

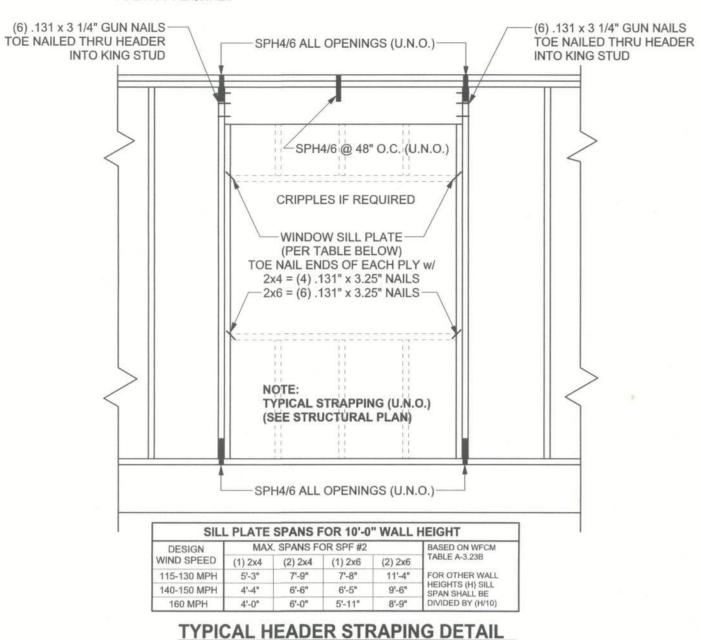
ONE STORY WALL SECTION

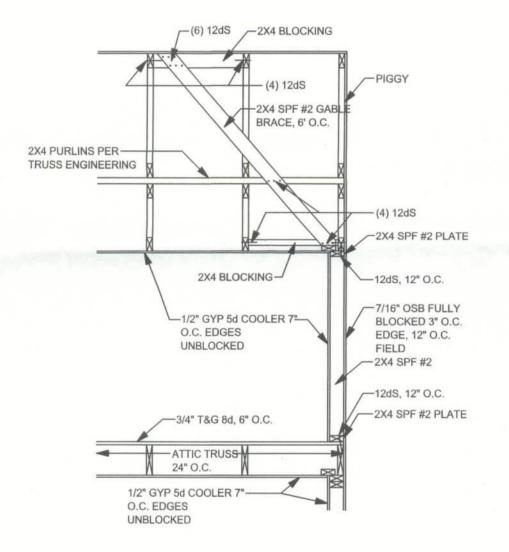
SCALE: 3/4" = 1'-0"

FOR SPF #2 STUDS (1) 2x4 @ 16" OC TO 10'-1" STUD HEIGHT (1) 2x4 @ 12" OC TO 11'-2" STUD HEIGHT (1) 2x6 @ 16" OC TO 15'-7" STUD HEIGHT

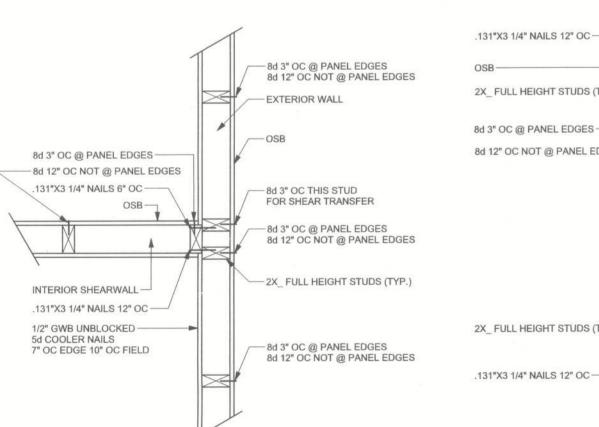
EXTERIOR WALL STUD TABLE

(1) 2x6 @ 12" OC TO 17'-3" STUD HEIGHT THIS STUD HEIGHT TABLE IS PER 2012 WFCM. TABLE 3.20B4. EXTERIOR LOAD BEARING & NON LOAD BEARING STUD LENGTHS FOR WALLS WITH OSB EXTERIOR AND 1/2" GYP INTERIOR RESISTING INTERIOR ZONE WINDLOADS, 130 MPH, EXPOSURE C, STUD DEFLECTION LIMIT H/240 (NOT OK FOR SOME BRITTLE FINISH?).

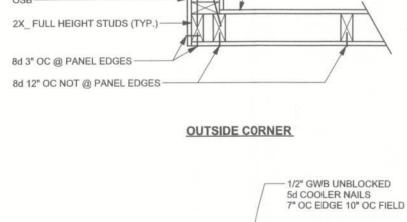

STUD SPACINGS SHALL BE MULTIPLIED BY 0.8 FOR FRAMING


(END ZONE EXAMPLE 16" O.C. x 0.8 = 12.8" O.C.)

LOCATED WITHIN 4 FEET OF CORNERS FOR END ZONE LOADING.


IF TRUSS TO WALL STRAPS ARE NAILED TO THE HEADER THE SPH4/6 @ 48" O.C. ARE NOT REQUIRED

SCALE: 1/2" = 1'-0"



BONUS ROOM / GABLE END BRACING

(TYP.) INTERSECTING WALL FRAMING WOOD FRAME

1/2" GW/B UNBLOCKED 5d COOLER NAILS

7" OC EIDGE 10" OC FIELD


7" OC EIDGE 10" OC FIELD 2X_FULL HEIGHT STUDS (TYP.)-.131"X3 1/4" NAILS 12" OC --8d 3" OC @ PANIEL EDGES 8d 12" OC NOT @ PANEL EDGES -

(TYP.) CORNER FRAMING WOOD FRAME

INSIDE CORNER

2x6 SYP #2 GARAGE DOOR BUCK ATTACHMENT ATTACH GARAGE DOOR BUCK TO STUD PACK AT EACH SIDE OF DOOR OPENING WITH 3/8"x4" LAG SCREWS w/ 1" WASHER LAG SCREWS MAY BE COUNTERSUNK. HORIZONTAL JAMBS DO NOT TRANSFER LOAD. CENTER LAG SCREWS OR STAGGER 16d NAILS OR (2) ROWS OF .131 x 3 1/4" GN PER TABLE BELOW:

DOOR WIDTH	3/8" x 4" LAG	16d STAGGER	(2) ROWS OF .131 x 3 1/4" GN
8' - 10'	24" O.C.	5" O.C.	5" O.C.
11' - 15'	18" O.C.	4" O.C.	4" O.C.
16' - 18'	16" O.C.	3" O.C.	3" O.C.

GARAGE DOOR BUCK INSTALLATION DETAIL SCALE: N.T.S.

GENERAL NOTES:

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE 2010 FBCR. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN

FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

WELDED WIRE REINFORCED SLAB: $6^{\circ} \times 6^{\circ} \text{ W}1.4 \times \text{W}1.4$, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL.

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAMS: GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 8d COMMON NAILS (.131), 6"OC PANEL EDGES, 12"0C INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO.

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO.

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

THE BUILDER AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE SPECIFICALLY NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK.
CONFIRM SITE CONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND BACKFILL HEIGHT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE.
PROVIDE MATERIALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH 2010 FBCR REQUIREMENTS FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES.
PROVIDE A CONTINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION IF YOU

BELIEVE THE PLAN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL THE WIND LOAD ENGINEER IMMEDIATELY.

VERIFY THE TRUSS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS.

ROOF SYSTEM DESIGN

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH 2010 FBCR, SECTION R301.2.1 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN
PROFESSIONAL FOR CORRECT APPLICATION OF 2010 FBCR REQUIRED
LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO
REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF
SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

GRADE & SPECIES TABLE

		Fb (psi)	E (10 ⁶ psi)
2x8	SYP #2	1200	1.6
2x10	SYP #2	1050	1.6
2x12	SYP #2	975	1.6
GLB	24F-V3 SP	2400	1.8
LSL	TIMBERSTRAND	1700	1.7
LVL	MICROLAM	1600	1.9
PSL	PARALAM	2900	2.0

MASONRY NOTES:

MASONRY CONSTRUCTION AND MATERIALS FOR THIS PROJECT SHALL CONFORM TO ALL REQUIREMENTS OF "SPECIFICATION FOR MASONRY STRUCTURES" (ACI 530.1/ASCE 6/TMS 602). THE CONTRACTOR AND MASON MUST IMMEDIATELY, BEFORE PROCEDING, NOTIFY THE ENGINEER OF ANY CONFLICTS BETWEEN ACI 530.1-02 AND THESE DESIGN DRAWINGS. ANY EXCEPTIONS TO ACI 530.1-02 MUST BE APPROVED BY THE ENGINEER IN WRITING.

	ACI530.1-02 Section	Specific Requirements
1.4A	Compressive strength	8" block bearing walls F'm = 1500 psi
2.1	Mortar	ASTM C 270, Type N, UNO
2.2	Grout	ASTM C 476, admixtures require approva
2.3	CMU standard	ASTM C 90-02, Normal weight, Hollow, medium surface finish, 8"x8"x16" running bond and 12"x12" or 16"x16" column block
2.3	Clay brick standard	ASTM C 216-02, Grade SW, Type FBS, 5.5"x2.75"x11.5"
2.4	Reinforcing bars, #3 - #11	ASTM 615, Grade 60, Fy = 60 ksi, Lap splices min 48 bar dia. (30" for #5)
2.4F	Coating for corrosion protection	Anchors, sheet metal ties completely embedded in mortar or grout, ASTM A525, Class G60, 0.60 oz/ft2 or 304SS
2.4F	Coating for corrosion protection	Joint reinforcement in walls exposed to moisture or wire ties, anchors, sheet meta ties not completely embedded in mortar or grout, ASTM A153, Class B2, 1.50 oz/ft2 or 304SS
3.3.E.2	Pipes, conduits, and accessories	Any not shown on the project drawings require engineering approval.
3.3.E.7	Movement joints	Contractor assumes responsibility for type and location of movement joints if not detailed on project drawings.

ANCHOR TABLE

OBTAIN UPLIFT REQUIREMENTS FROM TRUSS MANUFACTURER'S ENGINEERING

UPLIFT LBS. SYP	UPLIFT LBS. SPF	TRUSS CONNECTOR*	TO PLATES	TO RAFTER/TRUSS	TO STUDS
< 420	< 245	H5A	3-8d	3-8d	
< 455	< 265	H5	4-8d	4-8d	
< 360	< 235	H4	4-8d	4-8d	
< 455	< 320	H3	4-8d	4-8d	
< 415	< 365	H2.5	5-8d	5-8d	
< 600	< 535	H2.5A	5-8d	5-8d	
< 950	< 820	H6	8-8d	8-8d	
< 745	< 565	H8	5-10d, 1 1/2"	5-10d, 1 1/2"	
< 1465	< 1050	H14-1	13-8d	12-8d, 1 1/2"	
< 1465	< 1050	H14-2	15-8d	12-8d, 1 1/2"	
< 990	< 850	H10-1	8-8d, 1 1/2"	8-8d, 1 1/2"	
< 760	< 655	H10-2	6-10d	6-10d	
< 1470	< 1265	H16-1	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1470	< 1265	H16-2	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1000	< 860	MTS24C	7-10d 1 1/2"	7-10d 1 1/2"	
< 1450	< 1245	HTS24	12-10d 1 1/2"	12-10d 1 1/2"	
< 2900	< 2490	2 - HTS24			
< 2050	< 1785	LGT2	14 -16d	14 -16d	
		Legista Tip and the thirty was about the policy of the tip.	11. 1.55	14 100	
		HEAVY GIRDER TIEDOWNS*			TO FOUNDATION
< 3965	< 3330	MGT		22 -10d	1-5/8" THREADED ROD 12" EMBEDMENT
< 10980	< 6485	HGT-2		16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT
< 10530	< 9035	HGT-3		16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT
< 9250	< 9250	HGT-4	,	16 -10d	2-5/8" THREADED ROD 12" EMBEDMENT
700	0. BCS40	STUD STRAP CONNECTOR*			TO STUDS
< 435	< 435	SSP DOUBLE TOP PLATE	3 -10d		4 -10d
< 455	< 420	SSP SINGLE SILL PLATE	1 -10d		4 -10d
< 825	< 825	DSP DOUBLE TOP PLATE	6 -10d		8 -10d
< 825	< 600	DSP SINGLE SILL PLATE	2 -10d		8 -10d
< 885	< 760	SP4			6-10d, 1 1/2"
< 1240	< 1065	SPH4			10-10d, 1 1/2"
< 885	< 760	SP6			6-10d, 1 1/2"
< 1240	< 1065	SPH6			10-10d, 1 1/2"
< 1235	< 1165	LSTA18	14-10d		
< 1235	< 1235	LSTA21	16-10d		
< 1030	< 1030	CS20	18-8d		
< 1705	< 1705	CS16	28-8d		
		STUD ANCHORS*	TO STUDS		TO FOUNDATION
< 1350	< 1305	LTT19	8-16d		1/2" AB
< 2310	< 2310	LTTI31	18-10d, 1 1/2"		1/2" AB
< 2775	< 2570	HD2A	2-5/8" BOLTS		5/8" AB
< 4175	< 3695	HTT16	18 - 16d		5/8" AB
< 1400	< 1400	PAHD42	16-16d		
< 3335	< 3335	HPAHD22	16-16d		
< 2200	< 2200	ABU44	12-16d		1/2" AB
< 2300	< 2300	ABU66	12-16d		1/2" AB
< 2320	< 2320	ABU88	18 - 16d		2-5/8" AB

WIND LOADS PER 2010 FLORIDA BUILDING CO	DE RESIDE	NTIAL	SECTIO	N R30	1.2.1
(ENCLOSED SIMPLE DIAPHRAGM BUILDINGS MEAN ROOF HEIGHT	S WITH FLA	T, HIP	PED, OF	R GABI	E ROOF
BUILDING IS NOT IN THE HIGH VELOCITY HL	JRRICANE Z	ZONE			
BUILDING IS NOT IN THE WIND-BORNE DEBI	RIS REGION	1			
1.) BASIC WIND SPEED = 130 MPH, (3 SEC	GUST, 33 F	T, EX	P. C)		
2.) WIND EXPOSURE = C, BUILDER MUST F	IELD VERIF	Y			
3.) TOPOGRAPHIC FACTOR = 1.0, BUILDER	R MUST FIE	LD VE	RIFY		
4.) RISK CATEGORY = II, (MRI = 700 YR)					
5.) ROOF ANGLE = 7-45 DEGREES					
6.) MEAN ROOF HEIGHT = <30 FT					
7.) INTERNAL PRESSURE COEFFICIENT = N	V/A (ENCLO	SED B	UILDING	3)	
8.) COMPONENTS AND CLADDING DESIGN	WIND PRES	SSUR	S (TAB	LE R30	01.2(2))
2 2 1 2 2 1	1 2	39 39	10 -43 -68		
3 4	3	39	-100		
The state of the s	4	43	-46		+
1	5	43	-57		
		~~ D-	or	Г	
5 2 3 5	Gara 2010 Table	FBC	R,		
5 2 3 5	2010	R301.	R, 2.(4)	37	-42
5 2 3 4 5	2010 Table	R301.	R, 2.(4) loor	37 36	-42 -40
DESIGN LOADS	2010 Table 8x7 Gar	R301.	R, 2.(4) loor		
	2010 Table 8x7 Gar 16x7 Ga	R301.	R, 2.(4) loor		
	2010 Table 8x7 Gar 16x7 Ga	R301.	R, 2.(4) loor		

10 PSF (ATTICS WITHOUT STORAGE, <3:12)

ROOF 20 PSF (FLAT OR <4:12)

SOIL BEARING CAPACITY 1000PSF

16 PSF (4:12 TO <12:12)

NOT IN FLOOD ZONE (BUILDER TO VERIFY)

12 PSF (12:12 AND GREATER

STAIRS 40 PSF (ONE & TWO FAMILY DWELLINGS)

FINALS DATE:

JOB NUMBER 1207061 DRAWING NUMBER

> S-1 OF 2 SHEETS

REVISIONS

PE No.53915, POB 868, Lake City, FL 32056, 386-754-5419 tated dimensions supercede scaled mensions. Refer all questions to Mark Disosway, P.E. for resolution.

Do not proceed without clarification COPYRIGHTS AND PROPERTY RIGHTS: ark Disosway, P.E. hereby ext common law copyrights and property right nese instruments of service. This document is not to be reproduced, altered or copied in any orm or manner without first the express written nission and consent of Mark Disosway.

ERTIFICATION: I hereby certify that I have mined this plan, and that the applicable ortions of the plan, relating to wind engine omply with section R301.2.1, 2010 Florida the best of my knowledge.

Jim & Candy

Smith Garage

ADDRESS:

187 NW Kyle Ct.

Lake City, Florida 32055

Mark Disosway P.E.

P.O. Box 868

Lake City, Florida 32056

Phone: (386) 754 - 5419

Fax: (386) 269 - 4871

PRINTED DATE:

STRUCTURAL BY

David Disosway

July 24, 2012

DRAWN BY:

24Jul12