MiTe

Lymber design values are in accordance with ANSI/TPI 1 section 6.3 hese truss designs rely on lumber values established by others.

RE: 4240528 - CALEB HARRIS

MiTek, Inc.

16023 Swingley Ridge Rd. Chesterfield, MO 63017 314.434.1200

Site Information:

Customer Info: GIEBEIG HOMES Project Name: Caleb Harris Model: Custom

Lot/Block: N/A Address: TBD, TBD

City: Columbia Cty

Subdivision: N/A

State: FL

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name:

License #:

Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: FBC2023/TPI2014

Design Program: MiTek 20/20 8.7

Wind Code: ASCE 7-22 Roof Load: 37.0 psf

Wind Speed: 130 mph Floor Load: N/A psf

This package includes 23 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	T35116099	PB01	9/27/24	15	T35116113	T09	9/27/24
2 3 4 5 6	T35116100	PB01G	9/27/24	16	T35116114	V01	9/27/24
3	T35116101	T01	9/27/24	17	T35116115	V02	9/27/24
4	T35116102	T01G	9/27/24	18	T35116116	V03	9/27/24
5	T35116103	T02	9/27/24	19	T35116117	V04	9/27/24
6	T35116104	T03	9/27/24	20	T35116118	V05	9/27/24
7	T35116105	T03G	9/27/24	21	T35116119	V06	9/27/24
ğ	T35116106	T04	9/27/24	22	T35116120	V07	9/27/24
9	T35116107	T05	9/27/24	23	T35116121	V08	9/27/24
10	T35116108	T06	9/27/24				
11	T35116109	T06G	9/27/24				
8 9 10 11 12 13 14	T35116110	T07 T08	9/27/24				
14	T35116111 T35116112	T08G	9/27/24				
14	133110112	1000	9/27/24				

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Lake City, FL.

Truss Design Engineer's Name: Velez, Joaquin My license renewal date for the state of Florida is February 28, 2025.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MITek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

Velez, Joaquin

1 of 1

V1100 3 8144

T35116099 PB01 32 Piggyback Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.730 s Aug 15 2024 MiTek Industries, Inc. Thu Sep 26 11:41:51 2024 Page 1 ID:0Cb_O6ol0wvR9obEK9jwe QyZrSA-m7bJAqMlbY_VfE1zTwn8pysWdQ1OCZytWW2fiwyZmik Scale = 1:21.0 4x5 = 3 8.00 12 0.4-7 0-1-10 3x4 = 3x4 = 2x4 || LOADING (psf) SPACING-CSI. DEFL 2-0-0 in (loc) I/defi Ld **PLATES** GRIP 20.0 TCLL Plate Grip DOL 1.25 TC 0.19 Vert(LL) 0.01 120 244/190 n/r **MT20** TCDL Lumber DOL 1.25 0.15 Vert(CT) 0.01 n/r 120 BCLL 0.0 Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 BCDL 10.0 Code FBC2023/TPI2014 Matrix-S Weight: 32 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Qty

CALEB HARRIS

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

TOP CHORD

BOT CHORD

LUMBER-

OTHERS

Job

(size) 2=7-11-12, 4=7-11-12, 6=7-11-12

Max Horz 2=-74(LC 10)

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

Truss

Truss Type

Max Uplift 2=-59(LC 12), 4=-68(LC 13), 6=-52(LC 12) Max Grav 2=172(LC 1), 4=172(LC 1), 6=299(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-3-5 to 3-3-5, Zone1 3-3-5 to 4-9-0, Zone3 4-9-0 to 9-2-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Volez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

naters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 ray. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters and properly incorporate this design in the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly manage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH1 Quality Criteria and DSB-22 available from Truss Plate Instit and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Ply CALEB HARRIS Qty Job Truss Truss Type T35116100 2 4240528 PB01G GABLE Job Reference (optional) 8.730 s Aug 15 2024 MiTek Industries, Inc. Thu Sep 26 11:41:52 2024 Page 1
ID:0Cb_06ol0wvR9obEK9jweQyZrSA-EJ9hNANwMs6MGOcA1dlNLAPjYqPax011kAoCFMyZmij Builders FirstSource (Lake City,FL), Lake City, FL - 32055, Scale = 1:18.9 4x5 = 12 11 8.00 12 2x4 || 5 2x4 || 6 7 0-4-7 0-1-10 0-1-10x 2x4 || 2x4 || 2x4 = 2x4 = 2x4 || LOADING (psf) SPACING-CSI. DEFL I/defl L/d PLATES 2-0-0 in (loc) -0.00 120 MT20 244/190 20.0 Plate Grip DOL 1.25 TC 0.05 Vert(LL) n/r TCLL TCDL 7.0 Lumber DOL 1.25 BC 0.03 Vert(CT) 0.00 6 n/r 120 0.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 6 n/a n/a BCLL Code FBC2023/TPI2014 Weight: 31 lb FT = 20% BCDL 10.0 Matrix-S BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No 3 OTHERS

(lb) -

REACTIONS. All bearings 6-11-2.

Max Horz 2=-65(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8 All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-3-5 to 3-3-5, Zone1 3-3-5 to 4-2-11, Zone3 4-2-11 to 8-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10, 8.

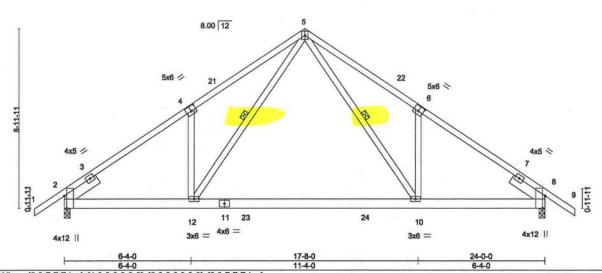
10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Josquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


September 27,2024

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, eraction and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

4x5 ||

Scale = 1:55.5

[2:0-7-7,Edge], [4:0-3-0,0-3-0], [6:0-3-0,0-3-0], [8:0-7-7,Edge] Plate Offsets (X,Y)-LOADING (psf) SPACING-DEFL **PLATES** GRIP 0.34 10-12 TCLL 20.0 Plate Grip DOL 1.25 TC 0.88 Vert(LL) >842 240 MT20 244/190 TCDL 7.0 Lumber DOL 1.25 BC 0.88 Vert(CT) -0.59 10-12 >492 180 WB 0.41 BCLL 0.0 Rep Stress Incr NO Horz(CT) 0.04 8 n/a n/a BCDL 10.0 Code FBC2023/TPI2014 Matrix-MS Weight: 157 lb FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

1 Row at midpt

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x6 SP No.2 *Except*

8-11: 2x6 SP 2400F 2.0E or 2x6 SP M 26

WEBS 2x4 SP No.3

SLIDER Left 2x6 SP No.2 1-11-8

Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

REACTIONS.

(size) 2=0-3-8, 8=0-3-8 Max Horz 2=-222(LC 10)

Max Uplift 2=-364(LC 12), 8=-364(LC 13)

Max Grav 2=1353(LC 2), 8=1353(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1868/898, 4-5=-1847/1008, 5-6=-1888/1027, 6-8=-1907/916

TOP CHORD 2-4=-1868/898, 4-5=-1847/1008, 5-6=-1888/1027, 0 2-12=-625/1545, 10-12=-312/961, 8-10=-656/1520

WEBS 5-10=-618/1109, 6-10=-286/275, 5-12=-590/1050, 4-12=-281/275

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 12-0-0, Zone2 12-0-0 to 16-2-15, Zone1 16-2-15 to 25-6-0 zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
 to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2=364, 8=364.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25
 Uniform Loads (pif)

Vert: 1-5=-54, 5-9=-54, 12-13=-20, 10-12=-80(F=-60), 10-17=-20

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 2-7-9 oc purlins. Rigid ceiling directly applied or 8-8-13 oc bracing.

5-10, 5-12

Joaquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

September 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, serction and bracing of trusses and truss systems, see AMSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

CALEB HARRIS Truss Type Qty Job Truss Ply T35116102 T01G GABLE 4240528 Job Reference (optional) 8.730 s Aug 15 2024 MiTek Industries, Inc. Thu Sep 26 11:41:53 2024 Page 1 ID:0Cb_06ol0wvR9obEK9jweQyZrSA-iWi3aWOY7AEDuYBMaLpcuNxlUEitgGbAzqXinoyZmil Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 17-8-0 24-0-0 Scale = 1:55.6 5x6 = 5 8.00 12 4x5 > 4x5 / 4x5 / 445 N 45 46 3x6 || 3x6 || 12 3x6 || 11 3x6 || 3x6 || 10 3x6 || 3x6 || 4x8 || 4x5 = 4x8 || 4x5 = 8x10 = 3x6 || 17-8-0 [2:0-2-7,0-2-12], [5:0-2-0,0-0-4], [8:0-2-7,0-2-0], [11:0-5-0,0-6-0] Plate Offsets (X,Y)-LOADING (psf) SPACING-CSI. DEFL I/defl Ld PLATES GRIP 244/190 TC BC -0.10 10-12 TCLL 20.0 Plate Grip DOL 1.25 0.62 Vert(LL) >999 240 MT20 -0.18 10-12 >999 180 TCDL 7.0 Lumber DOL 1.25 0.15 Vert(CT) Rep Stress Incr WB 0.86 Horz(CT) 0.01 n/a BCLL 0.0 YES n/a Code FBC2023/TPI2014 BCDL 10.0 Weight: 258 lb FT = 20%

> BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 *Except*

1-3,7-9: 2x4 SP No.2

2x8 SP 2400F 2.0E **BOT CHORD** 2x4 SP No.3 WEBS

OTHERS 2x4 SP No.3

REACTIONS.

(size) 2=0-3-8, 8=0-3-8

Max Horz 2=-211(LC 10) Max Uplift 2=-256(LC 12), 8=-256(LC 13)

Max Grav 2=1056(LC 2), 8=1056(LC 2)

TOP CHORD

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD

2-4=-1420/673, 4-5=-1489/844, 5-6=-1489/844, 6-8=-1420/673 2-12=-470/1179, 10-12=-194/709, 8-10=-474/1179

5-10=-487/821, 6-10=-407/307, 5-12=-487/821, 4-12=-406/307 WEBS

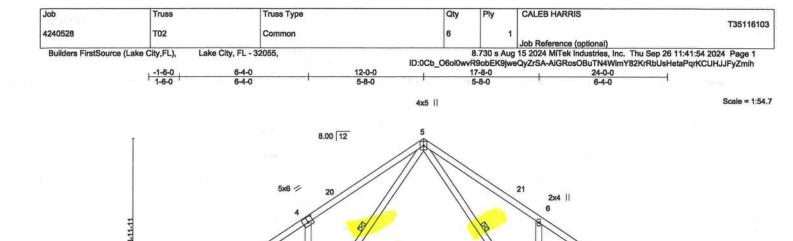
NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf, BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
- to the use of this truss component.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=256, 8=256.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 4-4-7 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

Jonquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

September 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MTE-K® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent occlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

4x8 || 3x6 = 3x6 = 4x12 || Plate Offsets (X,Y)-[2:0-7-7,Edge], [4:0-3-0,0-3-0] LOADING (psf) SPACING-2-0-0 CSL DEFL in Reh\l L/d **PLATES** GRIP 20.0 Plate Grip DOL 244/190 1.25 TC 0.87 Vert(LL) 0.34 9-11 >844 TCLL 240 **MT20**

10

4x6 =

1 Row at midpt

TCDL 7.0 1.25 BC 0.89 -0.58 >494 180 Lumber DOL Vert(CT) 9-11 WB BCLL Rep Stress Incr Horz(CT) n/a n/a BCDL 10.0 Code FBC2023/TPI2014 Matrix-MS Weight: 154 lb FT = 20%

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

2x6 SP 2400F 2.0E or 2x6 SP M 26 *Except* BOT CHORD

8-10: 2x6 SP No.2

WERS 2x4 SP No 3

SLIDER Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

REACTIONS.

(size) 8=0-3-8, 2=0-3-8 Max Horz 2=214(LC 9)

Max Uplift 8=-326(LC 13), 2=-364(LC 12) Max Grav 8=1285(LC 2), 2=1355(LC 2)

4x5 /

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1909/917, 4-5=-1891/1031, 5-6=-1860/1023, 6-8=-1878/914

2-11=-685/1567, 9-11=-343/951, 8-9=-666/1495 **BOT CHORD**

5-9=-596/1069, 6-9=-287/279, 5-11=-616/1108, 4-11=-286/275 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 12-0-0, Zone2 12-0-0 to 16-2-15, Zone1 16-2-15 to 24-0-0 zone; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

11

- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=326, 2=364
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-5=-54, 5-8=-54, 11-16=-20, 9-11=-80(F=-60), 9-12=-20

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

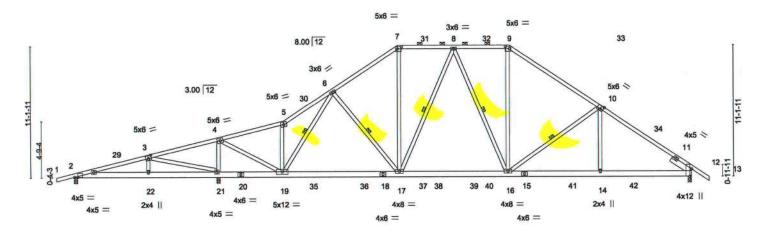
4x5 >

Structural wood sheathing directly applied or 2-8-6 oc purlins.

5-9, 5-11

Rigid ceiling directly applied or 8-6-0 oc bracing.

Joaquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


September 27,2024

neters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTeke's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly and properly energial guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Qty CALEB HARRIS Job Truss Truss Type T35116104 6 4240528 T03 Piggyback Base Job Reference (optional) 8.730 s Aug 15 2024 MiTek Industries, Inc. Thu Sep 26 11:41:55 2024 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055. ID:0Cb_O6ol0wvR9obEK9jweQyZrSA-euqp?CPpfnVx7sLkils4zo11S2FA8CWTR80srhyZmig 32-0-0 36-9-0 44-4-0 52-0-0 53-6-0

Scale = 1:93.5

	24	6-3-0 12-1-12	17-8-	3 ,	27-3-0		36-9	9-0		44-4-0	52-0-	0
		6-3-0 5-10-12	5-6-1) '	9-6-10		9-6	-0	1	7-7-0	7-8-0	,
Plate Offse	ets (X,Y)-	[2:0-3-6,0-0-1], [3:0-3-0,0)-3-0], [7:0-4-4,0	-2-4], [9:0-4-	-4,0-2-4], [10	0:0-2-12,0-3-4], [12	2:0-7-7,E	dge]				
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.84	Vert(LL)	-0.15	17-19	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.74	Vert(CT)	-0.28	16-17	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.71	Horz(CT)	0.06	12	n/a	n/a		
BCDL	10.0	Code FBC2023/T	PI2014	Matrix	c-MS	27. 29					Weight: 357 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied, except 2-0-0 oc purlins (4-8-12 max.): 7-9. Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

6-19, 6-17, 8-17, 8-16, 10-16

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

9-10: 2x4 SP No.1 **BOT CHORD** 2x6 SP No.2

2x4 SP No.3 *Except* WEBS

4-19: 2x4 SP No.2

Right 2x6 SP No.2 1-11-8 SLIDER

REACTIONS. (size) 2=0-3-8, 21=0-3-8, 12=0-3-8

Max Horz 2=288(LC 11)

Max Uplift 2=-265(LC 8), 21=-541(LC 12), 12=-315(LC 13) Max Grav 2=270(LC 25), 21=2625(LC 2), 12=1725(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-34/491, 3-4=-337/1265, 4-5=-1225/192, 5-6=-1434/279, 6-7=-1726/406,

TOP CHORD

7-8=-1383/395, 8-9=-1466/412, 9-10=-1853/417, 10-12=-2273/457

2-22=-447/167, 21-22=-444/168, 19-21=-1195/455, 17-19=-162/1462, 16-17=-94/1468, **BOT CHORD** 14-16=-253/1829, 12-14=-254/1826

3-22=-148/263, 3-21=-1010/570, 4-21=-2167/483, 4-19=-479/2673, 5-19=-654/211,

6-19=-442/143, 7-17=-88/710, 8-17=-342/202, 9-16=-84/705, 10-16=-589/329,

NOTES-

WEBS

1) Unbalanced roof live loads have been considered for this design.

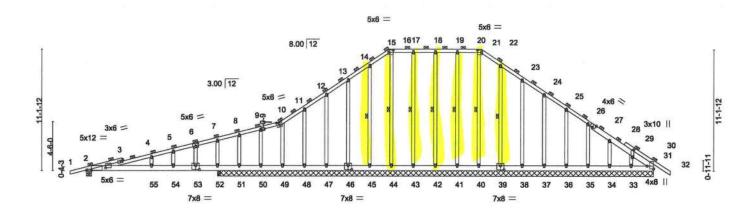
- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 3-8-6, Zone1 3-8-6 to 27-3-0, Zone2 27-3-0 to 34-7-4 Zone1 34-7-4 to 36-9-0, Zone2 36-9-0 to 44-1-4, Zone1 44-1-4 to 53-6-0 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) 100.0lb AC unit load placed on the bottom chord, 32-0-0 from left end, supported at two points, 3-0-0 apart.

- 5) Provide adequate drainage to prevent water ponding.
 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=265, 21=541, 12=315.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Iuc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


September 27,2024

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and parament bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and parament bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

CALEB HARRIS Job Truss Truss Type Qty Ply T35116105 T03G Piggyback Base Supported Gable 4240528 Job Reference (optional) 8.730 s Aug 15 2024 MITek Industries, Inc. Thu Sep 26 11:41:56 2024 Page 1 ID:0Cb_06ol0wxR9obEK9jweQyZrSA-64OCDYQRQ5dol0wxGTNJW0ZG0RbltoUcfomPO7yZmif Lake City, FL - 32055, Builders FirstSource (Lake City,FL), 10-0-15

Scale = 1:101.9

		12-0-0						-0-0				
Plate Offsets (X,Y)-		12-0-0 [2:0-5-4,0-0-3], [2:1-9-0,0 [39:0-4-0,0-4-8], [46:0-4-	15:0-4-8,0-2-8], [21	40 1:0-4-8,0	7-11,0-1-4], [31:Edge,0	-6-15],						
LOADING TCLL TCDL BCLL	(psf) 20.0 7.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.25 1.25 YES	CSI. TC BC WB	0.60 0.75 0.15	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.30 -0.38 0.01	(loc) 2-55 2-55 31	l/defl >466 >367 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code FBC2023/T		Matrix		1.012(01)	0.01	31	iva	IVa	Weight: 424 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

2-0-0 oc purlins (8-9-0 max.).

1 Row at midpt

Rigid ceiling directly applied or 6-0-0 oc bracing.

22-39

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

27-31: 2x6 SP No.2 2x6 SP No.2 BOT CHORD

2x4 SP No.3 OTHERS

REACTIONS. All bearings 40-0-0 except (jt=length) 2=0-5-8.

Max Horz 52=290(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 45, 46, 47, 48, 49, 44, 43, 42, 41,

40, 39, 38, 37, 36, 35, 34, 31 except 2=-260(LC 8), 50=-187(LC 8), 51=-673(LC

1), 52=-726(LC 8), 33=-113(LC 13)

All reactions 250 lb or less at joint(s) 45, 46, 47, 48, 49, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31 except 2=415(LC 1), 50=364(LC 1),

51=441(LC 8), 52=1239(LC 1), 52=1239(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-345/168, 4-5=-296/154, 5-6=-286/177, 6-7=-259/178, 13-14=-57/252,

28-30=-296/207, 30-31=-394/217

BOT CHORD 2-55=-141/389, 54-55=-141/389, 53-54=-141/389, 52-53=-142/390, 51-52=-177/394

250-51=177/394, 49-50=177/394, 48-49=180/397, 47-48=180/397, 46-47=180/397, 44-45=180/397, 43-44=180/397, 42-43=180/397, 41-42=180/397, 45-46=180/397, 45-46=180/397, 45-46=180/397, 45-45=180/397, 45-46=180/397, 45-45=180/397, 45-46=180/397, 45-45

40-41=-180/397, 39-40=-180/397, 38-39=-180/397, 37-38=-180/397, 36-37=-180/397,

35-36=-180/397, 34-35=-180/397, 33-34=-180/397, 31-33=-172/386

WEBS 7-52=-303/272

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
- to the use of this truss component.

 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

14-45, 16-44, 17-43, 18-42, 19-41, 20-40,

Joaquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord mebers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, eraction and bracing of trusses and truss systems, see ANSI/TP1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Job	Truss	Truss Type	Qty	Ply	CALEB HARRIS	T35116105
4240528	T03G	Piggyback Base Supported Gable	1	1		1,5044,000,001,500,000,000
		2000 NO. O			Job Reference (optional)	

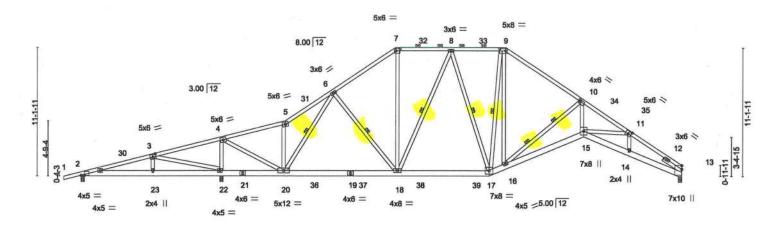
Builders FirstSource (Lake City,FL),

Lake City, FL - 32055,

8.730 s Aug 15 2024 MITek Industries, Inc. Thu Sep 26 11:41:56 2024 Page 2 ID:0Cb_06ol0wxR9obEK9jweQyZrSA-64OCDYQRQ5dol0wxGTNJW0ZG0RbltoUcfomPO7yZmlf

NOTES-

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 45, 46, 47, 48, 49, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 31 except (|t=|b|) 2=260, 50=187, 51=673, 52=726, 33=113.


11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

CALEB HARRIS Job Truss Truss Type Qty Ply T35116106 4240528 T04 PIGGYBACK BASE 11 Job Reference (optional) Builders FirstSource (Lake City,FL), Lake City, FL - 32055, 8.730 s Aug 15 2024 MiTek Industries, Inc. Thu Sep 26 11:41:57 2024 Page 1

Scale: 1/8"=1"

	1	6-3-0 12-1-12	17-8-6	27-3-0	35-4-0	36	5-9-0	43-6-4	47-6-0 52-0	-0 ,	
		6-3-0 5-10-12	5-8-10	9-6-10	8-1-0	1-	-5-0	6-9-4	3-11-12 4-6	-0	
Plate Offs	sets (X,Y)-	[2:0-3-6,0-0-1], [3:0-3-0,	0-3-0], [7:0-4-4,0-2-	4], [9:0-6-4,0-2-4], [10:0-1-	3,0-1-12], [11:0-3-0,	0-3-0]					174.19
LOADING	G (psf)	SPACING-	2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC 0.91	Vert(LL) -0.33	15-16	>999	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC 0.74	Vert(CT) -0.57	15-16	>832	180			
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.88	Horz(CT) 0.32	13	n/a	n/a			
BCDL	10.0	Code FBC2023/1	PI2014	Matrix-MS	285 B (h)				Weight: 373 lb	FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2

2x6 SP No.2 *Except* **BOT CHORD**

13-15: 2x6 SP 2400F 2.0E or 2x6 SP M 26 2x4 SP No.3 *Except* WEBS

4-22,4-20,10-15: 2x4 SP No.2

SLIDER Right 2x4 SP No.3 1-11-8

REACTIONS. (size) 2=0-3-8, 13=0-3-8, 22=0-3-8

Max Horz 2=286(LC 9)

Max Uplift 2=-246(LC 8), 13=-316(LC 13), 22=-625(LC 12) Max Grav 2=190(LC 25), 13=1490(LC 20), 22=2729(LC 2)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. FORCES.

TOP CHORD

2-3=-138/966, 3-4=-491/1816, 4-5=-823/162, 5-6=-961/243, 6-7=-1490/475, 7-8=-1185/453, 8-9=-1295/479, 9-10=-1686/522, 10-11=-4253/948, 11-13=-3542/932 2-23=-949/279, 22-23=-947/280, 20-22=-1730/583, 18-20=-216/1201, 17-18=-178/1287, **BOT CHORD**

16-17=-143/1446, 15-16=-709/3703, 14-15=-728/3181, 13-14=-693/2956 **WEBS**

3-23=-147/270, 3-22=-1030/569, 4-22=-2279/575, 4-20=-635/2834, 5-20=-491/209,

6-20=-694/261, 7-18=-127/582, 8-18=-392/210, 9-17=-418/70, 9-16=-175/1020, 10-16=-2715/671, 10-15=-499/2915, 11-15=-111/674, 11-14=-450/120

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl. GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 3-8-6, Zone1 3-8-6 to 27-3-0, Zone2 27-3-0 to 34-7-4 Zone1 34-7-4 to 36-9-0, Zone2 36-9-0 to 44-1-4, Zone1 44-1-4 to 52-0-0 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=246, 13=316, 22=625. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 1-9-7 oc purlins, except

10-16

6-20, 6-18, 8-18, 8-17, 9-17

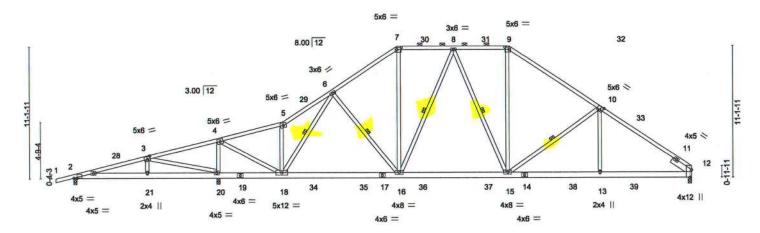
2-0-0 oc purlins (5-1-3 max.): 7-9.

1 Row at midpt

2 Rows at 1/3 pts

Rigid ceiling directly applied or 5-5-2 oc bracing.

Josquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


September 27,2024

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and round the base of the base of

CALEB HARRIS Truss Type Qty Ply Job Truss T35116107 T05 3 4240528 Piggyback Base Job Reference (optional) 8.730 s Aug 15 2024 MiTek Industries, Inc. Thu Sep 26 11:41:58 2024 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055. ID:0Cb_06ol0wvR9obEK9)weQyZrSA-3TWyeEShxitV_J3JNuPnbR7XFlhLVtv76FWS0yZmld 32-0-0 38-9-0 44-4-0 52-0-0 21-10-0

Scale = 1:93.3

		6-3-0 12-1-12	17-8-6	8 ,	27-3-0	1	36-9-0	0	- 1	44-4-0	52-0-	0
	1	6-3-0 5-10-12	5-6-10	0	9-6-10	- 1	9-6-0)		7-7-0	7-8-0) 1
Plate Offse	ets (X,Y)-	[2:0-3-6,0-0-1], [3:0-3-0,0	0-3-0], [7:0-4-4,0)-2-4], [9:0-4	-4,0-2-4], [10:	0-2-12,0-3-4], [12	2:0-7-7,Edg	ge]				
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in ((loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.95	Vert(LL)	-0.15 16	-18	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.69	Vert(CT)	-0.26 16	3-18	>999	180		
BCLL BCDL	0.0 *	Rep Stress Incr Code FBC2023/7	YES PI2014	WB Matri	0.99 x-MS	Horz(CT)	0.06	12	n/a	n/a	Weight: 354 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied, except

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt 6-18, 6-16, 8-16, 8-15, 10-15

2-0-0 oc purlins (4-10-3 max.): 7-9.

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x6 SP No.2 2x4 SP No.3 WEBS

Right 2x6 SP No.2 1-11-8 SLIDER

REACTIONS. (size) 2=0-3-8, 20=0-3-8, 12=0-3-8

Max Horz 2=286(LC 9)

Max Uplift 2=-257(LC 8), 20=-602(LC 12), 12=-324(LC 13) Max Grav 2=279(LC 25), 20=2564(LC 2), 12=1601(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-67/449, 3-4=-369/1228, 4-5=-1188/228, 5-6=-1392/322, 6-7=-1644/504, TOP CHORD

7-8=-1315/478, 8-9=-1395/487, 9-10=-1768/530, 10-12=-2213/583

2-21=-408/174, 20-21=-405/174, 18-20=-1158/464, 16-18=-238/1394, 15-16=-177/1399, **BOT CHORD**

13-15=-337/1782, 12-13=-338/1778 3-21=-146/264, 3-20=-1010/567, 4-20=-2111/538, 4-18=-569/2592, 5-18=-639/227, WEBS

6-18=-399/186, 7-16=-143/665, 8-16=-339/205, 9-15=-150/659, 10-15=-618/314,

10-13=0/303

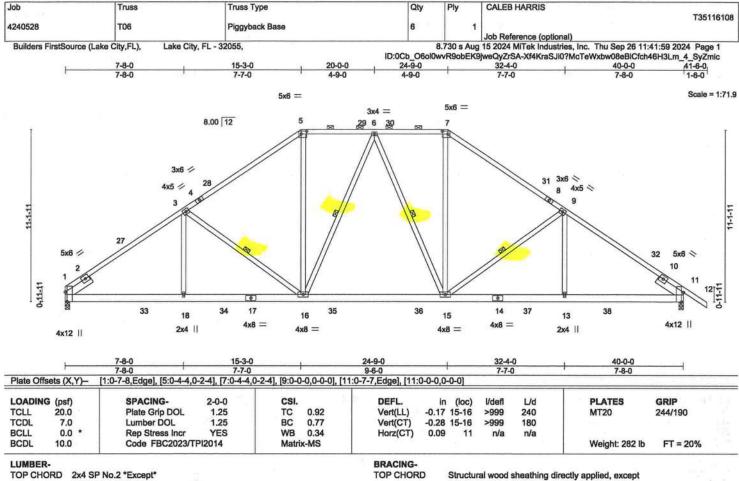
NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 3-8-6, Zone1 3-8-6 to 27-3-0, Zone2 27-3-0 to 34-7-4, Zone1 34-7-4 to 36-9-0, Zone2 36-9-0 to 44-1-4, Zone1 44-1-4 to 52-0-0 zone; end vertical right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2=257, 20=602, 12=324,
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Isc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeks connectors. This design is based only upon parameters are shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Brancing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI Quality Criteria and DSB-22 available from Truss Plate institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

BOT CHORD

WEBS

2-0-0 oc purlins (4-7-6 max.): 5-7.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3-16, 6-16, 6-15, 9-15

2x4 SP No.2 *Except*

4-5,7-8: 2x4 SP No.1

2x6 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS

SLIDER Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

REACTIONS. (size) 1=0-3-8, 11=0-3-8

Max Horz 1=-268(LC 8)

Max Uplift 1=-377(LC 12), 11=-414(LC 13) Max Grav 1=1698(LC 2), 11=1766(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2367/541, 3-5=-1938/490, 5-6=-1539/483, 6-7=-1539/482, 7-9=-1937/489,

9-11=-2359/537

BOT CHORD

1-18=-487/2021, 16-18=-487/2021, 15-16=-221/1579, 13-15=-297/1896, 11-13=-297/1896 3-18=0/288, 3-16=-597/305, 5-16=-153/753, 6-16=-274/212, 6-15=-276/212, WEBS

7-15=-153/752, 9-15=-589/301, 9-13=0/286

NOTES-

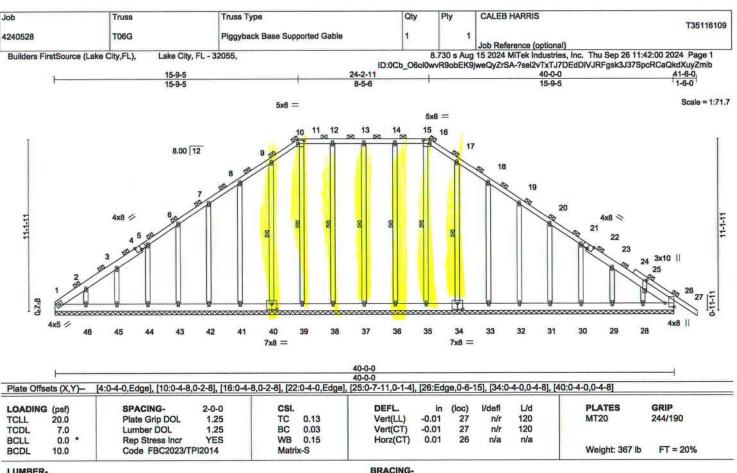
1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 4-0-0, Zone1 4-0-0 to 15-3-0, Zone2 15-3-0 to 20-10-14, Zone1 20-10-14 to 24-9-0, Zone2 24-9-0 to 30-4-14, Zone1 30-4-14 to 41-6-0 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

 4) Provide adequate drainage to prevent water ponding.

 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=377, 11=414,
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd Chesterfield, MO 63017 Date:

September 27,2024

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARMING - vern'y design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MILITA'S RV. 1/12/02/3 BEFURE. Using valid for use only with MITOR® connectors. This design is based only upon parameters shown, and is for an individual building component, not russ system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall idling design. Bracing indicated is to prevent buckling of individual truss web and/or chord member only. Additional temporary and permanent brae always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the office of the property damage of the property damage of the property damage. The property damage of the property damage of the property damage of the property damage. The property damage of the property damage of the property damage of the property damage of the property damage. The property damage of the property damage of the property damage of the property damage of the property damage. The property damage of the property damage. The property damage of th

LUMBER-

2x4 SP No.2 *Except TOP CHORD

1-4,22-26: 2x6 SP No.2

BOT CHORD 2x6 SP No.2

2x4 SP No.3 **OTHERS**

TOP CHORD 2-0-0 oc purlins (6-0-0 max.).

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt 13-37, 12-38, 11-39, 9-40, 14-36, 15-35,

17-34

REACTIONS. All bearings 40-0-0.

Max Horz 1=-273(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 36, 34, 33, 32, 31, 30,

29, 26 except 46=-118(LC 12), 28=-109(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 36, 35, 34, 33,

32, 31, 30, 29, 28, 26

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

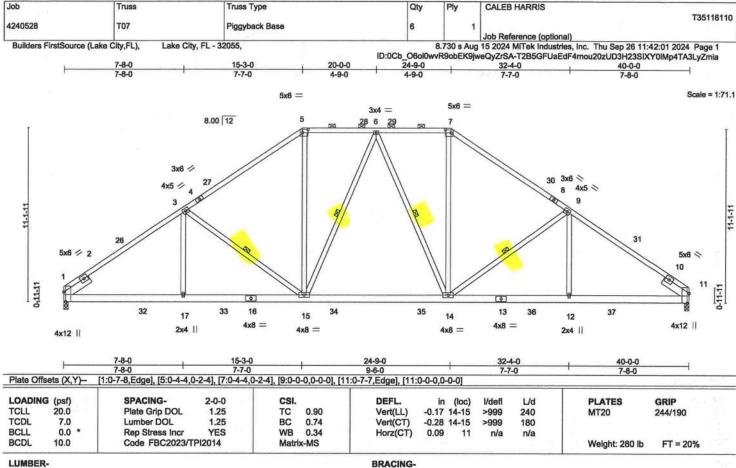
TOP CHORD 1-2=-310/221

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
- to the use of this truss component.

 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 36, 34, 33, 32, 31, 30, 29, 26 except (jt=lb) 46=118, 28=109.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Jonquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord mehers only. Additional temporary and parameter bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see "ANSITPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied, except

Rigid ceiling directly applied or 10-0-0 oc bracing.

3-15, 6-15, 6-14, 9-14

2-0-0 oc purlins (4-7-6 max.): 5-7.

1 Row at midpt

TOP CHORD 2x4 SP No.2 *Except* 4-5,7-8: 2x4 SP No.1

BOT CHORD 2x6 SP No.2 2x4 SP No.3 WEBS

SLIDER Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8

REACTIONS.

1=0-3-8, 11=0-3-8

Max Horz 1=-252(LC 8) Max Uplift 1=-377(LC 12), 11=-377(LC 13)

Max Grav 1=1699(LC 2), 11=1699(LC 2)

FORCES. Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 1-3=-2369/541, 3-5=-1940/491, 5-6=-1541/483, 6-7=-1541/483, 7-9=-1940/491,

9-11=-2370/542

BOT CHORD 1-17=-504/2010, 15-17=-504/2010, 14-15=-238/1582, 12-14=-334/1905, 11-12=-334/1905

3-17=0/288, 3-15=-597/305, 5-15=-153/754, 6-15=-275/212, 6-14=-275/212, WEBS

7-14=-153/754, 9-14=-598/305, 9-12=0/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-0-0 to 4-0-0, Zone1 4-0-0 to 15-3-0, Zone2 15-3-0 to 20-10-14, Zone1 20-10-14 to 24-9-0, Zone2 24-9-0 to 30-4-14, Zone1 30-4-14 to 40-0-0 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord mehers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see AMS/ITPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Truss Type Qty Ply CALEB HARRIS Job Truss T35116111 4240528 T08 Monopitch Job Reference (optional) 8.730 s Aug 15 2024 MiTek Industries, Inc. Thu Sep 26 11:42:01 2024 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:0Cb_O6ol0wvR9obEK9jweQyZrSA-T2B5GFUaEdF4rnou20zUD3H6hSMvY3yMp4TA3LyZmla 11-3-10 Scale = 1:23 6 4x5 || 3.00 12 4 2x4 =

> 8-3-8 8-3-8

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L∕d	PLATES	GRIP
CLL	20.0	Plate Grip DOL	1.25	TC	0.67	Vert(LL)	0.10	6-9	>956	240	MT20	244/190
CDL	7.0	Lumber DOL	1.25	BC	0.46	Vert(CT)	-0.18	6-9	>535	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code FBC2023/T	PI2014	Matri	x-MS						Weight: 40 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

6x8 =

except end verticals.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

(size) 2=0-3-8, 6=0-3-8

Max Horz 2=124(LC 8)

Max Uplift 2=-211(LC 8), 6=-278(LC 8) Max Grav 2=357(LC 1), 6=497(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-396/166, 4-6=-310/390

BOT CHORD 2-6=-261/379

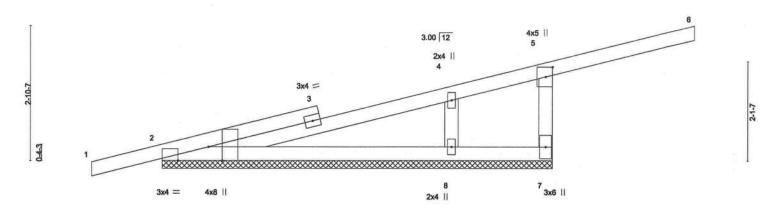
WEBS 3-6=-419/316

NOTES

- 1) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 11-3-10 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
 to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=211, 6=278.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017


September 27,2024

WARNING - Varify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Scale = 1:23.6

Plate Offse	ets (X,	Y)-	[2:0-3-8,Edge], [2:0-7-12,	Edge], [5:0-2-8	3,0-1-12]	0-3-0								
LOADING	(psf)		SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0		Plate Grip DOL	1.25	TC	0.90	Vert(LL)	0.06	6	n/r	120	MT20	244/190	
TCDL	7.0		Lumber DOL	1.25	BC	0.27	Vert(CT)	-0.01	6	n/r	120	201000000		
BCLL	0.0	*	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	7	n/a	n/a	0		
BCDL	10.0		Code FBC2023/T	PI2014	Matri	x-S						Weight: 39 lb	FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

8-3-8

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

(size) 2=8-3-8, 7=8-3-8, 8=8-3-8 Max Horz 2=112(LC 8)

Max Uplift 2=-117(LC 8), 7=-160(LC 9), 8=-100(LC 12) Max Grav 2=269(LC 1), 7=228(LC 1), 8=357(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-

2-4=-339/129, 4-5=-273/103, 5-7=-260/529

WEBS 4-8=-214/297

NOTES

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific
 to the use of this truss component.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=117, 7=160, 8=100.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 2-2-0 oc purlins,

Rigid ceiling directly applied or 6-0-0 oc bracing.

except end verticals.

Joaquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

September 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, eraction and bracing of trusses and truss systems, see ANSITP11 Quality Criteria and DSB-22 available from Truss Piate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

CALEB HARRIS Job Truss Truss Type Qty Ply T35116113 4240528 T09 Monopitch 15 Job Reference (optional) 8.730 s Aug 15 2024 MITek Industries, Inc. Thu Sep 26 11:42:03 2024 Page 1 ID:0Cb_06ol0wvR9obEK9jweQyZrSA-PRJrhxVqmEVo54yHAR?ylUMUZG2J0zweGOyH7DyZmiY Builders FirstSource (Lake City,FL), Lake City, FL - 32055, Scale = 1:18.1 2x4 || 4 3.00 12 2x4 = 10 3 04-3 3x6 = 8-3-8

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.45	Vert(LL)	-0.09	5-8	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.47	Vert(CT)	-0.18	5-8	>541	180	10000000000	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code FBC2023/T	PI2014	Matri	x-MS						Weight: 36 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WEBS 2x4 SP No.3

(size) 2=0-3-8, 5=0-3-8

Max Horz 2=98(LC 8)

Max Uplift 2=-234(LC 8), 5=-178(LC 8) Max Grav 2=390(LC 1), 5=294(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-556/473 **BOT CHORD** 2-5=-565/536

WEBS 3-5=-520/544

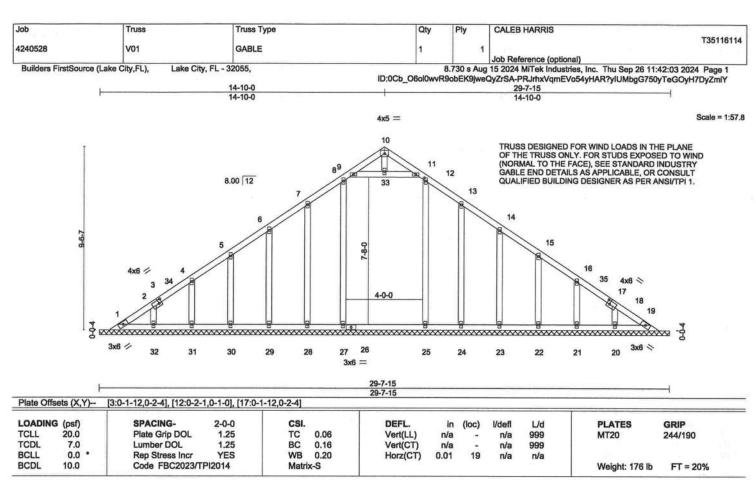
NOTES-

- Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 -1-6-0 to 1-6-0, Zone1 1-6-0 to 8-1-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=234, 5=178.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 7-5-11 oc bracing.


except end verticals.

Joaquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

MARNING - Verify design perameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, eraction and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.3 **OTHERS** 2x4 SP No.3

REACTIONS. All bearings 29-7-15.

Max Horz 1=-228(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 27, 28, 29, 30, 31, 32, 24, 23, 22, 21, 20, 19 Max Grav All reactions 250 lb or less at joint(s) 1, 28, 29, 30, 31, 32, 24, 23, 22, 21, 20, 19 except

27=345(LC 19), 25=306(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 1-0-1 to 4-0-1, Zone1 4-0-1 to 14-10-0, Zone2 14-10-0 to 18-10-0, Zone1 18-10-0 to 28-7-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 27, 28, 29, 30, 31, 32, 24, 23, 22, 21, 20, 19.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Joaquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

September 27,2024

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property language. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

CALEB HARRIS Truss Truss Type Qty Job T35116115 V02 Valley 4240528 Job Reference (optional) 8.730 s Aug 15 2024 MiTek Industries, Inc. Thu Sep 26 11:42:05 2024 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:0Cb_O6ol0wvR9obEK9jweQyZrSA-LpRb6dX4IsIWKO6fHs1QNvRvU4oTUsUxkiROC6yZmiW Scale = 1:61.8 4x5 = 8.00 12 3x6 / 3x6 > 8 9-10-7 21 10 3x6 > 3x6 / 19 18 17 15 14 DEFL Ld **PLATES** GRIP LOADING (psf) SPACING-2-0-0 CSI. (loc) I/defl 244/190 20.0 Plate Grip DOL 1.25 TC 0.17 Vert(LL) n/a n/a 999 MT20 TCLL 999 TCDL 7.0 Lumber DOL 1.25 BC 0.17 Vert(CT) n/a n/a WB 0.01 n/a BCLL 0.0 Rep Stress Incr YES 0.23 Horz(CT) n/a Code FBC2023/TPI2014 Weight: 145 lb FT = 20% BCDL Matrix-S 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD 1 Row at midpt 6-15 2x4 SP No.3 WEBS **OTHERS** REACTIONS.

All bearings 29-6-10.

Max Horz 1=-236(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 11 except 17=-178(LC 12), 18=-167(LC 12), 19=-147(LC 12),

14=-177(LC 13), 13=-167(LC 13), 12=-147(LC 13)
All reactions 250 lb or less at joint(s) 1, 11 except 15=390(LC 22), 17=456(LC 19), 18=412(LC 19), 19=330(LC 19), 14=455(LC 20), 13=412(LC 20), 12=330(LC 20)

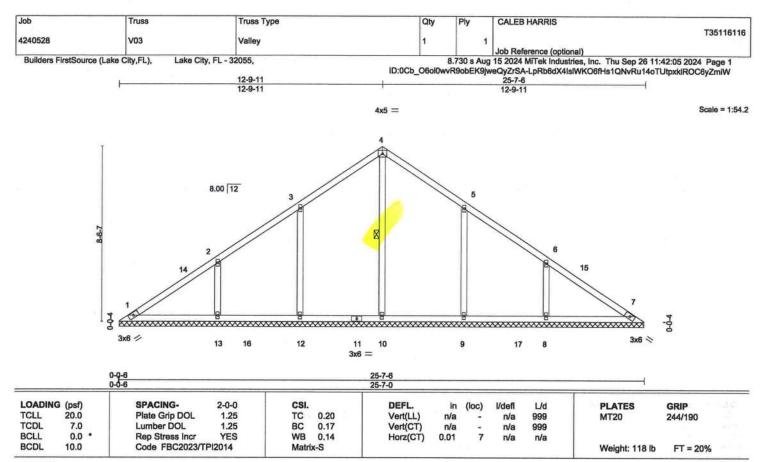
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

5-17=-253/202, 7-14=-252/201

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-5-12 to 3-5-12, Zone1 3-5-12 to 14-9-11, Zone2 14-9-11 to 18-9-11, Zone1 18-9-11 to 29-1-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL = 1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11 except (jt=lb) 17=178, 18=167, 19=147, 14=177, 13=167, 12=147.


This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/UTPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING-

TOP CHORD **BOT CHORD WEBS**

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt 4-10

REACTIONS. All bearings 25-6-10.

Max Horz 1=-203(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7 except 12=-170(LC 12), 13=-194(LC 12), 9=-170(LC 13),

8=-195(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=380(LC 22), 12=433(LC 19), 13=455(LC 19), 9=433(LC 20), 8=455(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-13=-272/213, 6-8=-272/213

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-5-12 to 3-5-12, Zone1 3-5-12 to 12-9-11, Zone2 12-9-11 to 16-9-11, Zone1 16-9-11 to 25-1-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except ([t=lb] 12=170, 13=194, 9=170, 8=195,

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Jonquin Velez PE No.63182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017 Date:

September 27,2024

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. AMARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILES REPORTED FOR SET ON SOME AND ARRIVED SET OF SET OF

CALEB HARRIS Job Truss Truss Type Qtv Ply T35116117 V04 Valley 4240528 Job Reference (optional) 8.730 s Aug 15 2024 Mirck Industries, Inc. Thu Sep 26 11:42:06 2024 Page 1
ID:0Cb_O6ol0wvR9obEK9jweQyZrSA-q0?_JzYi39tNyYgsrZYfw7_4CT8dDK45yMBxkYyZmiV
21-7-6
10-9-11 Lake City, FL - 32055, Builders FirstSource (Lake City,FL), Scale = 1:45.7 4x5 = 8.00 12 15 -6 3x6 / 9 8 12 10 13 11 3x6 = **PLATES** GRIP LOADING (psf) DEFL SPACING-2-0-0 CSL in (loc) I/defl L/d Plate Grip DOL 999 MT20 244/190 1.25 Vert(LL) TC 0.17 n/a n/a TCLL 20.0 1.25 BC 0.17 Vert(CT) n/a n/a 999 TCDL Lumber DOL 7.0 BCLL 0.0 Rep Stress Incr YES WB 0.14 Horz(CT) 0.00 n/a n/a FT = 20% Weight: 95 lb Code FBC2023/TPI2014 Matrix-S BCDL 10.0 BRACING-LUMBER-TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.3

REACTIONS. All bearings 21-6-10.

Max Horz 1=170(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 7 except 12=-184(LC 12), 13=-142(LC 12), 9=-184(LC 13),

8=-143(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=362(LC 22), 12=434(LC 19), 13=323(LC 19), 9=434(LC 20), 8=323(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-12=-261/209, 5-9=-261/209

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-5-12 to 3-5-12, Zone1 3-5-12 to 10-9-11, Zone2 10-9-11 to 14-9-11, Zone1 14-9-11 to 21-1-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (it=lb) 12=184, 13=142, 9=184, 8=143.


This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord mehers only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord mehers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

OTHERS REACTIONS.

All bearings 17-6-10. Max Horz 1=-137(LC 8)

2x4 SP No.3

(lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-210(LC 12), 6=-210(LC 13)

All reactions 250 lb or less at joint(s) 1, 5 except 7=320(LC 19), 9=477(LC 19), 6=477(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS

2-9=-293/230, 4-6=-293/230

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-5-12 to 3-5-12, Zone1 3-5-12 to 8-9-11, Zone2 8-9-11 to 12-9-11, Zone1 12-9-11 to 17-1-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (|t=|b) 9=210, 6=210.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Jonquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Brancing Indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the flabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSR-22 available from Truss Plate Institute (valid Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

Qty CALEB HARRIS Job Truss Truss Type T35116119 4240528 V06 Valley Job Reference (optional) 8.730 s Aug 15 2024 MITek Industries, Inc. Thu Sep 26 11:42:07 2024 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:0Cb_O6ol0wvR9obEK9jweQyZrSA-ICZMWJZKqT?EZiF2PH3uSKXFltVgypcEB?wVH_yZmiU 13-7-6 Scale = 1:28 8 4x5 = 3 8.00 12 10 2x4 || 2x4 || 3x6 > 3x6 / 2x4 || 2x4 || 2x4 || GRIP LOADING (psf) SPACING-CSI. DEFL. I/defl L/d **PLATES** 244/190 TC BC MT20 TCLL 20.0 Plate Grip DOL 1.25 0.15 Vert(LL) n/a n/a 999 999 0.12 Vert(CT) n/a n/a TCDL 7.0 Lumber DOL 1.25 WB 0.06 Horz(CT) 0.00 n/a n/a BCLL 0.0 Rep Stress Incr YES Code FBC2023/TPI2014 Weight: 53 lb FT = 20%BCDL 10.0 BRACING-LUMBER-2x4 SP No.2 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. TOP CHORD **BOT CHORD BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS**

All bearings 13-6-10. Max Horz 1=-104(LC 8) REACTIONS. (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 7 except 8=-164(LC 12), 6=-164(LC 13) All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=301(LC 19), 6=301(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., White ASCE 7-22, Vitte-1, 1956, 1956, 1957
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

Gable requires continuous bottom chord bearing.

- 4) Gable requires continuous bottom choid bearing.
 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 7 except (it=lb) 8=164, 6=164,

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Josquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

CALEB HARRIS Job Truss Type Qty Ply Truss T35116120 4240528 V07 Valley Job Reference (optional) 8.730 s Aug 15 2024 MiTek Industries, Inc. Thu Sep 26 11:42:08 2024 Page 1 ID:0Cb_06ol0wvR9obEK9jweQyZrSA-m06kkeZzbn75BsqEz_b7?X3PtHqvhF3OQfg2pRyZmiT Builders FirstSource (Lake City,FL) Lake City, FL - 32055, Scale = 1:21 6 4x5 = 2 8.00 12 50 5.4 2x4 // 2x4 > 2x4 || LOADING (psf) TCLL 20.0 SPACING-2-0-0 CSI. DEFL l/defl PLATES GRIP L/d Plate Grip DOL 1.25 TC 0.22 Vert(LL) n/a n/a 999 MT20 244/190 BC TCDL 1.25 7.0 Lumber DOL 0.18 Vert(CT) n/a 999 n/a BCLL 0.0 Rep Stress Incr YES WB 0.05 0.00 Horz(CT) n/a n/a BCDL Code FBC2023/TPI2014 Weight: 34 lb FT = 20% LUMBER-BRACING-TOP CHORD

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 OTHERS 2x4 SP No.3

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

1=9-6-10, 3=9-6-10, 4=9-6-10 (size)

Max Horz 1=-71(LC 8)

Max Uplift 1=-50(LC 12), 3=-59(LC 13), 4=-58(LC 12) Max Grav 1=157(LC 1), 3=157(LC 1), 4=327(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 0-5-12 to 3-5-12, Zone1 3-5-12 to 4-9-11, Zone3 4-9-11 to 9-1-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Joaquin Velez PE No.68182 MiTek Inc. DBA MITek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss was hardly represented by the property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITPI Quality Criteria and DSB-22 available from Truss Plate Institute and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)

CALEB HARRIS Truss Type Qty Ply Job Truss T35116121 4240528 V08 Valley Job Reference (optional) 8.730 s Aug 15 2024 MiTek Industries, Inc. Thu Sep 26 11:42:08 2024 Page 1 Builders FirstSource (Lake City,FL), Lake City, FL - 32055, ID:0Cb_O6ol0wvR9obEK9jweQyZrSA-mO6kkeZzbn75BsqEz_b7?X3RWHswhFLOQfg2pRyZmiT Scale = 1:14.3 4x5 = 2 8.00 12 1-10-7 4 200 2x4 < 2x4 / 2x4 || 0-0-6 GRIP LOADING (psf) PLATES SPACING-2-0-0 CSI. DEFL **Vdef** L/d 244/190 Plate Grip DOL Vert(LL) 999 MT20 TCLL 20.0 1.25 TC 0.12 n/a n/a BC 1.25 0.05 Vert(CT) n/a 999 n/a TCDL 7.0 Lumber DOL YES WB 0.03 Horz(CT) 0.00 3 n/a n/a 0.0 Rep Stress Incr BCLL FT = 20%Code FBC2023/TPI2014 Matrix-P Weight: 18 lb BCDL 10.0 BRACING-LUMBER-Structural wood sheathing directly applied or 5-7-6 oc purlins. TOP CHORD 2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 **OTHERS** (size) 1=5-6-10, 3=5-6-10, 4=5-6-10 REACTIONS.

Max Horz 1=-38(LC 8)

Max Uplift 1=-32(LC 12), 3=-38(LC 13), 4=-20(LC 12) Max Grav 1=92(LC 1), 3=92(LC 1), 4=160(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-22; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=20ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Zone3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Building Designer / Project engineer responsible for verifying applied roof live load shown covers rain loading requirements specific to the use of this truss component.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

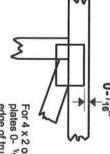
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

This item has been digitally signed and sealed by Velez, Joaquin, PE on the date indicated here. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Josquin Velez PE No.68182 MiTek Inc. DBA MiTek USA FL Cert 6634 16023 Swingley Ridge Rd. Chesterfield, MO 63017

September 27,2024

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcscomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated. and fully embed teeth Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

plates 0- 1/16" from outside edge of truss. For 4 x 2 orientation, locate

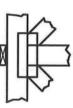
required direction of slots in This symbol indicates the

connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4


the length parallel to slots. to slots. Second dimension is width measured perpendicular The first dimension is the plate

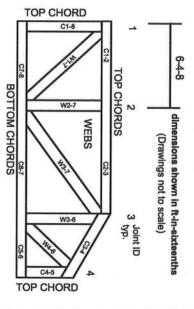
LATERAL BRACING LOCATION

if indicated. output. Use T or I bracing Indicated by symbol shown and/or by text in the bracing section of the

BEARING

number/letter where bearings occur Min size shown is for crushing only Indicates location where bearings reaction section indicates joint (supports) occur. Icons vary but

Industry Standards:


ANSI/TPI1: National Design Specification for Metal Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing. Plate Connected Wood Truss Construction.

Installing, Restraining & Bracing of Metal

Plate Connected Wood Trusses

DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

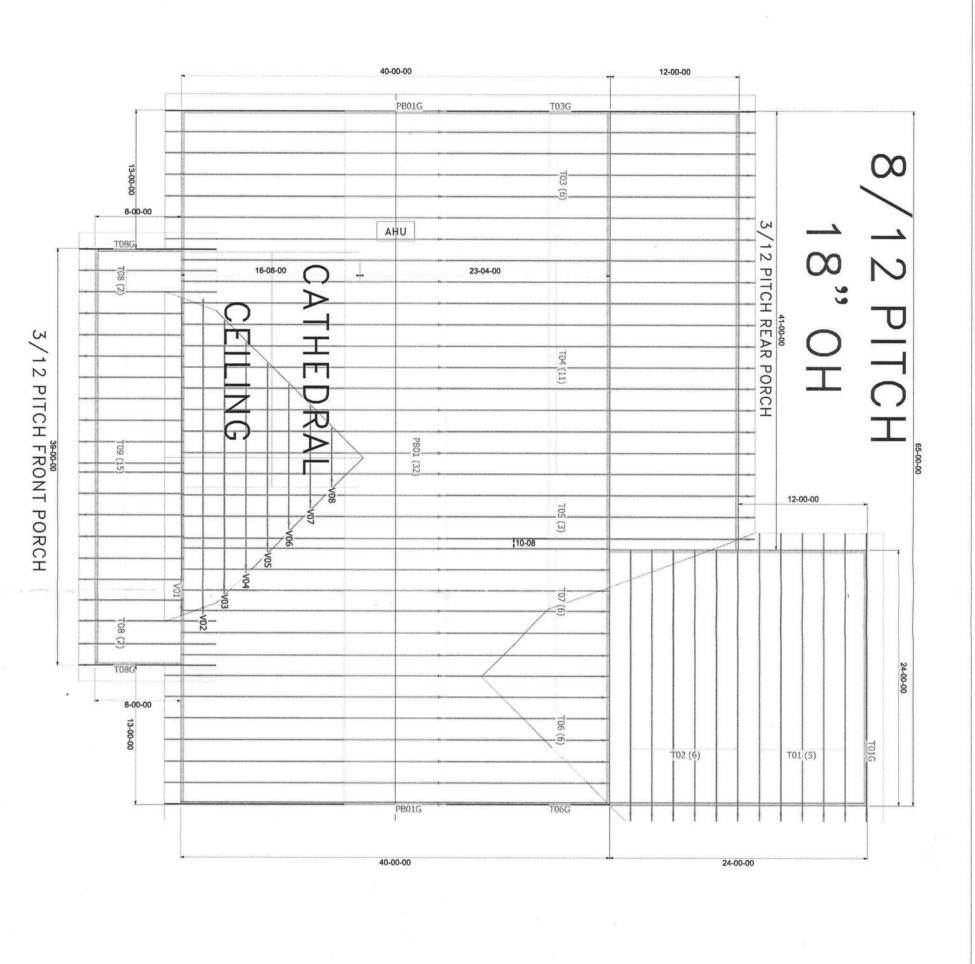
section 6.3 These truss designs rely on lumber values established by others. Lumber design values are in accordance with ANSI/TPI

© 2023 MiTek® All Rights Reserved

MiTe

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

General Safety Notes


Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For bracing should be considered. wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I
- Never exceed the design loading shown and never stack materials on inadequately braced trusses
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other

6

O

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- the environment in accord with ANSI/TPI 1. Design assumes trusses will be suitably protected from
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions ndicated are minimum plating requirements
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted
- Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.

MITEK PLATE APPROVAL #'S 2197.2-2197.4, BOISE EWP PRODUCT #'S LVL FL1644-R2, BCI JOISTS FL1392-R2

THE ARROW HEAD AT THE END OF THE TRUSS ON THE TRUSS PLACEMENT PLAN (LAYOUT)
CORRESPONDS WITH THE LEFT SIDE OF THE INDIVIDUAL TRUSS DRAWING, USE THIS AS AN ORIENTATION GUIDE WHEN SETTING THE TRUSSES ON THE STRUCTURE.

eral Notes:

Per ANSI/IPI 1-2002 all "Truss to Wall" connections are the responsibility of the Building Designer, not the Truss Manufacturer.

Use Manufacturer's specifications for all hanger connections unless noted otherwise.

Trusses are to be 24" o. U.N.O.

All hangers are to be Simpson or equivalent U.N.O.

Use 10d x 1 1/2" Nails in hanger connections to single ply girder trusses.

Trusses are not designed to support brick U.N.O.

Dimensions are Feet-Inches Sixteenths

850-835-4541 No back charges will be accepted by Builders FirstSource unless approved in writing first.

ACQ lumber is corrisive to truss plates. Any ACQ lumber that comes in contact with truss plates (i.e. scabbed on tails) must have an approved barrier applied first. Refer to BCSI-B1 Summary Sheet-Guide for handling, Installing and Bracing of Metal Plate Connected Wood Truss prior to and during truss installation.

It is the responsibility of the Contractor to ensure of the proper orientation of the truss placement plans as to the construction documents and field conditions of the structure orientation. If a reversed or flipped layout is required, it will be supplied at no extra cost by Builders

It is the responsibility of the Contractor to make sure the placement of trusses are adjusted for plumbing drops, can lights, ect..., so the trusses do not interfere with these type of items.

All common framed roof or floor systems must be designed as to NOT impose any loads on the floor trusses below. The floor trusses below. The floor trusses have not been designed to carry any additional loads from above.

This truss placement plan was not created by an engineer, but rather by the Builders FiretSource staff and is solely to be used as an installation guide and does not require a seal. Complete truss engineering and analysis can be found on the truss design drawings which may be sealed by the truss design engineer.

Gable end trusses require continuous bottom chord bearing. Refer to local codes for wall framing

Although all attempts have been made to do so, trusses may not be designed symmetrically. Please refer to the individual truss drawings and truss placement plans for proper orientation and placement.

FIRSTSOURCE Builders

Lake City PHONE: 386-755-6894 FAX: 386-755-7973

Jacksonville PHONE: 904-772-6100 FAX: 904-772-1973

PHONE: 850-576-5177 Tallahassee

Caleb Harris Res. GIEBEIG CONST

9-26-24 Custom riginal Ref#:

KLH Floor 2 Job#: N/A 4240528 Roof Job #:

4240528

40-00-00 12-00-00 PB01G T03G ∞ 3/12 PITCH REAR PORCH AHU T08G 16-08-00 23-04-00 3/12 PITCH FRONT PORCH 104 (11) (32 12-00-00 (3) T08G 8-00-00 13-00-00 TO2 (6) T01 (5) PB01G T06G 40-00-00 24-00-00

MITEK PLATE APPROVAL #'S 2197.2-2197.4, BOISE EWP PRODUCT #'S LVL FL1644-R2, BCI JOISTS FL1392-R2

THE ARROW HEAD AT THE END OF THE TRUSS ON THE TRUSS PLACEMENT PLAN (LAYOUT)

CORRESPONDS WITH THE LEFT SIDE OF THE INDIVIDUAL TRUSS DRAWING, USE THIS AS AN ORLENTATION GUIDE WHEN SETTING THE PRUSSES ON THE STRUCTURE.

eral Notes:

Per ANSI/TPI 1-2002 all "Truss to Wall" connections are the responsibility of the Building Designer, not the Truss Manufacturer.

Use Manufacturer's specifications for all hanger connections unless noted otherwise.

Trusses are to be 24° o. U.N.O.

All hangers are to be Simpson or equivalent U.N.O.

Use 10d x 11/2" Nails in hanger connections to single ply

rder trusses.

'Trusses are not designed to support brick U.N.O.

Dimensions are Feet-Inches: Sixteenths

No back charges will be accepted by Builders FirstSource unless approved in writing first. 850-835-4541

Refer to BCSI-B1 Summary Sheet-Guide for handling, Installing and Bracing of Metal Plate Connected Wood Truss prior to and during truss installation. ACQ lumber is corrisive to truss plates. Any ACQ lumber that comes in contact with truss plates (i.e. scabbed on tails) must have an approved barrier applied first.

It is the responsibility of the Contractor to ensure of the proper orientation of the truss placement plans as to the construction documents and field conditions of the structure orientation. If a reversed or flipped layout is required, it will be supplied at no extra cost by Builders

It is the responsibility of the Contractor to make sure the placement of trusses are adjusted for plumbing drops, can lights, ect..., so the trusses do not interfere with these type of items.

All common framed roof or floor systems must be designed as to NOT impose any loads on the floor trusses below. The floor trusses have not been designed to carry any additional loads from above.

This truss placement plan was not created by an engineer, but rather by the Builders FirstSource staff and is solely to be used as an installation guide and does not require a seal. Complete truss engineering and analysis can be found on the truss design drawings which may be sealed by the truss design engineer.

Gable end trusses require continuous bottom chord bearing. Refer to local codes for wall framing

Although all attempts have been made to do so, trusses may not be designed symmetrically. Please refer to the individual truss drawings and truss placement plans for proper orientation and placement.

FIRSTSOURCE Builders

Lake City PHONE: 386-755-6894 FAX: 386-755-7973

PHONE: 904-772-6100 Jacksonville

FAX: 904-772-1973

Tallahassee PHONE: 850-576-5177

Caleb Harris Res. 9-26-24 Custom GIEBEIG CONST. Original Ref#:

4240528 Roof Job #: 4240528

Drawn By:
KLLH
Floor 2 Job#