MITEK PRODUCT APPROVAL #'S FL2197-R6, WEYERHAEUSER PRODUCT #'S LVL FL6527-R10, TJI FL1630-R10

г	
	HATCH LEGEND
	10' 1-1/8"
	4/12 VIt. Clg.
	6'-0" Kneewall
	Interior Brg. Wall
	 General Notes: Per ANSI/TPI 1-2002 all " Truss to Wall" connections are the responsibility of the Building Designer, not the Truss Manufacturer. Use Manufacturer's specifications for all hanger connections unless noted otherwise. Trusses are to be 24" o.c. U.N.O. All hangers are to be Simpson or equivalent U.N.O Use 10d x 1 1/2" Nails in hanger connections to single ply girder trusses. Trusses are not designed to support brick U.N.O. Dimensions are Feet-Inches- Sixteenths
	Notes: No back charges will be accepted by Builders
	FirstSource unless approved in writing first.
	lumber that comes in contact with truss plates. Any AOQ scabbed on tails) must have an approved barrier applied first.
	Refer to BCSI-B1 Summary Sheet-Guide for handling, Installing and Bracing of Metal Plate Connected Wood Truss prior to and during truss installation.
	It is the responsibility of the Contractor to ensure of the proper orientation of the truss placement plans as to the construction documents and field conditions of the structure orientation. If a reversed or flipped layout is required, it will be supplied at no extra cost by Builders FirstSource.
	It is the responsibility of the Contractor to make sure the placement of trusses are adjusted for plumbing drops, can lights, ect, so the trusses do not interfere with these type of items.
	All common framed roof or floor systems must be designed as to NOT impose any loads on the floor trusses below. The floor trusses have not been designed to carry any additional loads from above.
	This truss placement plan was not created by an engineer, but rather by the Builders FirstSource staff and is solely to be used as an installation guide and does not require a seal. Complete truss engineering and analysis can be found on the truss design drawings which may be sealed by the truss design engineer.
	Gable end trusses require continuous bottom chord bearing. Refer to local codes for wall framing requirements.
	Although all attempts have been made to do so, trusses may not be designed symmetrically. Please refer to the individual truss drawings and truss placement plans for proper orientation and placement.
2	Builders FirstSource
	Freeport PHONE: 850-835-4541 FAX: 850-835-4532
	Jacksonville PHONE: 904-772-6100 FAX: 904-772-1973
	Tampa PHONE: 813-621-9831 FAX: 813-628-8956
	Builder: Jeff Fischer
	Hermitage Lot 5
	FIscher Residence 2 Story
	Date: Drawn By: Original Ref #: 01/16/24 EAZ 3698553

Floor 2 Job #:

N/A

Roof Job #:

N/A

Floor 1 Job #:

3698554

RE: 3698553 - Fischer Residence 2 Story MiTek, Inc. 16023 Swinalev Ridae Rd. Site Information: Chesterfield, MO 63017 Customer Info: Jeff Fischer Project Name: n/a Model: Fischer Residence 2 Story 314.434.1200 Lot/Block: 5 Subdivision: Hermitage Address: Lot 5 Hermitage, n/a City: High Springs State: FL Name Address and License # of Structural Engineer of Record, If there is one, for the building. Name: License #: Address: City: State: General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: FBC2020/TPI2014 Design Program: MiTek 20/20 8.7

Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Wind Speed: 130 mph Floor Load: N/A psf

This package includes 55 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date No.	Seal#	Truss Name	Date
1	T32659340	A01	1/18/24 23	T32659362	F11	1/18/24
2	T32659341	A02	1/18/24 24	T32659363	FG01	1/18/24
3	T32659342	A03	1/18/24 25	T32659364	GF1	1/18/24
4	T32659343	A04	1/18/24 26	T32659365	M01	1/18/24
5	T32659344	B01	1/18/24 27	T32659366	M02	1/18/24
6	T32659345	B02	1/18/24 28	T32659367	PB01A	1/18/24
7	T32659346	B03	1/18/24 29	T32659368	PB01B	1/18/24
8	T32659347	C01	1/18/24 30	T32659369	PB01V	1/18/24
9	T32659348	C02	1/18/24 31	T32659370	PB02A	1/18/24
10	T32659349	D01	1/18/24 32	T32659371	PB02B	1/18/24
11	T32659350	D02	1/18/24 33	T32659372	PB02V	1/18/24view for Code Compliance
12	T32659351	D03	1/18/24 34	T32659373	PB03B 🔁	1/18/24 versal Engineering Science
13	T32659352	F01	1/18/24 35	T32659374	V01	1/18/24
14	T32659353	F02	1/18/24 36	T32659375	V01D	1/18/24 00 500707 00/07/0004
15	T32659354	F03	1/18/24 37	T32659376	V01DG	44/48/24 Mell PX2707 01/21/2024
16	T32659355	F04	1/18/24 38	T32659377	V02	1/18/24
17	T32659356	F05	1/18/24 39	T32659378	V02D	1/18/24
18	T32659357	F06	1/18/24 40	T32659379	V2D	1/18/24
19	T32659358	F07	1/18/24 41	T32659380	V03	1/18/24
20	T32659359	F08	1/18/24 42	T32659381	V03D	1/18/24
21	T32659360	F09	1/18/24 43	T32659382	V3D	1/18/24
22	T32659361	F10	1/18/24 44	T32659383	V04	1/18/24

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville.

Truss Design Engineer's Name: Lee, Julius

My license renewal date for the state of Florida is February 28, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

January 18,2024

RE: 3698553 - Fischer Residence 2 Story

MiTek, Inc. 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:

Customer Info: Jeff Fischer Project Name: n/a Model: Fischer Residence 2 Story
Lot/Block: 5Subdivision: HermitageAddress: Lot 5 Hermitage, n/aState: FL

No.	Seal#	Truss Name	Date
45 46 47 48 49	T32659384 T32659385 T32659386 T32659387 T32659387 T32659388	V04D V05 V05D V5D V06	1/18/24 1/18/24 1/18/24 1/18/24 1/18/24
50 51 52 53 54 55	T32659389 T32659390 T32659391 T32659392 T32659393 T32659393 T32659394	V06D V07 V08 V09 V10 V11	1/18/24 1/18/24 1/18/24 1/18/24 1/18/24 1/18/24 1/18/24

Review for Code Compliance V Universal Engineering Science Lauden Permet PX2707 01/27/2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	A01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	T32659340

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:23 ID:6JKT5awcg_6VRENQoRdwjcyS9Tg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:108.3

Plate Offsets (X, Y): [4:0·	-6-6,0-2-0],	[13:0-4-0,0-3-8], [19	9:0-4-0,0-4-8], [21	1:0-4-0	,0-2-4], [38:0-6-6,0)-2-0], [58	:0-4-0,0-4-8]							
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2020/TPI2	2014	CSI TC BC WB Matrix-AS	0.51 0.50 0.77	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.19 0.03 0.06	(loc) 53-54 53-54 44 53-54	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 673 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING	2x6 SP N 2x6 SP N 2x4 SP N 2x4 SP N Left 2x6 S 1-6-0	o.2 *Excep o.2 o.3 o.3 SP No.2 ^	t* 1-4,38-40:2x4 SP 1-6-0, Right 2x6 SP I	No.2 No.2	ſ	Max Grav 2=372 41=53: 43=40 56=14! 58=22: 60=19: 62=19 64=20:	(LC 1), 4(3 (LC 12), 4 (LC 12), 4 87 (LC 18) 2 (LC 17), 3 (LC 17), 1 (LC 17), 3 (LC 17), 3 (LC 17),	D=83 (LC 12), 42=109 (LC 44=2239 (LC 59=187 (LC 61=190 (LC 63=191 (LC 65=53 (LC 1	18), 18), 12), 17), 17), 17), 0)						
BOT CHORD	Structura except 2-0-0 oc Rigid ceil 1 Row at	l wood she purlins (6-0 ing directly midpt	athing directly applie -0 max.): 13-28. applied. 12-58 14-57 18-66	rd, FORCES	s Iord	(lb) - Maximum C Tension 1-2=0/21, 2-4=-3: 5-6=-274/37, 6-7= 8-10=-250/156, 1	ompressi 22/55, 4-5 =-267/66, 0-11=-24	on/l um =-205/40, 7-8=-258/111 2/2024- U (6 M	Revi Univ	iew for rersal I	[∙] Code Engine ℓ	Com ering PX	pliance Science	024	
JOINTS	1 Brace a 68, 71, 73 76, 78, 79	nt Jt(s): 67, 3, 74, 75, 9	16-56	,		11-12=-236/250, 13-14=-179/276, 15-16=-181/276, 17-18=-480/341,	12-13=-2 14-15=-1 16-17=-4 18-20=-4	25/284, 79/276, 80/341, 80/341,	Examir	er-License	No.				
REACTIONS	(size) Max Horiz Max Uplift	2=20-5-8, 42=8-4-0, 59=20-5-4 59=20-5-4 65=20-5-4 2=190 (LC 2=-21 (LC 41=-93 (L 43=-158 (56=-127 (58=-19 (L 60=-32 (L 64=-28 (L	40=8-4-0, 41=8-4-0 43=8-4-0, 44=8-4-0 3, 57=20-5-8, 58=20- 3, 60=20-5-8, 61=20- 3, 63=20-5-8, 64=20- 3 2 11) 12), 40=-430 (LC 2 C 12), 42=-11 (LC 1: LC 23), 44=-241 (LC LC 12), 57=-104 (LC C 12), 57=-104 (LC C 12), 59=-35 (LC 1: C 12), 61=-31 (LC 1: C 12), 63=-31 (LC 1: C 12), 65=-45 (LC 1:	, -5-8, -5-8, -5-8, -5, -2), -2), -2), -2), -2), -2), -2), -2)	IORD	$\begin{array}{l} 20\-21\=\-47\)(341,\\ 22\-23\=\-1103/454\\ 24\-25\=\-1103/454\\ 26\-27\=\-80/392,\\ 28\-29\=\-930/382,\\ 30\-31\=\-1020/362\\ 32\-34\=\-44/637,\\ 33\-53\=\-110/645,\\ 35\-36\=\-110/645,\\ 37\-38\=\-113/477,\\ 2\-65\=\-0/281,\\ 64\-62\-63\=\-0/198,\\ 61\-59\-60\=\-0/198,\\ 51\-55\-56\=\-0/481,\\ 54\-52\-53\=\-78/1036,\\ 49\-51\=\-78/1036,\\ 46\-48\=\-0/261,\\ 45\-43\-44\=\-453/186,\\ 41\-42\=\-453/186,\\ 41\-42\=\-453/186,\\ \end{array}$	21-22=-1 , 23-24=- , 25-26=- 27-28=-8 29-30=-9 , 31-32=- 4-35=-55, 36-37=-9 38-40=-1 5=0/198, 62=0/198 55=0/492 55=0/492 55=0/492 55=15-22=-7 48-49=-7 46=0/261 42-43=-4 40-41=-5	103/454, 1103/454, 880/392, 80/392, 85/377, 990/323, '607, 1/520, 79/560 63-64=0/198, , 60-61=0/198, , 60-61=0/198, , 53-554=-78/1 3/1036, 8/1081, , 44-45=0/26' 53/186, 04/207	3, 3, 036, 1,				NO 34		

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	A01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	T32659340
Builders FirstSource (Jacksonvill	e EL) Jacksonville EL - 32244	Run: 8 73 S. Jan. 4 2	024 Print: 8	730 S. Jan 4	2024 MiTek Industries Inc. Wed Jan 17 13:35:23	Page: 2

ID:6JKT5awcg_6VRENQoRdwjcyS9Tg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244.

WEBS 17-54=-17/390 54-66=-1022/222 66-67=-1015/212, 67-68=-985/203, 21-68=-1075/226, 21-79=-14/107. 78-79=-14/117, 77-78=-14/98, 49-77=-11/120, 25-49=0/164, 25-76=-512/121, 75-76=-515/123, 48-75=-518/124, 28-48=0/151. 48-74=-104/812. 73-74=-101/790, 72-73=-114/805, 32-72=-114/986, 32-71=-1829/389, 44-71=-1793/381. 44-70=-385/219. 69-70=-209/125, 36-69=-134/115, 4-65=-59/103, 5-64=-140/109, 6-63=-122/84, 7-62=-121/85, 8-61=-121/84, 10-60=-120/85, 11-59=-126/92, 12-58=-117/62, 14-57=-53/49, 15-56=0/114, 16-55=-143/758, 18-66=-14/12, 19-67=-37/10, 20-68=0/121, 53-68=-59/79, 38-41=-278/170, 37-42=-16/86, 43-69=-15/114, 35-70=-195/105, 34-71=-39/14, 45-71=-67/15, 31-72=-130/73, 46-72=0/165, 30-73=-31/19, 29-74=-5/33, 27-75=-8/4, 26-76=-7/2, 24-77=0/35, 23-78=-24/7, 22-79=-10/74, 51-79=-24/67, 21-52=-60/319, 16-56=-1633/361

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=60ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -1-6-0 to 4-5-9, Exterior(2N) 4-5-9 to 17-9-13, Corner(3R) 17-9-13 to 23-6-4, Exterior(2N) 23-6-4 to 41-11-3, Corner(3R) 41-11-3 to 47-7-8, Exterior(2N) 47-7-8 to 59-4-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding. 5)
- All plates are MT20 plates unless otherwise indicated 6)
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) All bearings are assumed to be SP No.2.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 430 lb uplift at joint 40, 241 lb uplift at joint 44, 21 lb uplift at joint 2, 45 lb uplift at joint 65, 28 lb uplift at joint 64, 31 lb uplift at joint 63, 32 lb uplift at joint 62, 31 lb uplift at joint 61, 32 lb uplift at joint 60, 35 lb uplift at joint 59, 19 lb uplift at joint 58, 104 lb uplift at joint 57, 127 lb uplift at joint 56, 93 lb uplift at joint 41, 11 lb uplift at joint 42 and 158 lb uplift at joint 43.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Laudence Pernell

Review for Code Compliance Universal Engineering Science

> 01/27/2024 PX2707

Page: 2

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	A02	Piggyback Base	12	1	T3 Job Reference (optional)	2659341

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:26 ID:WVFAC_j?Pf?Jy5eX_ckom7yS9NU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:102.1

Plate Offsets ((X, Y): [6:0-5-4,0-3-0]	, [24:0-4-0,0-3-12]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	0/TPI2014	CSI TC BC WB Matrix-AS	0.33 0.75 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.44 0.04 0.08	(loc) 20-22 20-22 17 25-27	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 491	GRIP 244/190 lb FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep No.2 Structural wood she except end verticals (5-10-0 max.): 6-11	bt* 28-2,17-15:2x6 Sf eathing directly applie s, and 2-0-0 oc purlin:	Wi o id, s NC	EBS	3-27=-301/121, 1 5-25=-669/539, 1 6-24=-1267/848, 7-22=-191/1858, 10-22=-891/225, 11-20=0/476, 12 14-18=-18/140, 1 14-17=-1786/20	5-27=-519/ 6-25=-722/ , 7-24=-200 , 8-22=-36 , 10-20=-34 -20=-515/ 3-28=-256/ 1	/604, /646, 07/323, 1/125, 4/482, 183, 12-18=-7 /291,	7/249, Revi	10) This stru cho the 11) Gra or th bott LOAD (ew for	s truss d ictural w rd and 1 bottom o phical p he orient com chor CASE(S)	esign i ood sh /2" gyţ chord. urlin re tation o d. Stai	requires that a leathing be ap posum sheetroc opresentation of the purlin alo ndard	minimum of 7/16 olied directly to th k be applied dire does not depict th ong the top and/c)" ne top otły to ne size or
BOT CHORD WEBS WEBS REACTIONS	Rigid ceiling directly 1 Row at midpt 2 Rows at 1/3 pts (size) 17=0-4-0 Max Horiz 28=223 (Max Uplift 17=-129 28=-284 Max Grav 17=1645 28=574 (/ applied. 5-25, 6-25, 6-24, 8-2 10-22, 12-20, 14-17 7-24 , 24=0-5-8, 28=0-3-8 LC 11) (LC 12), 24=-541 (LC (LC 12) (LC 18), 24=3371 (L LC 23)	1) 22, 2) 2(12), C 2),	Unbalanced this design. Wind: ASCE Vasd=101m B=45ft; L=6 MWFRS (di 4-5-9, Interio 25-7-3, Interio 25-7-3, Interio to 51-0-3, Interio	I roof live loads h = 7-16; Vult=130r uph; TCDL=4.2ps Oft; eave=7ft; Car rectional) and C- or (1) 4-5-9 to 17 rior (1) 25-7-3 to terior (1) 51-0-3 t exposed; porch	ave been of mph (3-sec f; BCDL=6 t. II; Exp B C Exterior(-2-0, Exter 42-7-0, Ex to 59-3-4 z left expos	con: d fo cond gust) .0p3(:h±25H; ; Enclosed; 2E) -1-6-0 to ior(2R) 17-2- terior(2R) 42- cone; end veri ed;C-C for ctione; chown	r Univ <i>ur Pa</i> Examin 0 to -7-0 tical	ersal E	Engine	PX	3 Science (2707 01/2	17/2024	
FORCES	(lb) - Maximum Con Tension 1-2=0/46, 2-3=-261/ 5-6=0/706, 6-7=-11/ 8-10=-816/155, 10- 11-12=-1807/252, 1 14-15=-599/75, 2-2/ 15-17=-421/89	npression/Maximum /332, 3-5=-300/623, 0/925, 7-8=-816/155, 11=-1573/262, 2-14=-2250/268, 8=-351/313,	3) 4) 5) 6)	Lumber DO Building De: verifying app requirement Provide ade All plates ar This truss h	La 1.60 plate grip signer / Project e plied roof live loa ts specific to the equate drainage t e 4x4 MT20 unle as been designe	DOL=1.60 ngineer re d shown c use of this o prevent v ss otherwi d for a 10.0	sponsible for overs rain loa truss compor water ponding se indicated.) psf bottom	, nent. g.			*	No 3	1869 4869	
BOT CHORD	27-28=-517/363, 25 24-25=-650/155, 22 20-22=0/1249, 18-2 17-18=-190/1886, 1	i-27=-334/33, i-24=-306/264, i0=-106/1810, 6-17=0/0	7) 8) 9)	* This truss on the botto 3-06-00 tall chord and a All bearings Provide med bearing plat	has been design m chord in all are by 2-00-00 wide ny other member are assumed to chanical connecti e capable of with	ed for a liv eas where will fit betw rs, with BC be SP No. ion (by oth ustanding 5	e load of 20.0 a rectangle veen the botto EDL = 10.0psf 2. ers) of truss t 41 lb uplift at	us.)psf om o joint			P	NSSION	AL ENGIN	

24, 284 lb uplift at joint 28 and 129 lb uplift at joint 17.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	A03	Piggyback Base	3	1	Job Reference (optional)	T32659342

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:27 ID:taH3CVpynD_msrBhm2zpsjyS9Tp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:102.1

Plate Offsets (X, Y):	[6:0-5-4,0-3-0],	[24:0-4-0,0-3-12]
-----------------------	------------------	-------------------

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	2	20.0	Plate Grip DOL	1.25		TC	0.30	Vert(LL)	-0.26	21-22	>999	360	MT20	244/190
TCDL	1	10.0	Lumber DOL	1.25		BC	0.75	Vert(CT)	-0.43	21-22	>999	240		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.92	Horz(CT)	0.02	18	n/a	n/a		
BCDL	1	10.0	Code	FBC2	020/TPI2014	Matrix-AS		Wind(LL)	0.09	25-27	>999	240	Weight: 492 lt) FT = 20%
LUMBER					WEBS	3-27=-277/118,	5-27=-516	/578,		10) Pro	vide me	chanic	al connection (b	by others) of truss to
TOP CHORD	2x6 SP No.2					5-25=-655/537,	6-25=-722	/642,		bea	ring plat	te capa	able of withstan	ding 515 lb uplift at joint
BOT CHORD	2x6 SP No.2					6-24=-1169/835	i, 7-24=-18	00/304,		24,	169 lb u	iplift at	joint 18, 294 lb	uplift at joint 28 and
WEBS	2x4 SP No.3 *	*Except	t* 28-2,17-15:2x6 SI	Р		7-22=-166/1625	i, 8-22 = -36	3/126,		157	' lb uplift	at join	it 17.	
	No.2					10-22=-648/199	, 10-21=-1	8/251,		11) Thi	s truss d	lesign	requires that a r	ninimum of 7/16"
BRACING						11-21=0/336, 13	3-21=-90/1	35,		stru	ictural w	ood sh	eathing be app	lied directly to the top
TOP CHORD	Structural woo	od shea	athing directly applie	ed,		13-19=-361/110	, 14-19=-1	07/1548,		cho	rd and 1	/2" gy	psum sheetrock	. be applied directly to
	except end ve	erticals,	and 2-0-0 oc purlin	S		14-18=-1640/27	4, 3-28=-3	40/306,		the	bottom	chord.		
	(6-0-0 max.):	6-11.				15-18=-100/41			Rev	iew for	Code		presentation do	es not depict the size
BOT CHORD	Rigid ceiling c	directly	applied.		NOTES				Univ	ersal.	ne orien	tation (st the purlin alo	ng the top and/or
WEBS	1 Row at mid	pt :	5-25, 6-25, 6-24, 7-2	24,	1) Unbalance	ed roof live loads h	nave been	considered for	or Office					
			8-22, 10-22, 10-21,	13-21	this desig	n.		-f	. <i>Б</i>	LUAD	ASE(S) Sia	10210 (2707 01/27	//2024
REACTIONS	(size) 17=	= Mecha	anical, 18=0-5-8,		2) Wind: AS	CE 7-16; Vult=130	mpn (3-sec	CONCACTURE/		MAU-		17		
	24=	=0-5-8,	28=0-3-8		Vasu=10	-60ft: 0000-7ft: Co	si, DODL=0 st II: Evp D	· Enclosed:	l, Lxann	ICT LICCHSC				
	Max Horiz 28=	=223 (L	C 11)		M\\/FRS	(directional) and C	C Exterior	, Enclosed, (2E) -1-6-0 to	`					
	Max Uplift 17=	=-157 (l	LC 25), 18=-169 (LC	5 12),	4-5-9 Int	erior (1) 4-5-9 to 17		(2C) - 1-0-0 ((rior(2R) 17-2	-0 to					
	24=	=-515 (l	LC 12), 28=-294 (LC	(12)	25-7-3 Ir	terior (1) 25-7-3 to	42-7-0 Ex	terior(2R) 42	2-7-0					
	24=	=24 (LC =3087 (LC 2), 18=1970 (LC)	18), 25)	to 51-0-3	, Interior (1) 51-0-3	to 59-3-4	zone; cantile	ver				minin	IIIII.
FORCES	(lb) - Maximur	m Com	pression/Maximum	/	right expo	osed ; end vertical l	left and rig	nt exposed; p	orch				IN ULUS	LENU
	Tension		processing		left expos	ed;C-C for membe	ers and for	es & MWFR	S for					
TOP CHORD	1-2=0/46. 2-3	=-284/3	336. 3-5=-421/641.		reactions	shown; Lumber D	OL=1.60 pl	ate grip				5	. CE	NSP.
	5-6=0/518, 6-	7=-84/7	25, 7-8=-839/158,		DOL=1.6	0						-	. ×	1 N N S
	8-10=-839/15	8, 10-1	1=-1335/244,		3) Building I	Designer / Project e	engineer re	sponsible for	[]				• No 34	4869 : 💈
	11-13=-1557/2	224, 13	8-14=-1593/201,		verifying	applied roof live loa	ad snown c	overs rain lo	ading			*		A 1 * =
	14-15=-56/21	5, 2-28	=-361/315,		4) Provide a	doquate drainage	use or this	uruss compo	onent.		-			
	15-17=-34/12	6			5) All plates	are 4x4 MT20 unle	lo preveni ses otherwi	se indicated	iy.		-			
BOT CHORD	27-28=-535/4	51, 25-	27=-280/131,		6) This trues	s has been designe	d for a 10	0 nsf hottom	•		-	D		
	24-25=-462/1	38, 22-	24=-153/249,		chord live	load nonconcurre	nt with any	other live loa	ads			10	- Vandere	:415
	21-22=0/1144	1, 19-21	=-62/1308,	•	 This true 	ss has been design	ned for a liv	e load of 20.	.0psf			34		0 F. F.
	18-19=-146/6	2, 17-1	8=-71/24, 16-17=0/0	U	on the bo	ttom chord in all ar	eas where	a rectangle				11	CO R	GN
					3-06-00 t	all by 2-00-00 wide	will fit bety	veen the both	tom				1. 9/011	ENIN
					chord and	d any other membe	ers, with BC	DL = 10.0ps	sf.				NIN NI	1-111
					8) Bearings	are assumed to be	Joint 28 9	SP No 2 . İoi	nt 24					III III III III III III III III IIII IIII

Bearings are assumed to be: Joint 28 SP No.2, Joint 24

Refer to girder(s) for truss to truss connections.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touble personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

SP No.2, Joint 18 SP No.2.

8)

9)

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	A04	Piggyback Base	2	1	Job Reference (optional)	T32659343

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries. Inc. Thu Jan 18 17:32:52 ID:WVFAC_j?Pf?Jy5eX_ckom7yS9NU-vGvNSxEPuZWvaYVs?pClueieoEMELBF69QfEjCzuE6g

-1-6-0 5-11-0 11-6-8 17-2-0 23-6-4 29-10-8 36-2-12 42-7-0 48-2-8 53-10-0 59-9-0 6-4-4 6-4-4 5-7-8 5-7-8 6-4-4 5-11-0 1-6-0 5-11-0 6-4-4 5-7-8 5 - 7 - 82x4 u 4x4 =6x8= 6x8= 31 🔤 8 9 10 _30 6 11 4x4 🚽 4x4 6¹² 4 12 5 13 29 32 Л 4x4 4x4 🖌 ×4-14 33 3 28 3x4 II

Scale = 1:103

Plate Offsets (X, Y): [6:0-5-4,0-3-0]

L oading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.33 0.75 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.44 0.04	(loc) 20-21 20-21 17	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	FBC202	20/TPI2014	Matrix-AS		Wind(LL)	0.05	18-20	>999	240	Weight: 496 lb	FT = 20%	
LUMBER FOP CHORD SOT CHORD WEBS BRACING FOP CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Exce No.2 Structural wood sh except end vertica (5-10-4 max.): 6-1 Rigid ceiling direct	ept* 27-2,17-15:2x6 S leathing directly applie is, and 2-0-0 oc purlin 1. ly applied.	BC P ed, is W	DT CHORD	26-27=-105/426, 2 34-35=-298/123, 2 24-25=-298/123, 2 23-36=-346/179, 2 21-38=-10/1246, 3 20-39=-10/1246, 1 19-40=-132/1837, 18-41=-132/1837, 3-26=-290/149, 5- 6-24=-70/710, 6-2	26-34=-2 25-35=-2 23-24=-6 36-37=-3 21-22=-3 38-39=-1 9-20=-1 9-20=-1 40-41=- 17-18=- 26=-7/65 3=-1376	98/123, 98/123, 41/211, 46/179, 46/179, 0/1246, 32/1837, 132/1837, 132/1837, 191(101) 1360, 755	9/188ev Univ	8) Pro bea 23, 9) Thi stru cho the 10) Gra	vide me ring plat 107 lb u s truss d ictural w rd and 1 bottom o phical p he orient	chanica e capa plift at esign r ood sh /2" gyp chord. urlin re ation c gring	al connection (b) ble of withstand joint 27 and 207 equires that a m eathing be applii ssum sheetrock I presentation doo blie putin alon Science	r others) of truss t ng 308 lb uplift at lb uplift at joint 17 inimum of 7/16" ad directly to the t be applied directly as not depict the s g the top and/or	top y to size
WEBS	2 Rows at 1/3 pts	5-24, 6-23, 8-21, 10 12-20, 14-17 7-23	J-21,		7-23=-2032/301, 7 8-21=-360/126, 10	7-21=-15)-21=-92	0/1886, 0/178-4161	w Pa	LOAD	CASE(S)	Star PX	ndard 2707 01/27/2	024	
REACTIONS	(lb/size) 17=147 27=499, Max Horiz 27=-194 Max Uplift 17=-207 27=-107 Max Grav 17=172 17), 27=	0/0-5-8, 23=2982/0-5- '0-3-8 (LC 10) ' (LC 12), 23=-308 (LC ' (LC 12) 5 (LC 18), 23=3473 (L :567 (LC 23)	8, C 12), 1) .C 2)	DTES Unbalanced this design. Wind: ASCI Vasd=101n B=45ft L=6	10-20=-8/511, 11- 12-18=0/287, 14-1 d roof live loads hav E 7-16; Vult=130m nph; TCDL=4.2psf; 0ft eave=7ft Cat	20=0/472 7=-1767 /e been o bh (3-sec BCDL=6	2, 12-20=-546 /221 considered fo cond gust) i.0psf; h=25ft Enclosed	6/1& 1 amir pr ;	er-License	No.		IULIUS		
F ORCES	(lb) - Max. Comp./ (lb) or less except 2-28=-277/51, 3-2' 6-7=0/979, 7-30=- 8-9=-774/212, 9-3 10-31=-774/212, 1 11-12=-1796/300,	Max. Ten All forces when shown. 9=-287/189, 5-6=0/71. 774/212, 8-30=-774/2 1=-774/212, 0-11=-1562/304, 12-13=-2160/309,	250 2, 12, 3)	MWFRS (di 4-5-11, Inte to 25-7-6, Ir 42-7-0 to 5' for member Lumber DO Building De	rectional) and C-C rior (1) 4-5-11 to 1 interior (1) 25-7-6 to 1-0-6, Interior (1) 5 s and forces & MW L=1.60 plate grip [Exterior 7-2-0, Ex 42-7-0, 1-0-6 to 6 (FRS for)OL=1.60	(2E) -1-6-0 to terior(2R) 17 Exterior(2R) (1-3-0 zone; reactions sho ()	-2-0 C-C own;			*	No 34	869	
	13-32=-2210/298, 14-33=-553/94, 15 2-27=-353/183, 15	14-32=-2276/298, -33=-648/75, -17=-561/202	3) 4) 5) 6) 7)	verifying ap requiremen Provide ade All plates an This truss h chord live lo * This truss	plied roof live load ts specific to the us equate drainage to re 4x4 MT20 unless as been designed bad nonconcurrent has been designed	shown c se of this prevent s otherwi for a 10.0 with any d for a liv	vers rain loa truss compo water ponding se indicated.) psf bottom other live loa e load of 20.0	ading nent. g. ads. 0psf			ROLIN	OR OR	D.A.GININ	1111-

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

January 18,2024

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Julius Lee PE No. 34869

Date:

MiTek Inc. DBA MiTek USA FL Cert 6634

16023 Swingley Ridge Rd. Chesterfield, MO 63017

Page: 1

61-3-0

1-6-0

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	B01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	T32659344

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:28 ID:KJ0AeKrbiLN5is4cKrjuG9yS9jG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:83

Plate Offsets ((X, Y): [2:0·	-2-0,0-0-4],	[4:0-5-2,0-2-8], [13:0	0-5-0,0-3-4], [19:0-5-0	,0-3-4], [28:0-5-	2,0-2-8], [30:0	-3-7,0-0-4]							
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2020/TPI2014	CSI TC BC WB Matrix-AS	0.14 0.02 0.13	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 30-32 30-32 30 2	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 416 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x6 SP N 2x6 SP N 2x4 SP N Left 2x4 S 1-6-0 Structura except 2-0-0 oc Rigid ceil 1 Row at	o.2 *Excep o.2 o.3 SP No.3 1 I wood shea purlins (6-0 ing directly midpt	t* 1-4,28-31:2x4 SP I-6-0, Right 2x4 SP I athing directly applie -0 max.): 13-19. applied. 16-43, 15-44, 14-45	No.2 No.3 d,	Max Grav 2= 32 34 36 38 41 43 45 48 50 52 54	$\begin{array}{llllllllllllllllllllllllllllllllllll$								/76, 55, 1, 1/43,
REACTIONS	(size) Max Horiz Max Uplift	2=44-5-8, 33=44-5-8 40=44-5-8 40=44-5-8 40=44-5-8 50=44-5-8 50=44-5-8 50=44-5-8 50=44-5-8 2=-18 (LC 32=-50 (L 34=-31 (L 34=-31 (L 34=-31 (L 34=-36 (L 50=-31 (L) 52=-31 (L) 54=-50 (L)	12-46, 17-42, 18-41 20-40 30=44-5-8, 32=44-5 8, 34=44-5-8, 35=44- 8, 37=44-5-8, 38=44- 8, 47=44-5-8, 42=44- 8, 47=44-5-8, 49=44- 8, 51=44-5-8, 49=44- 8, 51=44-5-8, 52=44- 8, 51=44-5-8 C 10) 8), 30=-16 (LC 12), C 12), 33=-32 (LC 11) C 12), 33=-32 (LC 12) C 12), 43=-32 (LC 12) C 12), 43=-32 (LC 12) C 12), 43=-32 (LC 12) C 12), 49=-32 (LC 12) C 12), 49=-32 (LC 11) C 12), 51=-32 (LC 11) C 12), 53=-32 (LC 11) C 12), 53=-32 (LC 11) C 12)	 FORCES FORCES TOP CHORD 5-8, <l< td=""><td>(lb) - Maximu Tension 1-2=0/21, 2-4 5-6=-126/113 8-10=-97/100 12-13=-106/1 14-15=-102/1 16-17=-102/1 18-19=-102/1 20-21=-95/16 22-24=-58/10 26-27=-59/30 30-31=0/21 2-54=-57/112 50-51=-50/10 48-49=-50/10 48-49=-50/10 38-40=-50/10 36-37=-50/10 32-33=-50/10</td><td>Im Compression 4=-158/136, 4 3, 6-7=-115/10, 0, 10-11=-89/13, 186, 13-14=-10 183, 15-16=-10 183, 15-16=-10 183, 19-20=-10 38, 21-22=-75/ 12, 24-25=-47/ 0, 27-28=-58/3 2, 53-54=-50/19 3, 49-50=-50/ 13, 49-50=-50/ 13, 44-45=-50/ 13, 42-43=-50/ 13, 37-38=-50/ 13, 33-34=-50/ 13, 30-32=-55/ 13, 30-32=-55/ 13, 30-32=-55/ 13, 30-32=-55/ 13, 30-32=-55/ 13, 30-32=-55/ 14-15/ 15/10/10/10/10/10/10/10/10/10/10/10/10/10/</td><td>on/Netwing(m) 5=-128/117, 3, 7-8=-105/ 33, 11-12=-9 12/183, 12/183, 12/183, 12/183, 12/183, 102/183, 134, 70, 25-26=-5 7, 28-30=-93 03, 103,</td><td>227, 55/166, 1/38, 5/50,</td><td>11.105 2)</td><td>design. Market ASCI sd=101n 45ft, L=4 /FRS (di 1-6, Inte 9-13 to 2 erior(2R 11-8 zor reaction L=1.60</td><td>PX E 7-16; 4ft; eavirection rior (1) 26-7: 9 26-7: 9 2</td><td>2707 01/27/2 Vult=130mph (3: 2DL=4.2psf; BCD ve=5ft; Cat. II; Ex al) and C-C Exte 2-11-6 to 17-9-1 the 321112, inte 100 321112, into 32112, into 3212, into 3</td><td>124 second gust) L=6.0psf; h=25ff; p B; Enclosed; rior(2E) -1-6-0 to 3, Exterior(2R) Haro 26-7-11, eigr (1) 62-11-2 to to forces & MovFRS 160 plate grip 369 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 170 180 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 191 192 193 194 195 19</td><td></td></l<>	(lb) - Maximu Tension 1-2=0/21, 2-4 5-6=-126/113 8-10=-97/100 12-13=-106/1 14-15=-102/1 16-17=-102/1 18-19=-102/1 20-21=-95/16 22-24=-58/10 26-27=-59/30 30-31=0/21 2-54=-57/112 50-51=-50/10 48-49=-50/10 48-49=-50/10 38-40=-50/10 36-37=-50/10 32-33=-50/10	Im Compression 4=-158/136, 4 3, 6-7=-115/10, 0, 10-11=-89/13, 186, 13-14=-10 183, 15-16=-10 183, 15-16=-10 183, 19-20=-10 38, 21-22=-75/ 12, 24-25=-47/ 0, 27-28=-58/3 2, 53-54=-50/19 3, 49-50=-50/ 13, 49-50=-50/ 13, 44-45=-50/ 13, 42-43=-50/ 13, 37-38=-50/ 13, 33-34=-50/ 13, 30-32=-55/ 13, 30-32=-55/ 13, 30-32=-55/ 13, 30-32=-55/ 13, 30-32=-55/ 13, 30-32=-55/ 14-15/ 15/10/10/10/10/10/10/10/10/10/10/10/10/10/	on/Netwing(m) 5=-128/117, 3, 7-8=-105/ 33, 11-12=-9 12/183, 12/183, 12/183, 12/183, 12/183, 102/183, 134, 70, 25-26=-5 7, 28-30=-93 03, 103,	227, 55/166, 1/38, 5/50,	11.105 2)	design. Market ASCI sd=101n 45ft, L=4 /FRS (di 1-6, Inte 9-13 to 2 erior(2R 11-8 zor reaction L=1.60	PX E 7-16; 4ft; eavirection rior (1) 26-7: 9 26-7: 9 2	2707 01/27/2 Vult=130mph (3: 2DL=4.2psf; BCD ve=5ft; Cat. II; Ex al) and C-C Exte 2-11-6 to 17-9-1 the 321112, inte 100 321112, into 32112, into 3212, into 3	124 second gust) L=6.0psf; h=25ff; p B; Enclosed; rior(2E) -1-6-0 to 3, Exterior(2R) Haro 26-7-11, eigr (1) 62-11-2 to to forces & MovFRS 160 plate grip 369 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 170 180 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 191 192 193 194 195 19	

16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	B01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	132659344

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding. 5)
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- Gable studs spaced at 2-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) All bearings are assumed to be SP No.2.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 2, 16 lb uplift at joint 30, 22 lb uplift at joint 43, 12 lb uplift at joint 44, 6 lb uplift at joint 46, 36 lb uplift at joint 48, 32 Ib uplift at joint 49, 31 Ib uplift at joint 50, 32 Ib uplift at joint 51, 31 lb uplift at joint 52, 29 lb uplift at joint 53, 50 Ib uplift at joint 54, 13 lb uplift at joint 42, 6 lb uplift at joint 40, 36 lb uplift at joint 38, 32 lb uplift at joint 37, 31 Ib uplift at joint 36, 32 Ib uplift at joint 35, 31 Ib uplift at joint 34, 29 lb uplift at joint 33 and 50 lb uplift at joint 32.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Wed. Jan 17 13:35:28 ID:KJ0AeKrbiLN5is4cKrjuG9yS9jG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Universal Engineering Science Laudence Permel

PX2707 01/27/2024

Review for Code Compliance

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	B02	Piggyback Base	11	1	Job Reference (optional)	T32659345

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:29 ID:0gf6gd44pO0DFu_wTP0VbTyS9f5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:79.5

Plate Offsets (X, Y): [2:0-9-10,0-0-4], [7:0-5-4,0-2-12], [14:0-9-10,0-0-4]

1) Unbalanced roof live loads have been considered for

this design.

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		тс	0.29	Vert(LL)	-0.07	16-18	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.36	Vert(CT)	-0.13	16-18	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.62	Horz(CT)	0.02	14	n/a	n/a		
BCDL	10.0	Code	FBC20	20/TPI2014	Matrix-AS		Wind(LL)	0.03	16-18	>999	240	Weight: 367 lb	FT = 20%
			2	Wind: ASCE	7-16: Vult=130m	ph (3-sec	cond aust)						
TOP CHORD	2x6 SP No 2		_	Vasd=101m	oh: TCDL=4.2psf:	BCDL=6	6.0psf: h=25ft	:					
BOT CHORD	2x6 SP No 2			B=45ft: L=44	ft: eave=5ft: Cat.	II: Exp B	: Enclosed:	,					
WEBS	2x4 SP No 3			MWFRS (dir	ectional) and C-C	Exterior	2E) -1-6-0 to)					
SLIDER	Left 2x8 SP 2400F 2	2.0E 1-11-12. Right	t 2x8	2-11-6, Interi	or (1) 2-11-6 to 1	7-2-0, Ex	terior(2R) 17	-2-0					
	SP 2400F 2.0E 1-	11-12		to 23-5-7, Int	erior (1) 23-5-7 to	27-3-8,	Exterior(2R)						
BRACING				27-3-8 to 33-	6-15, Interior (1)	33-6-15 t	o 45-11-8 zo	ne;					
TOP CHORD	Structural wood she	athing directly applie	Ь	end vertical I	eft and right expo	sed;C-C	for members	and					
	except	atiling anoony applie	a,	forces & MW	FRS for reactions	s shown;	Lur	Pov	iow for	Code	Com	nlianco	
	2-0-0 oc purlins (6-0)-0 max) [.] 7-9		DOL=1.60 pl	ate grip DOL=1.6	0	м			_Coue	CON		
BOT CHORD	Rigid ceiling directly	applied.	3) Building Des	igner / Project en	gineer re	sponsione for	Univ	ersai i	Engine	ering	J Science	
WEBS	1 Row at midpt	6-20, 7-19, 8-19, 9-1	8.	verifying app	lied roof live load	shown c	overs rain loa	ading _	0	4			
		10-18		requirements	s specific to the us	se of this	truss compo	pent.P	2mg)	l	P>	(2707 01/27/2	024
REACTIONS	(size) 2=0-5-8.	14=0-5-8, 19=0-5-8	4) Provide adec	uate drainage to	prevent	water pondin	g. Examir	ner-License	No.			
	Max Horiz 2=-183 (L	C 10)	5) This truss ha	s been designed	tor a 10.0) pst bottom						
	Max Uplift 2=-111 (I	C 12) 14=-133 (I C	12)	chord live loa	ad nonconcurrent	with any	other live loa	ids.					
	19=-238 ((LC 12)	-/, 6) " I NIS Truss r	has been designed	d for a liv	e load of 20.	upst					
	Max Grav 2=723 (LC	C 17), 14=987 (LC 18	3).	2 OF OD toll h	n chord in all area	ill fit botu	a rectangle	~ m					(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	19=2548	(LC 17)	- //	chord and ar	y 2-00-00 wide w	with BC	DI = 10.000	om f				1111	1111
FORCES	(lb) - Maximum Corr	pression/Maximum	7	All bearings	are assumed to b	e SP No	2					IN ULIUS	LEE
	Tension		8	Provide mec	hanical connectio	n (by oth	ers) of truss t	to				CEA	
TOP CHORD	1-2=0/40, 2-4=-722/	117, 4-6=-583/114,		bearing plate	capable of withs	tanding 1	11 lb uplift at	t ioint			5		0.E
	6-7=0/354, 7-8=0/60	03, 8-9=-241/167,		2. 238 lb upli	ft at joint 19 and	133 lb up	lift at ioint 14				5	A la se	
	9-10=-345/148, 10-1	12=-985/160,	9) This truss de	sign requires that	t a minim	um of 7/16"				1.1	No 34	869
	12-14=-1134/161, 1	4-15=0/40		structural wo	od sheathing be a	applied d	irectly to the	top		_	*:	11	∧ :★ Ξ
BOT CHORD	2-22=-70/691, 20-22	2=-75/299,		chord and 1/	2" gypsum sheetr	ock be a	pplied directly	y to		_	:	1 1	
	19-20=-320/176, 18-	-19=-350/176,		the bottom c	hord.					=	υ:	V //.	
	16-18=0/650, 14-16	=-68/929	1	0) Graphical pu	rlin representation	n does no	ot depict the	size		-	T		ANDRES
WEBS	4-22=-262/134, 6-22	2=0/601, 6-20=-739/1	78,	or the orienta	ation of the purlin	along the	e top and/or				J.C		
	7-20=-52/740, 7-19=	=-1198/140,		bottom chore	ł.						34		04:25
	8-19=-1310/220, 8-1	18=-100/11117,	L	OAD CASE(S)	Standard						11	V O R	GN
	9-18=-213/55, 10-18	3=-706/178, 10-16=0/	/501,								1	SIGNIA	ENIN
	12-10=-203/125											INA	- IIII
NOTES													1111

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	B03	Piggyback Base Structural Gable	1	1	Job Reference (optional)	T32659346

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Jan 18 17:26:01 ID:95R?ADV_LqkHa8DRvo12PwyS7Dc-RBa?CPFbgHkDmOatQ?KNkzAPEZ6?YKudfzb_oXzuED5

Page: 1

Scale = 1:94.1

Plate Offsets (2	X, Y): [22:0-4-0,0-2-0]], [24:0-6-6,0-2-0], [2	26:0-0-0,	Edge], [35:0-4-	-0,0-	-4-8]									
Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-6-0 1.25 1.25 NO		-	CSI TC BC	0.29 0.62	DEFL Vert(LL) Vert(CT)	in -0.11 -0.20	(loc) 37-39 37-39 26	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	FBC2)20/TPI2014		Matrix-MS	0.71	Wind(LL)	0.02	37-39	>999	240	Weight: 465 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER	2x6 SP No.2 *Excep 2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0	t* 1-4,24-27:2x4 SP I-6-0, Right 2x4 SP	? No.2 No.3	FOP CHORD	2-3 4-4 5-6 7-8 49 10	3=-1851/253, 3-4= 48=-1808/250, 5-4 6=-1612/246, 6-7= 8=-606/225, 8-9=-4 -50=0/509, 50-51= -52=0/509, 11-52= -13=0/332, 13-14=	-1759/ 8=-177 -1466/ 441/24 =0/509 =0/509 =0/332	227, 71/262, 250, 7, 9-49=0/509, 10-51=0/509, 11-12=0/332, 14-15=0/425,	9	8) This cho 9) * Th on 1 3-0 cho 10) Pro	s truss h rd live lo his truss he botto 6-00 tall rd and a vide med	as bee bad nor has be m cho by 2-0 iny oth chanic	en designed for a neoncurrent with a sen designed for a rd in all areas wh 0-00 wide will fit b er members, with al connection (by	10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom BCDL = 10.0psf. others) of truss to	
BRACING TOP CHORD BOT CHORD WEBS	 - 1-6-0 Structural wood she: 5-2-5 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 2 1 Row at midpt 	athing directly applic ept -0 max.): 8-14. applied or 6-0-0 oc -39,37-39. 7-37, 8-37, 9-35, 11	ed or ¹	BOT CHORD	15 2-3 54 37 57 57 9-3 11	-16=0/373, 16-17= -16=0/373, 16-17= -55=-59/1207, 38- -38=-59/1207, 35- -58=-320/188, 34- 39=-421/169, 7-39 37=-98/1139, 9-35 -35=-482/135, 14- -43=-264/135, 32-	=0/330 54=-59 55=-59 57=-32 58=-32 =0/740 =-1429 34=-47 43=-30	17-18=0/310 9/12 9/12 20/100, 20/188 9, 7:31=29€1/27 3/247, 79/102, 9/175	Revi Univ 41, Portonia	ew Spr ew Spr efs ers or the hot	ASE(S)	ation of the second sec	ble of withstandin 32, 26, 36 excep price and the second presidentation president	(jt=lb) 2=193, (jt=lb) 2=193, s not depict the size the top and/or	ıt
JOINTS	1 Brace at Jt(s): 42,	14-34	l		d ro	of live loads have	heen o	considered for							
REACTIONS (lb) -	All bearings 31-9-0. e: Max Horiz 2=-233 (L Max Uplift All uplift 1 26, 28, 29 2=-194 (L) Max Grav All reactio (s) 28, 29, 18), 26=21 19), 32=4 ² 18), 35=2 18)	xcept 2=0-5-8, 36=0 C 10) 00 (lb) or less at join 1, 31, 32, 34, 36 exc C 12), 35=-182 (LC ns 250 (lb) or less a 30 except 2=1370 68 (LC 25), 31=313 75 (LC 19), 34=897 182 (LC 18), 36=28	D-3-8 eept 12) at joint (LC (LC (LC 4 (LC	 childrate design. Wind: ASC Vasd=101n B=45ft; L=5 MWFRS (d 3-8-2, Inter to 25-1-10, 33-11-3 to 4 for member Lumber DC Truss desi 	E 7 mph 52ft; direc rior (1nte 41-3 rs a DL= ² igne	-16; Vult=130mph ; TCDL=4.2psf; BC ; eave=6ft; Cat. II; tional) and C-C Ex (1) 3-8-2 to 17-9-1. erior (1) 25-1-10 to 3-0, Interior (1) 41- nd forces & MWFF 1.60 plate grip DO ed for wind loads in	(3-sec CDL=6 Exp B; (terior(3, Exte 33-11 3-0 to RS for L=1.60 the pl	ond gust) .0psf; h=25ft; Enclosed; 2E) -1-6-0 to riror(2R) 17-9- -3, Exterior(2R 53-3-0 zone;C reactions show ane of the trus	13 R) c-C vn; ss			* PR	No 34		

- FORCES (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- Lumber DOL=1.60 plate grp DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

January 18,2024

ON

11111

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	C01	Common Supported Gable	1	1	Job Reference (optional)	T32659347

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:30 ID:b85Hj9GM5bPT1zjUoutib1yS9mc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:62.9

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.17	Vert(LL)	0.00	36-39	>999	360	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.08	Vert(CT)	-0.01	36-39	>999	240		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.01	40	n/a	n/a		
BCDL		10.0	Code	FBC202	20/TPI2014	Matrix-AS		Wind(LL)	0.00	36-39	>999	240	Weight: 195 lb	FT = 20%
	0v4 CD N	- 2		BC	OT CHORD	2-36=-55/110, 3	5-36=-47/1	03,		10) Pro	vide me	chanic	al connection (b	y others) of truss to
	2X4 SP N 2v4 SP N	0.2				32-33=-47/103,	30-32=-47	/103,		2 6	4 lh unli	ft at ini	int 20 25 lb unlif	t at joint 30, 34 lb unlift
OTHERS	2x4 GF N 2v4 GD N	0.2				29-30=-47/103	28-29=-47	/103		at id	32 32	31 lb u	plift at joint 33 3	1 lb uplift at joint 34
BRACING	214 01 11	0.5				26-28=-47/103.	25-26=-47	/103.		31	b uplift a	at ioint	35. 34 lb uplift a	t joint 36. 25 lb uplift at
	Ctructure	lwood obo	othing directly opplied	4		24-25=-47/103,	23-24=-47	/103,		join	t 28, 34	lb uplit	ft at joint 26, 31 I	b uplift at joint 25, 31
BOT CHORD	Rigid coil	ing directly	annlied	J.		22-23=-47/103,	20-22=-47	/106		ĺb u	plift at jo	oint 24,	, 33 lb uplift at jo	int 23, 30 lb uplift at
BOTCHORD				, W	EBS	11-29=-111/28,	10-30=-12	6/78, 9-32=-*	120/63,	join	t 22, 58	lb uplit	ft at joint 2 and 6	4 lb uplift at joint 20.
REACTIONS	(size)	2=31-9-0,	20=31-9-0, 22=31-9-	-0,		7-33=-119/55, 6	-34=-126/5	57, 5-35=-95/	/52,					
		25=31-9-0), 24=31-9-0, 25=31-	9-0, 0-0		4-36=-193/74, 1	2-28=-126	/78,	-	11) This	s truss d	esign	requires that a m	inimum of 7/16"
		30=31-9-0) 32=31-9-0 33=31-	9-0, 9-0		13-26=-120/62,	15-25=-11	9/5	Rev	ew soc	duicale	do@sr	patainge appl	ed directly to the top
		34=31-9-0), 35=31-9-0, 36=31-9	9-0.		16-24=-125/57,	17-23=-99	/54,?=-^	182 <mark>(7</mark> 7) iv	ersahe	<u>E</u> ngine	eriag	psorieneerock	be applied directly to
		37=31-9-0), 40=31-9-0	, N	OTES			0	7	the	bottom o	chord.		
	Max Horiz	2=-151 (L	C 10), 37=-151 (LC 1	0) 1)	Unbalance	d roof live loads h	nave been o	considered for	ru Pa		ASE(S)) Sptay,	01/27/	2024
	Max Uplift	2=-58 (LC	12), 20=-64 (LC 12)	, .	this design				Examir	er-License	No.			
		22=-30 (L	C 12), 23=-33 (LC 12	<u>2),</u> 2)	Wind: ASC	E 7-16; Vult=130	mph (3-sec	cond gust)						
		24=-31 (L	C 12), 25=-31 (LC 12	2),		npn; TCDL=4.2ps	si; BCDL=0	.0psi; n=25ii	ι;					
		26=-34 (L	C 12), 28=-25 (LC 12	<u>2),</u>	MW/FRS (c	lirectional) and C	C Exterior	(2E) -1-6-0 to	`					
		30=-25 (L	C 12), 32=-34 (LC 12	<u>2),</u>	1-8-2 Inter	ior (1) 1-8-2 to 15	5-10-8 Exte	erior(2R) 15-	, 10-8					11.
		33=-31 (L	C 12), 34=-31 (LC 12	<u>(),</u>	to 19-0-10.	Interior (1) 19-0-	10 to 33-3-	0 zone: end					11110	1111
		30=-31 (L 27_ 59 (L	C 12), 30=-34 (LC 12 C 12) 40- 64 (LC 12	<u>(),</u>	vertical left	and right expose	d;C-C for n	nembers and	ł				IN ULIUS	LEE
	Max Grav	2-245 (L)	(12), 40 = 04 (1012)	-)	forces & M	WFRS for reactio	ns shown;	Lumber				N	CE	Vol. 1
		22=253 (LC	C(1) 23=126 (I C 1)		DOL=1.60	plate grip DOL=1	.60					5		
		24=168 (L	C 1), 25=158 (LC 24	3)	Truss des	gned for wind loa	ids in the p	lane of the tr	uss			-	· No. 04	
		26=160 (L	C 1), 28=166 (LC 24),),	only. For s	tuds exposed to	wind (norm	al to the face	э),			1	10 34	809
		29=151 (L	C 17), 30=166 (LC 2	3),	see Standa	ard Industry Gable	e End Deta	ils as applica	able,		=	*:		A 1× =
		32=160 (L	.C 1), 33=158 (LC 23),	or consult	qualified building	designer a	s per ANSI/T	PI 1.			:		
		34=170 (L	C 1), 35=118 (LC 23	5), 4)	Building De	esigner / Project e	engineer re	sponsible for	[]		-	D.		
		36=272 (L	.C 1), 37=245 (LC 1),		verifying a	oplied root live loa	ad snown c	overs rain loa	ading		-	D		MOMILY =
		40=255 (L	.C 1)	E)	All ploton of	its specific to the	use of this	truss compo	ment.			:0	- and the second	:415
FORCES	(lb) - Max	timum Com	pression/Maximum	5)	Gable stud	s spaced at 2.0.0		se muicaleu.	•			31	XILOD	101 55
	Tension			7)	This trues	s spaceu al 2-0-0	d for a 10 () pef bottom				1		NO N
TOP CHORD	1-2=0/40	, 2-4=-107/ [,]	116, 4-5=-103/88,	()	chord live l	oad nonconcurre	nt with any	other live los	ads				ON A	LEIN
	5-6=-86/8	85, 6-7=-79	/75, 7-9=-70/103,	(470 8)	* This truss	has been design	ned for a liv	e load of 20.	.0psf				- minin	innin.
	9-10=-77	7137, 10-11	=-94/166, 11-12=-94	/170, 0,	on the bott	om chord in all ar	eas where	a rectangle	-1.=.		Л	ilius Le	e PE No. 34869	
	12-13=-/	1/141, 13-1 1/76 16 17	0=-00/10/, - 07/40 17 10- 50/	26	3-06-00 tal	l by 2-00-00 wide	will fit betw	veen the bott	tom		M	iTek Ir	ic. DBA MiTek US	A FL Cert 6634
	18-20- 1	1/10, 10-17 04/67 20 2	=-31/43, 17-10=-32/2 1_0/11	20,	chord and	any other membe	ers.				16	5023 Sw	vingley Ridge Rd.	Chesterfield, MO 63017
	10-20=-1	0-1/07,20-2	.1-0/44	9)	All bearing	s are assumed to	be SP No.	2.			D	ate:		
														January 18,2024

* Téo23 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MTek-US.com

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	C02	Common	4	1	Job Reference (optional)	T32659348

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:30 ID:0_Irw?VvOIxdR2FKz5EPPFyS9mI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.2

Plate Offsets (X, Y): [2:Edge,0-2-4], [10:Edge,0-2-4], [12:0-4-0,Edge], [13:0-4-0,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.69	Vert(LL)	-0.65	12-13	>581	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.92	Vert(CT)	-1.02	12-13	>370	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.35	Horz(CT)	0.08	10	n/a	n/a		
BCDL	10.0	Code	FBC202	20/TPI2014	Matrix-AS		Wind(LL)	0.09	12-13	>999	240	Weight: 152 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.1 *Excep 2.0E or 2x4 SP M 31 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood she Rigid ceiling directly (size) 2=0-5-8, 1 Max Horiz 2=156 (LC Max Uplift 2=-193 (L Max Grav 2=1497 (L	t* 12-13:2x4 SP 28 I-6-0, Right 2x4 SP athing directly applie applied. I0=0-5-8 C 11) C 12), 10=-193 (LC C 17), 10=1497 (LC	5) 50F No.3 7) ed. 8) 12) L (C 18)	* This truss h on the bottor 3-06-00 tall h chord and ar All bearings Provide mec bearing plate 2 and 193 lb This truss de structural wc chord and 1/ the bottom c	has been design in chord in all ar- by 2-00-00 wide by other membe are assumed to hanical connect e capable of with uplift at joint 10 sign requires th iod sheathing be 2" gypsum shee hord. Standard	hed for a live eas where will fit betw rrs, with BC be SP No. icion (by othe standing 1 at a minimu e applied di etrock be ap	e load of 20. a rectangle veen the bott DL = 10.0ps 1. ers) of truss 93 lb uplift a um for 6" he opplied unectl	Opsf tom tf. to t joint top Revi y to Univ ww Examin	ew for ersal f 4Me	Code Engine	Com ering PX	pliance Science 2707 01/27/2	024
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/46, 2-4=-2318 6-8=-2174/314, 8-10	8/282, 4-6=-2174/31 9=-2318/282, 10-11=	4, =0/46										11.
BOT CHORD	2-10=-162/2109											1111115	1.111
WEBS	6-12=-61/962, 8-12= 4-13=-420/203	-420/203, 6-13=-61	/962,								A.M.	ULICEA	LEE MILL
NOTES											5		· E · · · · · · · · · · · · · · · · · ·
1) Unbalanc this desig	ed roof live loads have n.	been considered fo	r									No 34	869
 Wind: AS Vasd=101 B=45ft: L 	CE 7-16; Vult=130mph 1mph; TCDL=4.2psf; B(=32ft: eave=4ft: Cat. II:	(3-second gust) CDL=6.0psf; h=25ft; Exp B: Enclosed:	;								×	\$1.7	

- MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-8-2, Interior (1) 1-8-2 to 15-10-8, Exterior(2R) 15-10-8 to 19-0-10, Interior (1) 19-0-10 to 33-3-0 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for 3) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6 ONAL "minim Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Date:

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story
3698553	D01	Scissor	2	1	T32659349 Job Reference (optional)

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Thu Jan 18 17:27:26 ID:4zs5Lkb6WDjRdj3YoM8UTRySA3Y-wkmWFpIYQiZ05c9PT3tXD6k1tESzhF0HQMQYpYzuEBI Page: 1

Scale = 1:59.4

Plate Offsets (X, Y): [2:0-1-5,Edge], [2:0-4-0,0-11-8], [14:0-1-5,Edge], [14:0-4-0,0-11-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.58	Vert(LL)	-0.16	18-19	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.70	Vert(CT)	-0.33	18-19	>789	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.59	Horz(CT)	0.27	14	n/a	n/a		
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS		Wind(LL)	0.10	18-19	>999	240	Weight: 124 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=130m	nph (3-sec	cond gust)						
TOP CHORD	2x4 SP No 2		,	Vasd=101m	ph; TCDL=4.2psf	BCDL=6	.0psf; h=25ft						
BOT CHORD	2x4 SP No 2			B=45ft; L=2	4ft; eave=4ft; Cat.	II; Exp B	Enclosed;						
WEBS	2x4 SP No.3			MWFRS (di	rectional) and C-C	Exterior	2E) -1-6-0 to)					
OTHERS	2x4 SP No 3			1-5-7. Interi	or (1) 1-5-7 to 11-	0-0. Exter	ior(2R) 11-0-	-0 to					
BRACING	201 01 110.0			14-0-0. Inter	rior (1) 14-0-0 to 2	23-6-0 zon	e:C-C for						
	Other strengthere and all all a	a the income line at the same line		members ar	nd forces & MWFF	RS for rea	ctions showr	ו:					
	Structural wood snea	atning directly applie	eu.	Lumber DO	L=1.60 plate grip	DOL=1.60)	,					
BOT CHORD	Rigid ceiling directly	applied.	3)	Truss desid	ned for wind load	ls in the pl	lane 🕂 e tri	uss		0.1.	0		
JOINTS	1 Brace at Jt(s): 23,		- /	only. For st	uds exposed to w	ind (norm	al to ace	, Rev	iew toi	Code	Com	ipliance	
	25			see Standar	d Industry Gable	End Detai	ils as applica	_{ible} Univ	ersal	Engine	ering	J Science	
REACTIONS	(lb/size) 2=971/0-5	5-8, 14=962/0-1-8		or consult q	ualified building d	esigner as	s per ANSI/T	PI 1. 🖉					
	Max Horiz 2=160 (LC	C 11)	4)	Building De	signer / Project er	ngineer res	spensible for	no Pa	24 1 1 1	ρ	PX	(2707 01/27/2	024
	Max Uplift 2=-153 (L	.C 12), 14=-147 (LC	12) ′	verifying ap	blied roof live load	shown c	overs rain loa	ading _{kamir}	er-License	No.			
FORCES	(lb) - Max. Comp./Ma	ax. Ten All forces	250	requirement	s specific to the u	se of this	truss compo	nent.					
	(lb) or less except wi	hen shown.	5)	All plates ar	e 2x4 MT20 unles	s otherwi	se indicated.						
TOP CHORD	2-3=-2373/162, 3-4=	-2482/195,	6)	Gable studs	spaced at 2-0-0 (oc.							
	4-5=-2463/245, 5-6=	-1674/62,	7)	This truss h	as been designed	for a 10.0) psf bottom						
	6-33=-1639/99, 7-33	3=-1610/103,		chord live lo	ad nonconcurrent	t with any	other live loa	ads.					In.
	7-8=-1610/129, 8-9=	-1610/124,	8)	* This truss	has been designe	ed for a liv	e load of 20.	0psf				JULIUS	1
	9-34=-1610/91, 10-3	34=-1639/88,		on the botto	m chord in all are	as where	a rectangle	•				JULIOO	LEE "
	10-11=-1678/51, 11-	-12=-2521/268,		3-06-00 tall	by 2-00-00 wide v	vill fit betw	veen the bott	om			5	CEA	10
	12-13=-2546/217, 13	3-14=-2422/183		chord and a	ny other members	S.					2		E.
BOT CHORD	2-22=-82/2186, 21-2	22=-96/2236,	9)	Bearing at jo	pint(s) 2, 14 consi	ders para	llel to grain v	alue			-	· No. 04	000
	20-21=-61/2155, 19-	-20=-84/2191,		using ANSI/	TPI 1 angle to gra	ain formula	a. Building				1	NO 34	809
	18-19=-118/2247, 17	7-18=-95/2209,		designer sh	ould verify capacit	ty of beari	ng surface.				*:) :* E
	16-17=-131/2298, 14	4-16=-117/2246	10) Provide med	chanical connection	on (by oth	ers) of truss	to					AV. 14 .
WEBS	8-19=-51/1551, 19-2	25=-793/204,		bearing plat	e at joint(s) 14.					-	71:	KALLA H	(UNE
	25-26=-793/204, 11-	-26=-792/203,	11) Provide med	chanical connection	on (by oth	ers) of truss	to			T'	10000	OF WE
	11-17=-104/308, 5-2	24=-743/197,		bearing plat	e capable of withs	standing 1	53 lb uplift at	t joint			- 8	COMIL	:415
	23-24=-744/197, 19-	-23=-744/197,		2 and 147 lb	o uplift at joint 14.						-1-1	N	04:23
	5-21=-101/287		12) This truss d	esign requires tha	t a minim	um of 7/16"				11	CO R	GIN
NOTES				structural w	ood sheathing be	applied di	irectly to the	top			V	SIO	ENIN
1) Unbalance	ed roof live loads have	been considered for	r	chord and 1	/2" gypsum sheet	rock be ap	oplied directly	y to			•	UNA	Linn
this desigr	า.			the bottom of	chord.								III.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	D02	Scissor	13	1	Job Reference (optional)	T32659350

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:31 ID:jT?L9P7fiEozSja2?fxLODySA49-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Max Grav 2=970 (LC 1), 6=970 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/50, 2-3=-2237/183, 3-4=-1611/122, 4-5=-1611/113, 5-6=-2237/195, 6-7=0/50 BOT CHORD 2-10=-65/1885, 9-10=-65/1894, 8-9=-88/1892. 6-8=-87/1881 WEBS 4-9=-3/1364, 5-9=-550/179, 5-8=0/203. 3-9=-549/180, 3-10=0/203

NOTES

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

LUMBER

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-6-0, Interior (1) 1-6-0 to 11-0-0, Exterior(2R) 11-0-0 to 14-0-0, Interior (1) 14-0-0 to 23-6-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.

This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top Parmel

chord and 1/2" gypsum sheetrock be applied directly top the bottom chord.

LOAD CASE(S) Standard

9)

01/27/2024

PX2707

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story
3698553	D03	Scissor	19	1	T32659351 Job Reference (optional)

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:32 ID:jT?L9P7fiEozSja2?txLODySA49-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-2-0,0-1-8], [5:0-2-0,0-1-8]

Scale = 1:54.5

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.31	Vert(LL)	-0.13	6-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.52	Vert(CT)	-0.27	6-7	>978	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.53	Horz(CT)	0.23	5	n/a	n/a		
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS		Wind(LL)	0.08	6-7	>999	240	Weight: 100 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: Rigid ceiling directly (size) 1=0-5-8, 5 Max Horiz 1=-146 (L Max Uplift 1=-93 (LC	athing directly applied applied. 5=0-5-8 C 10) : 12), 5=-93 (LC 12)	5) 6) 1. 7) 8)	* This truss h on the bottom 3-06-00 tall b chord and an All bearings a Bearing at joi using ANSI/T designer sho Provide mect bearing plate 1 and 93 lb u	as been designed a chord in all areas y 2-00-00 wide will y other members. are assumed to be nt(s) 1, 5 consider: Pl 1 angle to grain uld verify capacity nanical connection capable of withsta plift at joint 5	for a liv where I fit betw SP No. s paralle formula of beari (by oth anding 9	e load of 20. a rectangle veen the bott 2. el to grain va a. Building ng surface. ers 3 lt to sa at	Opsf tom Ilue to Revie joint Unive	ew for ersal I	⁻ Code Engine	Com	pliance Science	
FORCES TOP CHORD BOT CHORD	Max Grav 1=880 (LC (lb) - Maximum Com Tension 1-2=-2281/253, 2-3= 3-4=-1631/174, 4-5= 1-8=-176/1925, 7-8= 6-7=-162/1933, 5-6=	C 1), 5=880 (LC 1) pression/Maximum 1631/165, 2281/252 176/1933, 162/1925 572/1986 4 6=0/206	9) LC	This truss de structural wo chord and 1/2 the bottom ch DAD CASE(S)	sign requires that a sign requires that a od sheathing be ap 2" gypsum sheetro hord. Standard	a minim oplied di ck be ap	um of 7/16" reetly to the oplied directl	y to _{Examine}	1/1/2 er-License	No.	PX	2707 01/27/20	124
WEBS	2-7=-573/185, 2-8=0)/206										11111115	illin,
NOTES												JULIOO	LEE
1) Unbalance	ed roof live loads have	been considered for									11	CEN	0
this desigr	۱.										5		· · · · · · · · · · · · · · · · · · ·
 Wind: ASC Vasd=101 B=45ft; L= MWFRS (i 3-0-0, Int 14-0-0, Int members : Lumber Di Building D verifying a 	CE 7-16; Vult=130mph mph; TCDL=4.2psf; Bt 24ft; eave=4ft; Cat. II; directional) and C-C Ez rior (1) 3-0-0 to 11-0-0 erior (1) 14-0-0 to 22-0 and forces & MWFRS OL=1.60 plate grip DO esigner / Project engin pplied roof live load sh	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; xterior(2E) 0-0-0 to b; Exterior(2R) 11-0-0 0-0 zone;C-C for for reactions shown; uL=1.60 neer responsible for nown covers rain load	to								* PROY		DALL HU
 This truss 	has been designed for	r a 10.0 psf bottom	#HL.									THILIN .	mm.
chord live	load nonconcurrent wi	th any other live load	s.							Jı	alius Le	e PE No. 34869	

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	F01	Floor Supported Gable	1	1	Job Reference (optional)	T32659352
Builders FirstSource (Jacksonville	e, FL), Jacksonville, FL - 32244,	Run: 8.73 S Jan 4 20)24 Print: 8.7	30 S Jan 42	2024 MiTek Industries, Inc. Wed Jan 17 13:35:32	Page: 1

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries. Inc. Wed Jan 17 13:35:32 ID:Idh6B1G1_8EEWXOxU6FTKtyS8Sg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4.20.0

Scale = 1:39.6														
Loading TCLL TCDL		(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00		CSI TC BC	0.08 0.01	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL BCDL		0.0 5.0	Rep Stress Incr Code	YES FBC20)20/TPI2014	WB Matrix-MR	0.03	Horiz(IL)	0.00	20	n/a	n/a	Weight: 97 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Grav	b.2(flat) b.2(flat) b.3(flat) b.3(flat) b.3(flat) b.3(flat) b.3(flat) b.3(flat) b.3(flat) b.3(flat) b.3(flat) b.3(flat) 20=22-0-C 23=22-0-C 29=22-0-C 29=22-0-C 20=56 (LC 29=22-0-C 20=56 (LC 20=148 (L 28=105 (L 30=153 (L 30=153 (L 35=146 (L 37=143 (L) 37=143 (L)	athing directly applia cept end verticals. applied or 10-0-0 o), 21=22-0-0, 22=22), 24=22-0-0, 25=22), 27=22-0-0, 28=22), 30=22-0-0, 31=22), 30=22-0-0, 38=22), 32=22-0-0, 38=22), 32=22-0-0, 38=22 (1), 21=143 (LC 1) (C 1), 23=146 (LC 1 (C 1), 27=153 (LC 1 (C 1), 31=145 (LC 1 (C 1), 34=147 (LC 1 (C 1), 38=56 (LC 1)	ed or 2 c 2-0-0, 4 2-0-0, 4 2-0-0, 6 2-0-0, 6 2-0-0, 9 2-0-0, 9 3-0-0, 9 3-0, 9 3	NOTES I) All plates ar Cable requi Truss to be braced agai Gable study Gable study Gable study Gable study Gable study Gable study Counce of the s	2-37=-130/0, 3-36 2-37=-133/0, 6-32 8-30=-139/0, 9-25 17-22=-134/0, 16- 13-25=-134/0, 12- 10-28=-95/0 e 1.5x3 MT20 unle res continuous boi fully sheathed fror nst lateral movem is spaced at 1-4-0 c are assumed to b d 2x6 strongbacks and fastened to e) nails. Strongbac r ends or restraine) Standard	==-134/0, ==-134/0, ==-95/0, 1 -23=-133/ -26=-132/ ess othern ttom chor n one fac ent (i.e. d oc. e SP No. , on edge each truss cks to be ed by othe	4-35=-133/0, 7-31=-132/0, 8-21=-130/0, 70, 15-24=-13; 70, 11-27=-13; 70, 11-27=-1	3/0, 9/0, 1. Revie Unive Examine alls	ew for ersal E me	Code Engine	Com ering PX	IScience 1Science 12707 01/27/2 1/27/2 01/27/2	
FORCES	(lb) - Max Tension	imum Com	pression/Maximum									*	()	1 *
TOP CHORD	1-38=-51/ 3-4=-8/0, 7-8=-8/0, 11-12=-8/ 15-16=-8/ 18-19=-8/	0, 19-20=- 4-5=-8/0, 5 8-9=-8/0, 9 0, 12-13=- 0, 16-17=- 0	51/0, 1-2=-8/0, 2-3= -6=-8/0, 6-7=-8/0, -10=-8/0, 10-11=-8, 8/0, 13-15=-8/0, 8/0, 17-18=-8/0,	=-8/0, /0,								PRO	AL OR	A HIM
BOT CHORD	37-38=0/8 32-34=0/8 28-29=0/8 24-25=0/8 20-21=0/8	8, 36-37=0/ 8, 31-32=0/ 8, 27-28=0/ 8, 23-24=0/ 3	8, 35-36=0/8, 34-35 8, 30-31=0/8, 29-30 8, 26-27=0/8, 25-26 8, 22-23=0/8, 21-22	5=0/8,)=0/8, 6=0/8, 2=0/8,							Ju M 10 D	ilius Le ïTek In 5023 Sw ate:	e PE No. 34869 Ic. DBA MiTek US/ ringley Ridge Rd. C	A FL Cert 6634 hesterfield, MO 63017

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	F02	Floor	4	1	Job Reference (optional)	132659353

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:32 ID:VeYGTUraM5co7WKw6PbybHyS8Qe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


```
Scale - 1:39.6
```

Plate Offsets (X, Y): [4:0-1-8,Edge]	l, [6:0-1-8,Edge], [7:0-	1-8,Edge], [9:0-1-8,I	Edge], [17:0-1-8,Edg	e], [22:0-1	-8,Edge]						
Loading TCLL TCDL BCLL BCDI	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-4-0 1.00 1.00 YES FBC2020/TPI2014	CSI TC BC WB Matrix-MS	0.44 0.86 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.34 -0.48 0.08	(loc) 19-20 19-20 14	l/defl >757 >549 n/a	L/d 360 240 n/a	PLATES MT20HS MT20 Weight: 116 lb	GRIP 187/143 244/190 FT = 20%F 11%F
BCDL	5.0	Code	FBC2020/TFI2014								weight. The b	FT = 20%F, TT%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2(flat) 2x4 SP No.2(flat) *E No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)	Except* 23-14:2x4 SP	5) Recomm 10-00-00 (0.131") at their c LOAD CASE	nend 2x6 strongback) oc and fastened to (3") nails. Strongba puter ends or restrain E(S) Standard	is, on edge each truss acks to be ned by othe	e, spaced at s with 3-10d attached to w er means.	valls					
TOP CHORD BOT CHORD	Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	eathing directly applie ccept end verticals. y applied or 10-0-0 oc	d or			IJ	Revi Univ	ew for ersal I	Code Engine	Com	pliance Science	
REACTIONS	(size) 14=0-5-8 Max Grav 14=793 (8, 26=0-5-8 LC 1), 26=793 (LC 1)				Lauder	no Pa	rne	l	PX	(2707 01/27/2	024
FORCES	(lb) - Maximum Cor	npression/Maximum					Examin	er-License	No.			
TOP CHORD	1-26=-26/0, 13-14= 2-3=-1505/0, 3-4=-2 5-6=-3461/0, 6-7=-3 8-9=-3003/0, 9-11= 12-13=-1/0	-26/0, 1-2=-1/0, 2560/0, 4-5=-3002/0, 3564/0, 7-8=-3461/0, -2560/0, 11-12=-1505	5/0,								WLIUS	
BOT CHORD	25-26=0/865, 24-25 21-22=0/3290, 20-2 18-19=0/3564, 17-1 15-16=0/2126, 14-1	5=0/2126, 22-24=0/30 21=0/3564, 19-20=0/3 18=0/3290, 16-17=0/3 15=0/865	02, 564, 003,							A. S.	No 34	869
WEBS	6-20=-187/202, 7-1 2-26=-1150/0, 2-25 4-24=-601/0, 4-22= 5-21=0/368, 6-21=- 12-15=0/891, 11-15 9-16=-602/0, 9-17= 8-18=0/368, 7-18=-	9=-186/202, 3-25=-86 =0/891, 3-24=0/604, 0/276, 5-22=-391/0, 438/132, 12-14=-115 5=-863/0, 11-16=0/60 0/277, 8-17=-390/0, 439/132	33/0, 0/0, 3,							* PROY	Jethe Killor	her Han
NOTES										1	1 SIONIA	ENIN
 Unbalance this design 	ed floor live loads hav	e been considered fo	r								THIN A	innin
2) All plates a	are MT20 plates unles	ss otherwise indicated	1.						Ju	alius Le	ee PE No. 34869	ELC ACCH
 All plates a Bearings a 	are 3x4 M120 unless are assumed to be: Jo	otnerwise indicated. bint 26 SP No.2 , Join	t 14						M 10	5023 Sw	vingley Ridge Rd. C	hesterfield, MO 63017

- All plates are 3x4 MT20 unless otherwise indicated. 3)
- 4) Bearings are assumed to be: Joint 26 SP No.2, Joint 14 SP No.1.

January 18,2024

Page: 1

Date:

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	F03	Floor	6	1	Job Reference (optional)	132659354

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Wed. Jan 17 13:35:33 ID:VeYGTUraM5co7WKw6PbybHyS8Qe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

DOLL	0.0			Matrix MO	0.44	11012(01)	0
BCDL	5.0	Code	FBC2020/1PI2014	Matrix-MS			
	2v4 SP No 2/flot)		5) Recommend 10-00-00 oc	2x6 strongbac	ks, on edge	, spaced at	
BOT CHORD	2x4 SP No.2(flat) *Ex No.1(flat)	<pre>kcept* 21-13:2x4 SP</pre>	(0.131" X 3") at their outer	nails. Strongb ends or restrai	acks to be a	attached to ver means.	walls
WEBS	2x4 SP No.3(flat)		LOAD CASE(S)	Standard	-		
OTHERS	2x4 SP No.3(flat)						
BRACING							
TOP CHORD	Structural wood shea	athing directly applie	d or				
	6-0-0 oc purlins, exc	cept end verticals.					R
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc					ι
REACTIONS	(size) 13=0-5-8,	24=0-3-8				-f.	
	Max Grav 13=787 (L	.C 1), 24=787 (LC 1)				- Lane	W -
FORCES	(lb) - Maximum Com	pression/Maximum					-
	Tension						
TOP CHORD	1-24=-25/0, 12-13=-7	786/0, 1-2=-1/0,					
	2-3=-1491/0, 3-4=-25	540/0, 4-5=-3200/0,					
	5-6=-3508/0, 6-7=-35 8-10=-2816/0, 10-11	008/0,7-8=-3347/0, 1902/0_11_1260	5/0				
BOT CHORD	23-24=0/859 22-23=	=0/2103 20-22=0/29	59				
Der enerte	19-20=0/3433, 18-19	e0/2100, 20 22=0/20	508.				
	16-17=0/3172, 15-16	6=0/2443, 14-15=0/1	344,				
	13-14=0/41						
WEBS	6-19=-252/62, 7-18=	-126/130, 7-17=-443	/75,				
	8-17=0/355, 8-16=-4	95/0, 10-16=0/518,	2/0				
	10-15=-752/0, 11-15	=0/777, 11-14=-1028	3/0,				
	3-23-852/0 3-22-0	1142/0, 2-23=0/8/8, /608_4-22583/0					
	4-20=0/336 5-20=-3	84/0 5-19=-170/445					
	. 20 0,000, 0 20= 0	0.00, 0.00 110/110					

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 3x4 MT20 unless otherwise indicated.
- 4) Bearings are assumed to be: Joint 24 SP No.2, Joint 13 SP No.1.

Review for Code Compliance Universal Engineering Science

Laudence Pernell 01/27/2024 PX2707

Weight: 112 lb

FT = 20%F, 11%E

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	F04	Floor	1	1	Tob Reference (optional)	32659355

Tension

16-17=-1/0

15-20=-63/31

1-32=-25/0, 17-18=-29/0, 1-2=0/0,

2-3=-850/0, 3-4=-1302/0, 4-6=-1417/0, 6-7=-944/0, 7-8=-944/0, 8-9=-293/61, 9-10=-293/61, 10-11=-600/0, 11-13=-593/0,

13-14=-214/0, 14-15=-1/0, 15-16=-1/0,

7-28=0/298, 8-27=0/311, 9-26=0/212, 14-21=-386/0, 2-32=-695/0, 2-31=0/472,

3-31=-439/0, 3-30=0/189, 4-30=-193/0, 4-29=-46/0, 6-29=0/196, 6-28=-607/0, 8-26=-1049/0, 10-26=-433/0, 10-24=0/207

11-24=-178/38, 11-23=-128/0, 13-23=0/149,

13-22=-377/0, 14-22=0/338, 16-19=-98/0,

31-32=0/511, 30-31=0/1166, 29-30=0/1440, 28-29=0/1290, 27-28=0/944, 26-27=0/944, 24-26=0/487, 23-24=0/684, 22-23=0/485, 21-22=0/1, 20-21=0/1, 19-20=0/1, 18-19=0/1

TOP CHORD

BOT CHORD

WEBS

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:33 ID:gR3iXtZeC64ql2PelY3ejqyS8JG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	F05	Floor	13	1	Job Reference (optional)	132659356

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:33 ID:wZsXxavme7hJg13rGuAb9ryS8PG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 NO FBC20)20/TPI2014	CSI TC BC WB Matrix-MS	0.68 0.94 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.27 0.03	(loc) 23-25 23-25 16	l/defl >821 >567 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 130 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) *E: 2850F 2.0E or 2x4 S 2x4 SP No.2(flat) *E: No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she: 6-0-0 oc purlins, exi Rigid ceiling directly	xcept* 10-1:2x4 SP P M 31(flat) xcept* 24-16:2x4 SP athing directly applied cept end verticals. applied or 6-0-0 oc	2 3 2 5 d or 6	 All plates are SP No.1, Jo Load case(s) designer mus for the intence Recommend 10-00-00 or (0.131" X 3") at their outer CAUTION, D 	A 3x4 MT20 unless assumed to be: J int 16 SP No.1.) 1, 3 has/have be st review loads to ded use of this trus 2x6 strongbacks, and fastened to en nails. Strongbac ends or restraine to not erect truss to	otherwi oint 28 \$ en modif verify the ss. on edge ach truss ks to be d by othe backward	se indicated. SP No.2 , Join ied. Building at they are co e, spaced at with 3-10d attattatto to w er m	t 21 rrect all <mark>Rev</mark> Univ	iew for versal E	Code Engine	Com	ipliance Science	
REACTIONS	bracing. (size) 16=0-4-0, Max Grav 16=1248 (28=452 (L	21=0-3-8, 28=0-3-8 (LC 15), 21=1172 (LC (C 5)	1 2 4),	Dead + Floo Plate Increa Uniform Loa	Standard or Live (balanced) ase=1.00 ads (lb/ft)	: Lumbe		00, Pa Examir	21110	No.	PX	(2707 01/27/20)24
FORCES	(lb) - Maximum Com Tension 1-28=-25/0, 15-16= 2-3=-767/0, 3-4=-11 5-6=-550/470, 6-7= 8-9=0/790, 9-11=-80 12-13=-2524/0, 13-1	pression/Maximum 42/0, 1-2=-1/0, 14/0, 4-5=-1124/126, 550/470, 7-8=0/790, 0/0, 11-12=-1806/0, 4=-2791/0, 14-15=-2/	3/0	Vert: 16-2 Concentrate Vert: 13= B) Dead + Roo Plate Increa Uniform Loa Vert: 16-2	28=-7, 1-15=-67 ed Loads (lb) 779 of Live (balanced): ase=0.90 Plt. meta ads (lb/ft) 28=-7, 1-15=-13	Lumber al=0.90	Increase=0.9	90,				JULIUS	
BOT CHORD	27-28=0/479, 26-27= 23-25=-268/940, 22- 21-22=-470/550, 20- 19-20=0/1358, 18-19 16-17=0/1514	=0/1030, 25-26=-46/1 23=-470/550, 21=-64/293, 9=0/2238, 17-18=0/27	199, 791,	Concentrate Vert: 13=	ed Loads (lb) 1446						*	No 34	369
WEBS	6-23=0/461, 7-22=0/ 7-21=-1203/0, 13-17 9-20=0/871, 11-20=- 12-19=-627/0, 12-18 14-17=0/1699, 14-16 2-27=0/400, 3-27=-3 4-26=-119/74, 4-25= 5-23=-797/0	333, 8-21=0/284, =-1112/0, 9-21=-109(840/0, 11-19=0/650, =0/564, 13-18=-540/(5=-1932/0, 2-28=-636 67/11, 3-26=-63/116, -146/0, 5-25=0/303,	0/0, 0, 6/0,							Ji	HO HIUS Le		P.A. INIT
NOTES 1) Unbalance this design	ed floor live loads have n.	been considered for								M 10 D	liTek In 5023 Sw ate:	nc. DBA MiTek USA vingley Ridge Rd. Cl	FL Cert 6634 aesterfield, MO 63017

January 18,2024

Page: 1

* 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	F06	Floor	9	1	Job Reference (optional)	132659357
Builders FirstSource (Jacksonvill	e, FL), Jacksonville, FL - 32244,	Run: 8.73 S Jan 4 2	024 Print: 8.7	730 S Jan 4	2024 MiTek Industries, Inc. Wed Jan 17 13:35:34	Page: 1

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:34 ID:L3J3DUWJonWEEPt9xotTX4yS8AH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-11-12	5-11-12 6-11-12	8-11-4	11-11-8
4-11-12	1-0-0 1-0-0	1-11-8	3-0-4

Scale = 1:33.9

Plate Offsets (X, Y): [5:0-1-8,Edge], [9:Edge,0-1-8], [10:0-3-0,Edge], [13:0-1-8,Edge]

														_
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-4-0 1.00		CSI TC	0.72	DEFL Vert(LL)	in -0.10	(loc) 11-12	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190	
TCDL	10.0	Lumber DOL	1.00		BC	0.88	Vert(CT)	-0.21	11-12	>659	240			
BCLL	0.0	Rep Stress Incr	NO		WB	0.96	Horz(CT)	0.02	9	n/a	n/a			
BCDL	5.0	Code	FBC2020/1	TPI2014	Matrix-MS							Weight: 66 lb	FT = 20%F, 11%E	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP 2850F 2.0E 0 2x4 SP 2850F 2.0E 0 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she	or 2x4 SP M 31(flat) or 2x4 SP M 31(flat)	3) d or	Uniform Loa Vert: 9-15 Concentrate Vert: 6=-7 Dead + Roo Plate Increa Uniform Loa	ads (lb/ft) 5=-7, 1-8=-67 ed Loads (lb) 779 if Live (balanced): se=0.90 Plt. metal ads (lb/ft)	Lumber =0.90	Increase=0.9	90,						
BOT CHORD	6-0-0 oc purlins, exe Rigid ceiling directly bracing	cept end verticals. applied or 10-0-0 oc		Vert: 9-15 Concentrate Vert: 6=-	5=-7, 1-8=-13 ed Loads (lb) 1446		V	Revi	iew for	Code	Com	pliance		
REACTIONS	(size) 9=0-4-0. 1	15=0-3-8						Univ	ersal	ngine	ering	Science		
	Max Grav 9=1311 (L	LC 4), 15=664 (LC 4)					-P	Б	0	٥	ΠV	01/27/2	0.24	
FORCES	(lb) - Maximum Com Tension	pression/Maximum					_ Zawlet	Examin	er-License	K.	F7	.2707 01/21/2	124	
TOP CHORD	1-15=-19/3, 8-9=-47/ 3-4=-2365/0, 4-5=-23 6-72968/0, 7-829	//0, 1-2=-1/0, 2-3=-12 365/0, 5-6=-2876/0,	27/0,											
BOT CHORD	14-15=0/720, 13-14=	=0/1815, 12-13=0/23	65,									mmm	111.	
WEDO	11-12=0/2365, 10-11	1=0/2968, 9-10=0/15	84									W ULUS	LEMA	
WEDS	4-13=-328/0, 5-12=- 2-15957/0 2-14-0	0/706 3-14817/0									1	30-	SE UN	
	3-13=0/1009. 6-10=-	-1309/0. 7-10=0/1842	2								5	CEN	Sp. 4	
	7-9=-2020/0, 6-11=-	351/0	_,								3	1 X	N 18 18 1	
NOTES										-		• No 34	869	
1) Unbalance	ed floor live loads have	e been considered for									*:		∧ :★∃	
this design	1.									=	:	· / *		
All bearing	s are assumed to be S	SP 2850F 2.0E or M	31.								D	VILINI		
3) Load case	(s) 1, 3 has/have been	n modified. Building									J	. XSUMM	040-1415	
designer n	nust review loads to ve	erity that they are cor	rect								20	·A.		
4) Recomme	nd 2v6 strongbacks	In edge spaced at									1	C CR	D	
10-00-00 c	oc and fastened to eac	ch truss with 3-10d									11	99	ENUN	
(0.131" X 3	3") nails. Strongbacks	to be attached to wa	alls									ONA	LEIM	
at their out	ter ends or restrained l	by other means.											um.	
5) CAUTION	, Do not erect truss ba	ickwards.								Ju	ilius Le	e PE No. 34869		
LOAD CASE(Standard									M	iTek In	c. DBA MiTek USA	FL Cert 6634	
 Dead + F 	loor Live (balanced): L	Lumber Increase=1.0	0,							D	ate:	ingley Ridge Ru. C	lesterneid, MO 05017	
Plate Inci	rease=1.00												1 10 000	
1													January 18,2024	ł
WARN Design va a truss sy building d is always fabricatior and BCS	ING - Verify design parame lidi for use only with MiTek® stem. Before use, the buildin esign. Bracing indicated is t required for stability and to r, storage, delivery, erection I Building Component Safe	etters and READ NOTES OI o connectors. This design is ng designer must verify the to prevent buckling of indiv rorevent collapse with possi and bracing of trusses and ety Information available	N THIS AND INC s based only upo applicability of c idual truss web a ble personal inju d truss systems, e from the Struct	CLUDED MITEK on parameters s design parameter and/or chord me ury and property see ANSI/TPI tural Building Co	REFERENCE PAGE MI hown, and is for an indi ers and properly incorp mbers only. Additional damage. For general 1 Quality Criteria and omponent Association (I-7473 rev vidual bui prate this temporar guidance DSB-22 www.sbcs	A 1/2/2023 BEFO Iding component, design into the ov y and permanent regarding the available from Tra- scomponents.com	RE USE. , not verall t bracing uss Plate h)	Institute (w	/ww.tpinst.	org)	16023 Sw Chesterfi 314.434.120	Tek® ingley Ridge Rd. eld, MO 63017 0/ MiTek-US.com	

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	F07	Floor	3	1	Job Reference (optional)	132659358
Builders FirstSource (Jacksonville	e, FL), Jacksonville, FL - 32244,	Run: 8.73 S Jan 4 2	024 Print: 8.7	'30 S Jan 41	2024 MiTek Industries, Inc. Wed Jan 17 13:35:34	Page: 1

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:34 ID:xhzeoWLv2n2BLO?rErBa2KyS8Fg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-4-8 12-4-8

Scale = 1:27.6

Plate Offsets (X, Y): [11:0-1-8,Edge], [12:0-1-8,Edge]

Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.30	Vert(LL)	-0.06	12-13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.37	Vert(CT)	-0.07	12-13	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.02	9	n/a	n/a		
BCDL	5.0	Code	FBC2020/TPI2014	Matrix-MS							Weight: 65 lb	FT = 20%F, 11%E

	۱
--	---

TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 9= Mechanical, 14= Mechanical
	Max Grav 9=440 (LC 1), 14=440 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-14=-23/0, 8-9=-23/0, 1-2=-1/0, 2-3=-737/0,
	3-4=-1093/0, 4-5=-1093/0, 5-6=-1093/0,
	6-7=-737/0, 7-8=-1/0
BOT CHORD	13-14=0/469, 12-13=0/987, 11-12=0/1093,
	10-11=0/987, 9-10=0/469
WEBS	2-14=-622/0, 7-9=-622/0, 2-13=0/374,
	7-10=0/374, 3-13=-347/0, 6-10=-347/0,
	3-12=0/285, 6-11=0/285, 4-12=-161/0,
	5-11=-161/0

NOTES

- Unbalanced floor live loads have been considered for 1) this design.
- All plates are 3x4 MT20 unless otherwise indicated. 2)
- Refer to girder(s) for truss to truss connections. 3)
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Review for Code Compliance Universal Engineering Science

Ludena Parnell 01/27/2024 PX2707

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Job	Truss		Truss Type		Qty	Ply	Fischer Re	esidence 2 Story			
3698553	F08		Floor Supported Ga	ıble	1	1	Job Refere	ence (optional)		Т326	659359
Builders FirstSource (Jacksonville	e, FL), Ja	cksonville, FL - 32244,		Run: 8.73 S Jan 4 ID:ruy?ICEO40qvgV	2024 Prin VV0wJVO	t: 8.730 S Ja vRyS8DD-R	an 42024 MiTek Ir IfC?PsB70Hq3NSg	ndustries, Inc. Wed PqnL8w3uITXbGK\	Jan 17 13:35:35 WrCDoi7J4zJC1	i Pf	Page: 1
0-1-8	ł								(0-1-8	
	2	3	4	5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7	8	9 0 0 0 14	10	11 24 9 12 3x4 =	1-4-0
33	<4 =			12-4-8						_	
Scale = 1:24.7				12-4-8						1	

Loading	(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	12	n/a	n/a		
BCDL	5.0	Code	FBC202	20/TPI2014	Matrix-MR							Weight: 57 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she	athing directly applie	6) LC	Recommend 10-00-00 oc (0.131" X 3") at their outer DAD CASE(S)	2x6 strongbacks, and fastened to e nails. Strongbac ends or restraine Standard	, on edge ach truss ks to be d by othe	e, spaced at s with 3-10d attached to water means.	alls					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc						Revi	ew for	Code	Com	Inliance	
REACTIONS	(size) 12=12-4-8 15=12-4-8 21=12-4-8 Max Grav 12=13 (LC 14=101 (L 16=98 (LC (LC 1), 15 1), 21=82	3, 13=12-4-8, 14=12- 3, 16=12-4-8, 17=12- 3, 19=12-4-8, 20=12- 3, 22=12-4-8 C 1), 13=82 (LC 1), C 1), 15=97 (LC 1), C 1), 17=98 (LC 1), 1 =97 (LC 1), 20=101 (LC 1), 22=13 (LC 1)	4-8, 4-8, 4-8, 8=98 (LC				Lauren		ersal I		P	2707 01/27/2	:024
FORCES	(lb) - Maximum Com	pression/Maximum										annun line	11111
TOP CHORD	Tension 1-22=-12/0, 11-12=- 3-4=-1/0, 4-5=-1/0, § 7-8=-1/0, 8-9=-1/0, §	12/0, 1-2=-1/0, 2-3=- 5-6=-1/0, 6-7=-1/0, 9-10=-1/0, 10-11=-1/0	1/0,								S. S	JULIUS	
BOT CHORD	21-22=0/1, 20-21=0, 17-18=0/1, 16-17=0, 13-14=0/1, 12-13=0,	/1, 19-20=0/1, 18-19= /1, 15-16=0/1, 14-15= /1	=0/1, =0/1,								*	No 34	869
WEBS	6-17=-89/0, 5-18=-8 3-20=-92/0, 2-21=-7 8-15=-88/0, 9-14=-9	9/0, 4-19=-88/0, 5/0, 7-16=-89/0, 2/0, 10-13=-75/0									T	KOA N	STATISTICS OF
 NOTES All plates a Gable required Truss to be braced age Cable stur 	are 1.5x3 MT20 unless uires continuous botto e fully sheathed from o ainst lateral movemen	s otherwise indicated m chord bearing. one face or securely t (i.e. diagonal web).										SSIONA	LENGINITI

4) Gable studs spaced at 1-4-0 oc.

5) All bearings are assumed to be SP No.2 .

iTek® 16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

January 18,2024

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type		Ply	Fischer Residence 2 Story	
3698553	F09	Floor	1	1	Job Reference (optional)	T32659360

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:35 ID:wZsXxavme7hJg13rGuAb9ryS8PG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

BCLL		0.0	Rep Stress Incr	NO		WB	0.92	Horz(CT)	0.03	17	n/a	n/a				
BCDL		5.0	Code	FBC202	20/TPI2014	Matrix-MS							Weight: 1	32 lb	FT = 20%F, 11%E	
LUMBER TOP CHORD	2x4 SP 2850F	F 2.0E 0	or 2x4 SP M 31(flat) SP No 2(flat)	1) 2)	Unbalanced this design. All plates are	floor live loads ha	ve been	considered for								
BOT CHORD	2x4 SP No.1(No.2(flat)	flat) *E	cept* 25-29:2x4 SP	3)	Bearings are SP No.1 , Jo	assumed to be: J int 17 SP No.1 .	oint 29 S	SP No.2 , Joint	22							
WEBS OTHERS	2x4 SP No.3(2x4 SP No.3(flat) flat)		4)	Load case(s designer mu) 1, 3 has/have be st review loads to	en modi verify th	fied. Building at they are corr	rect							
BRACING TOP CHORD	Structural wo 6-0-0 oc purli	od shea	athing directly applied	dor 5)	for the intend Recommend 10-00-00 oc (0.131" X 3")	ded use of this true I 2x6 strongbacks, and fastened to e	s. on edge ach truss	e, sr s wi U Dd	Revie Julive	ew for (ersal E	Code naine	Com erina	pliance Science	9		
BOT CHORD	Rigid ceiling of bracing.	directly	applied or 6-0-0 oc	0	at their outer	ends or restraine	d by oth	er means.	ш э А	an				04/07/000		
REACTIONS	(size) 17: Max Grav 17: 29:	=1-1-8, =1249 (=458 (L	22=0-3-8, 29=0-5-8 LC 15), 22=1175 (LC .C 5)	6) C 1), L(1)	Dead + Flo	Standard or Live (balanced)	ackwar : Lumbe	r Increase=1.0	Examiner Examiner	r-License N	0 .	PX	2707	01/27/2024		
FORCES	(lb) - Maximu Tension	m Com	pression/Maximum		Plate Increa Uniform Lo	ase=1.00 ads (lb/ft)										
TOP CHORD	1-29=-25/0, 1 2-3=-781/0, 3 5-6=-568/456 8-9=0/779, 9- 12-13=-2279/ 14-15=-2775/	6-17=-3 6-4=-114 6, 6-7=-5 -11=-37 /0, 13-1 /0, 15-1	32/0, 1-2=-1/0, 41/0, 4-5=-1168/101, 568/456, 7-8=0/779, 9/0, 11-12=-1436/0, 4=-2775/0, 6=-2/0	3)	Vert: 17- Concentrat Vert: 14= Dead + Roo Plate Increa Uniform Lo	29=-7, 1-16=-67 ed Loads (lb) 779 of Live (balanced) ase=0.90 Plt. meta ads (lb/ft)	Lumbe II=0.90	r Increase=0.90	0,			STATE		US (EE	
BOT CHORD	28-29=0/486, 24-26=-236/9 22-23=-456/5 19-20=0/1927	27-28= 98, 23- 68, 21- 7, 18-19	=0/1052, 26-27=-26/1 24=-456/568, 22=-594/0, 20-21=0// 9=0/2613, 17-18=0/13	234, 939, 381	Vert: 17- Concentrat Vert: 14=	29=-7, 1-16=-13 ed Loads (lb) 1446					Thursday.	* 7) ³⁴⁸	⁵⁹	
WEBS	6-24=0/399,7 2-29=-646/0, 3-27=-58/124 5-26=0/283,5 15-17=-1836/ 13-19=-575/0 11-20=0/729, 9-22=-995/0,	7-23=0/ 2-28=0 4, 4-27= 5-24=-7 /0, 15-1 0, 12-19 , 11-21= 14-18=	350, 8-22=0/579, /410, 3-28=-376/6, -129/68, 4-26=-133/(69/0, 7-22=-1248/0, 8=0/1781, 13-18=0/4 =0/600, 12-20=-707/ -927/0, 9-21=0/982, -1425/0), 156, 0,							Ju	lius Lee	e PE No. 348	DRI NAL		
NOTES	,										16 Da	023 Swi	ingley Ridge	Rd. Che	sterfield, MO 63017	

January 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	F10	Floor	14	1	Job Reference (optional)	132659361

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:35 ID:387xVvEdxtjbBfaX55BkS_yS7Hq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.7

Plate Offsets (X, Y):	[8:0-1-8,Edge], [13:0-1-8,Edge], [13:0-1-8,0-0-8], [14:Edge,0-1-8], [23:0-1-8,Edge]	
	[

	Λ, Τ). [0.0-1-0,	,Luge],	[13.0-1-0,Euge], [13.	.0-1-0,0-0	-oj, [14.∟uge,0	-1-0j, [23.0-1-0,Eu	gel								
Loading	((psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	4	40.0	Plate Grip DOL	1.00		тс	0.75	Vert(LL)	-0.44	21-22	>650	360	MT20HS	187/143	
TCDI	1	10.0	Lumber DOI	1 00		BC	0.99	Vert(CT)	-0 74	21-22	>385	240	MT20	244/190	
BCLI		0.0	Rep Stress Incr	NO		WB	0.96	Horz(CT)	0.11	14	n/a	n/a			
BCDI		5.0	Code	FBC20	20/TPI2014	Matrix-MS	0.00		0.11		n/a	n/a	Weight: 126 lb	FT - 20%F 1	1% =
DODL		5.0	Coue	1 0020	20/11/2014	INIAUTX-INIO							Weight. 120 lb	11 = 20701, 1	170∟
LUMBER				4) The Fabricat	ion Tolerance at jo	int 20 =	11%							
TOP CHORD	2x4 SP No.2(1 2850F 2.0E o	flat) *E> r 2x4 S	ccept* 5-13:2x4 SP P M 31(flat)	5) Bearings are M 31, Joint	assumed to be: Jo 14 SP No.1.	pint 27 S	SP 2850F 2.0)E or						
BOT CHORD	2x4 SP No.1(1 2850F 2.0E o	flat) *Ex r 2x4 S	cept* 20-27:2x4 SP P M 31(flat)	6	Load case(s) designer musical	1, 3 has/have bee st review loads to v	en modi verify the	fied. Building at they are co	orrect						
WEBS	2x4 SP No.3(1	flat)			for the intend	led use of this trus	s.								
OTHERS	2x4 SP No.3(1	flat)		7) Recommend	2x6 strongbacks,	on edge	e, spaced at							
BRACING					10-00-00 oc	and fastened to ea	ch truss	s with 3-10d							
TOP CHORD	Structural wo	od shea	athing directly applied	d or	(0.131" X 3")	nails. Strongback	s to be	atta to w	valle	iew for	Code	Com	nliance		
	5-2-11 oc pur	lins. ex	cept end verticals.		at their outer	ends or restrained	by othe	er m				orino	ipilarioc		
BOT CHORD	Rigid ceiling o	directly	applied or 10-0-0 oc	L	OAD CASE(S)	Standard			Univ	ersar	Ingine	enng	Science		
	bracing.			1) Dead + Floo	or Live (balanced):	Lumbe	r Increase=1.	.00, 🧹	а	л				
REACTIONS	(size) 14=	=0-3-8,	27=0-5-8		Plate Increa	ase=1.00		Jawler	no Pa	rne)-	Ľ.	PX	(2707 01/27/2	024	
	Max Grav 14=	=1882 (LC 4), 27=936 (LC 1)	Uniform Loa	ads (lb/ft)		,	Examin	er-License	No.				
FORCES	(lb) - Maximuı Tension	m Com	pression/Maximum		Vert: 14-2 Concentrate	27=-7, 1-13=-67 ed Loads (lb)									
TOP CHORD	1-27=-25/0, 1	3-14=-1	885/0, 1-2=-1/0,		Vert: 12=	-779									
	2-3=-1811/0,	3-4=-31	72/0, 4-6=-4118/0,	3) Dead + Roo	of Live (balanced):	Lumber	Increase=0.	.90,					11.	
	6-7=-4844/0,	7-8=-48	844/0, 8-9=-4938/0,		Plate Increa	ise=0.90 Plt. metal	I=0.90						2111.111	111	
	9-10=-4698/0	, 10-11	-4160/0, 11-12=-34	53/0,	Uniform Loa	ads (Ib/ft)							IN ULIUS	LEF	
	12-13=-822/0	1			Vert: 14-2	27=-7, 1-13=-13						A.	CEA		
BOT CHORD	26-27=0/1027	7, 25-26	=0/2578, 24-25=0/37	737,	Concentrate	ed Loads (lb)						5		0.E.	1
	23-24=0/4536	5, 22-23	=0/4844, 21-22=0/48	844,	Vert: 12=	-1446						5	A second second		2
	19-21=0/4928	3, 18-19	=0/4459, 17-18=0/38	875,							-		No 34	869	=
	16-17=0/3100), 15-16	=0/3100, 14-15=0/0								-	*			- =
WEBS	7-23=-400/0,	8-22=-2	249/25, 2-27=-1366/0),							=	11	/		=
	2-26=0/1090,	3-26=-	1067/0, 3-25=0/825,								=	+12	to At ?		
	4-25=-786/0,	4-24=0	/529, 6-24=-608/0,								-	1	() KA	A DA	
	6-23=0/777, 8	3-21=-1	92/453, 9-21=-218/1	93,								= 5	Upper		12
	9-19=-320/58	, 10-19	=-46/332,									-X	A.A.	A:2	5
	10-18=-555/1	6, 11-1	8=0/581, 11-17=-814	4/0,								EN	C OR	Diali	
	12-15=-2909/	0, 13-1	5=0/2010, 12-16=-21	1/0,									00	· N N	
	12-17=0/759												ONA	LEIN	
NOTES													in the second se	IIIII	
1) Unbalance	ed floor live load	ls have	been considered for								Jı	alius Le	ee PE No. 34869		
this desigr	า.										M	liTek In	nc. DBA MiTek USA	FL Cert 6634	
2) All plates	are MT20 plates	s unless	otherwise indicated								10	5023 Sw	vingley Ridge Rd. C	hesterfield, MO 6	3017
3) All plates a	are 3x4 MT20 u	nless o	therwise indicated.								D	ate:			
														January 18	3.2024
															,

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	F11	Floor Supported Gable	1	1	Job Reference (optional)	132659362
Builders FirstSource (Jacksonville	e, FL), Jacksonville, FL - 32244,	Run: 8.73 S Jan 4 20)24 Print: 8.7	30 S Jan 4	2024 MiTek Industries, Inc. Wed Jan 17 13:35:36	Page: 1

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries. Inc. Wed Jan 17 13:35:36 ID:mLF8A8ZZaA7mwo8kAGA32hyS7HP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42.7

	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	40.0	Plate Grip DOL	1.00		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
	10.0	Lumber DOL	1.00		BC	0.01	Vert(TL)	n/a	-	n/a	999		
	0.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	21	n/a	n/a		
	5.0	Code	FBC20	20/TPI2014	Matrix-MR							Weight: 104 lb	FT = 20%F, 11%E
			N	/EBS	11-31=-133/0, 10	-32=-133	/0, 8-33=-133	/0,					
2x4 SP N	lo.2(flat)				7-34=-133/0, 6-3	5=-133/0,	5-36=-133/0,						
2x4 SP N	lo.2(flat)				4-37=-133/0, 3-3	3=-134/0,	2-39=-131/0,						
2x4 SP N	lo.3(flat)				12-30=-133/0, 13	-28=-133	/0, 14-27=-13	3/0,					
2x4 SP N	lo.3(flat)				15-26=-133/0, 16	-25=-133	/0, 17-24=-13	3/0,					
					18-23=-134/0, 19	-22=-131	/0						
Structura 6-0-0 oc	l wood shea purlins, exe	athing directly applie cept end verticals.	ed or N 1)	OTES All plates and Coble require	re 1.5x3 MT20 unl	ess other	wise indicated	d.					
bracing.	ling directly	applied or 10-0-0 of	c 2) 3)) Truss to be	fully sheathed fro	m one fac	e or energinely	Povi	ow for	Code	Com	nliance	
(size)	21=24-0-8 24=24-0-8 27=24-0-8 31=24-0-8 34=24-0-8 37=24-0-8 40=24-0-8	3, 22=24-0-8, 23=24 3, 25=24-0-8, 26=24 3, 28=24-0-8, 30=24 3, 32=24-0-8, 33=24 3, 35=24-0-8, 36=24 3, 38=24-0-8, 39=24 3	0-8, 4) 0-8, 4) 0-8, 5) 0-8, 6) 0-8, 0-8,	braced aga Gable studs All bearings Recommen 10-00-00 or (0.131" X 3 at their oute	inst lateral movem s spaced at 1-4-0 s are assumed to b d 2x6 strongbacks c and fastened to 6 ") nails. Strongba er ends or restraine	ent (i.e. d oc. oe SP No. s, on edge each truss cks to be ed by othe	liagy (reb) 2. s, spaced at , s with 3-10d attached to w er means.	Univ Univ w Pa Examin valls	ew for ersal I		ering P	3 Science (x2707 01/27/2	2024
Max Grav	21=57 (LC 23=148 (L 25=147 (L 27=147 (L 30=147 (L 32=147 (L 36=147 (L 38=148 (L 40=57 (LC	C 1), 22=144 (LC 1), .C 1), 24=146 (LC 1 .C 1), 26=147 (LC 1 .C 1), 26=147 (LC 1 .C 1), 31=147 (LC 1 .C 1), 31=147 (LC 1 .C 1), 33=147 (LC 1 .C 1), 37=146 (LC 1 .C 1), 39=144 (LC 1 C 1), 39=144 (LC 1 C 1), 39=144 (LC 1) C 1), 39=144 (LC 1) C 1)	, L(),),),),),),),	OAD CASE(S) Standard						A. S.	No 34	
(lb) - Max Tension	kimum Com	pression/Maximum									6	(0h*	a K Da
1-40=-52 3-4=-9/0, 7-8=-9/0, 12-13=-9 15-16=-9 18-19=-9	/0, 20-21=- 4-5=-9/0, 5 8-10=-9/0, /0, 13-14=- /0, 16-17=- /0, 19-20=-	52/0, 1-2=-9/0, 2-3= 5-6=-9/0, 6-7=-9/0, 10-11=-9/0, 11-12= 9/0, 14-15=-9/0, 9/0, 17-18=-9/0, 9/0	:-9/0, :-9/0,								K	COR SONA	DA CINIT
39-40=0/ 35-36=0/ 31-32=0/ 26-27=0/	9, 38-39=0/ 9, 34-35=0/ 9, 30-31=0/ 9, 25-26=0/	9, 37-38=0/9, 36-37 9, 33-34=0/9, 32-33 9, 28-30=0/9, 27-28 9, 24-25=0/9, 23-24	7=0/9, 3=0/9, 3=0/9, 4=0/9,							Ji M 14 D	alius Lo liTek li 5023 Sv ate:	ee PE No. 34869 nc. DBA MiTek US. vingley Ridge Rd. C	A FL Cert 6634 Thesterfield, MO 63017
	 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Grav Max Grav (lb) - Main Tension 14-0=-52 3-4=-9/0, 12-13=-9 18-19=-9 39-40=0/ 35-36=0/ 35-36=0/ 36-27=0/	(psf) 40.0 10.0 0.0 5.0 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(psi) Spacing 2-0-0 CSI DEFL in (nc) 40.0 Plate Grip DOL 1.00 BC 0.01 Vert(TL) n/a - 10.0 Lumber DOL 1.00 BC 0.01 Vert(TL) n/a - 10.0 Rep Stress Incr YES WB 0.03 Vert(TL) n/a - 11.2426 PN 0.2(flat) Code FBC2020/TPI2014 Matrix-MR Horiz(TL) 0.00 21 2x4 SP No.2(flat)		(psf) Spacing 2-0-0 CSI DEFL in (loc) //data 40.0 Plate Grip DOL 1.00 TC 0.08 Vert(L) n/a - n/a 999 0.0 Rep Stress Incr YES WB 0.03 Horiz(TL) 0.00 21 n/a n/a 999 2.0 Code FBC2020/TPI2014 Matrix-MR Vert(L) n/a - n/a 999 2.4 SP No.2(flat)	(ps) Spacing 2-0-0 CSI DEF in (nc) Vert(L) (nc) in (nc) Vert(L) (nc) in (nc) Vert(L) (nc) (nc) Vert(L) (nc) in (nc) (nc) Vert(L) (nc) (nc)

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	FG01	Floor Girder	2	2	Job Reference (optional)	T32659363

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:36 ID:aB8SH1vKR?GNK61xW6b4BwyS7kf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:43.7														
Plate Offsets	(X, Y): [1:0-3-0,0-1-0],	, [14:0-3-0,0-1-0], [15	:0-2-12,0-1	1-8], [26:0-2-8,	.0-1-8]									
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.00 1.00 NO FBC202	0/TPI2014	CSI TC BC WB Matrix-MS	0.44 0.72 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.08 0.02	(loc) 24-25 16-17 15	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 234 I	GRIP 244/190 b FT = 11%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 15=0-4-0,	athing directly applied cept end verticals. applied or 6-0-0 oc , 20=0-3-8, 26=0-3-8	1) d or 2)	2-ply truss to (0.131"x3") n Top chords c oc. Bottom chord 0-7-0 oc. Web connec All loads are except if note CASE(S) see provided to c unless othern	be connected to aails as follows: connected as follo ds connected as follo ds connected as f ted as follows: 2x considered equa ed as front (F) or ction. Ply to ply cc distribute only loak wise indicated.	gether wi ws: 2x4 - ollows: 2: 4 - 1 row lly applied back (B) to onnection ds noted to	th 10d 1 row at 0-9: x4 - 1 row at at 0-9-0 oc. d to all plies, face bill plies	-0 DARev Univ	1) De Pl Ur Co 3) De iew for versal I	ead + Flo ate Increa- niform Lo Vert: 15 oncentra Vert: 12 (B) ead + Ro ate Increa- atorn Lo Vert: 15	bor Live ease=1 bads (II b-26=-7 tited Loc cl=-779, bof Live cof Live cof Live cof Live cof Live	e (balanced): L .00 o/ft) , 1-14=-67 ads (lb) 27=-436 (B), 2 e (balanced): L 90 alt cmetal= 50 0 cience 0 cienc	umber Increas 28=-436 (B), 2 umber Increas 0.90	;e=1.00, 9=-436 ;e=0.90,
FORCES	Max Grav 15=1238 26=1376 (lb) - Maximum Com Tension 1-26=-94/0, 14-15=- 2-3=-2700/0, 3-4=-2 5-7=-33/522, 7-8=0/0	(LC 10), 20=1674 (LC (LC 5) pression/Maximum 87/0, 1-2=-162/0, 430/17, 4-5=-1425/2(1846, 8-9=0/1846,	^{C 1),} 3) 4) 5) ^{O4,} 6)	Unbess othen Unbalanced this design. All plates are The Fabricat 11% N/A	wise indicated. floor live loads ha a 3x4 MT20 unles ion Tolerance at j	ive been s otherwi oint 21 =	considered for se indicated. 11%, joint 6	Examir	Cr 21 Mer-License	oncentra Vert: 12 ₩B)	ted Lo 2=-144	ads (lb) 207116 (B);	⁷²⁸²⁴ 116 (B), ∶	29=-116
BOT CHORD	9-10=-102/7333, 10 11-12=-2965/0, 12-1 25-26=0/1621, 24-2: 23-24=-92/2026, 22 20-22=-1087/0, 19-2 18-19=0/2134, 17-1: 15-16=0/1724	11=-2134/0, 13=-2965/0, 13-14=-6 5=0/2665, -23=-340/833, 20=-869/304, 8=0/2134, 16-17=0/2	134, 9)	All bearings a Load case(s) designer mus for the intend Recommend 10-00-00 oc	are assumed to b 1, 3 has/have be st review loads to ded use of this tru 2x6 strongbacks and fastened to e	e SP No. een modif verify tha ss. , on edge each truss	2 . ïed. Building at they are co e, spaced at s with 3-10d	rrect			A. C.	No 3	5 LEE NSE 4869	
WEBS	8-20=-235/0, 10-18= 2-26=-1762/0, 2-25= 3-24=-373/0, 4-24=(5-23=0/817, 5-22=-1 7-20=-1067/0, 9-20= 10-19=-1609/0, 13-1 13-16=0/1651, 11-1	=0/484, 11-17=-376/0 =0/1404, 3-25=-191/3 0/594, 4-23=-825/0, 1090/0, 7-22=0/1081, =-1377/0, 9-19=0/108 15=-2001/0, 6=0/1250, 12-16=-15	, 27, 10 11 7, 71/0	(0.131" X 3") at their outer) CAUTION, D) Hanger(s) or provided suff lb down at 1 down at 4-1 such connec	nails. Strongbac ends or restraine o not erect truss other connection ficient to support -5-4, and 436 lb o -4 on bottom choo tion device(s) is t	ks to be ed by othe backward device(s concentra down at 2 d. The d he respon	attached to w er means. ds.) shall be ated load(s) 4 2-9-4, and 43 lesign/selectionsibility of oth	alls 36 6 lb on of ers.				Lept SS OF	D DUL	THER S
			LC	AD CASE(S)	Standard		-					mini	mm	

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	GF1	Piggyback Base Girder	1	1	Job Reference (optional)	T32659364

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:37 ID:ILXa2tsTrSUCLTUS?u1I0ZyS9TI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.2

Plate Offsets (X, Y): [2:0-1-12,0-4-8], [3:0-7-6,0-1-0], [18:0-7-6,0-1-0], [19:0-1-12,0-4-8]

Loading TCLL (roof) TCDI		(psf) 20.0 10.0	Spacing Plate Grip DOL	2-0-0 1.25 1.25		CSI TC BC	0.23	DEFL Vert(LL)	in -0.05 -0.08	(loc) 27-29 27-29	l/defl >999	L/d 360 240	PLATES MT20	GRIP 244/190	
BCLL		0.0*	Rep Stress Incr	NO	20/TDI2014	WB Motrix MS	0.24	Horz(CT)	-0.01	21	n/a	n/a	Waight: 276 lb	ET - 20%	
BCDL		10.0	Code	FBC2U	120/1112014	IVIALITX-IVIS		WIND(LL)	0.07	21-29	>999	240	weight. 376 ib	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x6 SP N 2x6 SP N 2x4 SP N No.2 2x4 SP N Structura 6-0-0 oc	o.2 *Excep o.2 o.3 *Excep o.3 I wood she purlins, exi	t* 1-4,17-20:2x4 SP t* 35-2,21-19:2x6 SF athing directly applie cept end verticals, ar	No.2 No.2 d or nd E	OP CHORD	1-2=0/39, 2-3=-63/ 5-6=-54/150, 6-7=-4 8-9=-30/190, 9-10= 11-12=-30/190, 12- 13-14=-33/190, 14- 15-16=-39/150, 16- 18-19=-51/116, 19- 19-21=-298/207 34-35=-252/199, 33	15, 3-5 14/185, -30/190 13=-30, 15=-34, 18=-50, 20=0/39	i=-67/116, 7-8=-34/190, 1, 10-11=-30/1 (190, (185, (116, 9, 2-35=-350/2	90, 259, Revi	5) Prc 6) All 7) Tru bra 8) Ga 9) Thi chc 10) * The	vide ade plates ar ss to be ced agai ble studs s truss h ord live lo nis truss	equate e 2x4 fully sl nst late space as bee ad noi has be recho	drainage to prev MT20 unless oth heathed from one eral movement (i ed at 2-0-0 oc. en designed for a noconcurrent with een designed for rdin all areas wh	 ent water ponding. erwise indicated. face or securely e. diagonal web). 10.0 psf bottom any other live loads a live load of 20.0ps ere a rectangle 	s. sf
BOT CHORD	2-0-0 oc Rigid ceil bracing.	purlins (10- ing directly	0-0 max.): 8-13. applied or 6-0-0 oc			32-33=-164/113, 31 30-31=-164/113, 29 27-29=-163/113, 26	-32=-1 -30=-1 -27=-1	64/113, 63/113,	Univ	ersald 11) All	6-00 tail Falande bearings	are as	e frembers. ssumed to be SP	No.2 .	۱
WEBS	1 Row at	midpt	9-30, 7-31, 6-32, 12-	-26,		23-24=-163/113, 24 23-24=-163/113, 22	-25=-1	63/113,	UP Examin	er-Licebea	vide me	chanhø e capa	al/connection/(by able of withstandi	Others) of truss to ng 291 lb uplift at jo	oint
JOINTS	1 Brace a 37, 38	at Jt(s): 36,	14-23, 13-24	V	VEBS	21-22=-78/69 29-36=-378/133, 10	-36=-3	78/133,		35, upl	263 lb u ift at join	plift at 27, 52	joint 21, 732 lb u 2 lb uplift at joint :	plift at joint 29, 786 30, 208 lb uplift at	lb
REACTIONS	(size) Max Horiz	21=12-2-0 24=12-2-0 27=12-2-0 31=12-2-0 34=12-2-0 35=-278 (), 22=12-2-0, 23=12-), 25=12-2-0, 26=12-), 29=12-2-0, 30=12-), 32=12-2-0, 33=12-), 35=12-2-0 LC 6)	2-0, 2-0, 2-0, 2-0,		27-37=-378/133, 11 9-30=-45/5, 7-31=-' 5-33=-119/58, 3-34 14-25=-116/8, 15-2 18-22=-68/21, 36-3 29-38=-3/2, 27-38= 19-22=-323/278	-37=-3 16/11, =-69/23 4=-125, 8=-2/2, -3/2, 2-	78/133, 6-32=-125/64 , 12-26=-45/4 /64, 16-23=-11 37-38=-2/2, 34=-371/330,	, , 18/58,	joir 398 at j and 13) Gra or t	It 31, 168 Ib uplift oint 25, 1 369 lb u aphical p he orient tom chor	8 lb up at join 67 lb uplift a urlin re ation o	lift at joint 32, 178 It 34, 68 lb uplift a uplift at joint 24, t joint 22, US presentation doe of the purlin atom	I b uplift at joint 33, It joint 26, 208 lb up I b uplift at joint 2 I b uplift at joint 2 I be top and/or	blift 23 :e
	Max Uplift	21=-263 (23=-177 (25=-208 (27=-786 (30=-52 (L 32=-168 (34=-398 (LC 5), 22=-369 (LC 4 LC 8), 24=-167 (LC 4 LC 4), 26=-68 (LC 3 LC 8), 29=-732 (LC 8 C 30), 31=-208 (LC 5 LC 8), 33=-178 (LC 6 LC 5), 35=-291 (LC 6	4), N 3), N 1), 1 3), 2 5), 2 5), 3 5), 3	 IOTES Unbalanced this design. Wind: ASCE Vasd=101m B=45ft; L=3 MV/EBS (di 	Froof live loads have 7-16; Vult=130mpl ph; TCDL=4.2psf; E 1ft; eave=2ft; Cat. II	e been o n (3-sec SCDL=6 ; Exp B	considered for cond gust) c.0psf; h=25ft; ; Enclosed;	adu			* PRO	No 34	869 *	
FORCES	Max Grav (lb) - Max Tension	21=421 (L 23=453 (L 25=538 (L 27=1268 (20), 30=2 1), 32=43 34=637 (L cimum Com	.C 13), 22=614 (LC 1 .C 1), 24=432 (LC 20 .C 1), 26=228 (LC 20 (LC 19), 29=1288 (LC 20 (LC 19), 29=1288 (LC 04 (LC 24), 31=539 (2 (LC 19), 33=455 (L .C 13), 35=385 (LC 7 pression/Maximum	14),)), 4), C 3 (LC LC 1), 7) 4	 MWFRS (di porch left ar grip DOL=1 Truss desig only. For st see Standar or consult q Building Desiverifying application 	rectional), end venu nd right exposed; Lu .60 jued for wind loads i uds exposed to winu rd Industry Gable Er ualified building des signer / Project engi plied roof live load s	n the p d (norm d Deta igner as neer re hown c	OL=1.60 plate ane of the true al to the face) ils as applicat s per ANSI/TP sponsible for overs rain load	sed; ss , lle, I 1. ding		л М 10 D	lius Le iTek In 5023 Sw	O R ONA e PE No. 34869 to. DBA MiTek US/ ringley Ridge Rd. C	FL Cert 6634 hesterfield, MO 6301;	7
	2010001				requirement	s specific to the use	of this	truss compon	ent.			10000			

January 18,2024

Page: 1

Active states and the state of
Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	GF1	Piggyback Base Girder	1	1	Job Reference (optional)	/364

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 291 Ib down and 146 lb up at 2-0-12, 291 lb down and 146 Ib up at 4-0-12, 291 lb down and 146 lb up at 6-0-12, 291 lb down and 146 lb up at 8-0-12, 291 lb down and 146 lb up at 10-0-12, 291 lb down and 134 lb up at 12-0-12, 32 lb down and 177 lb up at 14-0-12, 291 lb down and 126 lb up at 14-0-12, 32 lb down and 177 lb up at 16-0-12, 291 lb down and 126 lb up at 16-0-12, 32 lb down and 177 lb up at 18-0-12, 291 lb down and 126 lb up at 18-0-12, 291 lb down and 145 lb up at 20-0-12, 291 lb down and 146 lb up at 22-0-12, 291 lb down and 146 lb up at 24-0-12, 291 lb down and 146 lb up at 26-0-12, and 291 lb down and 146 lb up at 28-0-12, and 294 lb down and 144 lb up at 30-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

 In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-8=-60, 8-13=-60, 13-19=-60, 19-20=-60, 21-35=-20 Concentrated Loads (lb)

Vert: 29–291 (F), 30–291 (F), 31–291 (F), 32–291 (F), 33–291 (F), 34–291 (F), 41–209 (F–291, B=82), 42–209 (F–291, B=82), 43–209 (F–291, B=82), 44–291 (F), 45–291 (F), 46–291 (F), 47–291 (F), 48–291 (F), 49–294 (F) Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:37 ID:ILXa2tsTrSUCLTUS?u1I0ZyS9TI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Review for Code Compliance Universal Engineering Science

PX2707 01/27/2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story
3698553	M01	Jack-Partial Supported Gable	2	1	T32659365 Job Reference (optional)

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:37 ID:aEMQk6kZR35mWm8Ls4LA3EyS9Tw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.6

Plate Offsets (X, Y): [2:0-4-0,0-2-1]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.08	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.00	2	n/a	n/a			
BCDL	10.0	Code	FBC2020	/TPI2014	Matrix-AS							Weight: 41 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 2=8-0-0, i 10=8-0-0, Max Horiz 2=138 (L0 9=-36 (LC 11=-47 (L Max Grav 2=245 (L1), 10	athing directly applie - applied. 8=8-0-0, 9=8-0-0, 11=8-0-0 C 12), 11=138 (LC 12), C 12), 8=-16 (LC 12), C 12), 10=-23 (LC 12), C 12) C 13), 8=68 (LC 1), 9= 9=284 (LC 1), 11=245	3) 4) 5) 6) 4, 7) 2) 8) 9)), 5 (LC 10)	Building Des verifying app requirements Gable require Gable studs of This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar All bearings a bearing plate 2, 16 lb uplift at joint 9 and This truss de	giner / Project eng lied roof live load specific to the us es continuous bott spaced at 2-0-0 o s been designed n d nonconcurrent as been designed n chord in all area y 2-00-00 wide wi y other members. are assumed to be nanical connection capable of withst at joint 8, 23 lb up 47 lb uplift at join sign requires that	gineer res shown cc e of this com chorn c. for a 10.0 with any d for a liv s where all fit betw e SP No a by othe anding 4 bolift at join t 2. a minimi	sponsible for overs rain loa truss compor d bearing.) psf bottom other live loa e load of 20.0 a republic loa e load of 20.0 a republic loa potto 2. ers of trups A 7 lb uplift at j nt 10, 36 lb u um of 7/16"	ading nent. Dpsf om Revie Ontve Ontve Ontve Dintxamine	ew for ersal f	Code Engine	Com ering PX	pliance Science 2707 01/27/2	2024	
FORCES	1) (Ib) - Maximum Com Tension	pression/Maximum		chord and 1/2 the bottom cl	2" gypsum sheetro nord.	ock be ap	oplied directly	y to				ILIUS	LEDIN	
TOP CHORD	1-2=0/40, 2-4=-226/ 5-6=-45/17, 6-7=-2/0	88, 4-5=-124/37, 0, 6-8=-51/85	LOA	AD CASE(S)	Standard						S. S. S.	CEA	ISP. MA	
BOT CHORD	2-10=-13/39, 9-10=0	0/0.8-9=0/0									-	1 ×	1 N N 1 S 1	
WEBS	4-10=-195/199, 5-9=	-96/159										No 34	869 🧯 🚍	
NOTES	,										*		! ★ =	
 Wind: ASC Vasd=101 B=45ft; L= MWFRS (t 1-6-0, Ext and forces DOL=1.60 Truss des only. For see Stand or consult 	2E 7-16; Vult=130mph mph; TCDL=4.2psf; B 24ft; eave=2ft; Cat. II; directional) and C-C C erior(2N) 1-6-0 to 8-0-1 & MWFRS for reactic plate grip DOL=1.60 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; orner(3E) -1-6-0 to 0 zone;C-C for memb ns shown; Lumber n the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP	oers ss , le, I 1.							Jн М 10 D	llius Le liTek In 5023 Sw ate:	e PE No. 34869 te. DBA MiTek US, ingley Ridge Rd. C	A FL Cert 6634 Chesterfield, MO 63017	

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	M02	Jack-Partial	15	1	Job Reference (optional)	132659366

5-0-15

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:37 ID:aEMQk6kZR35mWm8Ls4LA3EyS9Tw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.9

Plate Offsets (X, Y): [2:0-4-4,0-0-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.16	Vert(LL)	-0.01	8-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.16	Vert(CT)	-0.02	8-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.15	Horz(CT)	0.00	7	n/a	n/a		
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS		Wind(LL)	0.02	7-8	>999	240	Weight: 42 lb	FT = 20%
LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea Rigid ceiling directly	athing directly applie applied.	7) 8) ed.	Provide mec bearing plate 2 and 134 lb This truss de structural wo chord and 1/ the bottom c	hanical connection e capable of withst uplift at joint 7. usign requires that od sheathing be a 2" gypsum sheetro hord. Standard	n (by oth anding 1 a minim pplied di ock be ap	ers) of truss 39 lb uplift a um of 7/16" rectly to the oplied directl	to t joint top y to					
REACTIONS	(SIZE) 2=0-3-8, 7 Max Horiz 2=147 (LC Max Uplift 2=-139 (L Max Grav 2=408 (LC	/= Mechanical C 12) C 12), 7=-134 (LC 1: C 1), 7=311 (LC 1)	2)					Revie Unive	ew for ersal E	Code Engine	Com ering	pliance Science	
FORCES	(lb) - Maximum Com	pression/Maximum					Layler	no Pe	ine A	2	PX	2707 01/27/2	024
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/40, 2-3=-401/3 2-8=-437/323, 7-8=-4 3-7=-374/506, 3-8=-5	318, 3-4=-62/29, 4-5 437/323, 6-7=0/0 230/176, 4-7=-90/10	=-2/0 5					Examine	er-License I	70.			
NOTES													
 Wind: AS0 Vasd=101 B=45ft; L= MWFRS (1-6-0, Inte exposed;0 	CE 7-16; Vult=130mph mph; TCDL=4.2psf; B(=24ft; eave=4ft; Cat. II; directional) and C-C Ex prior (1) 1-6-0 to 8-0-0 z C-C for members and for	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; xterior(2E) -1-6-0 to zone; porch left and proces & MWFRS for	right								S. S		

reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 20.0psf
- (a) This trass has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Bearings are assumed to be: Joint 2 SP No.2 .
- 6) Refer to girder(s) for truss to truss connections.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	PB01A	Piggyback	1	1	Job Reference (optional)	132659367

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:38 ID:iPz3ZLQ0cVhsDvsrZgEh3OyS9u8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

22-2-3

Scale = 1:45.4

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	12	n/a	n/a		
BCDL		10.0	Code	FBC2	020/TPI2014	Matrix-AS							Weight: 115	lb FT = 20%
LUMBER				,	WEBS	7-19=-99/8, 6-20)=-126/81,	5-21=-122/71	,	12) This	s truss d	lesign i	requires that a	minimum of 7/16"
TOP CHORD	2x4 SP N	lo.2			4	4-22=-108/61, 3	-23=-156/8	85, 8-17=-126	/81,	stru	ctural w	ood sh	eathing be app	plied directly to the top
BOT CHORD	2x4 SP N	0.2			ç	9-16=-122/71, 1	0-15=-108	/61, 11-14=-1	56/85	cho	rd and 1	/2" gy	osum sheetroc	k be applied directly to
OTHERS	2x4 SP N	0.3		1	NOTES					the	bottom	chord.		
BRACING					1) Unbalanced	roof live loads h	ave been o	considered fo	r	13) See	Standa	rd Indu	ustry Piggybac	k Truss Connection
TOP CHORD	Structura	I wood shea	athing directly applie	d.	this design.					Det	all for C	onnect	ion to base tru	ss as applicable, or
BOT CHORD	Rigid ceil	ing directly	applied.	:	Wind: ASCE	7-16; Vult=130r	mph (3-seo	cond gust)		con	suit qua		uliaing designe	ər.
REACTIONS	(size)	1=23-5-14	1, 2=23-5-14, 12=23-	-5-14,	Vasd=101m	oh; TCDL=4.2ps	sf; BCDL=6	0.0psf; h=25ft;		LOAD	CASE(S) Sta	ndard	
		13=23-5-1	4, 14=23-5-14,		B=45ft; L=24	ft; eave=4ft; Ca	t. II; Exp B	; Enclosed;						
		15=23-5-1	4, 16=23-5-14,		MWFRS (dir	ectional) and C-		(2E) 10 (10)	Revi	iew for	Code	Com	pliance	
		17=23-5-1	14, 19=23-5-14,		4-0-0, Interio	in (1) 4-0-0 10 12	24-5-0 zor		Univ	ersal F	ngine	erino	Science	
		20=23-5-1	4, 21=23-5-14,		members an	d forces & MWF	RS for rea	ctions shown			Ingine	Johnig	Colonico	
		22=23-5-1	14, 23=23-5-14,		Lumber DOL	=1.60 plate grip	DOL=1.6		6	Q	1	PX	2707 01/2	27/2024
	Max Horiz	107 (I C	14, 27=23-5-14 10)	:	 Truss design 	ned for wind loa	ds in the p	lane of the tru	SS _{Evamin}		No.	17	2101	
	Max I Inlift	10/ (LC	(10)		only. For stu	ids exposed to v	wind (norm	al to the face	,	ICT EICCHSC	10 .			
		12=-16 (L	C 12) 13=-60 (I C 24	4)	see Standard	d Industry Gable	e End Deta	ils as applicat	ole,					
		14=-44 (L	C 12), 15=-27 (LC 12	2).	or consult qu	alified building o	designer a	s per ANSI/TF	PI 1.					
		16=-34 (L	C 12), 17=-28 (LC 12	2), '	Building Des	igner / Project e	engineer re	sponsible for						
		20=-28 (L	C 12), 21=-34 (LC 12	2),	verifying app	lied roof live loa	id shown c	overs rain loa	ding					11111
		22=-27 (L	C 12), 23=-44 (LC 12	2),	requirements	s specific to the	use of this	truss compor	ient.				JU. JUS	SIE
		24=-16 (L	C 12), 27=-8 (LC 12)) 3	 All plates are Coble require 		ess otherwi	se indicated.					10	E 11,
	Max Grav	1=23 (LC	11), 2=256 (LC 1),		 Gable require Gable stude 	es continuous d		d bearing.				5	, CE	NSA.
		12=242 (L	C 1), 13=13 (LC 12)),	 Gable studs This trues has 	spaceu al 2-0-0	d for a 10 i) nef hottom			(2		
		14=221 (L	-C 24), 15=139 (LC 2	24), [°]	chord live los	ad nonconcurrer	nt with any	other live loa	de				No 3	4869 🔥 💈
		16=165 (L	C 1), 17=165 (LC 24	4),	9) * This truss h	as been design	ed for a liv	e load of 20 (us. Insf		- 5	1		
		19=139 (L 21_165 (L	C 1), 20=165 (LC 23	3), ' 2)	on the bottor	n chord in all are	eas where	a rectangle	poi					
		21=105 (L 23=222 (I	C(23)(24-242)(10)(23)	5), 1)	3-06-00 tall b	y 2-00-00 wide	will fit betw	veen the botto	m		-	In:	/. / . '	In the part
		27=256 (L	C 1)	'),	chord and ar	y other membe	rs.					4		
FORCES	(lb) - May		pression/Maximum		10) All bearings	are assumed to	be SP No.	2.				-16	Con	:415
TORGES	Tension		pression/maximum		11) Provide mec	hanical connect	ion (by oth	ers) of truss to	С			XX	A.A.	15:40
TOP CHORD	1-2=-96/1	136. 2-3=-8 [.]	7/70. 3-4=-79/54.		bearing plate	e capable of with	nstanding 1	6 lb uplift at j	oint			()	() · · O F	IL GIN
	4-5=-67/6	61. 5-6=-59	/100. 6-7=-69/135.		12, 28 lb upli	ft at joint 20, 34	lb uplift at	joint 21, 27 lb				V	1. SION	AL EN IN
	7-8=-69/1	33, 8-9=-5	3/97, 9-10=-43/59,		uplift at joint	22, 44 lb uplift a	at joint 23, 2	28 lb uplift at j	oint				I. ON	AL
	10-11=-4	8/24, 11-12	=-57/35, 12-13=-9/49	9	17, 34 lb upli	nt at joint 16, 27	to uplift at	joint 15, 44 lb) :		c11			inne.
BOT CHORD	2-23=-30	/71, 22-23=	-29/71, 21-22=-29/7	1,	13 8 lb upliff	14,94 ID UPIIT a	uplift at ioi	ont 12 and 9 lk	ii it		J	ulius Le	e PE No. 34869	ISA EL Cont 6634
	20-21=-2	9/71, 19-20	=-29/71, 17-19=-29/7	71,	unlift at joint	. a. j∪iii. ∠, 10 ID 2	upint at jui		,		1	6023 Sw	ingley Ridge Rd	. Chesterfield. MO 63017
	16-17=-2	9/71, 15-16	=-29/71, 14-15=-29/7	71,	upint at joint	L .					D	ate:		
	12-14=-2	9/71												Jonuony 10 2024

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	PB01B	Piggyback	1	1	Job Reference (optional)	132659368

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:38 ID:bKW?0jeN6w_iQ8JhIhTI1GyS9nP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-10-11

4.00

Lumber DOL=1.60 plate grip DOL=1.60

Scale = 1:26							-						-	
Loading TCLL (roof) TCDL BCLL BCDI		(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES FBC2	020/TPI2014	CSI TC BC WB Matrix-AS	0.05 0.03 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
		10.0	CODE	FBC2	J20/1712014	Iviatitx-AS							weight. 29 lb	FT = 20%
LUMBER TOP CHORI BOT CHORI OTHERS BRACING TOP CHORI BOT CHORI REACTIONS	 2x4 SP No.: 2x4 SP No.: 2x4 SP No.: 2x4 SP No.: Structural w Rigid ceiling (size) 1 Max Horiz 1 Max Uplift 1 (I) Max Grav 1 (I) 9 1 	2 2 3 wood shea g directly =8-2-6, 2 =8-2-6, 9 1=8-2-6, 9 1=8-2-6, 9 =-6 (LC - LC 12), 8 2), 14=-2 =24 (LC LC 12), 7 ==128 (LC LC 1), 7= =128 (LC LC 1), 7= =128 (LC	athing directly applie applied. =8-2-6, 6=8-2-6, 7= =8-2-6, 10=8-2-6, 14=8-2-6 11) (0), 6=-2 (LC 12), 7= =-38 (LC 12), 10=-3 (LC 12) 18), 2=92 (LC 1), 6= 17 (LC 1), 8=164 (L 1), 10=166 (LC 1), :1), 14=81 (LC 1)	ed. =-3 66 (LC =81 .C 1),	 Truss desig only. For st see Standar or consult qr Building Deg verifying app requirement Gable requii Gable studs Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings Provide med bearing plat Built and the study 	ned for wind loads uds exposed to wi d Industry Gable B Jalified building de signer / Project en piled roof live load s specific to the us res continuous bot spaced at 2-0-0 c as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to b chanical connectio e capable of withs	s in the p nd (norm End Deta ssigner a gjineer re shown c se of this ttom chor c. for a 10. with any d for a liv as where vill fit betv s. e SP No. n (by oth tanding 2	ane of the tru al to the face ils as applical s per ANSI/TF sponsible for overs rain loa truss compor d bearing. D psf hottom oth to to 20.0 a rectangle veen the bottor 2. ers) of truss t ib uplift at jo	uss), ble, Pl 1. ding nent. ds Revi Dps t /Iniv Examin o int 6, ct	ew for ersal I 1449	Code Engine	Com ering	opliance J Science (2707 01/27/:	2024
FORCES	(lb) - Maxim Tension	num Com	pression/Maximum		joint 1, 3 lb (11) This truss do	uplift at joint 7 and	2 lb uplif t a minim	t at joint 6. um of 7/16"					minin	IIIII.
TOP CHORI	D 1-2=-38/45, 4-5=-44/69,	2-3=-27/ 5-6=-20/	27, 3-4=-44/76, 17, 6-7=-6/15		structural we	ood sheathing be a	applied d ock be a	irectly to the t	op / to				JULIUS	LEE
BOT CHORI	2-10=-12/46 6-8=-12/46	6, 9-10=- ⁻	12/46, 8-9=-12/46,		the bottom o 12) See Standa	chord. rd Industry Piggyb	ack Trus	s Connection				1	LICE/	SE
WEBS	4-9=-87/32,	3-10=-12	28/169, 5-8=-127/17	70	Detail for Co	onnection to base	truss as a	applicable, or				8. 3	No 34	869
NOTES					consult qual	ified building desig	gner.					*		! ★ =
 Unbalan this desi Wind: As Vasd=10 B=45ft; I MWFRS 4-0-0, In 7-11-10, member 	ced roof live loa gn. SCE 7-16; Vult= 11mph; TCDL=/ =24ft; eave=4ft (directional) an terior (1) 4-0-0 Interior (1) 7-1 s and forces & I POI = 1.60 plate	ads have =130mph 4.2psf; B0 t; Cat. II; nd C-C Ex to 5-0-12 1-10 to 9- MWFRS	been considered for (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; tterior(2E) 1-0-0 to , Exterior(2R) 5-0-12 1-8 zone;C-C for for reactions shown; 1-1 60	r 2 to ;	LOAD CASE(S)	Standard					IIIW	T	ROAAL SSIONA	D.A. CININ

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Page: 1

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org)
and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	PB01V	Piggyback	1	1	Job Reference (optional)	T32659369

3-3-9

Lumber DOL=1.60 plate grip DOL=1.60

Scale = 1:31.3

TCLL (roof)

TCDL

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:38 ID:WHuvK5pfgXz7owGfyTFLPRyS9pm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

BCLL	0.0*	Rep Stress Incr	YES		WB Matrix AC	0.05	Horiz(IL)	0.00	6	n/a	n/a	Mainht 1	7 16		
BCDL	10.0	Code	FBC2020	0/1912014	Matrix-AS							vveight: 4	7 ID	$FI = 20^{\circ}$	/o
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=12-6-1 7=12-6-1 10=12-6 Max Horiz 1=52 (LC Max Uplift 1=-115 (L 6=-43 (LC 8=-51 (LC 11=-34 (L Max Grav 1=19 (LC (LC 1), 7 24), 9=71	eathing directly applied / applied. 4, 2=12-6-14, 6=12-6 4, 8=12-6-14, 9=12-6 14, 11=12-6-14, 14 11 C 17), 2=-34 (LC 12) C 12), 7=-98 (LC 24), C 12), 10=-50 (LC 12) LC 12), 10=-50 (LC 12) C 12), 2=318 (LC 1), 6 =21 (LC 12), 8=260 (L I (LC 1), 10=261 (LC 1))	3) d. (-14, 5) (-14, 7) 8) (), 8) (), 9) (-304 C 23),	Truss desig only. For stu- see Standard or consult qu Building Dess verifying app- requirements Gable requir Gable studss This truss ha chord live lox * This truss ha chord live lox * This truss ha chord and ar All bearings Provide mec bearing platt 2, 43 lb upliff	ned for wind loads uds exposed to wind d Industry Gable E lailified building de igner / Project eng lied roof live load s specific to the us es continuous bot spaced at 2-0-0 o lis been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members are assumed to be hanical connection c capable of withst at joint 6, 115 b	in the p and (norm and Deta signeer as gineer re- shown c. for a 10.0 with any d for a liv s where all fit betw s SP No. h (by oth anding 3 uplift at ju 51 lb uu 51 lb uu 51 lb uu 51 lb uu	lane of the tru al to the face) ils as applicat s per ANSI/TF sponsible for overs rain loa truss compon d bearing. D psf hottom oth loar e lc 20.0 a rectangle veen the botto 2. ers) of truss to t4 lb uplift at joint 8, 98 lb up	ss ble, ble, vl 1. dis Reviev dis Revi	v for (sal Ei Joense No	Code ngine	Com ering PX	pliance Science 2707	; 01/27/202	4	
FORCES	(lb) - Maximum Con	npression/Maximum	11)	lb uplift at joi) This truss de	nt 2 and 43 lb upli sign requires that	ft at joint a minim	6. um of 7/16"					IN ULI	US	LEE	11.
TOP CHORD BOT CHORD	1-2=-40/106, 2-3=-6 4-5=-59/100, 5-6=-5 2-10=-44/52, 9-10=-	68/50, 3-4=-59/104, 57/41, 6-7=-23/67 -12/52, 8-9=-12/52,	12)	structural wo chord and 1/ the bottom c	od sheathing be a 2" gypsum sheetr hord. d lodustov Biggybi	pplied di ock be ap	irectly to the to oplied directly	op to			STAR.	····iic	EN.	S.E	A HILL
WEBS	6-8=-46/52 4-9=-59/2, 3-10=-18	35/174. 5-8=-184/171	12)	Detail for Co	nnection to base t	russ as a	applicable, or				*	γ	040	1	*
NOTES	,	,,	10		Standard	ner.				=		de la	A	1.	
 Unbalance this desig Wind: AS Vasd=10° B=45ft; Li MWFRS 4-0-0, International to the second s	ed roof live loads have n. CE 7-16; Vult=130mpt 1mph; TCDL=4.2psf; B =24ft; eave=4ft; Cat. II; (directional) and C-C E erior (1) 4-0-0 to 7-3-0, terior (1) 10-3-0 to 13- and forces & MWFRS	been considered for (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; ixterior(2E) 1-0-0 to Exterior(2R) 7-3-0 to 6-0 zone;C-C for for reactions shown:			Clanuaru					Ju	PROC	e PE No. 348		DA. ENC	HI HI

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	PB02A	Piggyback	17	1	Job Reference (optional)	132659370

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:39 ID:IIE4oi_pK816GDXkuO3?3ayS9uj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

TCDL		10.0	Lumber DOL	1.25		BC	0.38	Vert(IL)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	6	n/a	n/a			
BCDL		10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 93 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP Nc 2x4 SP Nc 2x4 SP Nc Structural Rigid ceilir (size) Max Horiz Max Uplift Max Grav	.2 .2 .3 wood shea g directly 1=25-5-0, 7=25-5-0, 11=25-5-0, 11=25-20, (LC 8=-102 (LI 1=-327 (LC 6=-74 (LC 8=-590 (LC 8=588 (LC 11=588 (L 11=558) (L)	athing directly applied applied. 2=25-5-0, 6=25-5-0, 8=25-5-0, 15=25-5- C 10) C 17), 2=-65 (LC 12) 12), 7=-288 (LC 18) C 12), 11=-101 (LC 1 C 12), 15=-74 (LC 12) , 2=627 (LC 17), C 18), 7=49 (LC 12), C 18), 10=552 (LC 17 C 17), 12=627 (LC 1 C 18)	3) 4) 5) 5-0 7) 5-0 8) 7) 8) 7) 9) 10) 7),	Truss design only. For stu see Standard or consult qu Building Desi verifying appl requirements Gable require Gable studs s This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a provide mech bearing plate 2, 74 lb uplift at joint 7, 100	hed for wind load ds exposed to w I Industry Gable alified building de gner / Project en lied roof live load specific to the u se continuous bo spaced at 6-0-0 d s been designed d nonconcurrent as been designed d nonconcurrent as been designed n chord in all are: y 2-00-00 wide v y other members are assumed to b nanical connectic capable of withs at joint 6, 327 lb I bupift at joint	s in the pl ind (norm End Deta esigner as gineer re- se of this thom chor bc. for a 10.0 with any d for a 10.0 with a 10.0 wit	ane of the tru al to the face al to the face sper ANSI/Tf sponsible for overs rain loas truss compor d bearing. 0 ps mon other inve loa d bearing. 0 ps mon other inve loa a rectangle // reen the bott DL = 10.0psf 2. ers) of truss t 5 lb uplift at joint	uss), ble, PI 1. ading nent. Review ds <mark>Univer</mark> Opsf <i>w Par</i> off. to oint uplift s,	w for (rsal E Well	Code ngine	Com ering P>	opliance Science (2707 01/27/	2024	
FORCES	(lb) - Maxii Tension	mum Com	pression/Maximum	11)	This truss de	sign requires tha	t a minim	um of 7/16"				J.L.	CE	VS	1
TOP CHORD BOT CHORD	1-2=-67/23 4-5=-140/1 2-11=-145 6-8=-160/6	35, 2-3=-14 129, 5-6=- ⁻ /69, 10-11	44/157, 3-4=-140/133 114/138, 6-7=-32/149 =-15/69, 8-10=-15/69	3, 9 9, 12)	structural woo chord and 1/2 the bottom ch See Standard	od sheathing be 2" gypsum sheet hord. d Industry Piggyb	applied di rock be aj back Trus	rectly to the to plied directly so Connection	top y to			*	NH0 34	869	
WEBS	4-10=-289	/54, 3-11=	-383/205, 5-8=-382/2	205	consult qualif	ied building desi	truss as a gner.	applicable, or				D	1 LAN	An :	r
NOTES				LO	AD CASE(S)	Standard						D		0000-14	42
 Unbalance this design 	ed roof live lo 1.	ads have	been considered for									=0		P.Z	1
2) Wind: ASC Vasd=1010 B=45ft; L= MWFRS (d 3-4-3, Inte 15-8-8, Inte members a Lumber DO	CE 7-16; Vult mph; TCDL= 24ft; eave=4 directional) a rior (1) 3-4-3 erior (1) 15-t and forces & OL=1.60 plat	t=130mph =4.2psf; B0 lft; Cat. II; and C-C Ex to 12-8-8 3-8 to 25-0 MWFRS to te grip DO	(3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; xterior(2E) 0-4-3 to , Exterior(2R) 12-8-8)-13 zone;C-C for for reactions shown; L=1.60	to							Ji M 10 D	ulius Lo liTek li 6023 Sv ate:	ee PE No. 34869 nc. DBA MiTek US vingley Ridge Rd. C	A FL Cert 6634 Chesterfield, MO	53017

January 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story T32659371 Job Reference (optional)		
3698553	PB02B	Piggyback	11	1			

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:39 ID:PUtGHmj8hmlr83nqfxa9GXyS9nJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-2-6

Scale = 1:27.5		
Plate Offsets (X, Y):	[2:Edge,0-0-4], [4:Edge,0-0-4]	

Loading	(psf)	Spacing	2-0-0		CSI	0.19	DEFL	in n/o	(loc)	l/defl	L/d	PLATES	GRIP
	20.0		1.25		BC	0.10	Vert(LL)	n/a	-	n/a	999	101120	244/190
BCU	0.0*	Ren Stress Incr	YES		WB	0.20	Horz(CT)	0.00	11	n/a	n/a		
BCDL	10.0	Code	FBC20)20/TPI2014	Matrix-AS	0.00	11012(01)	0.00		n/a	n/a	Weight: 32 I	b FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 2=8-2-6, 11=8-2-6 Max Horiz 2=-39 (LC Max Uplift 2=-55 (LC (LC 12), 7 12) Max Grav 2=213 (LC (LC 1), 7=	eathing directly applied. 4=8-2-6, 6=8-2-6, 7= 0 10), 7=-39 (LC 10) 0 12), 4=-55 (LC 12), 7=-55 (LC 12), 11=-5 0 1), 4=213 (LC 1), 6 =213 (LC 1), 11=213	2 ed. 7 e8-2-6, 8 , 6=-3 55 (LC 1 6=304 ; (LC	 Building Des verifying app requirements Gable requir Gable studs This truss ha chord live loz * This truss f on the bottor 3.06-00 tall t chord and ar All bearings plate 2, 55 lb upliff joint 2 and 55 	igner / Project ei lield roof live load s specific to the u es continuous bo spaced at 6-0-0 us been designer ad nonconcurren has been designer n chord in all are by 2-00-00 wide by other member are assumed to hanical connecti e capable of with t at joint 4, 3 lb u 5 lb upilit at joint	ngineer re d shown c use of this ottom chor oc. d for a 10. t with any ed for a liv as where will fit betv s. be SP No. on (by oth standing 5 plift at join 4.	sponsible for overs rain loa truss compoind bearing. 0 psf bottom other live loa re load of 20.1 a reind le vee bott 2. ers) of trugs 5 lb uplift at j t 6, 55 lb upli	ading nent. Dpsf om Revi Univ Qy Peo Ointxamin ft at	ew for ersal l 2442	Code Engine	Com eering PX	pliance Science 2707 01	/27/2024
FORCES	(lb) - Maximum Com	pression/Maximum	1	 This truss de structural wo 	esign requires that od sheathing be	at a minim applied d	um of 7/16" irectly to the	top					
TOP CHORD	Tension 1-2=0/17, 2-3=-113/ 4-5=0/17	/103, 3-4=-113/99,		chord and 1/ the bottom c	2" gypsum shee hord.	trock be a	pplied directly	y to				IN ULIU	S LEDIN
BOT CHORD	2-6=-30/61, 4-6=-27	7/59	I	Detail for Co	nnection to base	e truss as a	applicable, or				ALL .	, CE	NSA
WEBS	3-0=-145/01			consult quali	fied building des	igner.					5	1. A.	
 Unbalanci this desig Wind: ASt Vasd=101 B=45ft; L= MWFRS (3-4-3, Inte 8-0-12, In 	ed roof live loads have n. CE 7-16; Vult=130mph Imph; TCDL=4.2psf; B =24ft; eave=4ft; Cat. II; (directional) and C-C E erior (1) 3-4-3 to 5-0-12 terior (1) 8-0-12 to 9-9-	been considered fo (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; xterior(2E) 0-4-3 to 2, Exterior(2R) 5-0-12 -5 zone;C-C for	r 2 to	_OAD CASE(S)	Standard						Color	No :	84869 * RIDA
members Lumber D 3) Truss des	and forces & MWFRS OL=1.60 plate grip DC signed for wind loads in	for reactions shown DL=1.60 n the plane of the tru	; ISS								J	SION	ALENI

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story		
3698553	PB02V	Piggyback	2	1	Job Reference (optional)	T32659372	

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Wed. Jan 17 13:35:40 ID:5RgM7Fa6NORzPsIpnGufbDyS9q4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

L	υ	М	в	E	F	3
	-					

Scale = 1:32.2 Loading

TCLL (roof)

TCDI

BCLL

BCDL

3-7-8

3-5

LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural Rigid ceili (size) Max Horiz Max Uplift Max Grav	 b.2 b.2 b.3 wood sheathing directly applied. ng directly applied. 1=14-6-0, 2=14-6-0, 6=14-6-0, 7=14-6-0, 8=14-6-0, 9=14-6-0, 10=14-6-0, 11=14-6-0, 14=14-6-0 1=-17 (LC 10), 6=-2 (LC 12), 7=-3 (LC 12), 8=-59 (LC 12), 10=-59 (LC 12), 14=-2 (LC 12) 1=29 (LC 18), 2=116 (LC 1), 6=103 (LC 1), 7=20 (LC 24), 8=297 (LC 24), 9=294 (LC 1), 10=298 (LC 23), 11=116 (LC 1), 14=103 (LC 1) 	3) 4) 5) 6) 7) 8) 9) 10)	Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any oth * This truss has been designed for a live IC 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and other members. All bearings are assumed to be SP No.2.
FORCES	(lb) - Max Tension	imum Compression/Maximum	11)	joint 10, 59 lb uplift at joint 8 and 2 lb uplift at joint 6.
TOP CHORD	1-2=-63/70, 2-3=-54/43, 3-4=-85/96, 4-5=-85/91, 5-6=-36/25, 6-7=-7/15			structural wood sheathing be applied directly to the top chord and $1/2^{\circ}$ gypsum sheetrock be applied directly to
BOT CHORD	2-10=-10/	43, 9-10=-10/43, 8-9=-10/43,		the bottom chord.
WEBS NOTES	4-9=-209/	3 89, 3-10=-231/191, 5-8=-230/191	12)	See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-4-3 to 3-3-0, Interior (1) 3-3-0 to 7-3-0, Exterior(2R) 7-3-0 to 10-3-0, Interior (1) 10-3-0 to 14-1-13 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom * This truss has been designed for a live lo on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom Parrel 01/27/2024 PX2707 chord and any other members. All bearings are assumed to be SP No.2 . Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 6, 17 lb uplift at joint 1, 3 lb uplift at joint 7, 59 lb uplift at oint 10, 59 lb uplift at joint 8 and 2 lb uplift at joint 6. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story			
3698553	PB03B	Piggyback	1	1	Job Reference (optional)	T32659373		

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Wed. Jan 17 13:35:40 ID:EeEXXqnuHcV?s_E_?ChZWoyS9nD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	V01	Roof Special	1	1	Job Reference (optional)	T32659374

8-3-0

8-3-0

3x6=

5

|<u>-1-6-0</u>| |_____|

Run: 8 73 E. Nov 16 2023 Print: 8 730 F. Nov 16 2023 MiTek Industries. Inc. Thu Jan 18 17:30:16

Page: 1 ID:nwXI6MrP2SQFltJKvkq6I3yS9sJ-yR2nwxMAOx_uUk94QmwP6ynBAmb1WDpIWocXnhzuE95 22-9-0 31-0-0 32-6-0 14-6-0 8-3-0 1-6-0 3x6= 246 8 25 9 Ŕ 10 11

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

)	this design.	 chord and any other members, with BCDL = 10.0psf. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joi (s) 22, 14, 18, 19, 20, 17, 16 except (jt=lb) 21=147, 15=147.
		13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	V01D	Valley	1	1	Job Reference (optional)	T32659375

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:42 ID:I_suYzoHf7ecThzXSaPAsqySA0i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

33-11-3 0-6-15 16-11-9 33-4-4 16-4-10 16-11-9 4x4= 6 5 7 3x6 ≠ 3x6 👟 4 8 3 9 8-2-5 8-6-1 Þ 10 2 25 26 12 6Г 11 0-0-4 20 19 18 17 16 15 14 13 12 3x6= 3x6= 3x4 💋 3x4 👟 33-11-3

Scale = 1:60.4														
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.25		BC	0.20	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.19	Horiz(TL)	0.00	12	n/a	n/a			
BCDL	10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 152 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly 1 Row at midpt (size) 1=33-11- 12=33-11 14=33-11 18=33-11	Pathing directly applie Paplied. 6-16 3, 11=33-11-3, -3, 13=33-11-3, -3, 16=33-11-3, -3, 19=33-11-3,	2) ed. 3)	Wind: ASCE Vasd=101m B=45ft; L=30 MWFRS (dir Exterior(2N) 20-0-1, Exte members an Lumber DOL Truss desig only. For stu see Standar or consult qu Building Des	57-16; Vult=130mp ph; TCDL=4.2psf; ph; TCDL=4.2psf; fit; eave=2ft; Cat. rectional) and C-C 3-0-8 to 17-0-1, C rior(2N) 20-0-1 to d forces & MWFR =1.60 plate grip D =1.60 plate grip D ned for wind loads uds exposed to wind d Industry Gable E ualified building de signer / Project eng	ph (3-sec BCDL=6 II; Exp B Corner(3F 33-11-11 RS for rea DOL=1.60 s in the p nd (norm End Deta essigner as gineer rea	sond gust) .0psf; h=25ft; ; Enclosed; 3E) 0-0-8 to 3 (17-0-1 to 2 cone; C-C for concerns shown) lane of the true al to the face) is penesities for the face) is present the face)	-0-8, r ; iss ole <mark>Revi</mark> ⁰ 1 <mark>Univ</mark>	ew for ersal E	Code Engine	Com ering	pliance Science		
	20=33-11 Max Horiz 1=-147 (L Max Uplift 12=-74 (L 19=-59 (L 12=469 (1 12=469 (1 14=455 (1 20=471 (1	-3 .C 10) .C 12), 13=-59 (LC 1: .C 12), 18=-66 (LC 1: .C 12), 20=-74 (LC 1: C 18), 11=136 (LC 2- LC 18), 13=364 (LC -LC 18), 16=483 (LC -LC 17), 19=363 (LC - LC 17)	4) 2), 5) 2), 6) 2) 7) 4), 8) 18), 8) 17), 9)	Suitaing Des verifying app requirements All plates are Gable requir Gable studs This truss ha chord live loc * This truss 1 on the botton 3-06-00 tall	signer / Project en obled roof live load s specific to the us e 2x4 MT20 unless res continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent has been designed m chord in all area pv 2-00-00 wide w	gineer re shown c se of this s otherwi ttom chor oc. for a 10.0 with any d for a liv as where	oversfrain loa truss composi- se indicated. d bearing. 0 psf bottom other live load e load of 20.0 a rectangle	ding / Kent Examine ds. Opsf	1 er-License	L	PX	22707 01/27/		
FORCES	(lb) - Maximum Con Tension	npression/Maximum	10	chord and a	ny other members	, with BC	DL = 10.0psf				S. S. S.	. UCEN	SE	
TOP CHORD	1-2=-237/226, 2-3=- 5-6=-50/194, 6-7=-5 9-10=-14/141, 10-1	56/189, 3-5=-32/185 60/194, 7-9=-11/139, 1=-209/178	, 11) Provide mec bearing plate	chanical connections chanical connections capable of withs iff at joint 19, 74 lb	tanding 6	ers) of truss to 6 lb uplift at jo ioint 20, 66 lb	o pint			*	No 34	869	
BOT CHORD	1-20=-112/224, 19-2 18-19=-112/156, 16 14-16=-112/156, 13 12-13=-112/156, 11	20=-112/156, -18=-112/156, -14=-112/156, -12=-112/182	12	iplift at joint joint 12. This truss de structural wo	14, 59 lb uplift at j esign requires that ood sheathing be a	joint 13 a t a minim applied d	um of 7/16"	op			PRO	Allin	oorll	
WEBS NOTES	6-16=-298/0, 5-18=- 2-20=-287/198, 7-14 9-13=-223/165, 10-7	·260/175, 3-19=-223/ 4=-260/175, 12=-287/198	165, LC	chord and 1/ the bottom c DAD CASE(S)	/2" gypsum sheetr hord. Standard	ock be a	oplied directly	to			1111	OR ONA	LENGINI	
1) Unbalance	ed roof live loads have	been considered for												

this design.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story		
3698553	V01DG	Valley	1	1	Job Reference (optional)	3	

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:42 ID:I_suYzoHf7ecThzXSaPAsqySA0i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:56.9

Loading	(psf) 20.0	Spacing Plate Grip DOI	2-0-0		CSI TC	0.07	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES	GRIP 244/190	
	10.0		1 25		BC	0.06	Vert(TL)	n/a		n/a	aaa		210,000	
BCU	10.0	Rep Stress Incr	VES		WB	0.00	Horiz(TL)	0.00	10	n/a	000 n/a			
	10.0	Codo	FRC2020		Motrix AS	0.15		0.00	15	n/a	n/a	Woight: 199 lb	ET _ 200/	
BCDL	10.0	Code	FBC2020	/1712014	Maurix-AS							weight. 166 lb	FT = 20%	
L UMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		TO	P CHORD 1 4 8	-2=-184/121, 2-3= -5=-73/92, 5-6=-62 -9=-67/186, 9-10= 1-12=-67/186, 12-	-97/108 2/94, 6-8 -84/227 14=-48/	, 3-4=-83/101 3=-51/139, , 10-11=-84/2 139,	1, 227,	7) Ga 8) Th ch 9) * T	ble studs is truss h ord live lo his truss	s space as bee bad no has be	ed at 2-0-0 oc. en designed for a nconcurrent with een designed for	10.0 psf bottom any other live loa a live load of 20.	ads. .0psf
BRACING TOP CHORD BOT CHORD REACTIONS	Structural wood shea Rigid ceiling directly (size) 1=33-11-3	athing directly applied applied. 3, 19=33-11-3,	d. BO	1 1 T CHORD 1 3	4-15=-30/94, 15-1 7-18=-64/57, 18-1 -36=-47/151, 35-3 3-34=-47/113, 32-	6=-22/4 9=-105/ 6=-47/1 33=-47/ 3147/	9, 16-17=-30 68 13, 34-35=-4 113, 113	/52, 7/113,	on 3-0 ch 10) All	the botto 6-00 tall ord and a bearings	om cho by 2-0 iny oth are as	ord in all areas wh 00-00 wide will fit l ner members. ssumed to be SP	ere a rectangle between the both No.2 .	tom
	20=33-11 22=33-11 24=33-11 27=33-11 29=33-11 32=33-11 34=33-11	-3, 21=33-11-3, -3, 23=33-11-3, -3, 25=33-11-3, -3, 28=33-11-3, -3, 31=33-11-3, -3, 33=33-11-3, -3, 35=33-11-3, -3, 35=33-11-3,	WE	3 2 2 2 2 2 2 1 3 BS 1 6	11-32=-4//113, 29- 18-29=-47/113, 27- 15-27=-47/113, 24- 13-24=-47/113, 22- 11-22=-47/113, 20- 9-20=-47/113 0-28=-127/20, 9-2 1-32=-120/84, 5-33	31=-47/ 28=-47/ 25=-47/ 23=-47/ 21=-47/ 9=-127/ =-120/8	113, 113. 111. 113, 76, 8/31/1 94 5. 4-34=-122		11) Pro be ersap 35 up tAces er-License	The provide me aring plat 34 00 00 19 10 up 19 10 up 10 10 up 10 10 up	chanic te capa te capa te an te an te an tift at j tift at j t 20.	al connection (by able of withstandii نوبازها: الموالزها: همان الموالزها: الموالزها: الموالزما: الموالما: الموالزما: الموالزما: الموالزما: الموالزما: الموالزما: الموالمانم	others) of truss ng 25 lb uplift at t at joint 32, 32 l 84, 35 lb uplift at t at joint 27, 34 l $\frac{34}{24}$, 32 lb uplift at t at joint 21 and	to joint lb t joint lb t joint 10 lb
	36=33-11 Max Horiz 1=139 (LC Max Uplift 20=-10 (L 22=-30 (L 24=-31 (L 27=-25 (L	-3 C 11) C 12), 21=-38 (LC 12 C 12), 23=-32 (LC 12 C 12), 25=-34 (LC 12 C 12), 29=-25 (LC 12	2), 2), 2), 2), NO	3 1 1 1 1 TES	-35=-112/88, 2-36 2-25=-119/89, 14- 5-23=-120/85, 16- 7-21=-115/97, 18-	=-145/9 24=-120 22=-12 20=-13	2, 11-27=-12)/84, I/83, 5/106	7/76,	12) Be sui 13) Th str	veled pla face with is truss d uctural w ord and 1	te or s truss esign ood sh /2" gy	shim required to p chord at joint(s) 1 requires that a mi neathing be applie psum sheetrock b	rovide full bearir , 19. nimum of 7/16" id directly to the e applied directl	top ly to
	31=-34 (L 33=-32 (L 35=-35 (L) 1=100 (LC 20=208 (L 22=164 (L 24=160 (L 27=167 (L 29=167 (L 32=161 (L 34=166 (l	C 12), 32=-31 (LC 12 C 12), 34=-30 (LC 12 C 12), 36=-19 (LC 12 C 12), 36=-19 (LC 17), C 24), 21=146 (LC 17), C 24), 23=159 (LC 1 C 24), 23=159 (LC 1 C 24), 28=163 (LC 1 C 24), 28=163 (LC 1 C 23), 31=159 (LC 1 C 23), 35=139 (LC 1)), 1)), 2), 2)), 2)), 2)), 2)), 2)), 2)), 3)	Unbalanced I this design. Wind: ASCE Vasd=101mp B=45ft; L=30 MWFRS (dire Exterior(2N) : 20-0-1, Exter members and Lumber DOL Truss design	roof live loads have 7-16; Vult=130mpl h; TCDL=4.2psf; E ft; eave=2ft; Cat. II ectional) and C-C (3-0-1 to 17-0-1, Cc ior(2N) 20-0-1 to 3 d forces & MWFRS =1.60 plate grip D0 hed for wind loads	e been of (3-sec 3CDL=6 ; Exp B; Corner(3F 2-8-15 ; 5 for rea DL=1.60 in the pl	considered fo ond gust) .0psf; h=25ft; Enclosed; IE) 0-0-8 to 3 :) 17-0-1 to zone;C-C for ctions shown ane of the tru	r -0-1, ; iss	LOAD	CASE(S)) Sta	No 34		ALL THURSDAY
FORCES	(Ib) - Maximum Com Tension	pression/Maximum	,, 4) 5)	only. For stu see Standard or consult qu Building Desi verifying appl requirements All plates are	ds exposed to wind I Industry Gable Er alified building des gner / Project engi ied roof live load s specific to the use 2x4 MT20 unless	d (norm nd Detai igner as neer res hown co of this otherwis	al to the face ls as applical per ANSI/TF sponsible for overs rain loa truss compor se indicated.), ble, Pl 1. Iding nent.		Ju M 10	alius Lo liTek In 5023 Sv	COR SONA CONA ee PE No. 34869 nc. DBA MiTek USA vingley Ridge Rd. C	FL Cert 6634	3017

6) Gable requires continuous bottom chord bearing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

January 18,2024

Page: 1

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200 / MiTek-US.com

Date:

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	V02	Roof Special	1	1	Job Reference (optional)	T32659377

1)

2)

Run: 8 73 E. Nov 16 2023 Print: 8 730 E. Nov 16 2023 MiTek Industries. Inc. Thu Jan 18 17:31:06 ID:odpZoUu20hr78?J?tRt_BvyS9pf-U33hQ2zYcIHoUQzhMGp77VskZwfiErGf0ajBXozuE8J

Page: 1

16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with wit refere connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	V02D	Valley	1	1	Job Reference (optional)	T32659378

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries. Inc. Wed Jan 17 13:35:43 ID:pFz7CM71?1ifNh6crsjvKQyS9o3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (N FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanced	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural Rigid ceili size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=-206 4-5=0/295 1-12=-23; 9-11=-23; 4-10=-44; 2-12=-34; d roof live I	0.2 0.2 0.3 wood shear ng directly 1=28-7-3, 9=28-7-3, 12=28-7-3, 12=116 (L 8=-92 (LC 11=-55 (L 11=-55 (L 11=-55 (L 10=655 (L)))))))))))))))))))))))))))))))))))	athing directly applie applied. 7=28-7-3, 8=28-7-3 10=28-7-3, 11=28- 3 C 10) 12), 9=-55 (LC 12) C 12), 12=-92 (LC 12) C 12), 12=-92 (LC 12) C 12), 7=139 (LC 24) C 17), 11=331 (LC 18) C 17), 11=331 (LC 18) C 17) pression/Maximum /310, 3-4=0/311, 3, 6-7=-206/330 2=-235/109, 7-8=-235 -220/127, 6-8=-341 been considered fo	3) ed. 7-3, 5) 7-3, 7) 8) 7, 9) 1, 17), 10) 11) 12) /180 r	Truss design only. For stu see Standard or consult qu Building Des verifying app requirements All plates are Gable require Gable studs: This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar All bearings a Provide mech bearing plate 11, 92 lb upil uplift at joint. This truss de structural wo chord and 1/2 the bottom cl AD CASE(S)	hed for wind loads in the p ids exposed to wind (norm d Industry Gable End Deta alified building designer as igner / Project engineer re- ilied roof live load shown c is specific to the use of this 2x4 MT20 unless otherwi es continuous bottom chor spaced at 4-0-0 oc. Is been designed for a 10.0 ad nonconcurrent with any has been designed for a 10.0 ad nonconcurrent with any to chord in all areas where by 2-00-00 wide will fit betw by other members, with BC are assumed to be SP No. hanical connection (by oth capable of withstanding 5 fit at joint 12, 55 lb uplift at 8. Isign requires that a minim od sheathing be applied d 2" gypsum sheetrock be ap hord. Standard	ane of the truss al to the face), ils as applicable sper ANSI/TPI 1 sponsible for overs rain loadir truss componer se indicated. d b o psi borrom other live loads. e load of 20.005 a rectangle veen the bottom DL = 10.005f. 2. ers) of truss to 5 lb uplift at join joint 9 and 92 lb um of 7/16" irectly to the top pplied directly to

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 14-4-1, Exterior(2R) 14-4-1 to 17-4-1, Interior (1) 17-4-1 to 28-7-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ing designer as per ANSI/TPI 1. ect engineer responsible for e load shown covers rain loading the use of this truss component. unless otherwise indicated. us bottom chord by -0-0 oc.

Review for Code Compliance Universal Engineering Science

PX2707

* S 34869 n Julius Lee PE No. 34869

01/27/2024

S

Weight: 119 lb

FT = 20%

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	V2D	Valley	1	1	Job Reference (optional)	T32659379

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:40 ID:pFz7CM71?1ifNh6crsjvKQyS9o3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- Rigid ceiling directly applied. **REACTIONS** (size) 1=28-7-3, 7=28-7-3, 8=28-7-3, 9=28-7-3, 10=28-7-3, 11=28-7-3, 12=28-7-3 Max Horiz 1=-116 (LC 10) Max Uplift 8=-92 (LC 12), 9=-55 (LC 12), 11=-55 (LC 12), 12=-92 (LC 12) 1=139 (LC 23), 7=139 (LC 24), Max Grav 8=560 (LC 18), 9=331 (LC 18), 10=655 (LC 17), 11=331 (LC 17), 12=560 (LC 17) FORCES (Ib) - Maximum Compression/Maximum Tension
- TOP CHORD
 1-2=-206/369, 2-3=0/310, 3-4=0/311, 4-5=0/299, 5-6=0/273, 6-7=-206/330

 BOT CHORD
 1-12=-235/190, 11-12=-235/109, 9-11=-235/109, 8=9-235/109, 7-8=-235/180

 WEBS
 4-10=-442/30, 3-11=-220/127, 2-12=-341/147, 5-9=-220/127, 6-8=-341/147
- NOTES
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 14-4-1, Exterior(2R) 14-4-1 to 17-4-1, Interior (1) 17-4-1 to 28-7-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
 All plates are 2x4 MT20 unless otherwise indicated.
 Gable requires continuous bottom chord by Gable studs spaced at 4-0-0 oc.
 This truss has been designed for a 10.0 psr bottom chord live load nonconcurrent with any other-live loads.
 - Review for Code Compliance Universal Engineering Science

PX2707

- * This truss has been designed for a live load of *P* and - 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 11, 92 lb uplift at joint 12, 55 lb uplift at joint 9 and 92 lb uplift at joint 8.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

01/27/2024

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story
3698553	V03	Valley	1	1	T32659380 Job Reference (optional)

Run: 8 73 E. Nov 16 2023 Print: 8 730 F. Nov 16 2023 MiTek Industries. Inc. Thu Jan 18 17:31:41 Page: 1 ID:U6gVnbALhlqQU1tW_vpSulyS9ru-yohvm0OVN2hqAo8Pv6xL2uojj1cwxf8p3XiXGGzuE7m 32-6-0 15-6-0 31-0-0 1-6-0 15-6-0 15-6-0 1-6-0 4x4= 7 24 25 6 8 3x6 👟 3x6 🧔 1<u>2</u> 61 5 9 10 9-8-12 3x8 🞜 3 11 3x8 👟 23 26 2 12 13 1-11-12 22 14 ********* ******** 21 27 20 18 28 15 19 17 16 5x6= 3x4= 3x4= 3-6-0 27-6-0 31-0-0 3-6-0 24-0-0 3-6-0 Scale = 1:63.6 Plate Offsets (X, Y): [18:0-3-0,0-3-0] Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) Plate Grip DOL TCLL (roof) 20.0 1.25 тс 0.19 Vert(LL) n/a 999 MT20 244/190 n/a 10.0 Lumber DOL 1.25 BC 0.17 Vert(CT) n/a n/a 999 Rep Stress Incr YES WB Horz(CT) 0.0 0.27 0.01 14 n/a n/a 10.0 Code FBC2020/TPI2014 Matrix-AS Weight: 180 lb FT = 20% LUMBER 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), TOP CHORD 2x4 SP No.2 see Standard Industry Gable End Details as applicable, 2x4 SP No.2 BOT CHORD or consult qualified building designer as per ANSI/TPI 1. 2x6 SP No.2 *Except* 12-15,2-21:2x4 SP 4) Building Designer / Project engineer responsible for No 3 verifying applied roof live load shown covers rain loading OTHERS 2x4 SP No.3 requirements specific to the use of this truss component. BRACING All plates are 2x4 MT20 unless otherwise indicated. 5) TOP CHORD Structural wood sheathing directly applied, Gable requires continuous bottom chord be 6) except end verticals **Review for Code Compliance** Truss to be fully sheathed from one face o 7) BOT CHORD Rigid ceiling directly applied. Universal Engineering Science braced against lateral movement (i.e. diagonar web). WFBS 1 Row at midpt 7-18 8) Gable studs spaced at 4-0-0 oc. REACTIONS All bearings 31-0-0. 01/27/2024 PX2707

(lb) - Max Horiz 22=211 (LC 11) Max Uplift All uplift 100 (lb) or less at joint(s) 14, 15, 16, 17, 19, 20, 21, 22 Max Grav All reactions 250 (lb) or less at joint (s) except 14=254 (LC 1), 15=377 (LC 18), 16=438 (LC 18), 17=441 (LC 18), 18=392 (LC 17), 19=441 (LC 17), 20=438 (LC 17), 21=401 (LC 17), 22=284 (LC 18) (lb) - Max. Comp./Max. Ten. - All forces 250

FORCES (lb) or less except when shown. WEBS 6-19=-255/135, 8-17=-255/135

NOTES

TCDL

BCLL

BCDL

WEBS

Unbalanced roof live loads have been considered for 1) this design

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=32ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -1-6-0 to 1-8-9, Interior (1) 1-8-9 to 15-6-0, Exterior(2R) 15-6-0 to 18-8-9, Interior (1) 18-8-9 to 32-6-0 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 pst bottomur Pormel 9) chord live load nonconcurrent with any other live loads 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 22, 14, 19, 20, 21, 17, 16, 15.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Job	Truss	Truss Type		Qty	Ply	Fischer Residence 2 Story	
3698553	V03D	Valley		1	1	Job Reference (optional)	T32659381
Builders FirstSource (Jacksonville	e, FL), Jacksonville, FL - 32244,	Rur	n: 8.73 S Jan 4 20	024 Print: 8.7	30 S Jan 42	2024 MiTek Industries, Inc. Wed Jan 17 13:35:44	Page: 1

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries. Inc. Wed Jan 17 13:35:44 ID:6bumgIDQLAagjl8yIqLY6uyS9ny-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [10:0-3-0,0-3-0]

Loading TCLL (roof) TCDL BCLL		(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES		CSI TC BC WB	0.17 0.17 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0	Code	FBC202	0/TPI2014	Matrix-AS							Weight: 93 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural Rigid ceili (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 wood shear ng directly 1=23-3-3, 9=23-3-3, 12=23-3-3 1=-94 (LC 8=-59 (LC 11=-67 (Li 1=106 (LC 10=438 (L 10=438 (L 12=374 (L)	athing directly applied applied. 7=23-3-3, 8=23-3-3, 10=23-3-3, 11=23-3- 3 10) 12), 9=-67 (LC 12), C 12), 12=-59 (LC 12), C 18), 7=105 (LC 24), C 18), 9=395 (LC 18), C 17), 11=395 (LC 1),	3) 4) 4) 5) 6) 7) 8) 9) 7), 10	Truss desig only. For stu see Standard or consult qu Building Des verifying app requirements All plates are Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) All bearings a Provide mec	hed for wind loads uds exposed to wind d Industry Gable E lailified building der igner / Project eng lied roof live load s specific to the us 2x4 MT20 unless es continuous bott spaced at 4-0-0 or is been designed fad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi by other members, are assumed to be hanical connection	in the pl nd (norm ind Detain signer as signer as shown c e of this or cherwi- or a 10.0 with any f for a liv s where Il fit betw with BC e SP No. o (by oth	ane of the tru al to the face) is as applicat sper ANSI/TF sponsible for overs rain loa truss compor truss compor other live load e load of 200 a rectangle veen the bottc DL = 10.0psf 2.	iss), ole, PI 1. ding nent. Revi Univ ds. Ops f <i>P</i> Examino om	ew for ersal f er-License	Code Engine	Corr ering	npliance 3 Science (2707 01/27)	2024
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		bearing plate 11, 59 lb upli	e capable of withst ift at joint 12, 67 lb	anding 6 uplift at	7 lb uplift at jo joint 9 and 59	oint 9 lb				MILIUS	
TOP CHORD	1-2=-166/ 4-5=-45/1	126, 2-3=-4 15, 5-6=-28	48/116, 3-4=-45/118, 8/85, 6-7=-149/95	12	uplift at joint) This truss de	8. sign requires that	a minim	um of 7/16"				J.	CE	NO.
BOT CHORD	1-12=-49/ 8-9=-49/6 4-10=-25 2-12=-234	154, 11-12 6, 7-8=-49/ 1/13, 3-11= 4/120, 5-9=	!=-49/66, 9-11=-49/66 /127 :-258/151, :-258/151, 6-8=-234/1	5, 120 i.e	structural wo chord and 1/2 the bottom cl	od sheathing be a 2" gypsum sheetro hord.	pplied di ock be ap	rectly to the to oplied directly	op ⁄ to			+	No 34	1869
NOTES		,	,	LC	DAD CASE(S)	Standard							1/ 0*	// ≛^ =
 Unbalance this design Wind: ASC Vasd=101 B=45ft; L= MWFRS (3-0-8, Inte 14-8-1, Inte members Lumber D 	ed roof live I n. CE 7-16; Vu mph; TCDL -24ft; eave= directional) : rrior (1) 3-0- terior (1) 14- and forces & OL=1.60 pla	oads have =4.2psf; B(4ft; Cat. II; and C-C E; 8 to 11-8-1 -8-1 to 23-3 & MWFRS ate grip DO	been considered for (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; xterior(2E) 0-0-8 to , Exterior(2R) 11-8-1 B-11 zone;C-C for for reactions shown; L=1.60	to							Ju M 10 D	alius La liTek In 5023 Sv ate:	C DBA MITCK US vingley Ridge Rd. (A FL Cert 6634 Chesterfield, MO 63017

January 18,2024

Job	Truss	Truss Type		Qty	Ply	Fischer Residence 2 Story	T 00050000	
3698553	V3D	Valley		1	1	Job Reference (optional)	T32659382	
Builders FirstSource (Jacksonville	e, FL), Jacksonville, FL - 32244,	Run: 8.7	'3 S Jan 4 20)24 Print: 8.7	30 S Jan 42	2024 MiTek Industries, Inc. Wed Jan 17 13:35:41	Page: 1	

Scale = 1:44.4

Plate Offsets (X, Y): [10:0-3-0,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.15	Horiz(TL)	0.00	7	n/a	n/a		
BCDL		10.0	Code	FBC202	20/TPI2014	Matrix-AS							Weight: 93 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No 2x4 SP No 2x4 SP No).2).2		3)	Truss desigr only. For stu see Standard or consult qu	ned for wind loads i ids exposed to wind I Industry Gable Er alified building des	in the p d (norm nd Deta igner a:	lane of the trus al to the face) ils as applicab s per ANSI/TP	ss , lle, I 1.					
BRACING	2			4)	Building Des	igner / Project engi	neer re	sponsible for						
	Structural	wood chor	othing directly applie	, d	verifying app	lied roof live load s	hown c	overs rain load	ding					
BOT CHORD	Rigid ceilir	na directly	annlied	u.	requirements	specific to the use	of this	truss compon	ent.					
BOICHORD				5)	All plates are	2x4 MT20 unless	otherwi	se indicated.						
FORCES TOP CHORD BOT CHORD	(size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=-166/ 4-5=-45/1 1-12=-49/6 8-949/6	1=2:5-3, 9=23-3-3, 1=-94 (LC 8=-59 (LC 11=-67 (LI 1=106 (LC 8=373 (LC 10=438 (L 10=438 (L 10=438 (L 10=438 (L 10=438 (L 10=438 (L 10=438 (L 10=438 (L 10=438 (L) 10=438 (L) 10=4	 10=23-3-3, 11=23-3 10=23-3-3, 11=23-3 11) 12), 9=-67 (LC 12), C 12), 12=-59 (LC 12) C 12), 12=-59 (LC 12) C 17), 12=395 (LC 18) C 17), 11=395 (LC 14) C 17) pression/Maximum 48/116, 3-4=-45/118, 8/85, 6-7=-149/95 =-49/66, 9-11=-49/61 (127) 	-3, 6) 7) 8) 2) 9) , , , , , , , , , , , , , , , , , , ,	Gable require Gable studs 3 This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an 0) All bearings a 1) Provide mecl bearing plate 11, 59 lb upli uplift at joint .	es continuous botto spaced at 4-0-0 oc s been designed fo di nonconcurrent w has been designed in chord in all areas y 2-00-00 wide will by other members, are assumed to be hanical connection capable of withsta ft at joint 12, 67 lb 8. sign requires that a od sheathing be ap	or a 10.0 or a 10.0 vith any for a liv where l fit betw with BC SP No. (by oth nding 6 uplift at a minim oplied d	d b psi poitom other live load of 20 0 a rectangle veen the botto DL = 10.0psf. 2 . ers) of truss to 7 lb uplift at jc joint 9 and 59 um of 7/16" irectly to the to	Revie Unive ds. psf Pa Examine m	ew for ersal I 1440 er-License	Code Engine	Com ering P>	Inpliance Science (2707 01/27/2 ULIUS	
WEBS	4-10=-251	/13, 3-11= /120_5-9=	-258/151, -258/151_6-8=-234/	120	the bottom cl	2" gypsum sneetro nord.	ck be a	oplied directly	to				Ng 34	869
NOTES	201	0, 0 0 –		LC	DAD CASE(S)	Standard						1:		/ :^E
 Unbalance this design Wind: ASC Vasd=101 B=45ft; L= MWFRS 3-0-8, Inte 14-8-1, Intermeters Lumber D 	ed roof live lc n. CE 7-16; Vul Imph; TCDL= =24ft; eave=4 (directional) a roiror (1) 3-0-8 terior (1) 3-0-8 terior (1) 14-1 and forces 8 /OL=1.60 pla	t=130mph =4.2psf; B(lift; Cat. II; and C-C E to 11-8-1 8-1 to 23-3 MWFRS te grip DO	been considered for (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; kterior(2E) 0-0-8 to , Exterior(2R) 11-8-1 3-11 zone;C-C for for reactions shown; L=1.60	to							л М 10 D	alius Le iTek In 5023 Sv ate:	A COR ONA Se PE No. 34869 Ic. DBA MiTek US/ ringley Ridge Rd. C	FL Cert 6634 hesterfield, MO 63017

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	V04	Valley	1	1	Job Reference (optional)	T32659383

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:44 ID:dnAq2XzpcXcHswm9Di_ORAyS9pZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

January 18,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	V04D	Valley	2	1	Job Reference (optional)	T32659384

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries. Inc. Wed Jan 17 13:35:44 ID:xIG1wpIAx0KpRgb665RyM9yS9ns-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-4-4

8-4-10

2x4 II

4

6

2x4 II

17

Page: 1

17-11-3 0-6-15

5

3x4 👟

8-11-9

8-11-9

Scale = 1:36.8

Plate Offsets (X, Y): [7:0-3-0,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC202	0/TPI2014	CSI TC BC WB Matrix-AS	0.32 0.17 0.20	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=17-11-3 7=17-11-3 Max Horiz 1=-72 (LC Max Uplift 1=-72 (LC 8=-80 (LC (LC 24), 7 23), 13=0 (lb) - Maximum Com	athing directly applied applied. 3, 5=17-11-3, 6=17-11 3, 8=17-11-3, 13=17-1 : (10) : (24), 6=-80 (LC 12), : (12) (23), 5=0 (LC 3), 6=42 =614 (LC 1), 8=420 (I (LC 3) pression/Maximum	4) 5) 6) 7) -3, 8) 1-3 9) 20 LC 11	Building Desi verifying appl requirements Gable require Gable studs s This truss hat chord live loa * This truss h on the bottorr 3-06-00 tall b chord and an All bearings a) Provide mech bearing plate 1, 80 lb uplift) This truss des	gner / Project engi ied roof live load s specific to the use scontinuous botto spaced at 4-0-0 oc. s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. tre assumed to be nanical connection capable of withsta at joint 8 and 80 lb sign requires that a	neer re- hown c of this om chor or a 10.0 ith any for a liv where fit betw SP No. (by oth nding 7 ouplift a a minim	sponsible for overs rain load truss compon d bearing. D psf bottom other live load e load of 20.0 a republic load 2 lought for the sponsor 2 lought at jours at t joint 6. um of 7/16"	ding ent. ds. psf mRevie Unive	ew for ersal E Mael r-License N	Code Engine	Com ering _{PX}	pliance Science 2707 01/27/20)24
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=101 B=45ft; L= MWFRS (i 3-0-8, Inte 12-0-1, Int members : Lumber Du 3) Truss des only. For see Stand or consult	(ib) - Maximum Com Tension 1-2=-112/468, 2-3=- 4-5=-139/469 1-8=-360/132, 6-8=- 3-7=-560/123, 2-8=- ed roof live loads have h. CE 7-16; Vult=130mph mph; TCDL=4.2psf; Bd 24ft; eave=4ft; Cat. II; directional) and C-C Ei citror (1) 3-0-8 to 9-0-1, erior (1) 12-0-1 to 17-1 and forces & MWFRS OL=1.60 plate grip DO La force and the set of the set of the stude exposed to wind ard Industry Gable End qualified building design	pression/Maximum 18/448, 3-4=-10/446, 360/132, 5-6=-369/13 297/178, 4-6=-299/18 been considered for (3-second gust) CDL=6.0psf; h=25ft; Exp B; Enclosed; xterior(2E) 0-0-8 to Exterior(2R) 9-0-1 to 11-11 zone;C-C for for reactions shown; L=1.60 n the plane of the truss (normal to the face), d Details as applicable gner as per ANSI/TPI	9 LC 1 s e, 1.	structural woo chord and 1/2 the bottom ch DAD CASE(S)	od sheathing be ap " gypsum sheetroo ord. Standard	plied di	rectly to the to	op to		Jr. MM 10	* PRO	e PE No. 34869 c. DBA MiTek USA ingley Ridge Rd. CI	LEE SE 369 D.A.G. HU E.N.G. HU E.N.G. HU HU FL Cert 6634 hesterfield, MO 63017

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	V05	Valley	1	1	Job Reference (optional)	132659385

Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244,

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:45 ID:OJfskG3qj_c8q9NihN7GmsyS9pR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

30-10-0

Scale = 1:55.4

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.25		TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.25		BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.24	Horiz(TL)	0.00	11	n/a	n/a		
BCDL		10.0	Code	FBC2	20/TPI2014	Matrix-AS							Weight: 134 lb	FT = 20%
LUMBER					2) Wind: ASCE	7-16; Vult=130m	ph (3-sec	cond gust)						
TOP CHORD	2x4 SP No	o.2			Vasd=101m	ph; TCDL=4.2psf;	BCDL=6	.0psf; h=25ft	;					
BOT CHORD	2x4 SP No	o.2			B=45ft; L=32	tt; eave=4ft; Cat.	II; Exp B	; Enclosed;						
OTHERS	2x4 SP No	0.3			MWFRS (dir	ectional) and C-C	Exterior	2E) -0-1-8 to						
BRACING					3-3-8, Interio	or (1) 3-3-8 to 15-3	3-8, Exter	ior(2R) 15-3-	·8 to					
TOP CHORD	Structural	wood shea	athing directly applie	ed.	18-6-1, Inter	IOF (1) 18-6-1 to 3	0-1-9 ZOF	e;C-C for						
BOT CHORD	Rigid ceilir	ng directly	applied.			-1 60 plate grip [Ι,					
REACTIONS	(size)	1=30-10-0), 11=30-10-0,			= 1.00 plate grip L) Iano of the tri	100					
		12=30-10-	-0, 13=30-10-0,		only For st	ide exposed to wi	nd (norm	al to the face	uss .)					
		14=30-10-	-0, 16=30-10-0,		see Standar	d Industry Gable F	Ind (norm		ble <mark>Revi</mark>	ew for	Code	Con	noliance	
		17=30-10	-0, 18=30-10-0,		or consult a	alified building de	signer a		Pl 1 Iniv	oreal	Engine	oring	Science	
		19=30-10	-0	4	 Building Des 	ianer / Project en	aineer re	sponsible for	Oniv		Ingine	enne	y Ocience	
	Max Horiz	1=135 (LC	C 11)		verifving app	lied roof live load	shown c	overs rain loa	adina /	0	0		V0707 01/07/0	004
	Max Uplift	12=-54 (L	C 12), 13=-64 (LC 1	12),	requirements	s specific to the us	se of this	truss compo	hent.	met	۷	P/	X2707 01/2/12	.024
		14=-65 (L	C 12), 17=-65 (LC 1	12), <u>(</u>	All plates are	e 2x4 MT20 unles	s otherwi	se indicated.	Examine	er-License	No.			
	May 0	18=-64 (L	C 12), 19=-56 (LC 1	(2)	6) Gable requir	es continuous bot	tom chor	d bearing.						
	Max Grav	1=117 (LC	(LC 17), -	 Gable studs 	spaced at 4-0-0 o	C.							
		12=300 (L	(LC = 10), 13=309 (LC = 0.00), 16=414 (LC = 0.00)	10),	This truss hat	as been designed	for a 10.0) psf bottom						
		17-440 (L	C(17), 10=414 (LC)	17),	chord live loa	ad nonconcurrent	with any	other live loa	ids.					111.
		19=372 (L	C 17), 10=007 (EO	<i>''')</i> , (* This truss I	has been designe	d for a liv	e load of 20.0	0psf				JULIS .	1111
FORCES	(lb) - Mavi		pression/Maximum		on the bottor	n chord in all area	as where	a rectangle					IL JULIOU	LEE "
TOROLO	(ID) - Maxi Tension		pression/maximum		3-06-00 tall t	by 2-00-00 wide w	ull fit betv	veen the bott	om			5	CEA	10. 4
	1-2=-190/	126 2-3	95/114 3-5=-78/101	1.	chord and ar	ny other members	, with BC	DL = 10.0psi	Γ.			2		· · · · · · · · · · · · · · · · · · ·
	5-6=-77/1	53. 6-7=-7	7/149. 7-9=-47/86.	.,	 All bearings Drawida maa 	are assumed to b	e SP NO.	Z.					· No. 24	860
	9-10=-51/7	71. 10-11=	-130/82		1) Provide med	nanical connectio	n (by oln terreliner C	ers) or truss i	10				NO 34	
BOT CHORD	1-19=-45/	165, 18-19	=-45/71, 17-18=-45	/71,	17 64 lb upl	e capable of withs	Landing t	ioint 10 65 II	point			1		/ / * =
	16-17=-45	/71, 14-16	=-45/71, 13-14=-45	/71,	unlift at joint	14 64 lb unlift at	ioint 13 a	nd 54 lb unlif	u ftat		=		1 01 *	
	12-13=-45	/71, 11-12	=-45/116		ioint 12	14, 04 ib upilit at	joint 15 a		i ai		-	υ.	(ለ[]ክ μ	
WEBS	6-16=-230	/0, 5-17=-2	256/136, 3-18=-240	/113, .	2) This truss de	sion requires that	t a minim	um of 7/16"				V	AV JETATA	Of the
	2-19=-233	/106, 7-14	=-256/135,		structural wo	od sheathing be a	applied d	irectly to the	top			-0		:45
	9-13=-240	/114, 10-1	2=-231/108		chord and 1/	2" gypsum sheetr	ock be a	oplied directly	v to			<u>(}</u>	A 4 0 P	DIN
NOTES					the bottom c	hord.			, -			1	So.	····NON
1) Unbalance	ed roof live lo	bads have	been considered fo	r i	OAD CASE(S)	Standard						$\mathbf{\nabla}$	ONA	LEIN
this desig	n.			-	(•)								111111	mm.

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story			
3698553	V05D	Valley	1	1	Job Reference (optional)	T32659386		

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries. Inc. Wed Jan 17 13:35:45 ID:3FYyfFSKt0zzVg5cMKA?NvyS9nf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

9-4-1, Interior (1) 9-4-1 to 12-7-11 zone;C-C for

or consult qualified building designer as per ANSI/TPI 1. Building Designer / Project engineer responsible for 4) verifying applied roof live load shown covers rain loading

requirements specific to the use of this truss component. Gable requires continuous bottom chord bearing. 5)

6) Gable studs spaced at 4-0-0 oc.

Loading

TCDI

BCLL

BCDL

LUMBER

OTHERS

FORCES

WEBS

NOTES 1)

2)

THE PROPERTY ON

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story			
3698553	V5D	Valley	1	1	Job Reference (optional)	T32659387		

Run: 8.73 S Jan 4 2024 Print: 8.730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:41 ID:3FYyfFSKt0zzVg5cMKA?NvyS9nf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Building Designer / Project engineer responsible for 4)

- verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Gable requires continuous bottom chord bearing. 5)
- 6) Gable studs spaced at 4-0-0 oc.

TCDI

BCLL

BCDL

WEBS

2)

3)

NOTES 1)

> Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

ON

Date:

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	V06	Valley	1	1	Job Reference (optional)	132659388
Builders FirstSource (Jacksonville	e, FL), Jacksonville, FL - 32244,	Run: 8.73 S Jan 4	2024 Print: 8.7	730 S Jan 41	2024 MiTek Industries, Inc. Wed Jan 17 13:35:45	Page: 1

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Wed. Jan 17 13:35:45 ID:DT07_K8bJqMIY4rr2eEg?7yS9pL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=31ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-1-8 to 2-11-7, Interior (1) 2-11-7 to 13-3-8, Exterior(2R) 13-3-8 to 16-4-7, Interior (1) 16-4-7 to 26-8-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

January 18,2024

ON

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with wit refere connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story				
3698553	V06D	Valley	2	1	T32659389 Job Reference (optional)				

3-7-9

3-7-9

Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244.

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:46 ID:fTyHFAiUxpOLOtn6r?kBmlzuYbN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-3-3 6-8-4 3-0-10 0-6-15

7-3-3

Scale = 1:24.3			1									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.25	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	FBC2020/TPI2014	Matrix-AS							Weight: 23 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=7-3-3, 3 Max Horiz 1=28 (LC Max Uplift 1=-4 (LC (LC 12) Max Grav 1=80 (LC (LC 1)	athing directly applied applied. 3=7-3-3, 4=7-3-3 11) 12), 3=-4 (LC 12), 4=- 23), 3=80 (LC 24), 4=	 7) This truss h chord live lo 8) * This truss so on the botto 3-06-00 tall chord and a 9) All bearings 10) Provide me bearing plat 4 lb uplift at 53 11) This truss d structural w chord and a 	as been designe aad nonconcurre has been design m chord in all au by 2-00-00 wide iny other member are assumed to chanical connecc e capable of wit joint 3 and 53 lk esign requires th ood sheathing b /2" gypsum she chord.	ed for a 10. Int with any hed for a liv reas where e will fit betw ors. b be SP No. tion (by oth hstanding 4 o uplift at join hat a minim e applied d etrock be a	D psf bottom other live loa e load of 20. a rectangle veen the bott 2. ers) of truss I lo uplift at jo nt 4. um 6" he pplied directl	tom to bint 1, Revi topUniv ly to	ew for ersal I	Code Engine	Com	pliance Science	2024
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LOAD CASE(S) Standard		- Lande	MU PD Examine	er-License	K No.	РХ	2/0/ 01/2/1	2024

TOP CHORD 1-2=-114/214, 2-3=-105/214 BOT CHORD 1-4=-168/162, 3-4=-168/162 2-4=-316/215 WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 3-8-1, Exterior(2R) 3-8-1 to 6-8-1, Interior (1) 6-8-1 to 7-3-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for 4) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc. 6)

* PROT JS S ONAL in man

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story				
3698553	V07	Valley	1	1	Job Reference (optional)	132659390			
Builders FirstSource (Jacksonville	e, FL), Jacksonville, FL - 32244,	Run: 8.73 S Jan 4 2	024 Print: 8.7	'30 S Jan 41	2024 MiTek Industries, Inc. Wed Jan 17 13:35:46	Page: 1			

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Wed. Jan 17 13:35:46 ID:xxgIDMgByLv2qrCJdt1_nPyS9of-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design valid for use only with wit refere connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com) 16023 Swingley Ridge Rd. Chesterfield MO 63017 314.434.1200 / MiTek-US.com

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story				
3698553	V08	Valley	1	1	Job Reference (optional)	132659391			

Run: 8 73 S. Jan. 4 2024 Print: 8 730 S. Jan. 4 2024 MiTek Industries. Inc. Wed. Jan 17 13:35:46 ID:iU9nv6mC3pwwn3pr5ZAs65yS9oX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

MWFRS (directional) and C-C Exterior(2E) -0-1-8 to 2-10-8, Interior (1) 2-10-8 to 9-3-8, Exterior(2R) 9-3-8 to 12-3-8, Interior (1) 12-3-8 to 18-8-8 zone;C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3)

2)

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with wit refere connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcscomponents.com)

January 18,2024

ON

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

Julius Lee PE No. 34869

Date:

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story			
3698553	V09	Valley	1	1	Job Reference (optional)	132659392		

6-10-1

Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244,

0-6-15

0-6-15

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:47 ID:WdW299rzffg3V_G?RqHHMMyS9oR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-10-0

Scale = 1:33.4

Loa TCL TCE BCL BCE	i ding .L (roof) DL .L DL	(ps 20 10 0 10	sf) .0 .0 .0* .0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.25 1.25 YES FBC2	020/TPI2014	CSI TC BC WB Matrix-AS	0.21 0.11 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%
	MBER > CHORD CHORD HERS ACING > CHORD CHORD CHORD ACTIONS ACTIONS RCES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood Rigid ceiling dir (size) 1=14 7=14 Max Horiz 1=58 Max Uplift 1=-4 (LC * Max Grav 1=72 7=43 (lb) - Maximum Tension	I shea ectly -10-0 -10-0 (LC 1 (LC 1 12) (LC 37 (LC 2 7 (LC Com	athing directly applie applied. , 5=14-10-0, 6=14-1 , 8=14-10-0, 13=14- 11) (2), 6=-64 (LC 12), 8 (23), 6=339 (LC 24), (21), 8=338 (LC 23) pression/Maximum	i Doz i d. -10-0, -10-0 3=-64	 Gable study Gable study This truss chord live This truss chord live This truss on the bo 3-06-00 tit chord and bearing p All bearin Provide n bearing p Bearing p Ho upini This truss structural chord and the bottom 	uires continuous ds spaced at 4-0 has been desigr load nonconcurr ss has been desigt tom chord in all all by 2-00-00 wid any other memb gs are assumed 1 hechanical conne late capable of w t at joint 8 and 64 design requires wood sheathing 1/2" gypsum shin n chord.	bottom chor -0 oc. hed for a 10.0 ent with any gned for a liv areas where le will fit betw bors. to be SP No. ction (by oth ithstanding 4 4 lb uplift at jo that a minim be applied di eetrock be ap	d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the bott 2. ers) of truss : lb un of 7/16" irrectly to the ophied arrect	ids. Opsf om to Univ top Examine	ew for ersal f	Code Engine	Com ering	npliance Science (2707 01/27/2	024
TOF	P CHORD	1-2=-81/202, 2- 4-5=-67/202	3=0/2	203, 3-4=0/202,		LOAD CASE	S) Standard								
BOT	r CHORD	1-8=-136/69, 7- 5-6=-136/69	8=-13	36/69, 6-7=-136/69,										minin	inin.
WE	BS	3-7=-363/114, 2	2-8=-2	248/176, 4-6=-249/1	76									IN ULIUS	LEDU
NOT	TES												A.	CEA	
1)	Unbalance	ed roof live loads l	have	been considered for	r								5		
	this desigr	n.											2	· No. 04	000 1 2
2)	Wind: ASC	CE 7-16; Vult=130)mph	(3-second gust)									1.1	NO 34	869
	vaso=101 B=45ft+1=	mpn; ICDL=4.2p	si; BC	Evo B: Enclosed:								- 5	*:		1) *=
	MWFRS (directional) and C	-C Ev	terior(2F) -0-1-8 to								=	1	$L \land \bullet $	AXA AN =
	2-10-8. Int	terior (1) 2-10-8 to	07-3-8	8. Exterior(2R) 7-3-8	3 to							-	D.	KIUA H	
	10-3-8. Int	terior (1) 10-3-8 to	14-1	-9 zone:C-C for									1	WEATE	OF 4

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face),

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Building Designer / Project engineer responsible for

verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

ONA

minin

Julius Lee PE No. 34869

January 18,2024

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story	
3698553	V10	Valley	1	1	Job Reference (optional)	T32659393

4-10-1

Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244.

1.0-10-0

2x4 👟

10-3-1 4-10-1 h-6-15

h-6-15

2x4 🛛

10-10-0

Scale = 1:29.1													
Loading	(psf)	Spacing	2-0-0		CSI	0.27	DEFL	in n/o	(loc)	l/defl	L/d	PLATES	GRIP
	20.0	Fiale Grip DOL	1.20		PC	0.27	Vert(LL)	n/a	-	n/a	999	101120	244/190
RCU	10.0	Lumber DOL	1.20 VES			0.27		0.01	-	n/a	999		
BOLL	0.0		TEO			0.15		-0.01	3	n/a	n/a		FT 000/
BCDL	10.0	Code	FBC202	0/1912014	Matrix-AS							vveight: 35 lb	FI = 20%
LUMBER 7) This truss has been designed for a 10.0 psf bottom TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BRACING 7) This truss has been designed for a live load of 20.0psf TOP CHORD Structural wood sheathing directly applied. BOT CHORD Structural wood sheathing directly applied. REACTIONS (size) 1=10-10-0, 3=10-10-0, 4=10-10-0, 9=10-10-0 9=10-10-0 Max Horiz 1=41 (LC 11) Max Grav 1=129 (LC 23), 3=3 (LC 24), 4=777 Max Grav 1=129 (LC 23), 3=3 (LC 24), 4=777								1924					
FORCES	(lb) - Maximum Com	pression/Maximum	LC	AD CASE(S)	Standard		gaute	Framine		۲ No	17		
TOP CHORD BOT CHORD WEBS	Tension 1-2=-188/411, 2-3=-: 1-4=-332/167, 3-4=-: 2-4=-610/313	229/434 332/167						LXamine	a-Licelise	NU.			

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-1-8 to 2-10-8, Interior (1) 2-10-8 to 5-3-8, Exterior(2R) 5-3-8 to 8-3-8, Interior (1) 8-3-8 to 10-1-9 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for 4) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component. Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc. 6)

Julius Lee PE No. 34869 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

January 18,2024

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only used based based only used based based only used based based only used based b

Job	Truss	Truss Type	Qty	Ply	Fischer Residence 2 Story
3698553	V11	Valley	1	1	Job Reference (optional)

2-10-1

0-6-15

0-6-15

Builders FirstSource (Jacksonville, FL), Jacksonville, FL - 32244.

1-5-0

1-8-12

Run: 8,73 S Jan 4 2024 Print: 8,730 S Jan 4 2024 MiTek Industries, Inc. Wed Jan 17 13:35:47 ID:AxFahF_VqLBMxqBI8LV5ruyS9oF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x4 =

2x4 u

6-10-0

6-3-1

2-10-1

6-10-0

0-6-15

3

2x4 👟

2 10 12 6 Г 0-0-4 4

2x4 🚽

Scolo	- 1	1.22	0
A DECRET	_		

Scale = 1:23.9)			'								'	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.25		TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.25		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	FBC202	20/TPI2014	Matrix-AS							Weight: 21 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=6-10-0, 9=6-10-0 Max Horiz 1=25 (LC Max Grav 1=89 (LC (LC 1), 9= (lb) - Maximum Com Tension 1.2 = 11/(28.2.2) 	athing directly applie applied. 3=6-10-0, 4=6-10-0 11) : 24), 4=-48 (LC 12) 23), 3=1 (LC 24), 4= -1 (LC 24) pression/Maximum 154/240	7) 8) d. 9) 10 11 458	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings D) Provide mec bearing plate 1 and 48 lb u 1) This truss de structural wo chord and 11/ the bottom c DAD CASE(S)	as been designe ad nonconcurre nas been design n chord in all ar by 2-00-00 wide y other membe are assumed to hanical connect e capable of witt uplift at joint 4. esign requires th od sheathing b 2" gypsum shee hord. Standard	ed for a 10.0 nt with any led for a liv eas where will fit betw ers. be SP No. tion (by oth hastanding 2 nat a minim e applied di etrock be a	b) psf bottom other live loa e load of 20. a rectangle veen the bott 2 . ers) of truss f 7 lb uplift at j rec 6" rec 6" he opplied direct!	ads. Opsf om to joint Revi topUniv y to <i>Buy P a</i> Examin	ew for ersal I er-License	Code Engine	Com eering	ipliance 3 Science (2707 01/27/	2024

- TOF CHORL 11/238, 2-BOT CHORD 1-4=-201/140, 3-4=-201/140 2-4=-324/208 WEBS
- NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-1-8 to 2-10-8, Interior (1) 2-10-8 to 3-3-8, Exterior(2E) 3-3-8 to 6-1-9 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for 4) verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing. 5) 6)
- Gable studs spaced at 4-0-0 oc.

S

January 18,2024

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only using the matter one to the other of the intervence of the

MITEK PRODUCT APPROVAL #'S FL2197-R6, WEYERHAEUSER PRODUCT #'S LVL FL6527-R10, TJI FL1630-R10

N/A

N/A

3698554