13 2022 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-a2onYHbCT954oQ00wKw2nCHLGMEu5wZVk3Z5Nzzncv0 18-8-0 6-10-3 Scale = 1:62.8 4x6 = 6.00 12 3x4 > 3x4 / 3x6 = 3x6 < 2x4 || 13 1224 11 26 27 10 9 14 3x6 = 3x4 = 3x6 = 3x4 = 3x6 = 3x4 = 2x4 || 14-10-15 6-1-12 8-9-3 LOADING (psf) SPACING-CSI. DEFL. in (loc) I/defl L/d **PLATES** GRIP 2-0-0 Plate Grip DOL Vert(LL) -0.23 13-14 >999 240 MT20 244/190 20.0 1.25 TC 0.49 TCLL -0.41 13-14 180 1.25 BC 0.90 Vert(CT) >890 TCDL 7.0 Lumber DOL WB 0.49 Horz(CT) 0.06 n/a Rep Stress Incr 0.0 YES BCIL Weight: 186 lb FT = 20%Code FBC2020/TPI2014 Matrix-MS BCDL 10.0 BRACING-LUMBER-TOP CHORD Structural wood sheathing directly applied or 3-6-6 oc purlins, TOP CHORD 2x4 SP No.2 except end verticals.

BOT CHORD

WEBS

Rigid ceiling directly applied or 8-4-3 oc bracing.

6-11, 7-10

1 Row at midpt

BOT CHORD 2x4 SP No.2 2x4 SP No.3 WEBS

(size) 2=0-3-8, 10=0-3-8

Max Horz 2=214(LC 12)

Max Uplift 2=-262(LC 12), 10=-206(LC 13) Max Grav 2=1320(LC 2), 10=1357(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD **BOT CHORD**

2-3=-2352/404, 3-5=-2346/507, 5-6=-1537/341, 6-7=-1199/287 2-14=-491/2054, 13-14=-353/1549, 11-13=-151/983, 10-11=-140/874

3-14=-293/184, 5-14=-200/734, 5-13=-552/273, 6-13=-206/889, 7-11=-3/354, WEBS

7-10=-1346/253

REACTIONS.

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 18-8-0, Exterior(2R) 18-8-0 to 21-8-0, Interior(1) 21-8-0 to 31-2-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2=262, 10=206,

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date

February 8,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2870 Crain Highway, Suite 203 Waldorf, MD 20601

DAVID - TBD FOREST COUNTRY Truss Type Qty Job Truss Ply T26758986 3046319 GABLE T05G Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:14 2022 Page 1 ID:9Rsp_tPSI6LyCRUchohsVazGixZ-2EL9lccqETDxQabCU1RHKQqWhmaFqNFeziJewPzncv? 6-10-3 5-9-13 4x6 = 6.00 12 35 3x4 / 3x4 > 10-4-0 3x6 = 3x4 3x4 0 3x6 > 41 13 12 43 38 15 39 14 40 16 11 10 4x6 = 4x4 = 3x4 = 3x4 = 3x6 = 4x8 = 3x6 = 14-10-15 8-9-3 Plate Offsets (X,Y)-[2:0-4-0,0-2-1] LOADING (psf) SPACING-CSL DEFL 1/d PLATES GRIP 2-0-0 (loc) I/defi 244/190 -0.21 14-16 Plate Grip DOL TC 0.51 Vert(LL) >999 240 MT20 TCLL 20.0 1.25 -0.38 14-16 TCDL 7.0 Lumber DOL 1.25 BC 0.89 Vert(CT) >953 180 Rep Stress Incr WB 0.46 0.07 BCII 0.0 YES Horz(CT) 11 n/a n/a Code FBC2020/TPI2014 Matrix-MS Weight: 252 lb FT = 20% BCDL 10.0 BRACING-LUMBER-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 3-2-12 oc purlins, 2x4 SP No.2 except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

WEBS

8-4-8 oc bracing: 2-16.

7-12, 8-11

1 Row at midpt

BOT CHORD

2x4 SP No.3 WEBS 2x4 SP No.3 **OTHERS**

REACTIONS.

(size) 2=0-3-8, 11=0-3-8

Max Horz 2=203(LC 12)

Max Uplift 2=-266(LC 12), 11=-206(LC 13) Max Grav 2=1319(LC 2), 11=1346(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

2-3=-2379/412, 3-6=-2381/514, 6-7=-1589/354, 7-8=-1240/291

BOT CHORD

2-16=-494/2103, 14-16=-341/1570, 12-14=-151/1008, 11-12=-147/919 3-16=-279/187, 6-16=-210/738, 6-14=-567/274, 7-14=-219/929, 8-12=0/329,

WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

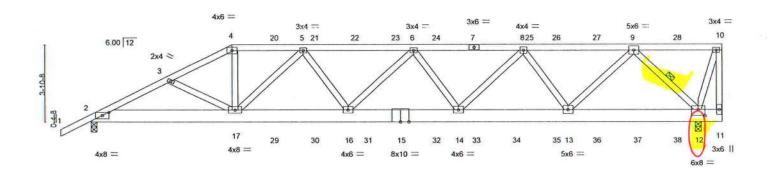
- 2) Wind: ASCE 7-16; Vuit=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 18-8-0, Exterior(2R) 18-8-0 to 21-8-0, Interior(1) 21-8-0 to 31-2-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=266, 11=206.


Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

February 8,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITeMS connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss			Truss Type		Qty	Ply	DAVID - TBD FOREST COUNT	TRY
					133		- 20	305		T2675890
3046319	11	T06			Half Hip Girde	r	1		1	
					22				Job Reference (optional)	
Builders FirstSon	urce (Lake C	ity,FL),	La	ke City, F	L - 32055,			8.430 s Au	ug 16 2021 MiTek Industries, Inc. M	Mon Feb 7 06:04:16 2022 Page 1
							ID:9Rs	p_tPSI6LyC	RUchohsVazGlxZcTvAle4m4Uff	ftlbbSTIPrvlkaPQICGxQ0olzlzncuz
-1-6-0 -1-6-0	3-11-15		7-0	-0	10-6-6	15-11-14	, 2	-5-8	26-11-1	31-4-0
1-6-0	3-11-15		3-0	-1	3-6-6	5-5-8	5	-5-9	5-5-9	4-4-15

	10	7-0-0	1 12	2-9-1	10	18-2-9	3	23	-8-3	1	30-3-8	31-4-0
		7-0-0	5	-9-1		5-5-8	1	5-	5-10		6-7-5	1-0-8
Plate Offs	ets (X,Y)-	[2:0-4-0,0-1-15], [12:0-4-	0,0-3-12]									
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	Vdefl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.92	Vert(LL)	-0.20	14-16	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.27	Vert(CT)	-0.39	14-16	>928	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.81	Horz(CT)	0.07	12	n/a	n/a		
BCDL	10.0	Code FBC2020/T	PI2014	Matri	ix-MS	A 5					Weight: 215 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 *Except*

4-7: 2x4 SP M 31

BOT CHORD 2x8 SP 2400F 2.0E

WEBS 2x4 SP No.3

(size) 2=0-3-8, 12=0-3-8

Max Horz 2=139(LC 8)

Max Uplift 2=-539(LC 8), 12=-661(LC 5)

Max Grav 2=2241(LC 1), 12=2709(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

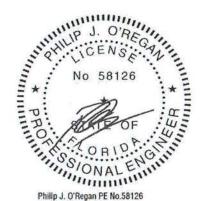
2-3=-4380/1040, 3-4=-4230/994, 4-5=-3823/922, 5-6=-5116/1198, 6-8=-5006/1186, TOP CHORD

8-9=-3476/810, 10-11=-293/47

2-17=-999/3874, 16-17=-1188/4803, 14-16=-1307/5287, 13-14=-1076/4327, **BOT CHORD**

12-13=-527/2014

4-17=-303/1588, 5-17=-1433/431, 5-16=-59/602, 6-16=-283/171, 6-14=-515/252,


8-14=-192/988, 8-13=-1563/488, 9-13=-412/2126, 9-12=-2903/796

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 128 lb down and 87 lb up at 7-0-0, 110 lb down and 87 lb up at 9-0-12, 110 lb down and 87 lb up at 11-0-12, 110 lb down and 87 lb up at 13-0-12, 110 lb down and 87 lb up at 15-0-12, 110 lb down and 87 lb up at 17-0-12, 110 lb down and 80 lb up at 19-0-12, 110 lb down and 87 lb up at 21-0-12, 110 lb down and 87 lb up at 23-0-12, 110 lb down and 87 lb up at 25-0-12, 110 lb down and 87 lb up at 27-0-12, and 110 lb down and 87 lb up at 29-0-12, and 133 lb down and 85 lb up at 31-2-4 on top chord, and 335 lb down and 73 lb up at 7-0-0, 86 lb down at 9-0-12, 86 lb down at 11-0-12, 86 lb down at 13-0-12, 86 lb down at 15-0-12, 86 lb down at 19-0-12, 86 lb down at 21-0-12, 86 lb down at and 103 lb down at 31-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

Structural wood sheathing directly applied or 1-9-8 oc purlins,

9-12

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

February 8,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSITPH Quality Criteria, DSB-89 and BCSI Building Comp Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd.

Job	Truse	Truss Type	Qty	Ply	DAVID - TBD FOREST COUNTRY	COMMITTEE CO.
3046319	T06	Half Hip Girder	1	1	T26758	987
					Job Reference (optional)	

Builders FirstSource (Lake City,FL),

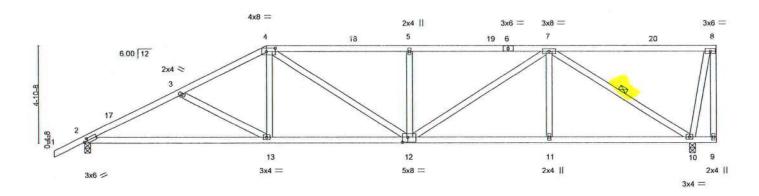
Lake City, FL - 32055,

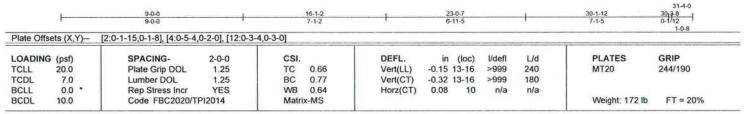
8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:16 2022 Page 2 ID:9Rsp_tPSI6LyCRUchohsVazGlxZ-_cTvAle4m4UfftlbbSTlPrvlkaPQlCGxQ0olzlzncuz

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (plf) Vert: 1-4=-54, 4-10=-54, 2-11=-20


Concentrated Loads (lb)


10(B) 7=-110(B) 10=-133(B) 11=-73(B) 15=-64(B) 17=-335(B) 9=-110(B) 20=-110(B) 21=-10(B) 22=-110(B) 23=-110(B) 24=-110(B) 25=-110(B) 26=-110(B) 26=-110(B) 28=-110(B) 28=-110(B) 28=-110(B) 31=-64(B) 31=-64(

Job	Truss	Truss T	ype	Qty	Ply	DAVID - TBD FOREST COUNTRY
				20	150	T26758988
3046319	T07	Half Hip)	1	1	
						Job Reference (optional)
Builders FirstSour	rce (Lake City,FL),	Lake City, FL - 32055,			.430 s Aug	16 2021 MiTek Industries, Inc. Mon Feb 7 06:04:16 2022 Page 1
				ID:9Rsp	tPSI6LyCF	RUchohsVazGlxZcTvAle4m4UfftlbbSTIPrvpnaHYIFxxQ0olzIzncuz
-1-6-0	4-9-8	9-0-0	16-1-2		23-0-7	31-4-0
1-6-0	4-9-8	4-2-8	7-1-2		6-11-5	8-3-9

Scale = 1:55.3

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 10=0-3-8

Max Horz 2=172(LC 12)

Max Uplift 2=-282(LC 12), 10=-296(LC 9)

Max Grav 2=1196(LC 1), 10=1193(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

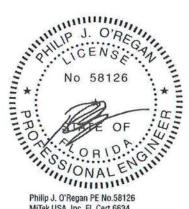
TOP CHORD

2-3=-2049/482, 3-4=-1799/411, 4-5=-1871/450, 5-7=-1879/454

BOT CHORD

2-13=-530/1804, 12-13=-398/1571, 11-12=-344/1391, 10-11=-344/1391

3-13=-274/150, 4-13=-21/393, 4-12=-161/459, 5-12=-388/181, 7-12=-217/583, WEBS


7-11=0/291, 7-10=-1662/425

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior(1) 1-6-0 to 9-0-0, Exterior(2R) 9-0-0 to 13-2-15, Interior(1) 13-2-15 to 31-2-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=282, 10=296.

Structural wood sheathing directly applied or 3-1-2 oc purlins,

7-10

Rigid ceiling directly applied or 8-1-3 oc bracing.

except end verticals.

1 Row at midpt

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

February 8,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI1-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTFeks connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Components.

Job	Truss	Truss Type		Qty	Ply	DAVID - TBD FOREST	COUNTRY T26758989
3046319	V01	GABLE		1	1	Job Reference (optional)	126758969
Builders FirstSource	(Lake City,FL), Lake	City, FL - 32055,		ID:9Rsp_tPS	8.430 s Aug	16 2021 MiTek Industries nsVazGlxZ-Sp1HOeeiXOc	, Inc. Mon Feb 7 06:04:17 2022 Page 1 WH1Jn99?_x2S7z_oU1qb5fgXIWkzncuy
-		8-9-8 8-9-8		l		17-7-0 8-9-8	
							Scale = 1:28.3
			4	k4 =			
I -			75	A.			
	1 7 191		. /		94		
TE E		6.00 12	3		8/5		
		15 /			B	16	
62		2//		5-		6	
4-0-13		14				17	
	0 /			4 ,			
	78		14			- 1 ·	- EL
							7
4	•						4
13 xxxxxxxxx	***************************************		***************************************	***********	********		3
3x6	4	13	12 11 1	0	9	8	3x6 ミ
37.0			3x6 =				### SSE
				200			
-			17	-7-0 -7-0			
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL	. 1.25	TC 0.12	Vert(LL)	n/a -	n/a 999	MT20 244/190
TCDL 7.0 BCLL 0.0 *	Lumber DOL Rep Stress Inc	1.25 r YES	BC 0.09 WB 0.04	Vert(CT) Horz(CT)	n/a - 0.00 7	n/a 999 n/a n/a	
BCDL 10.0	Code FBC202		Matrix-S	11012(01)	, /	ilia ilia	Weight: 66 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **OTHERS**

2x4 SP No.3

BRACING-

TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

TRUSS DESIGNED FOR WIND LOADS IN THE PLANE OF THE TRUSS ONLY. FOR STUDS EXPOSED TO WIND (NORMAL TO THE FACE), SEE STANDARD INDUSTRY GABLE END DETAILS AS APPLICABLE, OR CONSULT QUALIFIED BUILDING DESIGNER AS PER ANSI/TPI 1.

REACTIONS. All bearings 17-7-0.

Max Horz 1=54(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 12, 13, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 12, 9 except 13=263(LC 1), 8=263(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

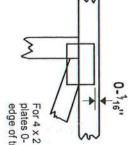
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2E) 1-3-7 to 4-3-7, Interior(1) 4-3-7 to 8-9-8, Exterior(2R) 8-9-8 to 11-9-8, Interior(1) 11-9-8 to 16-3-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 12, 13, 9, 8.

Philip J. O'Regan PE No.58126 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

February 8,2022

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801



Symbols

PLATE LOCATION AND ORIENTATION

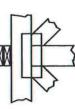
Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

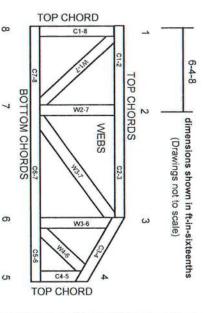

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only.


Industry Standards: ANSI/TPI1: National D

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.

DSB-89: BCSI:

Design Standard for Bracing.
Building Component Safety Information,
Guide to Good Practice for Handling,
Installing & Bracing of Metal Plate
Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

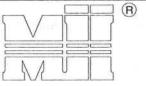
MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

4


- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.

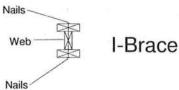
on.

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
 21. The design does not take into account any dynamic or other loads other than those expressly stated.

T-BRACE / I-BRACE DETAIL WITH 2X BRACE ONLY

MiTek USA, Inc. Page 1 of 1

MiTek USA, Inc.


Note: T-Bracing / I-Bracing to be used when continuous lateral bracing is impractical. T-Brace / I-Brace must cover 90% of web length.

Note: This detail NOT to be used to convert T-Brace / I-Brace webs to continuous lateral braced webs.

Nailing Pattern							
T-Brace size	Nail Size	Nail Spacing					
2x4 or 2x6 or 2x8	10d (0.131" X 3")	6" o.c.					

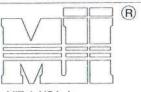
Note: Nail along entire length of T-Brace / I-Brace (On Two-Ply's Nail to Both Plies)

	11 /	Nails	
1		SPACING	
WEB			
		T-BRACE	
			Ł
Nails	Section Detail T-Brace		
	Web		

		Brace Size for One-Ply Truss					
		Continuous Iteral Bracing					
Web Size	1	2					
2x3 or 2x4	2x4 T-Brace	2x4 I-Brace					
2x6	2x6 T-Brace	2x6 I-Brace					
2x8	2x8 T-Brace	2x8 I-Brace					

	Brace Size for Two-Ply Truss				
	Specified Continuous Rows of Lateral Bracing				
Web Size	1	2			
2x3 or 2x4	2x4 T-Brace	2x4 I-Brace			
2x6	2x6 T-Brace	2x6 I-Brace			
2x8	2x8 T-Brace	2x8 I-Brace			

T-Brace / I-Brace must be same species and grade (or better) as web member.

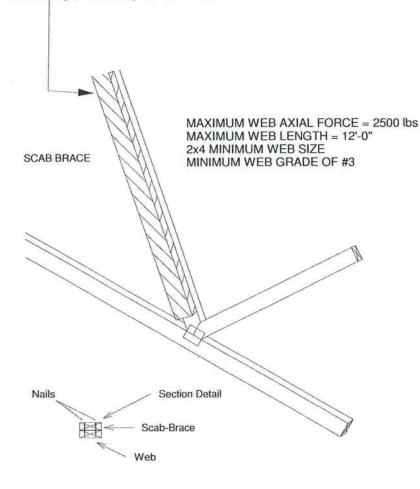

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

SCAB-BRACE DETAIL

MII-SCAB-BRACE

MiTek USA, Inc.

Page 1 of 1



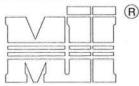
MiTek USA, Inc. ENGINEERED BY

Note: Scab-Bracing to be used when continuous lateral bracing at midpoint (or T-Brace) is impractical. Scab must cover full length of web +/- 6".

*** THIS DETAIL IS NOT APLICABLE WHEN BRACING IS *** REQUIRED AT 1/3 POINTS OR I-BRACE IS SPECIFIED.

SCAB TO ONE FACE OF WEB WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 6" O.C. SCAB MUST BE THE SAME GRADE, SIZE AND SPECIES (OR BETTER) AS THE WEB.

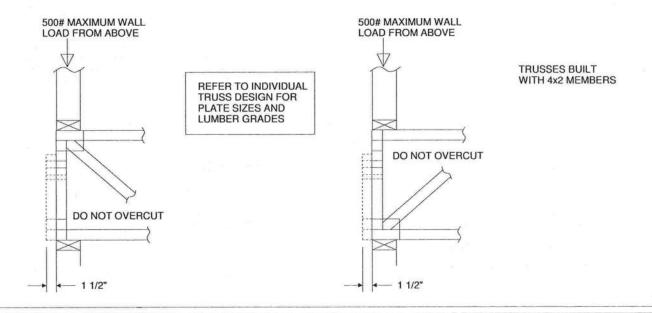
Scab-Brace must be same species grade (or better) as web member.

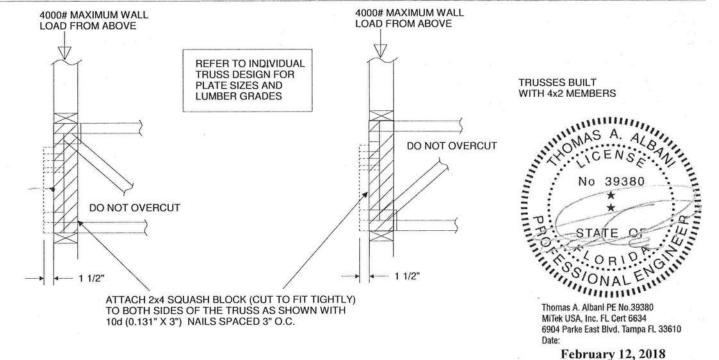


Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

STANDARD REPAIR TO REMOVE END VERTICAL (RIBBON NOTCH VERTICAL)

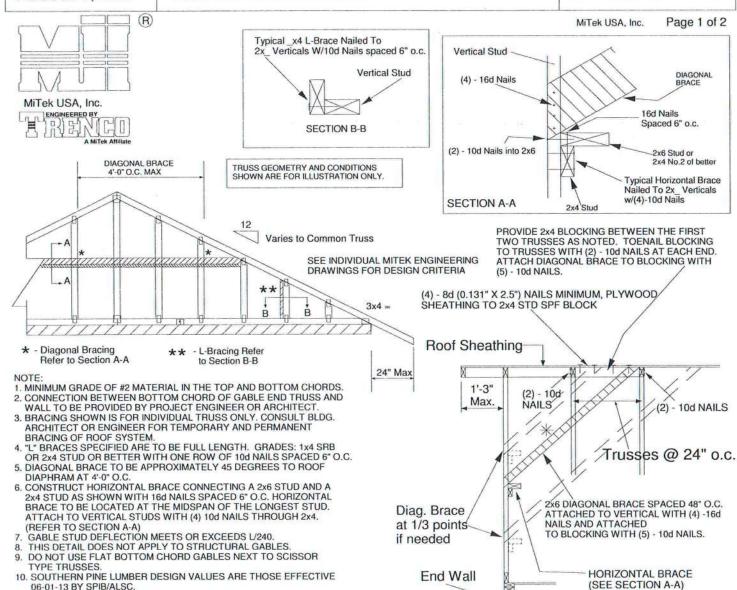
MII-REP05


MiTek USA, Inc. Page 1 of 1



MiTek USA, Inc. ENGINEERED BY

- 1. THIS IS A SPECIFIC REPAIR DETAIL TO BE USED ONLY FOR ITS ORIGINAL INTENTION. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED.
- 2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE
- APPLYING REPAIR AND HELD IN PLACE DURING APPLICATION OF REPAIR.


 3. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID SPLITTING OF THE WOOD.
- 4. LUMBER MUST BE CUT CLEANLY AND ACCURATELY AND THE REMAINING WOOD MUST BE UNDAMAGED.
 5. THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 4X_ORIENTATION ONLY.
 6. CONNECTOR PLATES MUST BE FULLY IMBEDDED AND UNDISTURBED.

Standard Gable End Detail

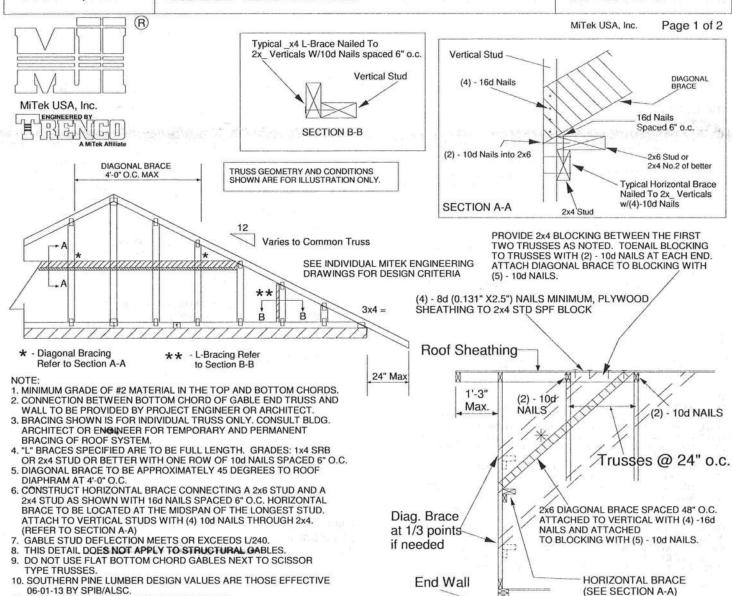
MII-GE130-D-SP

Minimum Stud Size	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS	
Species and Grade		Maximum Stud Length					
2x4 SP No. 3 / Stud	12" O.C.	3-9-13	4-1-1	5-9-6	7-1-3	11-5-7	
2x4 SP No. 3 / Stud	16" O.C.	3-5-4	3-6-8	5-0-2	6-10-8	10-3-13	
2x4 SP No. 3 / Stud	24" O.C.	2-9-11	2-10-11	4-1-1	5-7-6	8-5-1	

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING **EXPOSURE D** ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH DURATION OF LOAD INCREASE: 1.60


STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Standard Gable End Detail

MII-GE130-SP

Minimum Stud Size	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS		
Species and Grade		Maximum Stud Length						
2x4 SP No. 3 / Stud	12" O.C.	4-0-7	4-5-6	6-3-8	8-0-15	12-1-6		
2x4 SP No. 3 / Stud	16" O.C.	3-8-0	3-10-4	5-5-6	7-4-1	11-0-1		
2x4 SP No. 3 / Stud	24" O.C.	3-0-10	3-1-12	4-5-6	6-1-5	9-1-15		

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

MII-GE140-001 Standard Gable End Detail **JANUARY 6, 2017** (R) MiTek USA, Inc. Typical _x4 L-Brace Nailed To Verticals W/10d Nails spaced 6" o.c. Vertical Stud Vertical Stud (4) - 16d Nails MiTek USA, Inc. 16d Nails Spaced 6" o.c. SECTION B-B (2) - 10d Nails into 2x6 DIAGONAL BRACE 4'-0" O.C. MAX TRUSS GEOMETRY AND CONDITIONS SHOWN ARE FOR ILLUSTRATION ONLY. Typical Horizontal Brace Nailed To 2x_ Verticals w/(4)-10d Nails SECTION A-A PROVIDE 2x4 BLOCKING BETWEEN THE FIRST Varies to Common Truss TWO TRUSSES AS NOTED. TOENAIL BLOCKING TO TRUSSES WITH (2) - 10d NAILS AT EACH END. ATTACH DIAGONAL BRACE TO BLOCKING WITH SEE INDIVIDUAL MITEK ENGINEERING DRAWINGS FOR DESIGN CRITERIA (5) - 10d NAILS. ** (4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD 3x4 =SHEATHING TO 2x4 STD DF/SPF BLOCK Roof Sheathing **Diagonal Bracing** L-Bracing Refer

24" Max

Diag. Brace

at 1/3 points

End Wall

if needed

1'-3'

Max.

10d

NAILS

Refer to Section A-A

1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS.

to Section B-B

2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT

3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT

BRACING OF ROOF SYSTEM.

4. "L" BRACES SPECIFIED ARE TO BE FULL LENGTH. GRADES: 1x4 SRB
OR 2x4 STUD OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C.

5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF

DIAPHRAM AT 4'-0" O.C. 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 STUD AND A 2x4 STUD AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST STUD. ATTACH TO VERTICAL STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A)

GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240

THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES. DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES

10. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Minimum Stud Size Species and Grade	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS	
			Maximum Stud Length				
2x4 DF/SPF Std/Stud	12" O.C.	3-10-1	3-11-7	5-7-2	7-8-2	11-6-4	
2x4 DF/SPF Std/Stud	16" O.C.	3-3-14	3-5-1	4-10-2	6-7-13	9-11-11	
2x4 DF/SPF Std/Stud	24" O.C.	2-8-9	2-9-8	3-11-7	5-5-2	8-1-12	

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAXIMUM WIND SPEED = 140 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

2x6 DIAGONAL BRACE SPACED 48" O.C.

ATTACHED TO VERTICAL WITH (4) -16d

HORIZONTAL BRACE

(SEE SECTION A-A)

TO BLOCKING WITH (5) - 10d NAILS.

NAILS AND ATTACHED

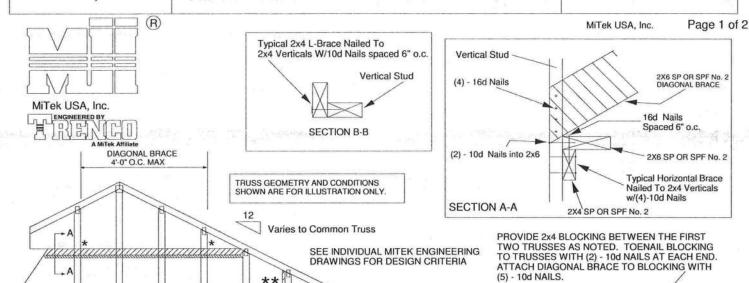
Page 1 of 2

DIAGONAL BRACE

2x6 Stud or

2x4 No.2 of better

(2) - 10d NAILS


Trusses @ 24" o.c.

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

January 19, 2018

Standard Gable End Detail

MII-GE170-D-SP

3x4 =

End Wall

- Diagonal Bracing Refer to Section A-A ** - L-Bracing Refer to Section B-B

B

NOTE

1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS.

CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.
 BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG.

ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM.

"L" BRACES SPECIFIED ARE TO BE FULL LENGTH, SPF or SP No.3

OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C. 5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF DIAPHRAM AT 4'-0" O.C.

6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 AND A 2x4 AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST GABLE STUD. ATTACH TO VERTICAL GABLE STUDS WITH (4) 10d NAILS THROUGH 2x4.

(REFER TO SECTION A-A)

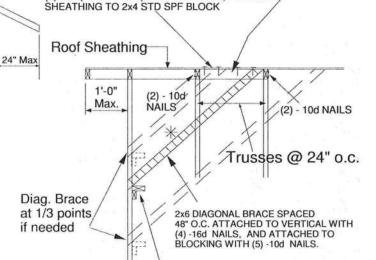
GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.

THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.

DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR

TYPE TRUSSES 10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC.

11. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")


Minimum Stud Size Species	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS		
and Grade		Maximum Stud Length					
2x4 SP No. 3 / Stud	12" O.C.	3-9-7	5-8-8	6-11-1	11-4-4		
2x4 SP No. 3 / Stud	16" O.C.	3-4-12	4-11-15	6-9-8	10-2-3		
2x4 SP No. 3 / Stud	24" O.C.	2-9-4	4-0-7	5-6-8	8-3-13		
2x4 SP No. 2	12" O.C.	3-11-13	5-8-8	6-11-1	11-11-7		
2x4 SP No. 2	16" O.C.	3-7-7	4-11-5	6-11-1	10-10-5		
2x4 SP No. 2	24" O.C.	3-1-15	4-0-7	6-3-14	9-5-14		

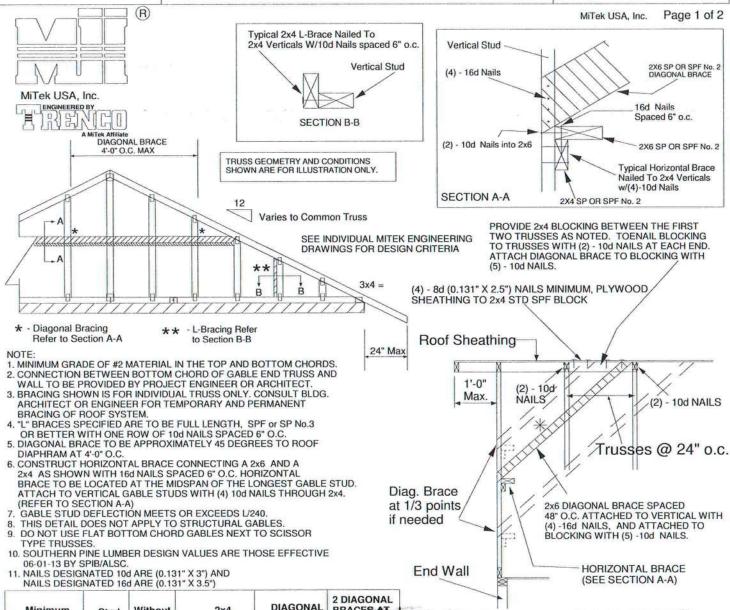
Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2.

MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D ASCE 7-10 170 MPH

DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

(4) - 8d (0.131" X 2.5") NAILS MINIMUM, PLYWOOD,



HORIZONTAL BRACE (SEE SECTION A-A)

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Standard Gable End Detail

MII-GE180-D-SP

Minimum Stud Size	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
Species and Grade					
2x4 SP No. 3 / Stud	12" O.C.	3-7-12	5-4-11	6-2-1	10-11-3
2x4 SP No. 3 / Stud	16" O.C.	3-2-8	4-8-1	6-2-1	9-7-7
2x4 SP No. 3 / Stud	24" O.C.	2-7-7	3-9-12	5-2-13	7-10-4
2x4 SP No. 2	12" O.C.	3-10-0	5-4-11	6-2-1	11-6-1
2x4 SP No. 2	16" O.C.	3-5-13	4-8-1	6-2-1	10-5-7
2x4 SP No. 2	24" O.C.	3-0-8	3-9-12	6-1-1	9-1-9

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6in o.c., with 3in minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2.

MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D ASCE 7-10 180 MPH DURATION OF LOAD INCREASE : 1.60

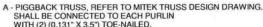
STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

MiTek USA, Inc. Page 1 of 1

(R)

MiTek USA, Inc.


ENGINEERED CL

MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C. CATEGORY II BUILDING

EXPOSURE B or C ASCE 7-10

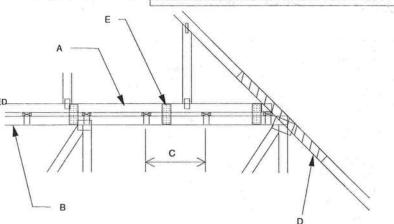
DURATION OF LOAD INCREASE: 1.60

DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES). ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED.

WITH (2) (0.131" X 3.5") TOE-NAILED.

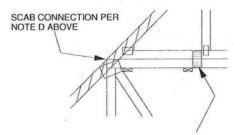
- BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
- PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C.
UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING.

UNLESS SPECIFIED CLOSER OIN MITER THOSS DESIGN DRAWING.
CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH.
-2 X __ X 4'-0" SCAB, SIZE TO MATCH TOP CHORD OF
PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTEREDON INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C.
SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING
IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH DIRECTIONS AND

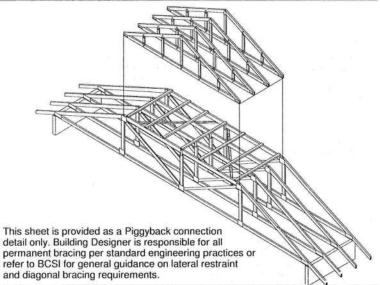

DIRECTIONS AND:

1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR

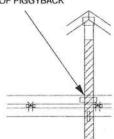
2. WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM
PIGGYBACK SPAN OF 12 ft.


E - FOR WIND SPEEDS BETWEEN 126 AND 160 MPH, ATTACH

- FUR WIND 3-FEEDS BET WEEN 126 AND 160 MPF, ATTACH MITEK 3X8 20 GA NAII-On PLATES TO EACH FACE OF TRUSSES AT 72° O.C. W/ (4) (0.131" X 1.5") NAILS PER MEMBER. STAGGER NAILS FROM OPPOSING FACES. ENSURE 0.5" EDGE DISTANCE. (MIN. 2 PAIRS OF PLATES REO. REGARDLESS OF SPAN)



WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS:


REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH Nail-On PLATES AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING.

FOR ALL WIND SPEEDS, ATTACH MITEK 3X6 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 48" O.C. W/ (4) (0.131" X 1.5") PER MEMBER. STAGGER NAILS FROM OPPOSING FACES ENSURE 0.5" EDGE DISTANCE.

VERTICAL WEB TO EXTEND THROUGH BOTTOM CHORD OF PIGGYBACK

FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB:

- 1) VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP AS SHOWN IN DETAIL.
- AS STOWN IN DETAIL.
 ATTACH 2 X ___ x 4-0" SCAB TO EACH FACE OF
 TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS
 SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH ATTACH 2 x VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.)
- (MINIMUM 2X4)
 THIS CONNECTION IS ONLY VALID FOR A MAXIMUM
 CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW
 BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS.

FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS, NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS.

CONCENTRATED LOAD MUST BE APPLIED TO BOTH THE PIGGYBACK AND THE BASE TRUSS DESIGN.

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

STANDARD PIGGYBACK TRUSS CONNECTION DETAIL

MII-PIGGY-ALT 7-10

MiTek USA, Inc. Page 1 of 1

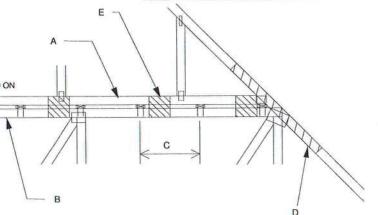
R MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C. CATEGORY II BUILDING EXPOSURE B or C ASCE 7-10 DURATION OF LOAD INCREASE: 1.60

> DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES). ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED.

A - PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.

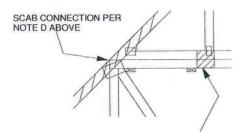
A - PIGGBACK THUSS, AFERT TO MITEK THUSS DESIGN DRAWING.
SHALL BE CONNECTED TO EACH PURLIN
WITH (2) 0(0.131" X 3.5") TOE-NAILED.
B - BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
C - PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C.
UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING.

UNLESS SPECIFIED CLOSEN OIN MILEX THOSE DESIGN DRAWNING.
CONNECT TO BASE TRUSS WITH (2) (0, 131" X 3.5") NAILS EACH.
- 2 X __ X 4'-0" SCAB, SIZE TO MATCH TOP CHORD OF
PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED ON
INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C.
SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING
IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH

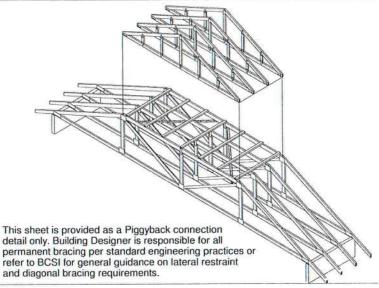

DIRECTIONS AND:

1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR

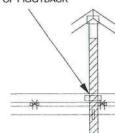
2. WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM
PIGGYBACK SPAN OF 12 It.


PROGRESS SPAN OF 12 II.

F FOR WIND SPEED IN THE RANGE 126 MPH - 160 MPH ADD 9" x 9" x 1/2" PLYWOOD (or 7/16" OSB) GUSSET EACH SIDE AT 48" O.C. OR LESS. ATTACH WITH 3 - 6d (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS)



WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS:


REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH PLYWOOD GUSSETS AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING.

7" x 7" x 1/2" PLYWOOD (or 7/16" OSB) GUSSET EACH SIDE AT 24" O.C. ATTACH WITH 3 - 6d (0.113" X 2") NAILS INTO EACH CHORD FROM EACH SIDE (TOTAL - 12 NAILS)

VERTICAL WEB TO EXTEND THROUGH BOTTOM CHORD OF PIGGYBACK

FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB:

1) VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP

AS SHOWN IN DETAIL.

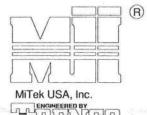
ATTACH 2 x x 4'-0" SCAB TO EACH FACE OF
TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS
SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH
VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.) (MINIMUM 2X4)

THIS CONNECTION IS ONLY VALID FOR A MAXIMUM CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS.

GHEATER THAN 4000 LGS. FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS, NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS.

CONCENTRATED LOAD MUST BE APPLIED TO BOTH THE PIGGYBACK AND THE BASE TRUSS DESIGN.

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

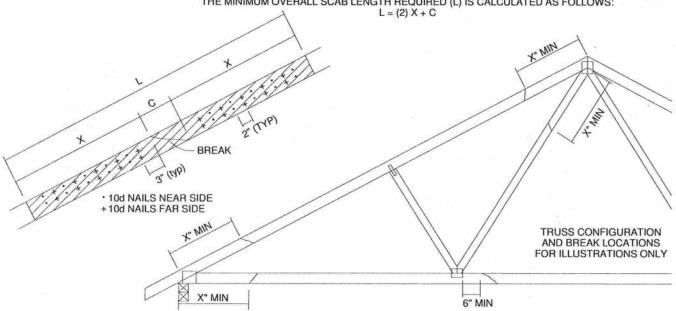

January 19, 2018

STANDARD REPAIR DETAIL FOR BROKEN CHORDS, WEBS AND DAMAGED OR MISSING CHORD SPLICE PLATES

MII-REP01A1

MiTek USA, Inc.

Page 1 of 1



	JMBER OF		-	MAXIMUM FORCE (lbs) 15% LOAD DURATION						
OF BF	REAK *	X	S	Р)F	s	PF	н	IF
2x4	2x6	INOTILO	2x4	2x6	2x4	2x6	2x4	2x6	2x4	2x6
20	30	24"	1706	2559	1561	2342	1320	1980	1352	2028
26	39	30"	2194	3291	2007	3011	1697	2546	1738	2608
32	48	36"	2681	4022	2454	3681	2074	3111	2125	3187
38	57	42"	3169	4754	2900	4350	2451	3677	2511	3767
44	66	48"	3657	5485	3346	5019	2829	4243	2898	4347

* DIVIDE EQUALLY FRONT AND BACK

ATTACH 2x SCAB OF THE SAME SIZE AND GRADE AS THE BROKEN MEMBER TO EACH FACE OF THE TRUSS (CENTER ON BREAK OR SPLICE) WITH 10d (0.131" X 3") NAILS (TWO ROWS FOR 2x4, THREE ROWS FOR 2x6) SPACED 4" O.C. AS SHOWN. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 0-2-0 O.C. SPACING IN THE MAIN MEMBER. USE A MIN. 0-3-0 MEMBER END DISTANCE.

THE LENGTH OF THE BREAK (C) SHALL NOT EXCEED 12". (C=PLATE LENGTH FOR SPLICE REPAIRS) THE MINIMUM OVERALL SCAB LENGTH REQUIRED (L) IS CALCULATED AS FOLLOWS:

THE LOCATION OF THE BREAK MUST BE GREATER THAN OR EQUAL TO THE REQUIRED X DIMENSION FROM ANY PERIMETER BREAK OR HEEL JOINT AND A MINIMUM OF 6" FROM ANY INTERIOR JOINT (SEE SKETCH ABOVE)

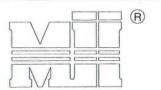
DO NOT USE REPAIR FOR JOINT SPLICES

- THIS REPAIR DETAIL IS TO BE USED ONLY FOR THE APPLICATION SHOWN. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED.

 2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLING REPAIR
- AND HELD IN PLACE DURING APPLICATION OF REPAIR.
- THE END DISTANCE, EDGE DISTANCE AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID
- UNUSUAL SPLITTING OF THE WOOD.

 WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES. THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 2x_ ORIENTATION ONLY. THIS REPAIR IS LIMITED TO TRUSSES WITH NO MORE THAN THREE BROKEN MEMBERS.

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


January 19, 2018

LATERAL TOE-NAIL DETAIL

MII-TOENAIL SP

MiTek USA, Inc.

Page 1 of 1

MiTek USA, Inc.

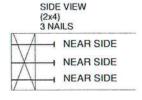

NOTES:

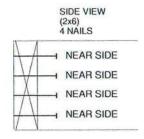
- 1. TOE-NAILS SHALL BE DRIVEN AT AN ANGLE OF 45 DEGREES WITH THE MEMBER AND MUST HAVE FULL WOOD SUPPORT. (NAIL MUST BE DRIVEN THROUGH AND EXIT AT THE BACK CORNER OF THE MEMBER END AS SHOWN.

 2. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH
- AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.
- 3. ALLOWABLE VALUE SHALL BE THE LESSER VALUE OF THE TWO SPECIES FOR MEMBERS OF DIFFERENT SPECIES.

THIS DETAIL APPLICABLE TO THE THREE END DETAILS SHOWN BELOW

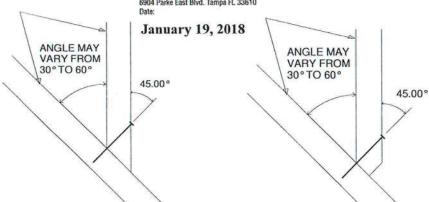
VIEWS SHOWN ARE FOR ILLUSTRATION PURPOSES ONLY

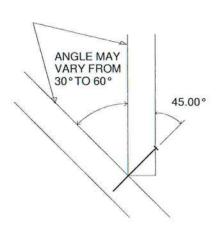


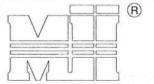

TOE-NAIL SINGLE SHEAR VALUES PER NDS 2001 (lb/nail) SP SPF SPF-S DIAM. DF HF .131 69.9 88.0 80.6 68.4 59.7 LONG 63.4 74.2 .135 93.5 85.6 72.6 108.8 99.6 86.4 84.5 73.8 .162 3.5 LONG 50.3 .128 74.2 67.9 58.9 57.6 51.1 131 75.9 69.5 60.3 59.0 3.25" 63.2 64.6 .148 81.4 74.5 52.5

VALUES SHOWN ARE CAPACITY PER TOE-NAIL. APPLICABLE DURATION OF LOAD INCREASES MAY BE APPLIED.

(3) - 16d (0.162" X 3.5") NAILS WITH SPF SPECIES BOTTOM CHORD

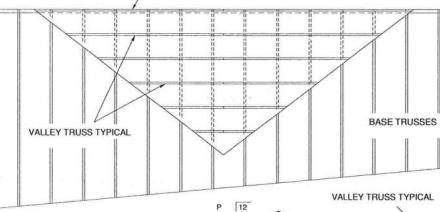

For load duration increase of 1.15: 3 (nails) X 84.5 (lb/nail) X 1.15 (DOL) = 291.5 lb Maximum Capacity



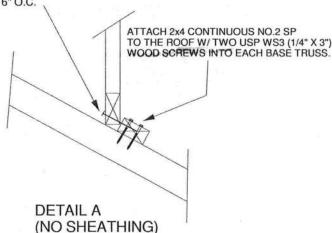

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

MiTek USA, Inc.

Page 1 of 1


MiTek USA, Inc.

GABLE END, COMMON TRUSS OR GIRDER TRUSS


GENERAL SPECIFICATIONS

- NAIL SIZE 10d (0.131" X 3")
- 2. WOOD SCREW = 3" WS3 USP OR EQUIVALENT DO NOT USE DRYWALL OR DECKING TYPE SCREW
- INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A
- 4. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- 5. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 6. NAILING DONE PER NDS 01
- 7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.

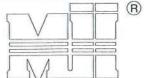
GABLE END, COMMON TRUSS OR GIRDER TRUSS 12 SEE DETAIL A BELOW (TYP.)

SECURE VALLEY TRUSS W/ ONE ROW OF 10d NAILS 6" O.C.

N.T.S.

WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING EXPOSURE C WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 6 PSF ON THE TRUSSES

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

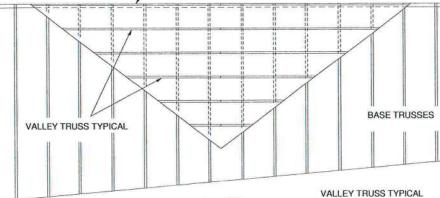

January 19, 2018

TRUSSED VALLEY SET DETAIL

MII-VALLEY HIGH WIND2

MiTek USA, Inc.

Page 1 of 1

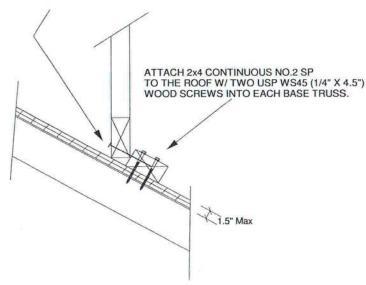


MiTek USA, Inc.

GABLE END, COMMON TRUSS OR GIRDER TRUSS

GENERAL SPECIFICATIONS

- 1. NAIL SIZE 10d (0.131" X 3")
- 2. WOOD SCREW = 4.5" WS45 USP OR EQUILIVANT
- 3. INSTALL SHEATHING TO TOP CHORD OF BASE TRUSSES. 4. INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND
- 4. INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE TO BASE TRUSSES AS PER DETAIL A
- BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- 6. NAILING DONE PER NDS-01
- 7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.



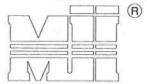
VALLEY TRUSS TYPICAL

GABLE END, COMMON TRUSS
OR GIRDER TRUSS

SEE DETAIL
A BELOW (TYP.)

SECURE VALLEY TRUSS W/ ONE ROW OF 10d NAILS 6" O.C.

WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING EXPOSURE C WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF

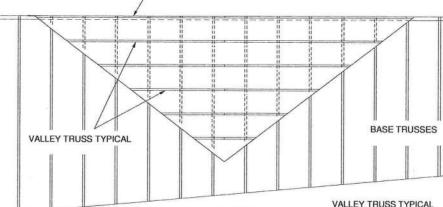

MAX TOP CHORD TOTAL LOAD = 50 PSF
MAX SPACING = 24" O.C. (BASE AND VALLEY)
MINIMUM REDUCED DEAD LOAD OF 6 PSF
ON THE TRUSSES

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

MiTek USA, Inc.

Page 1 of 1

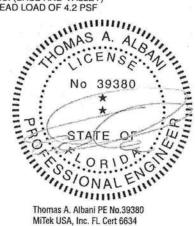
MiTek USA, Inc.


ENGINEERED BY

N.T.S.

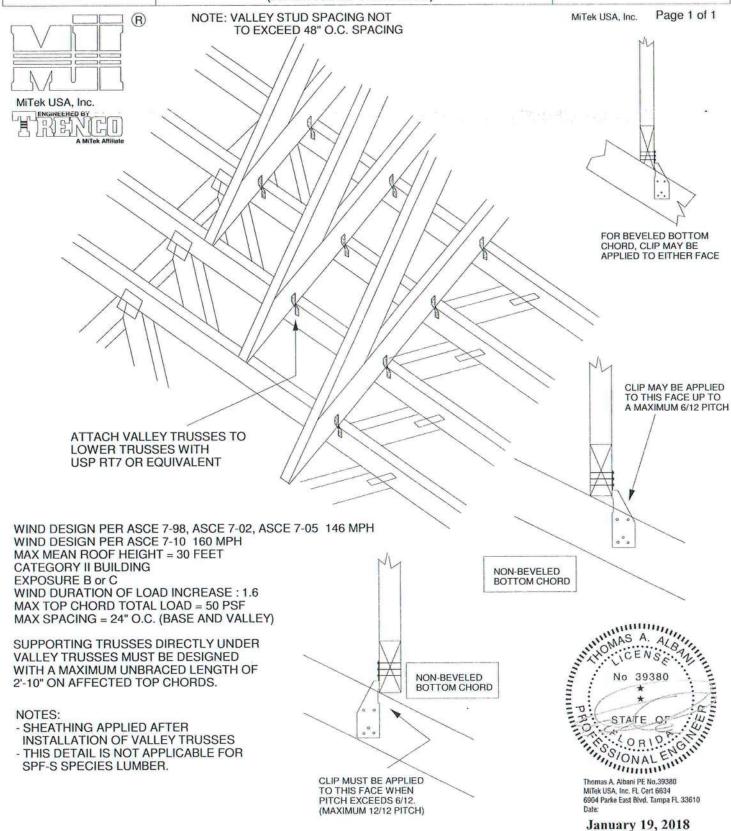
GABLE END, COMMON TRUSS OR GIRDER TRUSS

GENERAL SPECIFICATIONS

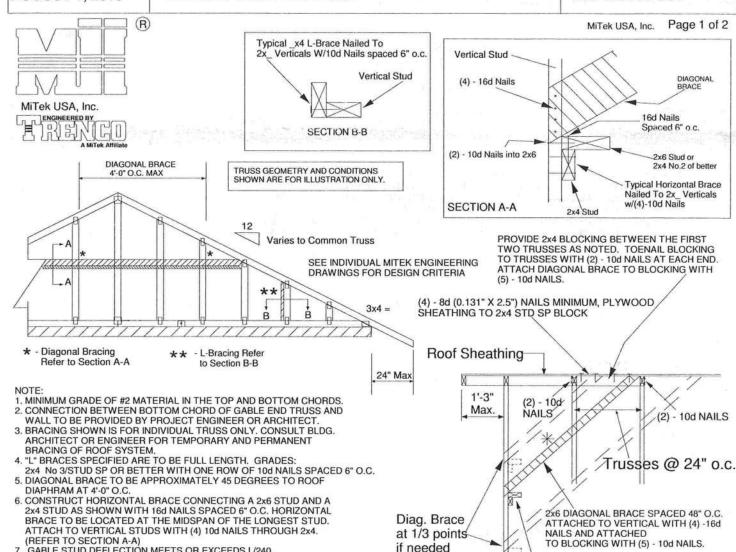

- NAIL SIZE 16d (0.131" X 3.5")
- 2. INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A
- BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 5. NAILING DONE PER NDS 01 6. VALLEY STUD SPACING NOT TO EXCEED 48" O.C. 7. ALL LUMBER SPECIES TO BE SP.

GABLE END, COMMON TRUSS VALLEY TRUSS TYPICAL OR GIRDER TRUSS 12 SEE DETAIL A BELOW (TYP.)

SECURE VALLEY TRUSS W/ ONE ROW OF 16d NAILS 6" O.C. ATTACH 2x4 CONTINUOUS NO.2 SP TO THE ROOF W/ TWO 16d NAILS INTO EACH BASE TRUSS. DETAIL A (MAXIMUM 1" SHEATHING)


WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 120 MPH WIND DESIGN PER ASCE 7-10 150 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 10/12 CATEGORY II BUILDING EXPOSURE C OR B WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 60 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY) MINIMUM REDUCED DEAD LOAD OF 4.2 PSF ON THE TRUSSES

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:


TRUSSED VALLEY SET DETAIL (HIGH WIND VELOCITY)

MII-VALLEY

Standard Gable End Detail

MII-GE146-001

End Wall

(REFER TO SECTION A-A)

7. GABLE STUD DEFLECTION MEETS OR EXCEEDS L/240.

8. THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.

9. DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR

TYPE TRUSSES

10. NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Minimum Stud Size	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS	
Species and Grade		Maxim	num Stud L	.ength		
2x4 SP No 3/Stud	12" O.C.	3-11-3	6-8-0	7-2-14	11-9-10	
2x4 SP No 3/Stud	16" O.C.	3-6-14	5-9-5	7-1-13	10-8-11	
2x4 SP No 3/Stud	24" O.C.	3-1-8	4-8-9	6-2-15	9-4-7	

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAXIMUM WIND SPEED = 146 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 DURATION OF LOAD INCREASE: 1.60

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

HORIZONTAL BRACE

(SEE SECTION A-A)

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

January 19, 2018

OCTOBER 5, 2016

REPLACE BROKEN OVERHANG

MII-REP13B

MiTek USA, Inc.

Page 1 of 1

(R)

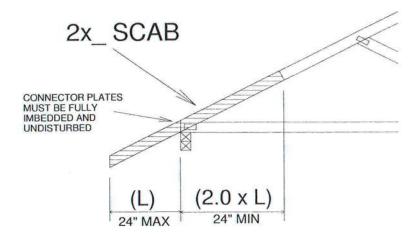
MiTek USA, Inc.

ENGINEERED BY

TRUSS CRITERIA:

LOADING: 40-10-0-10 **DURATION FACTOR: 1.15** SPACING: 24" O.C. TOP CHORD: 2x4 OR 2x6 PITCH: 4/12 - 12/12

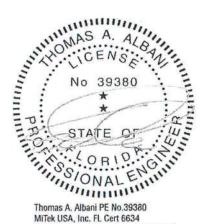
HEEL HEIGHT: STANDARD HEEL UP TO 12" ENERGY HEEL


END BEARING CONDITION

NOTES:

1. ATTACH 2x_ SCAB (MINIMUM NO.2 GRADE SPF, HF, SP, DF) TO ONE FACE OF TRUSS WITH TWO ROWS OF 10d (0.131" X 3") SPACED 6" O.C.

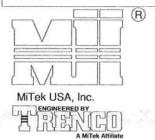
2. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.


3. WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED. TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES.

IMPORTANT

This detail to be used only with trusses (spans less than 40') spaced 24" o.c. maximum and having pitches between 4/12 and 12/12 and total top chord loads not exceeding 50 psf. Trusses not fitting these criteria should be examined individually.

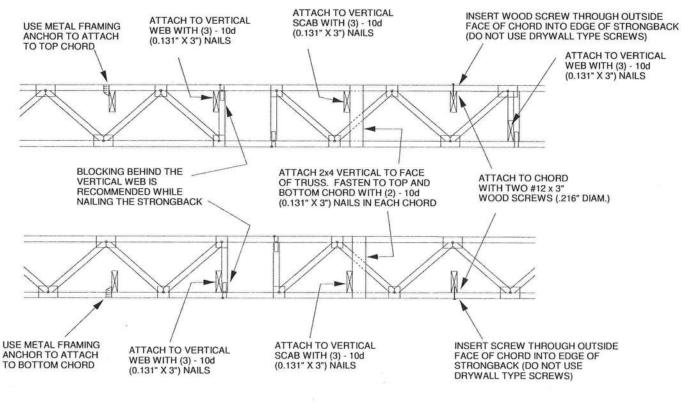
REFER TO INDIVIDUAL TRUSS DESIGN FOR PLATE SIZES AND LUMBER GRADES

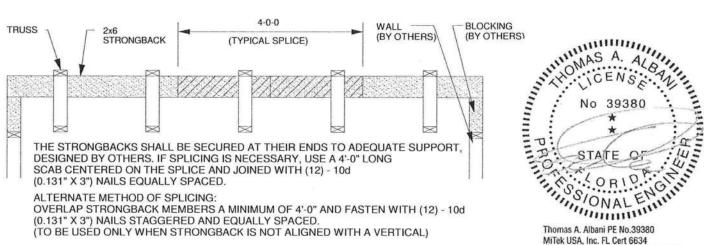

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

LATERAL BRACING RECOMMENDATIONS

MII-STRGBCK

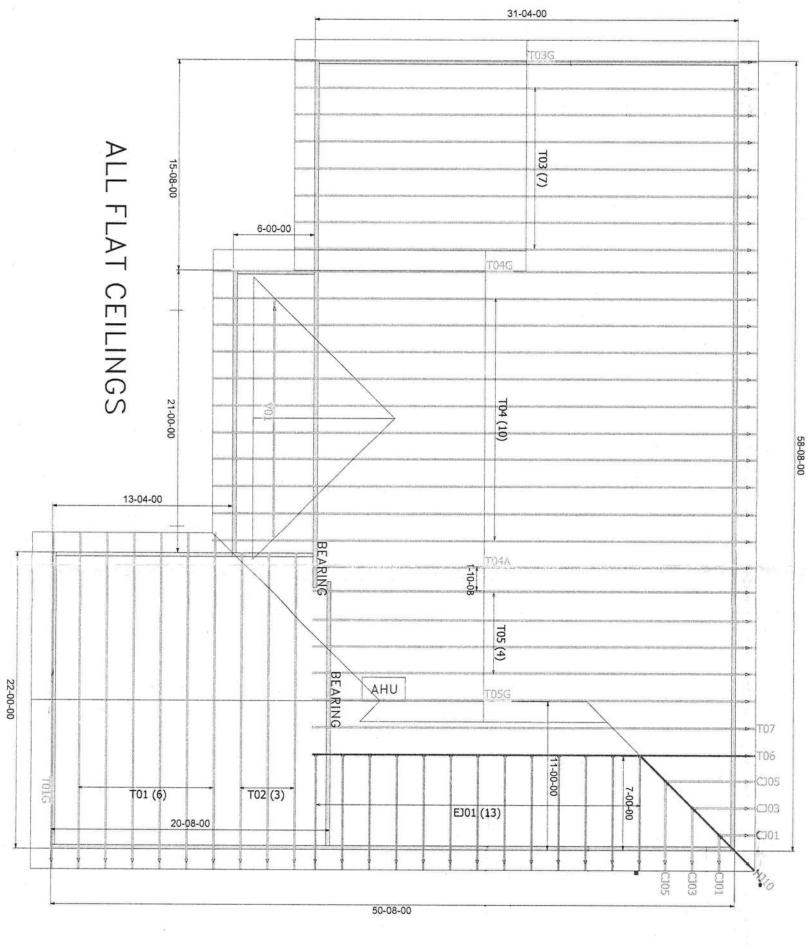
MiTek USA, Inc.


Page 1 of 1



TO MINIMIZE VIBRATION COMMON TO ALL SHALLOW FRAMING SYSTEMS, 2x6 "STRONGBACK" IS RECOMMENDED, LOCATED EVERY 8 TO 10 FEET ALONG A FLOOR TRUSS.

NOTE 1: 2X6 STRONGBACK ORIENTED VERTICALLY MAY BE POSITIONED DIRECTLY UNDER THE TOP CHORD OR DIRECTLY ABOVE THE BOTTOM CHORD. SECURELY FASTENED TO THE TRUSS USING ANY OF THE METHODS ILLUSTRATED BELOW.


NOTE 2: STRONGBACK BRACING ALSO SATISFIES THE LATERAL BRACING REQUIREMENTS FOR THE BOTTOM CHORD OF THE TRUSS WHEN IT IS PLACED ON TOP OF THE BOTTOM CHORD, IS CONTINUOUS FROM END TO END, CONNECTED WITH A METHOD OTHER THAN METAL FRAMING ANCHOR, AND PROPERLY CONNECTED, BY OTHERS, AT THE ENDS.

February 12, 2018

/12 PITCH

THE ARROW HEAD AT THE END OF THE TRUSS ON THE TRUSS PLACEMENT PLAN (LAYOUT) PLAN (LAYO 3

ral Notes:

Per ANSI/IPI 1-2002 all "Truss to Wall" connections are the responsibility of the Building Designer, not the Truss Manufacturer's specifications for all hanger connections unless moted otherwise.

Trusses are to be 24° o.c. U.N.O.

All hangers are to be Simpson or equivalent U.N.O.

Use Md x 1/2" Nails in hanger connections to single ply

Trusses are not designed to support brick U.N.O. Dimensions are Feet Inches: Sixteenths

No back charges will be accepted by Builders FirstSource unless approved in writing first. 850-835-4541

ACQ lumber is corrisive to truss plates. Any ACQ lumb that comes in contact with truss plates (i.e. scabbed on tails) must have an approved barrier applied first.

Refer to BCSI-B1 Summary Sheet-Guide for handling, Installing and Bracing of Metal Plate Connected Wood Truss prior to and during truss installation.

It is the responsibility of the Contractor to ensure of the proper orientation of the truss placement plans as to the construction documents and field conditions of the structure orientation. If a reversed or flipped byout in required, it will be supplied at no extra cost by Builders FirstSource.

It is the responsibility of the Contractor to make sure the placement of trusses are adjusted for plumbing drops, can lights, ect..., so the trusses do not interfere with these

All common framed roof or floor systems must be designed as to NOT impose any boads on the floor trusses below. The floor trusses have not been designed to carry any additional loads from above.

This truss placement plan was not created by an engineer, but rather by the Builders FirstSource staff and is solely to be used as an installation guide and does not require a seal. Complete truss engineering and analysis can be found on the truss design drawings which may be sealed by the truss design engineer.

Jable end trusses require continuous bottom chord searing. Refer to local codes for wall framing

Although all attempts have been made to do so, trussess may not be designed symmetrically. Please refer to the individual truss drawings and truss placement plans for proper orientation and placement.

Builders

FIRSTSOURCE

Lake City PHONE: 386-755-6894

Jacksonville PHONE: 904-772-6100 FAX: 386-755-7973

FAX: 904-772-1973

Tallahassee PHONE: 850-576-5177

RON DAVID PLASTERING

1815 1 - 19 - 22TBD Forest Country Spec KLH Floor 2 Job#: N/A 3046319

3046319