ONE STORY WALL SECTION SIMPSON H2.5A U.N.O. -SEE STRUCTURAL PLAN (2) SIMPSON LSTA21- w/ (8) -16d TO HEADER AND (8) -16d TO POST # EXTERIOR WALL STUD TABLE FOR SPF #2 STUDS | (1) 2x4 @ 16" OC | TO 11'-9" STUD HEIGHT | |------------------|------------------------| | (1) 2x4 @ 12" OC | TO 13'-0" STUD HEIGHT | | (1) 2x6 @ 16" OC | TO 18'-10' STUD HEIGHT | | (1) 2x6 @ 12" OC | TO 20.0' STUD HEIGHT | THIS STUD HEIGHT TABLE IS PER WFCM 2001, TABLE 3.20B EXTERIOR LOAD BEARING & NON LOAD BEARING STUD LENGTHS RESISTING INTERIOR ZONE WINDLOADS 110 MPH EXPOSURE B. STUD SPACINGS SHALL BE MULTIPLIED BY 0.85 FOR FRAMING LOCATED WITHIN 4 FEET OF CORNERS FOR END ZONE LOADING EXAMPLE 16" O.C. x 0.85 = 13.6" O.C. TYPICAL GARAGI DOOR HEADER STRAPING DETAIL SCALE: 1/2" = 1'-0" #### 2x6 S) #2 GARAGE DOOR BUCK ATTACHMENT ATTACHARAGE DOOR BUCK TO STUD PACK AT EACH SE OF DOOR OPENING WITH 3/8"x4" LAG SCREWW/ 1" WASHER LAG SCREWS MAY BE COUNTISUNK, HORIZONTAL JAMBS DO NOT TRANSIR LOAD, CENTER LAG SCREWS OR STAGGI 16d NAILS OR (2) ROWS OF .131 x 3 1/4" GN PEFABLE BELOW: | DOOWIDTH | 3/8" x 4" LAG | 16d
STAGGER | (2) ROWS OF
.131 x 3 1/4" GN | |----------|---------------|----------------|---------------------------------| | 810' | 24" O.C. | 5* O.C. | 5" O.C. | | 1115' | 18" O.C. | 4™ O.C. | 4" O.C. | | 1618' | 16" O.C. | 3" O.C. | 3" O.C. | GARAGE DOR BUCK INSTALLATION DETAIL MIN. (SEE STRUCTUR PLAN) **BEAM MID-WALL CONNECTON DETAIL** -(4)-2x4 SPF #2 NAILEI NAILS AT 16" O.C. **TOGETHER W/2-16d** (2) 2X12 SYP #2 MIN. -SEE STRUCTURAL PLAN (2) 2X12 SYP #2 U.N.O. -6X6 SYP #2 POST SEE STRUCTURAL PLAN -SIMPSON ABU POST BASE w/ (12) - 16d & 5/8" x 10" -SEE FOOTING DETAILS TYPICAL PORCH POST DETAIL SCALE: 1/2" = 1'-0" ANCHOR BOLT SIMPSON HUS412 MIN. — SEE STRUCTURAL PLAN BEAM CORNER CONNECTION. DITAIL SCALE: N.T.S. SUPPORTIVE CENTER POST TO BEAM DETAIL SCALE: N.T.S. ### GRADE & SPECIES TAEBLE | | | Fb (psi) | E (10 ⁶ psi) | |------|--------------|----------|-------------------------| | 2x8 | SYP #2 | 1200 | 1.6 | | 2x10 | SYP #2 | 1050 | 1.6 | | 2x12 | SYP #2 | 975 | 1.6 | | GLB | 24F-V3 SP | 2400 | 1.8 | | LSL | TIMBERSTRAND | 1700 | 1.7 | | LVL | MICROLAM | 1600 | 1.9 | | PSL | PARALAM | 2900 | 2.0 | CONTINUOUS FRAME TO CEILING DIAPHRAGM DETAIL #### IF TRUSS TO WALL STRAPS ARE NAIAILED TO THE HEADER THE SPH4/6 @ 48" GO.C. #### **GENERAL NOTES:** TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR 2004. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS, BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END. SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI. WELDED WIRE REINFORCED SLAB: 6° x 6° W1.4 x W1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'. FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS, FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.) REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O. GLULAM BEAMS: GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi: UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"OC INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO. STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS. ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO. NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES. ## BUILDER'S RESPONSIBILITY | | ND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE
NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK. | |-----------------|---| | | DITIONS, FOUNDATION BEARING CAPACITY, GRADE AND WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE. | | | S AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBCR 2004 OR THE STATED WIND VELOCITY AND DESIGN PRESSURES. | | BELIEVE THE PLA | UOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL GINEER IMMEDIATELY. | | DESIGN, PLACEM | MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS INT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL NS. | ### **ROOF SYSTEM DESIGN** THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBCR 2004, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBCR 2004 REQUIRED LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS. **MASONRY NOTES:** 1.4A Compressive strength CMU standard 2.3 Clay brick standard 3.3.E.7 | Movement joints Reinforcing bars, #3 - #11 2.4F Coating for corrosion protection 2.4F Coating for corrosion protection IN WRITING. 2.3 2.1 Mortar 2.2 Grout MASONRY CONSTRUCTION AND MATERIALS FOR THIS PROJECT SHALL CONFORM TO ALL REQUIREMENTS OF "SPECIFICATION FOR MASONRY MUST IMMEDIATELY, BEFORE PROCEDING, NOTIFY THE ENGINEER OF ANY CONFLICTS BETWEEN ACI 530.1-02 AND THESE DESIGN DRAWINGS. STRUCTURES" (ACI 530.1/ASCE 6/TMS 602). THE CONTRACTOR AND MASON ANY EXCEPTIONS TO ACI 530.1-02 MUST BE APPROVED BY THE ENGINEER 3.3.E.2 | Pipes, conduits, and accessories | Any not shown on the project drawings 8" block bearing walls F'm = 1500 psi ASTM C 90-02, Normal weight, Hollow, bond and 12"x12" or 16"x16" column ASTM C 216-02, Grade SW, Type FBS, ASTM 615, Grade 60, Fy = 60 ksi, Lap splices min 48 bar dia. (30" for #5) Anchors, sheet metal ties completely embedded in mortar or grout, ASTM A525, Class G60, 0.60 oz/ft2 or 304SS Joint reinforcement in walls exposed to moisture or wire ties, anchors, sheet metal ties not completely embedded in mortar or Contractor assumes responsibility for type and location of movement joints if not grout, ASTM A153, Class B2, 1.50 oz/ft2 require engineering approval. detailed on project drawings. ASTM C 476, admixtures require approval medium surface finish, 8"x8"x16" running ASTM C 270, Type N, UNO 5.5"x2.75"x11.5" OBTAIN UPLIFT REQUIREMENTS FROM TRUSS MANUFACTURER'S ENGINEERING ANCHOR TABLE | | UPLIFT LBS. SPF | TRUSS CONNECTOR* | TO PLATES | TO RAFTER/TRUSS | TO STUDS | | |---------|-----------------|------------------------|----------------|-----------------|--------------------------------|--| | < 420 | < 245 | H5A | 3-8d | 3-8d | | | | < 455 | < 265 | H5 | 4-8d | 4-8d | | | | < 360 | < 235 | H4 | 4-8d | 4-8d | | | | < 455 | < 320 | H3 | 4-8d | 4-8d | | | | < 415 | < 365 | H2.5 | 5-8d | 5-8d | | | | < 600 | < 535 | H2.5A | 5-8d | 5-8d | | | | < 950 | < 820 | H6 | 8-8d | 8-8d | | | | < 745 | < 565 | H8 | 5-10d, 1 1/2" | 5-10d, 1 1/2" | | | | < 1465 | < 1050 | H14-1 | 13-8d | 12-8d, 1 1/2" | | | | < 1465 | < 1050 | H14-2 | 15-8d | 12-8d, 1 1/2" | | | | < 990 | < 850 | H10-1 | 8-8d, 1 1/2" | 8-8d, 1 1/2" | | | | < 760 | < 655 | H10-2 | 6-10d | 6-10d | | | | < 1470 | < 1265 | H16-1 | 10-10d, 1 1/2" | 2-10d, 1 1/2" | | | | < 1470 | < 1265 | H16-2 | 10-10d, 1 1/2" | 2-10d, 1 1/2" | | | | < 1000 | < 860 | MTS24C | 7-10d 1 1/2" | 7-10d 1 1/2" | | | | < 1450 | < 1245 | HTS24 | 12-10d 1 1/2" | 12-10d 1 1/2" | | | | < 2900 | < 2490 | 2 - HTS24 | | | | | | < 2050 | < 1785 | LGT2 | 14 -16d | 14 -16d | | | | | | | | | TO FOUNDATIO | | | | | HEAVY GIRDER TIEDOWNS* | | | TO FOUNDATIO | | | < 3965 | < 3330 | MGT | | 22 -10d | 1-5/8" THREADED
12" EMBEDME | | | < 10980 | < 6485 | HGT-2 | | 16 -10d | 2-5/8" THREADED
12" EMBEDME | | | < 10530 | < 9035 | HGT-3 | | 16 -10d | 2-5/8" THREADED
12" EMBEDME | | | < 9250 | < 9250 | HGT-4 | | 16 -10d | 2-5/8" THREADED
12" EMBEDME | | | | | STUD STRAP CONNECTOR* | | | TO STUDS | | | < 435 | < 435 | SSP DOUBLE TOP PLATE | 3 -10d | | 4 -10d | | | < 455 | < 420 | SSP SINGLE SILL PLATE | 1 -10d | | 4 -10d | | | < 825 | < 825 | DSP DOUBLE TOP PLATE | 6 -10d | | 8 -10d | | | < 825 | < 600 | DSP SINGLE SILL PLATE | 2 -10d | | 8 -10d | | | < 885 | < 760 | SP4 | | | 6-10d, 1 1/2" | | | < 1240 | < 1065 | SPH4 | | | 10-10d, 1 1/2 | | | < 885 | < 760 | SP6 | | | 6-10d, 1 1/2" | | | < 1240 | < 1065 | SPH6 | | | 10-10d, 1 1/2 | | | < 1235 | < 1165 | LSTA18 | 14-10d | | | | | < 1235 | < 1235 | LSTA21 | 16-10d | | | | | < 1030 | < 1030 | CS20 | 18-8d | | | | | < 1705 | < 1705 | CS16 | 28-8d | | | | | | | STUD ANCHORS* | TO STUDS | | TO FOUNDATIO | | | < 1350 | < 1305 | LTT19 | 8-16d | | | | | < 2310 | < 2310 | LTTI31 | 18-10d, 1 1/2" | | 1/2" AB | | | < 2775 | < 2570 | HD2A | 2-5/8" BOLTS | | 1/2" AB
5/8" AB | | | | | | | | | | | < 4175 | < 3695 | HTT16 | 18 - 16d | | 5/8" AB | | | < 1400 | < 1400 | PAHD42 | 16-16d | | | | | < 3335 | < 3335 | HPAHD22 | 16-16d | | | | | < 2200 | < 2200 | ABU44 | 12-16d | | 1/2" AB | | | < 2300 | < 2300 | ABU66 | 12-16d | | 1/2" AB | | | < 2320 | < 2320 | ABU88 | 18 - 16d | | 2-5/8" AB | | ### DESIGN DATA WIND LOADS PER FLORIDA BUILDING CODE 2004 RESIDENTIAL, SECTION R301.2.1 (ENCLOSED SIMPLE DIAPHRAGM BUILDINGS WITH FLAT, HIPPED, OR GABLE ROOFS; MEAN ROOF HEIGHT NOT EXCEEDING LEAST HORIZONTAL DIMENSION OR 60 FT; NOT ON UPPER HALF OF HILL OR ESCARPMENT 60FT IN EXP. B, 30FT IN EXP. C AND >10% SLOPE AND UNOBSTRUCTED UPWIND FOR 50x HEIGHT OR 1 MILE WHICHEVER IS LESS.) BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION 1.) BASIC WIND SPEED = 110 MPH 2.) WIND EXPOSURE = B WIND IMPORTANCE FACTOR = 1.0 4.) BUILDING CATEGORY = II 5.) ROOF ANGLE = 10-45 DEGREES 6.) MEAN ROOF HEIGHT = <30 FT '.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (TABLE R301.2(2)) | | 55 22 2 | | |--------|--|---| | DESIGN | LOADS | _ | | FLOOR | 40 PSF (ALL OTHER DWELLING ROOMS) | | | | 30 PSF (SLEEPING ROOMS) | _ | | | 30 PSF (ATTICS WITH STORAGE) | | | | 10 PSF (ATTICS WITHOUT STORAGE, <3:12) | | | ROOF | 20 PSF (FLAT OR <4:12) | _ | | | 16 PSF (4:12 TO <12:12) | | | | 12 PSF (12:12 AND GREATER) | _ | | | 30 PSF (SLEEPING ROOMS) 30 PSF (ATTICS WITH STORAGE) 10 PSF (ATTICS WITHOUT STORAGE, <3:12) 20 PSF (FLAT OR <4:12) 16 PSF (4:12 TO <12:12) | | STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS) NOT IN FLOOD ZONE (BUILDER TO VERIFY) SOIL BEARING CAPACITY 1000PSF RLV Do not proceed without clirification. COPYRIGHTS AND PRO'ERTY RIGHTS: Mark Disosway, P.E. herely expressly reserve s common law copyright and property right in nese instruments of servie. This document is not to be reproduced, alteed or copied in any orm or manner without firt the express with mission and consent o Mark Disosway. ERTIFICATION: I hereb certify that I have mined this plan, and that the applicable rtions of the plan, relating to wind engineer comply with section R3012.1, florida building ode residential 2004, to he best of my LIMITATION: This designs valid for one building, at specified locaton. P.E. 5315 Dion Taylor Spec Fouse ADDRESS: 208 SW Poppy Glen Columbia County, Florida Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386)754 - 541 Fax: (386) 269 - 4871 PRINTEDDATE: January 05, 2008 STRUCTURAL BY 09 / Jan / 08 JOB NUMBER: 801)92 DRAWING NUMBER INDLOAD ENGINEER. Mark 1985 PE No.53915, POB 868, lake City, FL Stated dimensions supercide scaled nensions. Refer all questions to Mark Disosway, P.E. for resolution 32056, 386-754-5419 DIMENSIONS: OF 3 SHEETS F12 ALT. STEM WALL PORCH FOOTING S-2 SCALE: 1/2" = 1'-0" # F6 TYPICAL NON - BEARING STEP FOOTING S-2 SCALE: 1/2" = 1'-0" F4 GARAGE DOOR FOOTING S-2 SCALE: 1/2" = 1'-0" #### TALL SEM WALL TABLE The table assues 60 ksi reinforcing bars with 6" hook in the footing and bent 24" into the reinforced slaft the top. The vertical steel is to be placed toward the tension side of the CMU wall (aw/from the soil pressure, within 2" of the exterior side of the wall). If the wall is over 8' high, d Durowall ladder reinforcement at 16"OC vertically or a horizontal bond beam with 1#5ntinuous at mid height. For higher parts of the wall 12" CMU may be used with reinforcemt as shown in the table below. | STEMWALL \BALANCED
HEIGHT BACKFILL
(FEET) HEIGHT | | VERTICAL REINFORCEMENT
FOR 8" CMU STEMWALL
(INCHES O.C.) | | | VERTICAL REINFORCEMENT
FOR 12" CMU STEMWALL
(INCHES O.C.) | | | |--|-----|--|----|----|---|----|----| | | | #5 | #7 | #8 | #5 | #7 | #8 | | 3.3 | 3.0 | 96 | 96 | 96 | 96 | 96 | 96 | | 4.0 | 3.7 | 96 | 96 | 96 | 96 | 96 | 96 | | 4.7 | 4.3 | 88 | 96 | 96 | 96 | 96 | 96 | | 5.3 | 5.0 | 56 | 96 | 96 | 96 | 96 | 96 | | 6.0 | 5.7 | 40 | 80 | 96 | 80 | 96 | 96 | | 6.7 | 6.3 | 32 | 56 | 80 | 56 | 96 | 96 | | 7.3 | 7.0 | 24 | 40 | 56 | 40 | 80 | 96 | | 8.0 | 7.7 | 16 | 32 | 48 | 32 | 64 | 80 | | 8.7 | 8.3 | 8 | 24 | 32 | 24 | 48 | 64 | | 9.3 | 9.0 | 8 | 16 | 24 | 16 | 40 | 48 |