

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

2566114 - HTH - SPEC HSE

MiTek USA, Inc.

6904 Parke East Blvd. Tampa, FL 33610-4115

Site Information:

Customer Info:

Project Name: Model:

Subdivision:

Lot/Block: Address:

City:

State:

Name Address and License # of Structural Engineer of Record, If there is one, for the building.

Name:

License #:

Address:

City:

State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special

Loading Conditions):

Design Code: FBC2017/TPI2014

Wind Code: ASCE 7-10

Design Program: MiTek 20/20 8.2

Wind Speed: 130 mph

Roof Load: 37.0 psf

Floor Load: N/A psf

This package includes 4 individual, Truss Design Drawings and 0 Additional Drawings. With my seal affixed to this sheet, I hereby certify that I am the Truss Design Engineer and this index sheet conforms to 61G15-31.003, section 5 of the Florida Board of Professional Engineers Rules.

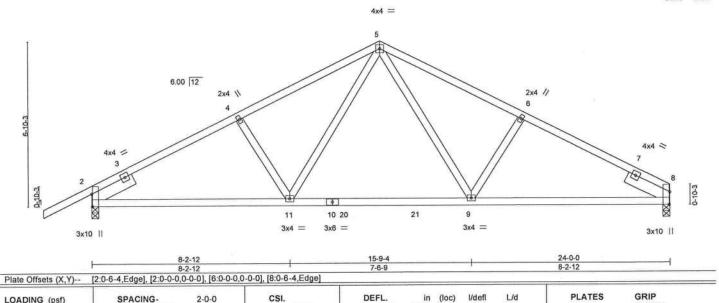
No.	Seal#	Truss Name	Date
1	T22081816	T01	12/5/20
2	T22081817	T01G	12/5/20
3	T22081818	T02	12/5/20
4	T22081819	T02G	12/5/20

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource-Jacksonville.

Truss Design Engineer's Name: Velez, Joaquin

My license renewal date for the state of Florida is February 28, 2021.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

December 5,2020

HTH - SPEC HSE Job Truss Truss Type Qty Ply T22081816 21 2566114 T01 Common Job Reference (optional)
8.240 s Mar 9 2020 MiTek Industries, Inc. Fri Dec 4 13:04:23 2020 Page 1 Jacksonville, FL - 32244. Builders FirstSource (Jacksonville, FL), ID:NbwV4Rh7aYIrRlccynQMDwyzCbh-yeSjbHZYk5eFtKkwvYQkoLLEGid0DREg9knss5yCKz6 12-0-0 17-10-4 24-0-0 6-1-12 6-1-12 5-10-4

Scale = 1:45.1

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

-0.18 9-11

-0.289-11

0.05

>999

>999

8 n/a 240

180

n/a

Rigid ceiling directly applied or 9-2-14 oc bracing.

LUMBER-

TCLL

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD**

20.0

7.0

0.0

10.0

2x4 SP No 3 WEBS

Left 2x6 SP No.2 1-11-8, Right 2x6 SP No.2 1-11-8 SLIDER

REACTIONS.

(size) 8=0-3-8, 2=0-3-8 Max Horz 2=133(LC 12)

Max Uplift 8=-225(LC 13), 2=-277(LC 12) Max Grav 8=884(LC 1), 2=1001(LC 1)

Plate Grip DOL

Rep Stress Incr

Code FBC2017/TPI2014

Lumber DOL

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-1322/539, 4-5=-1192/544, 5-6=-1207/552, 6-8=-1338/548 2-11=-396/1123, 9-11=-203/812, 8-9=-406/1142 TOP CHORD

BOT CHORD 4-11=-257/221, 5-11=-159/415, 5-9=-173/437, 6-9=-271/229 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1.25

1.25

YES

TC 0.56

BC

WR 0.19

Matrix-MS

0.60

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 8 and 277 lb uplift at joint 2.

244/190

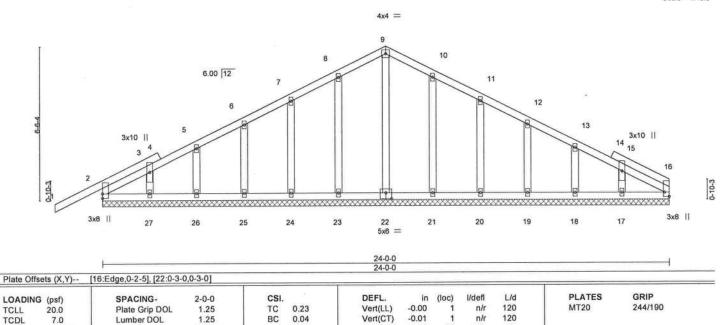
FT = 20%

MT20

Structural wood sheathing directly applied or 3-11-15 oc purlins.

Weight: 122 lb

Joaquin Velez PE No.68182 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610


December 5,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	HTH - SPEC HSE
					T22081817
2566114	T01G	Common Supported Gable	2	1	1 199 (Maritian Carrier)
	TOO SEE	5 - Sec. 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			Job Reference (optional)
Builders FirstSource (J	acksonville, FL),	Jacksonville, FL - 32244,		8.240 s M	ar 9 2020 MiTek Industries, Inc. Fri Dec 4 13:04:25 2020 Page 1
			ID:NbwV4Rh7a	YIrRiccynQl	MDwyzCbh-v1aU0zbpGivz7dtJ0zTCtmQf_VRlhMRyc2Gzw_yCKz4
2-0-	is as	12-0-0	1	57	24-0-0
2-0-4		12-0-0			12-0-0

Scale = 1:45.9

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

0.0

10.0

BRACING-TOP CHORD

Horz(CT)

0.00

16

n/a

n/a

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 140 lb

FT = 20%

REACTIONS.

All bearings 24-0-0.

Max Horz 2=119(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17

YES

Max Grav All reactions 250 lb or less at joint(s) 2, 16, 22, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17

WB 0.08

Matrix-S

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

Rep Stress Incr

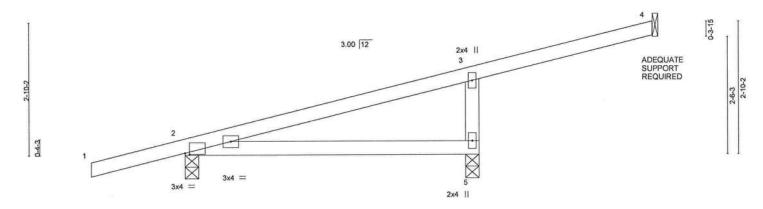
Code FBC2017/TPI2014

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 23, 24, 25, 26, 27, 21, 20, 19, 18, 17.

Joaquin Velez PE No.68182 MITek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

December 5,2020

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Qui Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

Job	Truss	Truss Type		Qty	Ply	HTH - SPEC HSE
2566114	T02	Monopitch		21	1	T22081818
2500114	102	Monopitori		2,		Job Reference (optional)
Builders FirstSource	(Jacksonville, FL),	Jacksonville, FL - 32244,	15.11	14017.10		lar 9 2020 MiTek Industries, Inc. Fri Dec 4 13:04:26 2020 Page 1
				wV4Rh/aYlr	RiccynQMI	DwyzCbh-ND8sEJbR101qknSVag_RQ_zoGvikQqy6ri0WSQyCKz3
	-2-0-0	ii .	6-3-8		- Y	9-11-15
-	2-0-0		6-3-8		1	3-8-7

Scale = 1:23.2

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.25	TC	0.32	Vert(LL)	0.12	5-8	>624	240	MT20	244/190	
TCDL	7.0	Lumber DOL	1.25	BC	0.34	Vert(CT)	-0.10	5-8	>713	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	4	n/a	n/a	Wordstonersen susua anno	Suppositive new Assessment	
BCDL	10.0	Code FBC2017/T	PI2014	Matri	x-MP						Weight: 30 lb	FT = 20%	

LUMBER-

Plate Offsets (X,Y)--

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD

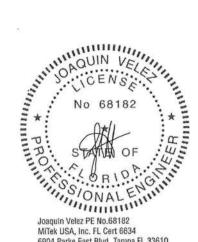
Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 4=Mechanical, 5=0-3-8, 2=0-3-8

Max Horz 2=122(LC 8)

[2:0-1-2,0-0-5]


Max Uplift 4=-41(LC 12), 5=-226(LC 8), 2=-199(LC 8) Max Grav 4=60(LC 1), 5=380(LC 1), 2=327(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-5=-319/336

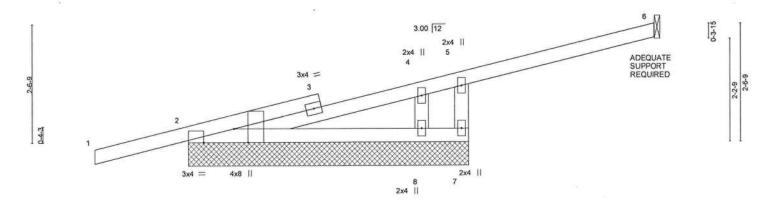
NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=226, 2=199.

MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

December 5,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6904 Parke East Blvd. Tampa, FL 36610

Job	Truss		Truss Type	Qty	Ply	HTH - SPEC HSE
COSTS.	Lancasa				500	T22081819
2566114	T02G		Jack-Open Supported Gable	2	1	
						Job Reference (optional)
Builders FirstSour	rce (Jacksonville, FL),	Jacksonville, F	L - 32244.	*	8.240 s	Mar 9 2020 MiTek Industries, Inc. Fri Dec 4 13:04:27 2020 Page 1
	18. 18. 18. 18. 18. 18. 18. 18. 18. 18.			ID:NbwV4Rh7a\	/IrRiccynQ	MDwyzCbh-rPiERfc3oK9hMx1h8OVgyBW?UJ4_9HdF4Ml4?tyCKz2
	-2-0-0		6-0-0			9-11-15
	2-0-0		6-0-0		1	3-11-15

Scale = 1:23.2

		-			6-0-0					4-0-		
Plate Offse	ets (X,Y)	[2:0-3-8,Edge], [2:0-7-12,	Edge]									
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.25	TC	0.23	Vert(LL)	-0.02	2-8	>999	240	MT20	244/190
TCDL	7.0	Lumber DOL	1.25	BC	0.21	Vert(CT)	-0.04	2-8	>999	180		
BCLL BCDL	0.0 *	Rep Stress Incr Code FBC2017/T	YES PI2014	WB Matri	0.04 <-P	Horz(CT)	-0.00	6	n/a	n/a	Weight: 33 lb	FT = 20%

6-0-0

LUMBER-

OTHERS

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

10-0-0

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

All bearings 6-0-0 except (jt=length) 6=Mechanical. REACTIONS.

(lb) - Max Horz 2=109(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 6, 8 except 2=-148(LC 8), 7=-132(LC 8) All reactions 250 lb or less at joint(s) 6, 7 except 2=289(LC 1), 8=300(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=101mph; TCDL=4.2psf; BCDL=3.0psf; h=18ft; Cat. II; Exp B; Encl., GCpi=0.18; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 8 except (jt=lb) 2=148, 7=132.

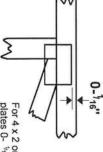
Joaquin Velez PE No.68182 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

December 5,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property amage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


6904 Parke East Blvd.

Symbols

PLATE LOCATION AND ORIENTATION

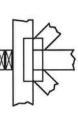
offsets are indicated Dimensions are in ft-in-sixteenths Center plate on joint unless x, y and fully embed teeth. Apply plates to both sides of truss

plates 0- 1/16" from outside For 4 x 2 orientation, locate edge of truss.

required direction of slots in connector plates This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

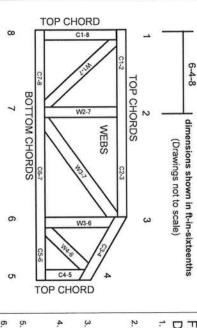

width measured perpendicular to slots. Second dimension is the length parallel to slots. The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing Indicated by symbol shown and/or if indicated.

BEARING

Min size shown is for crushing only. number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings


Industry Standards:

ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction.

DSB-89:

Installing & Bracing of Metal Plate Guide to Good Practice for Handling, Building Component Safety Information, Design Standard for Bracing.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes


Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves bracing should be considered. may require bracing, or alternative Tor I
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building all other interested parties. designer, erection supervisor, property owner and
- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions ndicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21.The design does not take into account any dynamic or other loads other than those expressly stated.

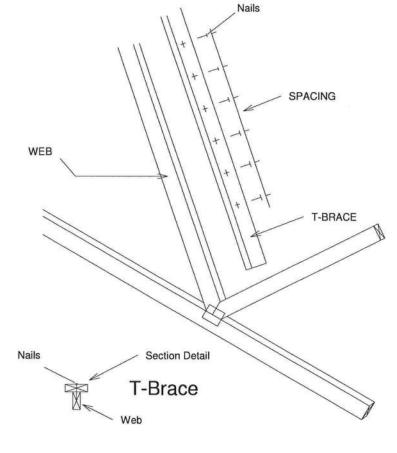
T-BRACE / I-BRACE DETAIL WITH 2X BRACE ONLY

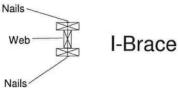
MII-T-BRACE 2

MiTek USA, Inc. Page 1 of 1

Note: T-Bracing / I-Bracing to be used when continuous lateral bracing is impractical. T-Brace / I-Brace must cover 90% of web length.

Note: This detail NOT to be used to convert T-Brace / I-Brace webs to continuous lateral braced webs.


, , , , , , , , , , , , , , , , , , , ,				
T-Brace size	Nail Size	Nail Spacing		
2x4 or 2x6 or 2x8	10d (0.131" X 3")	6" o.c.		


Note: Nail along entire length of T-Brace / I-Brace (On Two-Ply's Nail to Both Plies)

	Brace Size for One-Ply Truss					
		Continuous iteral Bracing				
Web Size	1	2				
2x3 or 2x4	2x4 T-Brace	2x4 I-Brace				
2x6	2x6 T-Brace	2x6 I-Brace				
2x8	2x8 T-Brace	2x8 I-Brace				

		e Size -Ply Truss
	Specified Rows of La	Continuous iteral Bracing
Web Size	1	2
2x3 or 2x4	2x4 T-Brace	2x4 I-Brace
2x6	2x6 T-Brace	2x6 I-Brace
2x8	2x8 T-Brace	2x8 I-Brace

T-Brace / I-Brace must be same species and grade (or better) as web member.

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

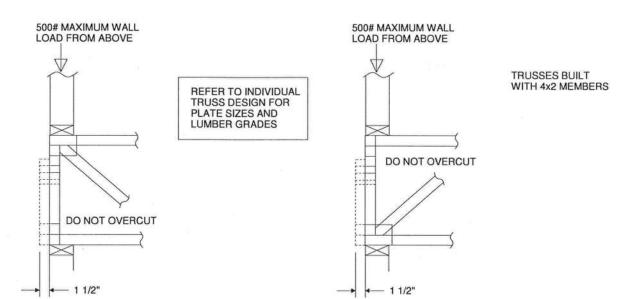
STANDARD REPAIR TO REMOVE END VERTICAL (RIBBON NOTCH VERTICAL)

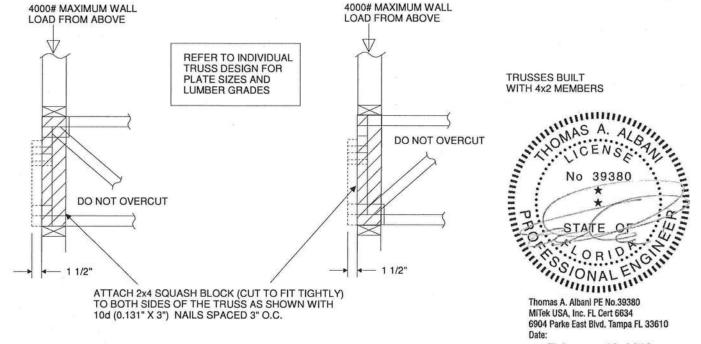
MII-REP05

MiTek USA, Inc. Page 1 of 1

1. THIS IS A SPECIFIC REPAIR DETAIL TO BE USED ONLY FOR ITS ORIGINAL INTENTION. THIS REPAIR DOES NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED.

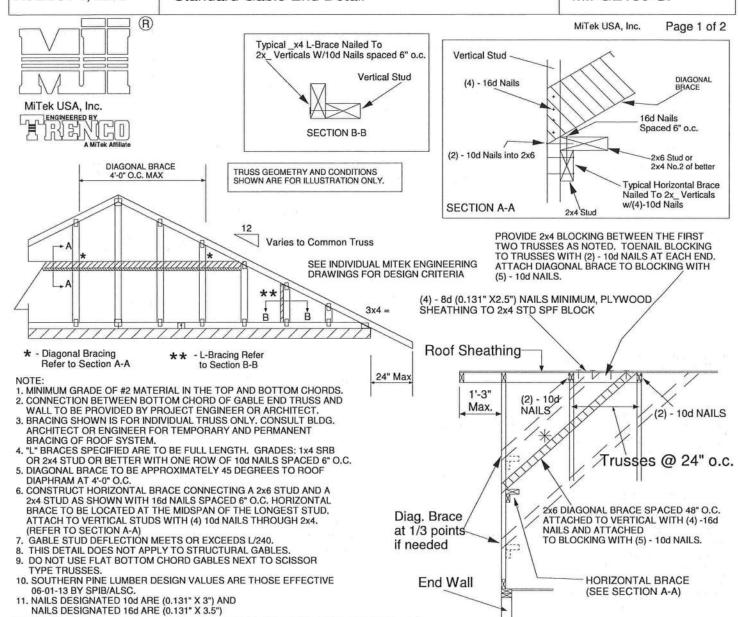
2. ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLYING REPAIR AND HELD IN PLACE DURING APPLICATION OF REPAIR.


3. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE


5. THE END DISTANCE, EDGE DISTANCE, AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID SPLITTING OF THE WOOD.

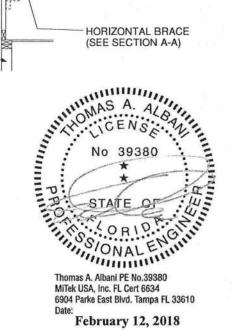
4. LUMBER MUST BE CUT CLEANLY AND ACCURATELY AND THE REMAINING WOOD MUST BE UNDAMAGED.

5. THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 4X_ORIENTATION ONLY.


6. CONNECTOR PLATES MUST BE FULLY IMBEDDED AND UNDISTURBED.

Standard Gable End Detail

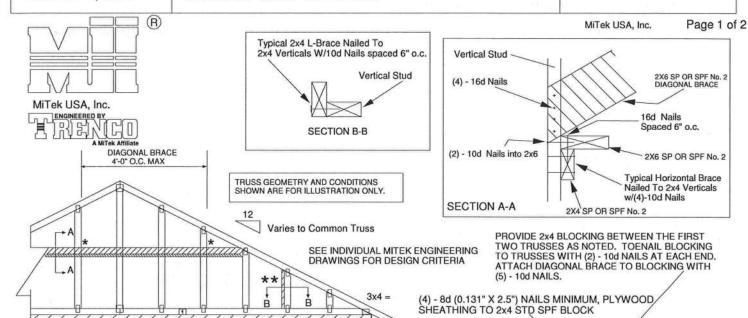
MII-GE130-SP



Minimum Stud Size Species	Stud Spacing	Without Brace	1x4 L-Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS				
and Grade		Maximum Stud Length								
2x4 SP No. 3 / Stud	12" O.C.	4-0-7	4-5-6	6-3-8	8-0-15	12-1-6				
2x4 SP No. 3 / Stud	16" O.C.	3-8-0	3-10-4	5-5-6	7-4-1	11-0-1				
2x4 SP No. 3 / Stud	24" O.C.	3-0-10	3-1-12	4-5-6	6-1-5	9-1-15				

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 130 MPH ASCE 7-10 160 MPH **DURATION OF LOAD INCREASE: 1.60**


STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

Standard Gable End Detail

MII-GE170-D-SP

24" Max

Diag. Brace

at 1/3 points

End Wall

if needed

Roof Sheathing

1'-0"

Max.

- 10d

NAILS

Diagonal Bracing Refer to Section A-A ** - L-Bracing Refer to Section B-B

NOTE

1. MINIMUM GRADE OF #2 MATERIAL IN THE TOP AND BOTTOM CHORDS. 2. CONNECTION BETWEEN BOTTOM CHORD OF GABLE END TRUSS AND

WALL TO BE PROVIDED BY PROJECT ENGINEER OR ARCHITECT.

3. BRACING SHOWN IS FOR INDIVIDUAL TRUSS ONLY. CONSULT BLDG. ARCHITECT OR ENGINEER FOR TEMPORARY AND PERMANENT BRACING OF ROOF SYSTEM.

"L" BRACES SPECIFIED ARE TO BE FULL LENGTH, SPF or SP No.3
OR BETTER WITH ONE ROW OF 10d NAILS SPACED 6" O.C.

5. DIAGONAL BRACE TO BE APPROXIMATELY 45 DEGREES TO ROOF

DIAPHRAM AT 4'-0" O.C. 6. CONSTRUCT HORIZONTAL BRACE CONNECTING A 2x6 AND A 2x4 AS SHOWN WITH 16d NAILS SPACED 6" O.C. HORIZONTAL BRACE TO BE LOCATED AT THE MIDSPAN OF THE LONGEST GABLE STUD. ATTACH TO VERTICAL GABLE STUDS WITH (4) 10d NAILS THROUGH 2x4. (REFER TO SECTION A-A)

GABLE STUD DEFLECTIÓN MEETS OR EXCEEDS L/240.

THIS DETAIL DOES NOT APPLY TO STRUCTURAL GABLES.
DO NOT USE FLAT BOTTOM CHORD GABLES NEXT TO SCISSOR TYPE TRUSSES

10. SOUTHERN PINE LUMBER DESIGN VALUES ARE THOSE EFFECTIVE 06-01-13 BY SPIB/ALSC.

NAILS DESIGNATED 10d ARE (0.131" X 3") AND NAILS DESIGNATED 16d ARE (0.131" X 3.5")

Minimum Stud Size	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
Species and Grade		-			
2x4 SP No. 3 / Stud	12" O.C.	3-9-7	5-8-8	6-11-1	11-4-4
2x4 SP No. 3 / Stud	16" O.C.	3-4-12	4-11-15	6-9-8	10-2-3
2x4 SP No. 3 / Stud	24" O.C.	2-9-4	4-0-7	5-6-8	8-3-13
2x4 SP No. 2	12" O.C.	3-11-13	5-8-8	6-11-1	11-11-7
2x4 SP No. 2	16" O.C.	3-7-7	4-11-5	6-11-1	10-10-5
2x4 SP No. 2	24" O.C.	3-1-15	4-0-7	6-3-14	9-5-14

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of diagonal brace with 10d nails 6" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length. T or I braces must be 2x4 SPF No. 2 or SP No. 2.

MAX MEAN ROOF HEIGHT = 30 FEET EXPOSURE D

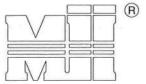
ASCE 7-10 170 MPH **DURATION OF LOAD INCREASE: 1.60**

STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

(2) - 10d NAILS

Trusses @ 24" o.c.

2x6 DIAGONAL BRACE SPACED

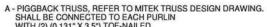

220 DIAGONAL BRACE STACE 48" O.C. ATTACHED TO VERTICAL WITH (4) -16d NAILS, AND ATTACHED TO BLOCKING WITH (5) -10d NAILS.

HORIZONTAL BRACE

(SEE SECTION A-A)

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

MiTek USA, Inc. Page 1 of 1

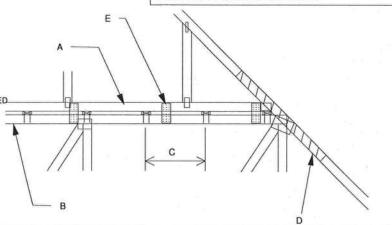

MiTek USA, Inc. ENGINEERED B 图别周

MAXIMUM WIND SPEED = REFER TO NOTES D AND OR E MAX MEAN ROOF HEIGHT = 30 FEET MAX TRUSS SPACING = 24 " O.C.

CATEGORY II BUILDING EXPOSURE B or C

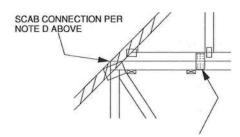
ASCE 7-10 DURATION OF LOAD INCREASE: 1.60

DETAIL IS NOT APPLICABLE FOR TRUSSES TRANSFERING DRAG LOADS (SHEAR TRUSSES). ADDITIONAL CONSIDERATIONS BY BUILDING ENGINEER/DESIGNER ARE REQUIRED.

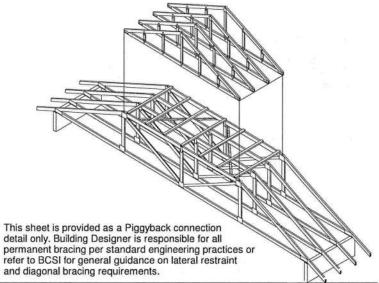


A - PIGGBACK TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
SHALL BE CONNECTED TO EACH PURLIN
WITH (2) (0.131" X 3.5") TOE-NAILED.
B - BASE TRUSS, REFER TO MITEK TRUSS DESIGN DRAWING.
C - PURLINS AT EACH BASE TRUSS JOINT AND A MAXIMUM 24" O.C.
UNLESS SPECIFIED CLOSER ON MITEK TRUSS DESIGN DRAWING.
CONNECT TO BASE TRUSS WITH (2) (0.131" X 3.5") NAILS EACH.
D - 2 X __X 4"-0" SCAB, SIZE TO MATCH TOP CHORD OF
PIGGYBACK TRUSS, MIN GRADE #2, ATTACHED TO ONE FACE, CENTERED.
ON INTERSECTION, WITH (2) ROWS OF (0.131" X 3") NAILS @ 4" O.C.
SCAB MAY BE OMITTED PROVIDED THE TOP CHORD SHEATHING
IS CONTINUOUS OVER INTERSECTION AT LEAST 1 FT. IN BOTH

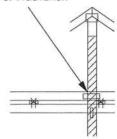
IS CONTINUOUS OVER INTERSECTION AT LEAST FFT, IN BOTH DIRECTIONS AND: 1. WIND SPEED OF 115 MPH OR LESS FOR ANY PIGGYBACK SPAN, OR 2. WIND SPEED OF 116 MPH TO 160 MPH WITH A MAXIMUM PIGGYBACK SPAN OF 12 It.


PIGGYBACK SPAN OF 12 II.

FOR WIND SPEEDS BETWEEN 126 AND 160 MPH, ATTACH
MITEK 3X8 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT
72° O.C. W/ (4) (0.131" X 1.5") NAILS PER MEMBER. STAGGER NAILS
FROM OPPOSING FACES. ENSURE 0.5" EDGE DISTANCE.
(MIN. 2 PAIRS OF PLATES REQ. REGARDLESS OF SPAN)



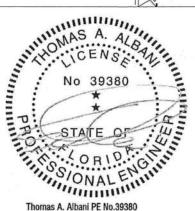
WHEN NO GAP BETWEEN PIGGYBACK AND BASE TRUSS EXISTS:


REPLACE TOE NAILING OF PIGGYBACK TRUSS TO PURLINS WITH Nail-On PLATES AS SHOWN, AND INSTALL PURLINS TO BOTTOM EDGE OF BASE TRUSS TOP CHORD AT SPECIFIED SPACING SHOWN ON BASE TRUSS MITEK DESIGN DRAWING.

FOR ALL WIND SPEEDS, ATTACH MITEK 3X6 20 GA Nail-On PLATES TO EACH FACE OF TRUSSES AT 48" O.C. W/ (4) (0.131" X 1,5") PER MEMBER. STAGGER NAILS FROM OPPOSING FACES ENSURE 0.5" EDGE DISTANCE.

VERTICAL WEB TO EXTEND THROUGH BOTTOM CHORD OF PIGGYBACK

FOR LARGE CONCENTRATED LOADS APPLIED TO CAP TRUSS REQUIRING A VERTICAL WEB:


VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS MUST MATCH IN SIZE, GRADE, AND MUST LINE UP AS SHOWN IN DETAIL.

ATTACH 2 x ___ x 4*-0" SCAB TO EACH FACE OF TRUSS ASSEMBLY WITH 2 ROWS OF 10d (0.131" X 3") NAILS SPACED 4" O.C. FROM EACH FACE. (SIZE AND GRADE TO MATCH VERTICAL WEBS OF PIGGYBACK AND BASE TRUSS.)

(MINIMUM 2X4)
THIS CONNECTION IS ONLY VALID FOR A MAXIMUM CONCENTRATED LOAD OF 4000 LBS (@1.15). REVIEW BY A QUALIFIED ENGINEER IS REQUIRED FOR LOADS GREATER THAN 4000 LBS.

FOR PIGGYBACK TRUSSES CARRYING GIRDER LOADS, NUMBER OF PLYS OF PIGGYBACK TRUSS TO MATCH BASE TRUSS. CONCENTRATED LOAD MUST BE APPLIED TO BOTH

THE PIGGYBACK AND THE BASE TRUSS DESIGN.

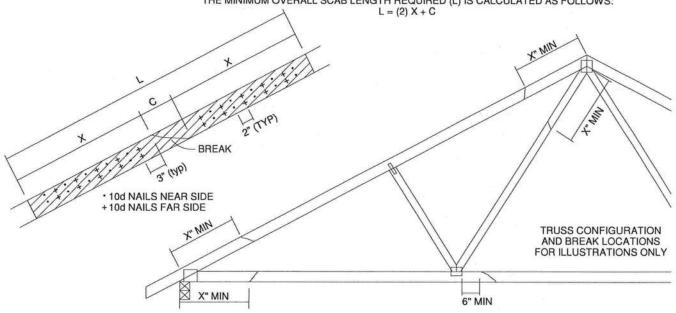
Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610 Date:

STANDARD REPAIR DETAIL FOR BROKEN CHORDS, WEBS AND DAMAGED OR MISSING CHORD SPLICE PLATES

MII-REP01A1

MiTek USA, Inc.

Page 1 of 1



	JMBER OF		MAXIMUM FORCE (lbs) 15% LOAD DURATION										
OF BF	REAK *	X	S	Р)F	s	PF	н	IE			
2x4	2x6	OF A CONTRACTOR	2x4	2x6	2x4	2x6	2x4	2x6	2x4	2x6			
20	30	24"	1706	2559	1561	2342	1320	1980	1352	2028			
26	39	30"	2194	3291	2007	3011	1697	2546	1738	2608			
32	48	36"	2681	4022	2454	3681	2074	3111	2125	3187			
38	57	42"	3169	4754	2900	4350	2451	3677	2511	3767			
44	66	48"	3657	5485	3346	5019	2829	4243	2898	4347			

* DIVIDE EQUALLY FRONT AND BACK

ATTACH 2x_ SCAB OF THE SAME SIZE AND GRADE AS THE BROKEN MEMBER TO EACH FACE OF THE TRUSS (CENTER ON BREAK OR SPLICE) WITH 10d (0.131" X 3") NAILS (TWO ROWS FOR 2x4, THREE ROWS FOR 2x6) SPACED 4" O.C. AS SHOWN. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 0-2-0 O.C. SPACING IN THE MAIN MEMBER. USE A MIN. 0-3-0 MEMBER END DISTANCE,

THE LENGTH OF THE BREAK (C) SHALL NOT EXCEED 12". (C=PLATE LENGTH FOR SPLICE REPAIRS) THE MINIMUM OVERALL SCAB LENGTH REQUIRED (L) IS CALCULATED AS FOLLOWS:

THE LOCATION OF THE BREAK MUST BE GREATER THAN OR EQUAL TO THE REQUIRED X DIMENSION FROM ANY PERIMETER BREAK OR HEEL JOINT AND A MINIMUM OF 6" FROM ANY INTERIOR JOINT (SEE SKETCH ABOVE)

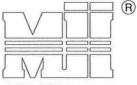
DO NOT USE REPAIR FOR JOINT SPLICES

NOTES:

- NOTES:

 1. THIS REPAIR DETAIL IS TO BE USED ONLY FOR THE APPLICATION SHOWN. THIS REPAIR DOES
 NOT IMPLY THAT THE REMAINING PORTION OF THE TRUSS IS UNDAMAGED. THE ENTIRE TRUSS
 SHALL BE INSPECTED TO VERIFY THAT NO FURTHER REPAIRS ARE REQUIRED. WHEN THE REQUIRED
 REPAIRS ARE PROPERLY APPLIED, THE TRUSS WILL BE CAPABLE OF SUPPORTING THE LOADS INDICATED.
- ALL MEMBERS MUST BE RETURNED TO THEIR ORIGINAL POSITIONS BEFORE APPLING REPAIR
 AND HELD IN PLACE DURING APPLICATION OF REPAIR.
 THE END DISTANCE, EDGE DISTANCE AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID
- THE END DISTANCE, EDGE DISTANCE AND SPACING OF NAILS SHALL BE SUCH AS TO AVOID UNUSUAL SPLITTING OF THE WOOD.
 WHEN NAILING THE SCABS, THE USE OF A BACKUP WEIGHT IS RECOMMENDED TO AVOID LOOSENING OF THE CONNECTOR PLATES AT THE JOINTS OR SPLICES.
 THIS REPAIR IS TO BE USED FOR SINGLE PLY TRUSSES IN THE 2x_ ORIENTATION ONLY.
 THIS REPAIR IS LIMITED TO TRUSSES WITH NO MORE THAN THREE BROKEN MEMBERS.

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

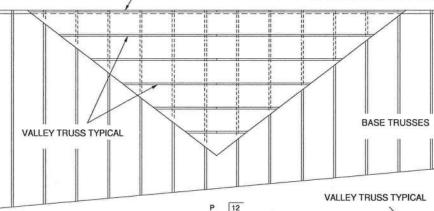

January 19, 2018

TRUSSED VALLEY SET DETAIL

MII-VALLEY HIGH WIND1

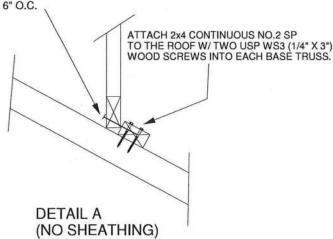
MiTek USA, Inc.

Page 1 of 1


MiTek USA, Inc.

ITEK USA,

GABLE END, COMMON TRUSS OR GIRDER TRUSS


GENERAL SPECIFICATIONS

- 1. NAIL SIZE 10d (0.131" X 3")
 2. WOOD SCREW = 3" WS3 USP OR EQUIVALENT DO NOT USE DRYWALL OR DECKING TYPE SCREW
- INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A
- 4. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- 5. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 6. NAILING DONE PER NDS 01
- 7. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.

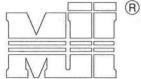
GABLE END, COMMON TRUSS OR GIRDER TRUSS P 12 SEE DETAIL A BELOW (TYP.)

SECURE VALLEY TRUSS W/ ONE ROW OF 10d NAILS 6" O.C.

N.T.S.

WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 146 MPH WIND DESIGN PER ASCE 7-10 160 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 6/12 CATEGORY II BUILDING **EXPOSURE C** WIND DURATION OF LOAD INCREASE: 1.60 MAX TOP CHORD TOTAL LOAD = 50 PSF MAX SPACING = 24" O.C. (BASE AND VALLEY)

MINIMUM REDUCED DEAD LOAD OF 6 PSF ON THE TRUSSES

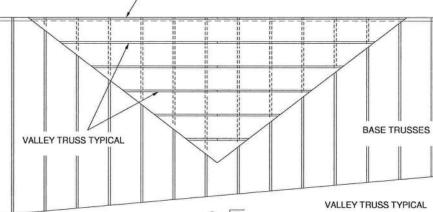


Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

January 19, 2018

MiTek USA, Inc.

Page 1 of 1



MiTek USA, Inc.

GABLE END, COMMON TRUSS OR GIRDER TRUSS

GENERAL SPECIFICATIONS

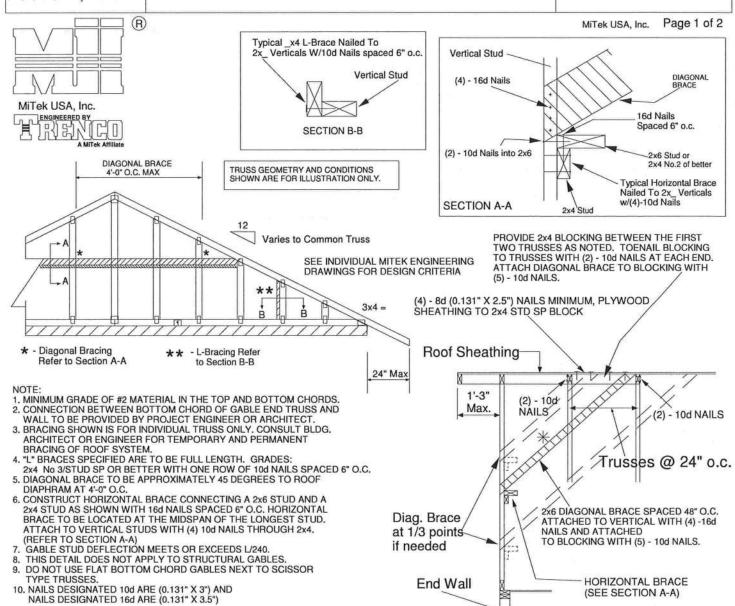
- NAIL SIZE 16d (0.131" X 3.5")
 INSTALL VALLEY TRUSSES (24" O.C. MAXIMUM) AND SECURE PER DETAIL A
- 3. BRACE VALLEY WEBS IN ACCORDANCE WITH THE INDIVIDUAL DESIGN DRAWINGS.
- 4. BASE TRUSS SHALL BE DESIGNED WITH A PURLIN SPACING EQUILIVANT TO THE RAKE DIMENSION OF THE VALLEY TRUSS SPACING.
- 5. NAILING DONE PER NDS 01
- 6. VALLEY STUD SPACING NOT TO EXCEED 48" O.C.
- 7. ALL LUMBER SPECIES TO BE SP.

GABLE END, COMMON TRUSS OR GIRDER TRUSS 12 SEE DETAIL A BELOW (TYP.)

SECURE VALLEY TRUSS W/ ONE ROW OF 16d NAILS 6" O.C. ATTACH 2x4 CONTINUOUS NO.2 SP TO THE ROOF W/TWO 16d NAILS INTO EACH BASE TRUSS. DETAIL A

(MAXIMUM 1" SHEATHING) N.T.S.

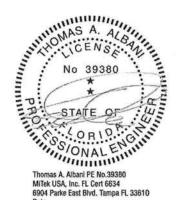
WIND DESIGN PER ASCE 7-98, ASCE 7-02, ASCE 7-05 120 MPH WIND DESIGN PER ASCE 7-10 150 MPH MAX MEAN ROOF HEIGHT = 30 FEET ROOF PITCH = MINIMUM 3/12 MAXIMUM 10/12 CATEGORY II BUILDING EXPOSURE C OR B WIND DURATION OF LOAD INCREASE: 1.60
MAX TOP CHORD TOTAL LOAD = 60 PSF
MAX SPACING = 24" O.C. (BASE AND VALLEY)
MINIMUM REDUCED DEAD LOAD OF 4.2 PSF


ON THE TRUSSES

Thomas A. Albani PE No.39380 MiTek USA, Inc. FL Cert 6634 6904 Parke East Blvd. Tampa FL 33610

Standard Gable End Detail

MII-GE146-001



Minimum Stud Size Species and Grade	Stud Spacing	Without Brace	2x4 L-Brace	DIAGONAL BRACE	2 DIAGONAL BRACES AT 1/3 POINTS
		Maximum Stud Length			
2x4 SP No 3/Stud	12" O.C.	3-11-3	6-8-0	7-2-14	11-9-10
2x4 SP No 3/Stud	16" O.C.	3-6-14	5-9-5	7-1-13	10-8-11
2x4 SP No 3/Stud	24" O.C.	3-1-8	4-8-9	6-2-15	9-4-7

Diagonal braces over 6'-3" require a 2x4 T-Brace attached to one edge. Diagonal braces over 12'-6" require 2x4 I-braces attached to both edges. Fasten T and I braces to narrow edge of web with 10d nails 8" o.c., with 3" minimum end distance. Brace must cover 90% of diagonal length.

MAXIMUM WIND SPEED = 146 MPH MAX MEAN ROOF HEIGHT = 30 FEET CATEGORY II BUILDING EXPOSURE B or C ASCE 7-98, ASCE 7-02, ASCE 7-05 DURATION OF LOAD INCREASE : 1.60

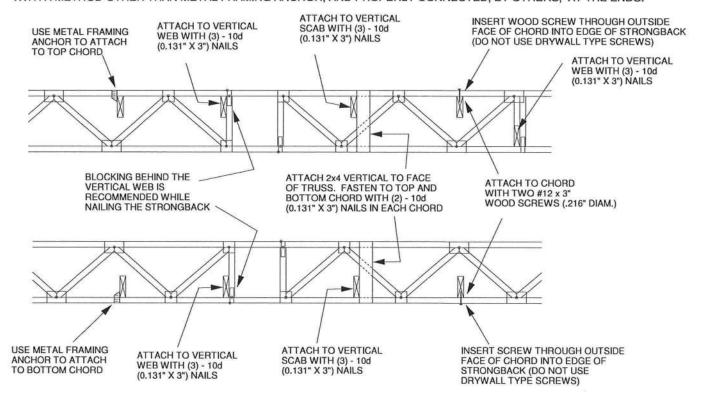
STUD DESIGN IS BASED ON COMPONENTS AND CLADDING. CONNECTION OF BRACING IS BASED ON MWFRS.

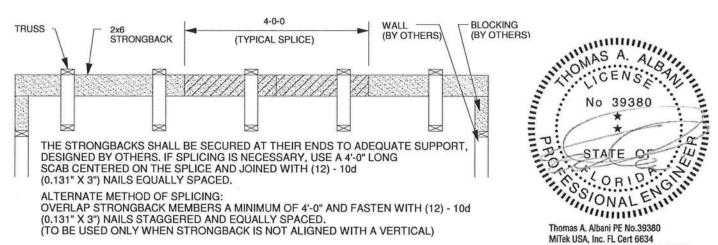
January 19, 2018

LATERAL BRACING RECOMMENDATIONS

MII-STRGBCK

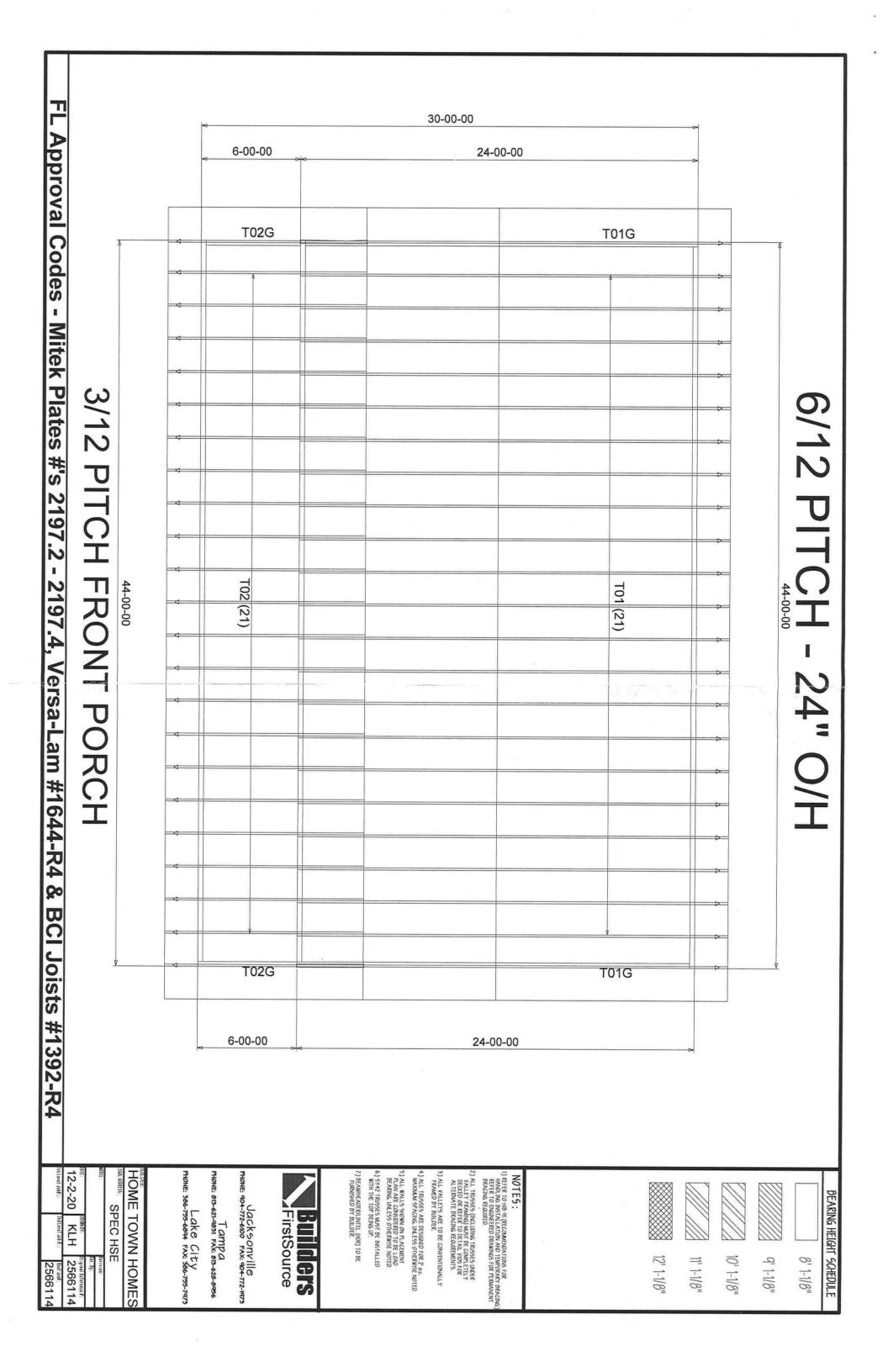
MiTek USA, Inc.


Page 1 of 1



TO MINIMIZE VIBRATION COMMON TO ALL SHALLOW FRAMING SYSTEMS. 2x6 "STRONGBACK" IS RECOMMENDED, LOCATED EVERY 8 TO 10 FEET ALONG A FLOOR TRUSS.

NOTE 1: 2X6 STRONGBACK ORIENTED VERTICALLY MAY BE POSITIONED DIRECTLY UNDER THE TOP CHORD OR DIRECTLY ABOVE THE BOTTOM CHORD. SECURELY FASTENED TO THE TRUSS USING ANY OF THE METHODS ILLUSTRATED BELOW.


NOTE 2: STRONGBACK BRACING ALSO SATISFIES THE LATERAL BRACING REQUIREMENTS FOR THE BOTTOM CHORD OF THE TRUSS WHEN IT IS PLACED ON TOP OF THE BOTTOM CHORD, IS CONTINUOUS FROM END TO END, CONNECTED WITH A METHOD OTHER THAN METAL FRAMING ANCHOR, AND PROPERLY CONNECTED, BY OTHERS, AT THE ENDS.

6904 Parke East Blvd. Tampa FL 33610

Date:

