Florida Building Code, Sixth Edition (2017) - Energy Conservation

EnergyGauge Summit® Fla/Com-2017, Effective Date: Dec 31, 2017 IECC 2015 - Total Building Performance Compliance Option

Check List									
Applications for compliance with the Florida Building Code, Energy Conservation shall include:									
This Checklist									
The full compliance report generated by the software that contains the project summary, compliance summary, certifications and detailed component compliance reports.									
The compliance report must include the full input report generated by the software as contigous part of the compliance report.									
Boxes appropriately checked in the Mandatory Section of the complaince report.									

PROJECT SUMMARY

Short Desc: Office

Description: Office

Owner:

Address1: South Hwy 441

City: Lake City

Address2:

State: Fl

Zip: 0

Type: Office

Class: New Finished building

Jurisdiction: COLUMBIA COUNTY, COLUMBIA COUNTY, FL (221000) Conditioned Area: 1158 SF

Conditioned & UnConditioned Area: 1158 SF

No of Stories: 1

Area entered from Plans 0 SF

Permit No: 0

Max Tonnage 3

If different, write in:

1 x 3 Ton Split

Energy Code Prepared by: Ryan Ellis Florida Commercial Rater #1399 Energy Design Systems, Inc. (904)268-3670 eds.jax@gmail.com

Compliance Summary									
Component	Design	Criteria	Result						
Gross Energy Cost (in \$)	652.0	815.0	PASSED						
LIGHTING CONTROLS			PASSES						
EXTERNAL LIGHTING			PASSES						
HVAC SYSTEM			PASSES						
PLANT			No Entry						
WATER HEATING SYSTEMS			PASSES						
PIPING SYSTEMS			No Entry						
Met all required compliance from Check List?			Yes/No/NA						
IMPORTANT MESSAGE Info 5009 An input report of this design	building must	be submitted	l along with this						

Compliance Report

CERTIFICATIONS

ify that the plans and specifications covered by this calculation are in gy Code Prepared By: Building Official Florida Commercial Rater #1399	:
02.00.0040	:
this building is in compliance with the FLorida Energy Efficiency Code	
Owner Agent: Date	:
Owner Agent: Date by Florida law, I hereby certify (*) that the system design is in compliant by Electronic design i	
by Florida law, I hereby certify (*) that the system design is in compliance	
by Florida law, I hereby certify (*) that the system design is in complianted. Architect: Reg No.	nce with the Florida Ene
oy Florida law, I hereby certify (*) that the system design is in complianted Architect: Reg Note that the system design is in complianted to the system design is in	nce with the Florida Ene
oy Florida law, I hereby certify (*) that the system design is in compliance Architect: Reg Note that the system design is in compliance to the s	ce with the Florida Ene

EA File: FL_JACKSONVILLE_INTL	Building End Uses	
	Danding Did Oses	
	1) Proposed	2) Baseline
	7	-,
	****	Z
Total	41.80	61.30
	\$652	\$959
ELECTRICITY(MBtu/kWh/\$)	41.80	61.30
	12207	17961
	\$652	\$959
AREA LIGHTS	4.50	11.90
	1305	3475
	\$70	\$186
MISC EQUIPMT	17.40	17.40
	5090	5090
	\$272	\$272
PUMPS & MISC	0.20	0.10
	46	41
	\$2	\$2
SPACE COOL	9.30	10.70
	2737	3148
	\$146	\$168
SPACE HEAT	2.70	3.80
	786	1119
	\$42	\$60
VENT FANS	7.70	17.40
	2243	5088
	\$120	\$272
edits Applied: None		PASSES
ssing Criteria = 815		

Project: Office Title: Office Type: Office (WEA File: FL_JACKSONVILLE_INTL_ARPT.tm3) **External Lighting Compliance** Description Category Tradable? Allowance Area or Length ELPA CLP (W/Unit) or No. of Units (W) (W) (Sqft or ft) Ext Light 1 Main entries Yes 30.00 69.0 2,070 650 Tradable Surfaces: 650 (W) Allowance for Tradable: 2820 (W) **PASSES** All External Lighting: 650 (W) Complicance check includes a excess/Base allowance of 750.00(W)

Project: Office Title: Office Type: Office

(WEA File: FL_JACKSONVILLE_INTL_ARPT.tm3)

Lighting Controls Compliance

Acronym	Ashrae Description ID	Area (sq.ft)	Design CP	Min CP	Compliance
Pr0Zo1Sp1	16 Office - Open Plan	1,158	2	1	PASSES

PASSES

Project: Office Title: Office Type: Office

(WEA File: FL_JACKSONVILLE_INTL_ARPT.tm3)

System Report Compliance

Pr0Sy13 System 13

Constant Volume Air Cooled Split System < 65000 Btu/hr No. of Units

Component	Category	Capacity	Design Eff	Eff Criteria	Design IPLV	IPLV Criteria	Comp- liance
Cooling System	Air Conditioners Air Cooled Split System < 65000 Btu/h Cooling Capacity	36000	14.00	13.00			PASSES
Heating System	Electric Furnace	36000	1.00	1.00			PASSES
Air Handling System -Supply	Air Handler (Supply) - Constant Volume	1200	0.50	0.82			PASSES
Air Distribution System (Sup)	ADS System (Sup)		4.20	4.20			PASSES

PASSES

Plant Compliance								
Description	Installed No	Size	Design Eff	Min Eff	Design IPLV	Min IPLV	Category	Comp liance
								lone

Water Heater Compliance									
Description	Туре	Category	Design Eff	Min Eff	Design Loss	Max Loss	Comp liance		
Water Heater 3	Electric water heater	<= 12 [kW]	0.93	0.92			PASSES		
							PASSES		
		Piping S	System C	omplia	ince				
Category		Pipe Dia Is [inches] Runout	Operating? Temp [F]				eq Ins Compl- ck [in] iance		

None

Mandatory R	equirements	(as applic	of Energy and Pacific Northwest I			
Topic	Section	Componer	Adopted with permission The Description	Yes	N/A	Exempt
			by Designer or Engineer		(ASA)	
Insulation	C303.2	Envelope	Below-grade wall insulation installed per manufacturer's instructions.		X	
Insulation	C303.2	Envelope	Slab edge insulation installed per manufacturer's instructions.		X	
Insulation	C303.2	Envelope	Above-grade wall insulation installed per manufacturer's instructions.	X		
Insulation	C402.3	Envelope	High-albedo roofs satisfy one of the following: 3-year-aged solar reflectance >= 0.55 and therma emittance >= 0.75 or 3-year-aged solar	, 🗆	X	
Fenestration	C402.4.4	Envelope	reflectance index >= 64.0. U-factor of opaque doors associated with the building thermal envelope meets requirements.	X		
SYSTEM_SPECIFIC	C403.2.12.1	Mechanical	HVAC fan systems at design conditions do not exceed allowable fan system motor nameplate hp	X		
SYSTEM_SPECIFIC	C403.2.12.2	Mechanical	or fan system bhp. HVAC fan motors not oversized beyond allowable limits.	X		
SYSTEM_SPECIFIC	C403.2.3(8) Table	Mechanical	Heat Rejection Equipment: Minimum Efficiency Requirement meet those listed in Table	X		
HVAC	C403.2.7	Mechanical	C403.2.3(8) Exhaust air energy recovery on systems meeting Table C403.2.7(1) and C403.2.7(2).	X		
SYSTEM_SPECIFIC	C403.3	Mechanical	Air economizers provided where required, meet the requirements for design capacity, control signal, ventilation controls, high-limit shut-off, integrated economizer control, and provide a means to relieve excess outside air during	X		
SYSTEM_SPECIFIC	C403.3.2	Mechanical	operation. Economizer operation will not increase heating energy use during normal operation.	X		
SYSTEM_SPECIFIC	C403.3.4, C403.3.4.1, C403.3.4.2,	Mechanical	Water economizers provided where required, meet the requirements for design capacity, maximum pressure drop and integrated	X		
SYSTEM_SPECIFIC	C403.3.1 C403.4.2.1	Mechanical	economizer control. Three-pipe hydronic systems using a common return for hot and chilled water are not used.		X	
SYSTEM_SPECIFIC	C403.4.2.3.1	Mechanical	Hydronic heat pump systems connected to a common water loop meet heat rejection and heat		X	
SYSTEM_SPECIFIC	C403.4.3.4	Mechanical	addition requirements. Open-circuit cooling towers having water cooled chiller systems and multiple or vairable speed condenser pumps, are designed so that tower		X	
SYSTEM_SPECIFIC	C404.2	Mechanical	cells can run in parallel with larger of flow crtieria. Service water heating equipment meets efficiency requirements.	-		
Wattage	C405.3	Interior Lighting	Exit signs do not exceed 5 watts per face.	X		
	2. T	o be check	ed by Plan Reviewer			
Plan Review	C103.2	Envelope	Plans and/or specifications provide all information with which compliance can be determined for the building envelope and document where exceptions to the standard are claimed			

Plan Review	C103.2	Mechanical	Plans, specifications, and/or calculations provide all information with which compliance can be determined for the mechanical systems and equipment and document where exceptions to the standard are claimed. Load calculations per		
Plan Review	C103.2	Mechanical	acceptable engineering st Plans, specifications, and/or calculations provide all information with which compliance can be determined for the service water heating systems and equipment and document where exceptions to the standard are claimed. Hot water system		
Plan Review	C103.2	Interior Lighting	sized per manufact Plans, specifications, and/or calculations provide all information with which compliance can be determined for the interior lighting and electrical systems and equipment and document where exceptions to the standard are claimed.		
Plan Review	C103.2	Exterior Lighting	Information provided shoul Plans, specifications, and/or calculations provide all information with which compliance can be determined for the exterior lighting and electrical systems and equipment and document where exceptions to the standard are claimed. Information provided shoul		
Insulation	C402.2.5	Envelope	Slab edge insulation depth/length. Slab insulation extending away from building is covered by pavement or >= 10 inches of soil.		
Insulation	C402.2.6	Project	Radiant heating systems panels insulated to >=R-3.5 on face opposite space being heated.		
HVAC	C402.2.6	Mechanical	Thermally ineffective panel surfaces of sensible heating panels have insulation >= R-3.5.		
Insulation	C402.2.6	Envelope	Radiant panels and associated components, designed for heat transfer from the panel surfaces to the occupants or indoor space are insulated with a minimum of R-3.5.		
Air Leakage	C402.5.7	Envelope	Vestibules are installed on all building entrances. Doors have self-closing devices.		
SYSTEM_SPECIFIC	C403.2.12.3	Mechanical	Fans have efficiency grade (FEG) >= 67. The total efficiency of the fan at the design point of operation <= 15% of maximum total efficiency of the fan.		
HVAC	C403.2.13	Mechanical	Unenclosed spaces that are heated use only radiant heat.		
HVAC	C403.2.4.2	Mechanical	Each zone equipped with setback controls using automatic time clock or programmable control system.		
SYSTEM_SPECIFIC	C403.2.4.4	Mechanical	Zone isolation devices and controls installed where applicable.		
SYSTEM_SPECIFIC	C403.2.4.7	Mechanical	Fault detection and diagnostics installed with air-cooled unitary DX units having economizers.		
SYSTEM_SPECIFIC	C403.2.5	Mechanical	Hot water boilers supplying heat via one- or two-pipe systems include outdoor setback control.		
HVAC	C403.2.6.1	Mechanical	Demand control ventilation provided for spaces >500 ft2 and >25 people/1000 ft2 occupant density and served by systems with air side economizer, automodulating outside air damper		
SYSTEM_SPECIFIC	C403.4.1.1	Mechanical	control, or design airflow >3,000 cfm. Hydronic and multizone HVAC system controls areVAV fans driven by mechanical or electrical		
SYSTEM_SPECIFIC	C403.4.1.3	Mechanical	variable speed drive per Table C403.4.1.1. Reset static pressure setpoint for DDC controlled VAV boxes reporting to central controller based on		
SYSTEM_SPECIFIC	C403.4.2	Mechanical	the zones requiring the most pressure. Temperature reset by representative building loads in pumping systems for chiller and boiler systems >500,000 Btu/h.		

SYSTEM_SPECIFIC C403.4.2.5.1 Mechanical Closed-circuit cooling tower within heat pump loop have automatic bayes salve or loves salve salve than 500,000 Btu/d close salves are lated to the loves salves and loves salves are lated than 500,000 Btu/d close salves salves salves than 500,000 Btu/d close salves salves salves salves than 500,000 Btu/d close salves						
SYSTEM_SPECIFIC C403.4.2.4 Mechanical designed for variable fluid flow. SYSTEM_SPECIFIC C403.4.2.5 Mechanical System turndrown requirement met through multiple single-input boilers, one or more modulating boilers, or a combination of single-input and modulating boilers, one or more modulating boilers, or a combination of single-input and modulating boilers, one or more modulating boilers, or a combination of single-input and modulating boilers, one or more modulating boilers, one to the single-input and modulating boilers, one or more modulating boilers, one or more modulating boilers, one or more modulating boilers, one or combination or single-input and modulating boilers, one or combination or single-input and modulating boilers, one or more modulating boilers, one or combination or single-input and modulating boilers, or a combination or single-input and with multiple boilers, or a combination or single-input and modulation or single-input	SYSTEM_SPECIFIC	C403.4.2.3.2.1	Mechanical	have either automatic bypass valve or lower leakage positive closure dampers. Open-circuit tower within heat pump loop have automatic valve to bypass all heat pump water flow around the		
miultiple single-input boliers, one or more modulating boliers, or a combination of single-input and modulating boliers. SYSTEM_SPECIFIC C403.4.2.6	SYSTEM_SPECIFIC	C403.4.2.4	Mechanical	Hydronic systems greater than 500,000 Btu/h		
SYSTEM_SPECIFIC C403.4.2.6 Mechanical Chilled water plants with multiple chillers have capability to reduce flow automatically through the chiller plant when a chiller is shut down. SYSTEM_SPECIFIC C403.4.3. C403.4.3.2 Mechanical Fan systems with motors >=7.5 hp associated with heat rejection equipment to have capability to reduce flow automatically through the boiler plant with heat rejection equipment to have capability to operate at 2/3 of full-speed and auto speed controls to control the leaving fluid temperature or condensing temp/pressure of heat rejection device. SYSTEM_SPECIFIC C403.4.4.6 Mechanical Multiple zone HVAC systems have supply air temperature reset controls. SYSTEM_SPECIFIC C404.4.1 Mechanical Multiple zone HVAC systems have supply air temperature reset controls. SYSTEM_SPECIFIC C404.2.1 Mechanical Multiple zone VAV systems with DDC of individual zone boxes have static pressure setpoint reset controls. SYSTEM_SPECIFIC C404.5.1 Mechanical Gas-fired water-heating equipment is alled in new buildings: where a singular piece of water-heating equipment serve the building. Hermal efficiency >= 90 Et. Where multiple pieces of water-heating equipment serve the building water-heating expenses with serve the building water-heating expenses with serve the building water-heating expenses with serve the building water-heating	SYSTEM_SPECIFIC	C403.4.2.5	Mechanical	multiple single-input boilers, one or more modulating boilers, or a combination of single-input and modulating boilers. Boiler input between 1.0 MBtu/h and 5 MBtu/h		
SYSTEM_SPECIFIC C403.4.3.	SYSTEM_SPECIFIC	C403.4.2.6	Mechanical	Chilled water plants with multiple chillers have capability to reduce flow automatically through the chiller plant when a chiller is shut down. Boiler plants with multiple boilers have the capability to reduce flow automatically through the		
SYSTEM_SPECIFIC C403.4.4.5 Mechanical Multiple zone HVAC systems have supply air temperature reset controls. SYSTEM_SPECIFIC C403.4.4.6 Mechanical Mechanical Multiple zone VAV systems with DDC of individual zone boxes have static pressure setpoint reset controls. SYSTEM_SPECIFIC C404.2.1 Mechanical Mechanical Mechanical Mechanical Gas-fired water-heating equipment installed in new buildings: where a singular piece of water-heating equipment in serves the unit piece of water-heating equipment serves the building wilding wi	SYSTEM_SPECIFIC		Mechanical	Fan systems with motors >=7.5 hp associated with heat rejection equipment to have capability to operate at 2/3 of full-speed and auto speed controls to control the leaving fluid temperature or condensing temp/pressure of heat rejection		
SYSTEM_SPECIFIC C404.2.1 Mechanical Gas-fired water-heating equipment installed in new buildings: where a singular piece of water-heating equipment Gas-fired water-	SYSTEM_SPECIFIC	C403.4.4.5	Mechanical	Multiple zone HVAC systems have supply air		
SYSTEM_SPECIFIC C404.2.1 Mechanical Gas-fired water-heating equipment installed in new buildings: where a singular piece of water-heating equipment >= 1,000 kBtu/h serves the entire building, thermal efficiency >= 90 Et. Where multiple pieces of water-heating equipment serve the building will plip piece so water-heating equipment serve the building will plip piece so water-heating equipment serve the building will plip piece so water-heating equipment serve the building will plip piece so water-heating equipment serve the building will plip piece so water-heating equipment serve the building will plip piece so water-heating equipment serve the building will plip piece so water-heating equipment serve the building will plip piece so water-heating equipment serve the building will plip piece so water-heating equipment serve the building will plip piece so water-heating equipment serve the building will plip piece so will plip please. The will plip please will plip please so will please so wi	SYSTEM_SPECIFIC	C403.4.4.6	Mechanical	zone boxes have static pressure setpoint reset		
SYSTEM_SPECIFIC C404.4 Mechanical All piping insulated in accordance with section details and Table C403.2.10. SYSTEM_SPECIFIC C404.5.1, C404.5.1, C404.5.2 Mechanical Dength and volume requirements. Refer to section details. SYSTEM_SPECIFIC C404.6.3 Mechanical Pumps that circulate water between a heater and storage tank have controls that limit operation from startup to <= 5 minutes after end of heating cycle. SYSTEM_SPECIFIC C404.7 Mechanical Water distribution system that pumps water from a heated-water supply pipe back to the heated-water supply pipe back to the heated-water supply pipe is a demand recirculation water system. Pumps within this system have controls that start the pump upon receiving Exterior lighting power is consistent with what is shown on the approved lighting plans, demonstrating proposed watts are less than or equal to allowed watts. Plan Review C405.6 Project Group R-2 dwelling units have separate electrical meters. Plan Review C406 Project Plans, specifications, and/or calculations provide all information with which compliance can be determined for the additional energy efficiency package options. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have means to balance and have pressure test connections. HVAC hydronic heating and cooling coils have means to balance and have pressure test connections.	SYSTEM_SPECIFIC	C404.2.1	Mechanical	Gas-fired water-heating equipment installed in new buildings: where a singular piece of water-heating equipment >= 1,000 kBtu/h serves the entire building, thermal efficiency >= 90 Et. Where multiple pieces of water-heating		
SYSTEM_SPECIFIC C404.6.3 Mechanical Pumps that circulate water between a heater and storage tank have controls that limit operation from startup to <= 5 minutes after end of heating cycle. SYSTEM_SPECIFIC C404.7 Mechanical Water distribution system that pumps water from a heated-water supply pipe back to the heated-water supply pipe is a demand recirculation water system. Pumps within this system have controls that start the pump upon receiving Wattage C405.5.1 Exterior Lighting Exterior lighting power is consistent with what is shown on the approved lighting plans, demonstrating proposed watts are less than or equal to allowed watts. Plan Review C406 Project Plans, specifications, and/or calculations provide all information with which compliance can be determined for the additional energy efficiency package options. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have means to balance and have pressure test connections. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have	SYSTEM_SPECIFIC	C404.4	Mechanical	All piping insulated in accordance with section		
SYSTEM_SPECIFIC C404.6.3 Mechanical Pumps that circulate water between a heater and storage tank have controls that limit operation from startup to <= 5 minutes after end of heating cycle. SYSTEM_SPECIFIC C404.7 Mechanical Water distribution system that pumps water from a heated-water supply pipe back to the heated-water source through a cold-water supply pipe is a demand recirculation water system. Pumps within this system have controls that start the pump upon receiving Exterior lighting power is consistent with what is shown on the approved lighting plans, demonstrating proposed watts are less than or equal to allowed watts. Plan Review C405.6 Project Group R-2 dwelling units have separate electrical meters. Plan Review C406 Project Plans, specifications, and/or calculations provide all information with which compliance can be determined for the additional energy efficiency package options. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have means to balance and have pressure test connections. HVAC hydronic heating and cooling coils have means to balance and have pressure test connections.	SYSTEM_SPECIFIC		Mechanical	length and volume requirements. Refer to section		
SYSTEM_SPECIFIC C404.7 Mechanical Water distribution system that pumps water from a heated-water supply pipe back to the heated-water source through a cold-water supply pipe is a demand recirculation water system. Pumps within this system have controls that start the pump upon receiving pump upon receiving power is consistent with what is shown on the approved lighting plans, demonstrating proposed watts are less than or equal to allowed watts. Plan Review C405.6 Project Group R-2 dwelling units have separate electrical meters. Plan Review C406 Project Plans, specifications, and/or calculations provide all information with which compliance can be determined for the additional energy efficiency package options. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have means to balance and have pressure test connections. HVAC hydronic heating and cooling coils have means to balance and have pressure test connections.	SYSTEM_SPECIFIC	C404.6.3	Mechanical	Pumps that circulate water between a heater and storage tank have controls that limit operation from startup to <= 5 minutes after end of heating		
Wattage C405.5.1 Exterior Lighting Exterior lighting power is consistent with what is shown on the approved lighting plans, demonstrating proposed watts are less than or equal to allowed watts. Plan Review C405.6 Project Group R-2 dwelling units have separate electrical meters. Plan Review C406 Project Plans, specifications, and/or calculations provide all information with which compliance can be determined for the additional energy efficiency package options. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have means to balance and have pressure test connections. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have	SYSTEM_SPECIFIC	C404.7	Mechanical	Water distribution system that pumps water from a heated-water supply pipe back to the heated-water source through a cold-water supply pipe is a demand recirculation water system. Pumps within this system have controls that start the		
Plan Review C405.6 Project Group R-2 dwelling units have separate electrical meters. Plan Review C406 Project Plans, specifications, and/or calculations provide all information with which compliance can be determined for the additional energy efficiency package options. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have means to balance and have pressure test connections. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have	Wattage	C405.5.1	Exterior Lighting	Exterior lighting power is consistent with what is shown on the approved lighting plans, demonstrating proposed watts are less than or		
all information with which compliance can be determined for the additional energy efficiency package options. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have means to balance and have pressure test connections. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have	Plan Review	C405.6	Project	Group R-2 dwelling units have separate electrical		
SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have means to balance and have pressure test connections. SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have	Plan Review	C406	Project	all information with which compliance can be determined for the additional energy efficiency		
SYSTEM_SPECIFIC C408.2.2.2 Mechanical HVAC hydronic heating and cooling coils have	SYSTEM_SPECIFIC	C408.2.2.2	Mechanical	HVAC hydronic heating and cooling coils have means to balance and have pressure test		
connections.	SYSTEM_SPECIFIC	C408.2.2.2	Mechanical	HVAC hydronic heating and cooling coils have means to balance and have pressure test		

	3	. To be c	hecked by Inspector		
Insulation	C303.1	Envelope	Roof insulation installed per manufacturer's instructions. Blown or poured loose-fill insulation is installed only where the roof slope is <=3 in 12.		
Insulation	C303.1	Envelope	Building envelope insulation is labeled with R-value or insulation certificate providing R-value and other relevant data.		
Fenestration	C303.1.3	Envelope	Fenestration products rated in accordance with NFRC.		
Fenestration	C303.1.3	Envelope	Fenestration products are certified as to performance labels or certificates provided.		
Insulation	C303.2, C402.2.4	Envelope	Floor insulation installed per manufacturer's instructions. Cavity or structural slab insulation installed in permanent contact with underside of decking or structural slabs.		
Insulation	C303.2.1	Envelope	Exterior insulation protected against damage, sunlight, moisture, wind, landscaping and equipment maintenance activities.		
Insulation	C303.2.1	Envelope	Exterior insulation is protected from damage with a protective material. Verification for exposed foundation insulation may need to occur during Foundation Inspection.		
Insulation	C402.1.3	Envelope	Non-swinging opaque doors have R-4.75 insulation.		
Insulation	C402.2.2	Envelope	Skylight curbs are insulated to the level of roofs with insulation above deck or R-5.		
Insulation	C402.2.2	Envelope	Insulation intended to meet the roof insulation requirements cannot be installed on top of a suspended ceiling. Mark this requirement		
Air Leakage	C402.5	Envelope	compliant if insulation is installed accordingly. Building envelope contains a continuous air barrier that has been tested and deemed to limit air leakage <= 0.40 cfm/ft2.		
Air Leakage	C402.5.1	Envelope	The building envelope contains a continuous air barrier that is sealed in an approved manner and either constructed or tested in an approved manner. Air barrier penetrations are sealed in an approved manner.		
Air Leakage	C402.5.1.1	Envelope	All sources of air leakage in the building thermal envelope are sealed, caulked, gasketed, weather stripped or wrapped with moisture vapor-permeable wrapping material to minimize air leakage.		
Air Leakage	C402.5.1.2.1	Envelope	The building envelope contains a continuous air barrier that is sealed in an approved manner and material permeability <= 0.004 cfm/ft2. Air barrier		
Air Leakage	C402.5.1.2.2	Envelope	penetrations are sealed in an approved manner. The building envelope contains a continuous air barrier that is sealed in an approved manner and average assembly air leakage <= 0.04 cfm/ft2. Air barrier penetrations are sealed in an approved manner.		
Air Leakage	C402.5.2, C402.5.4	Envelope	Factory-built fenestration and doors are labeled as meeting air leakage requirements.		
Air Leakage	C402.5.3	Envelope	Where open combustion air ducts provide combustion air to open combustion fuel burning appliances, the appliances and combustion air opening are located outside the building thermal envelope or enclosed in a room, isolated from inside the thermal envelope		
Air Leakage	C402.5.5, C403.2.4.3	Envelope	Stair and elevator shaft vents have motorized dampers that automatically close.		
Air Leakage	C402.5.5, C403.2.4.3	Envelope	Outdoor air and exhaust systems have motorized dampers that automatically shut when not in use and meet maximum leakage rates. Check gravity dampers where allowed.		
Air Leakage	C402.5.6	Envelope	Weatherseals installed on all loading dock cargo doors.		

	2.22.2			_	
Air Leakage	C402.5.8	Envelope	Recessed luminaires in thermal envelope to limit infiltration and be IC rated and labeled. Seal		
HVAC	C403.2.1	Mechanical	between interior finish and luminaire housing. HVAC systems and equipment design loads calculated in accordance with ANSI/ASHRAE/ACCA Standard 183 or by an		
SYSTEM_SPECIFIC	C403.2.10	Mechanical	approved equivalent computational procedure HVAC piping insulation thickness. Where piping is installed in or under a slab, verification may		
HVAC	C403.2.3	Mechanical	need to occur during Foundation Inspection. HVAC equipment efficiency verified.		
SYSTEM_SPECIFIC	C403.2.3	Mechanical	PTAC and PTHP with sleeves 16 in. by 42 in. labeled for replacement only as per Footnote b to		
SYSTEM_SPECIFIC	C403.2.4.1	Mechanical	Table C403.2.3(3). Heating and cooling to each zone is controlled by a thermostat control. Minimum one humidity control device per installed		
SYSTEM_SPECIFIC	C403.2.4.1.1	Mechanical	humidification/dehumidification system. Heat pump controls prevent supplemental electric resistance heat from coming on when not needed.		
HVAC	C403.2.4.1.2	Mechanical	Thermostatic controls have a 5 ŰF deadband.		
HVAC	C403.2.4.1.2	Mechanical	Thermostatic controls have a 5 ŰF deadband.		
HVAC	C403.2.4.1.3	Mechanical	Temperature controls have setpoint overlap restrictions.		
HVAC	C403.2.4.2.1, C403.2.4.2.2	Mechanical	Automatic Controls: Setback to 55°F (heat) and 85°F (cool); 7-day clock, 2-hour occupant		
SYSTEM_SPECIFIC	C403.2.4.2.3	Mechanical	override, 10-hour backup Systems include optimum start controls.		
HVAC	C403.2.4.5, C403.2.4.6	Mechanical	Snowlice melting system sensors for future connection to controls. Freeze protection systems		
HVAC	C403.2.6.2	Mechanical	have automatic controls installed. Enclosed parking garage ventilation has automatic contaminant detection and capacity to stage or modulate fans to 50% or less of design capacity.		
HVAC	C403.2.9	Mechanical	HVAC ducts and plenums insulated. Where ducts or plenums are installed in or under a slab, verification may need to occur during Foundation Inspection.		
SYSTEM_SPECIFIC	C403.2.9.1.3	Mechanical	Ductwork operating >3 in. water column requires air leakage testing.		
SYSTEM_SPECIFIC	C403.4.1.2	Mechanical	VAV fans have static pressure sensors located so controller setpoint <=1.2 w.c		
SYSTEM_SPECIFIC	C403.4.2.2	Mechanical	Two-pipe hydronic systems using a common distribution system have controls to allow a deadband >=15°F, allow operation in one mode for at least 4 hrs before changeover, and have rest controls to limit heating and cooling supply temperature to <=30 °F.		
SYSTEM_SPECIFIC	C403.4.2.3.3	Mechanical	Two-position automatic valve interlocked to shut off water flow when hydronic heat pump with		
SYSTEM_SPECIFIC	C403.4.4.5, C403.4.4.5.1-4	Mechanical	pumping system >10 hp is off. Zone controls can limit simultaneous heating and cooling and sequence heating and cooling to each		
SYSTEM_SPECIFIC	C403.4.5	Mechanical	zone. Condenser heat recovery system that can heat water to 85°F or provide 60% of peak heat rejection is installed for preheating of service hot		
SYSTEM_SPECIFIC	C403.4.6	Mechanical	water. Hot gas bypass limited to: <=240 kBtu/h - 50% capacity,		
SYSTEM_SPECIFIC	C404.3	Mechanical	>240 kBtu/h - 25% capacity Heat traps installed on non-circulating storage water tanks.		

SYSTEM_SPECIFIC	C404.3	Mechanical	Heat traps installed on supply and discharge piping of non-circulating systems.		
SYSTEM_SPECIFIC	C404.3	Mechanical	Heat traps installed on supply and discharge piping of non-circulating systems.		
SYSTEM_SPECIFIC	C404.6.1	Mechanical	Controls are installed that limit the operation of a recirculation pump installed to maintain temperature of a storage tank. System return pipe is a dedicated return pipe or a cold water supply		
SYSTEM_SPECIFIC	C404.6.1, C404.6.2	Mechanical	pipe. Automatic time switches installed to automatically switch off the recirculating hot-water system or heat trace.		
SYSTEM_SPECIFIC	C404.9.1	Mechanical	Pool heaters are equipped with on/off switch and no continuously burning pilot light.		
SYSTEM_SPECIFIC	C404.9.2	Mechanical	Time switches are installed on all pool heaters and pumps.		
SYSTEM_SPECIFIC	C404.9.2	Mechanical	Time switches are installed on all pool heaters and pumps.		
SYSTEM_SPECIFIC	C404.9.3	Mechanical	Vapor retardant pool covers are provided for heated pools and permanently installed spas.		
Controls	C405.2.1	Interior Lighting	Lighting controls installed to uniformly reduce the lighting load by at least 50%.		
Controls	C405.2.1	Interior Lighting	Occupancy sensors installed in required spaces.		
Controls	C405.2.1, C405.2.2.3	Interior Lighting	Independent lighting controls installed per approved lighting plans and all manual controls		
Controls	C405.2.2.1	Interior Lighting	readily accessible and visible to occupants. Automatic controls to shut off all building lighting installed in all buildings.		
Controls	C405.2.3	Interior Lighting	Daylight zones provided with individual controls that control the lights independent of general area		
Controls	C405.2.3, C405.2.3.1, C405.2.3.2	Interior Lighting	lighting. Primary sidelighted areas are equipped with required lighting controls.		
Controls	C405.2.3, C405.2.3.1,	Interior Lighting	Enclosed spaces with daylight area under skylights and rooftop monitors are equipped with		
Controls	C405.2.3.3 C405.2.4	Interior Lighting	required lighting controls. Separate lighting control devices for specific uses installed per approved lighting plans.		
Wattage	C405.2.4	Interior Lighting	Additional interior lighting power allowed for special functions per the approved lighting plans and is automatically controlled and separated		
Controls	C405.2.5	Exterior Lighting	from general lighting. Automatic lighting controls for exterior lighting installed. Controls will be daylight controlled, set based on business operation time-of-day, or		
Wattage	C405.4.1	Interior Lighting	reduce connected lighting > 30%. Interior installed lamp and fixture lighting power is consistent with what is shown on the approved lighting plans, demonstrating proposed watts are		
Mandatory Additional	C406.4	Project	less than or equal to allowed watts. Enhanced digital lighting controls efficiency package: Interior lighting has following enhanced lighting controls in accordance with Section		
Mandatory Additional	C406.6	Project	C405.2.2: Luminaires capable of continuous dimming and being addressed individually, <= 8 luminaires controlled in Dedicate outdoor air system efficiency package: Buildings with hydronic and/or multiple-zone HVAC systems are equipped with an independent ventilation system designed to provide >= 100-percent outdoor air to each individual occupied space, as specified by		

Mandatory Additional	C406.7, C406.7.1	Project	Enhanced Service Water Heat System efficiency package. One of the following SWH system enhancements must satisfy 60 percent of hot water requirements, or 100 percent if the building otherwise complies with heat recovery per Section C403.4.5: Waste heat re				
HVAC	C408.2.2.1	Mechanical	Air outlets and zone terminal devices have means for air balancing.				
HVAC	C408.2.2.1	Mechanical	Air outlets and zone terminal devices have means for air balancing.				
Testing	C408.2.3.2	Mechanical	HVAC control systems have been tested to ensure proper operation, calibration and adjustment of controls.				
4. To be ch	ecked by Insp	ector at Pr	oject Completion and Prior to Is:	suai	nce (of	
		Certificate	e of Occupancy				
Post Construction	C303.3, C408.2.5.2	Interior Lighting	Furnished O&M instructions for systems and equipment to the building owner or designated representative.				
Post Construction	C303.3, C408.2.5.3	Mechanical	Furnished O&M manuals for HVAC systems within 90 days of system acceptance.				
Fenestration	C402.4.2.2	Envelope	Skylights in office, storage, automotive service, manufacturing, non-refrigerated warehouse, retail store, and distribution/sorting area have a measured haze value > 90 percent unless designed to exclude direct sunlight.				
Post Construction	C408.2.1	Mechanical	Commissioning plan developed by registered design professional or approved agency.				
Post Construction	C408.2.3.1	Mechanical	HVAC equipment has been tested to ensure proper operation.				
Post Construction	C408.2.3.3	Mechanical	Economizers have been tested to ensure proper operation.				
Post Construction	C408.2.4	Mechanical	Preliminary commissioning report completed and certified by registered design professional or approved agency.				
Post Construction	C408.2.5.1	Mechanical	Furnished HVAC as-built drawings submitted within 90 days of system acceptance.				
Post Construction	C408.2.5.1	Interior Lighting	Furnished as-built drawings for electric power systems within 90 days of system acceptance.				
Post Construction	C408.2.5.3	Mechanical	An air and/or hydronic system balancing report is provided for HVAC systems.				
Post Construction	C408.2.5.4	Mechanical	Final commissioning report due to building owner within 90 days of receipt of certificate of occupancy.				
Post Construction	C408.3	Interior Lighting	Lighting systems have been tested to ensure proper calibration, adjustment, programming, and operation.				
		ē					

Input Data Report

Project Information

Project Name: Office

Project Title: Office

Address:

South Hwy 441

State: Fl

Zip: 0

Owner:

Building Type: Office

Building Classification: New Finished building

No. of Stories:

GrossArea (SF): 1,158

Bldg. Rotation: None

Acronym	Description	Туре	Area [sf]	Multi	Total Area [sf]	1
ione 1	Zone 1	CONDITIONED	1158.0	1	1158.0	
				[sf]	[sf]	[sf] [sf]

Spaces									
No Acronym	Description	Туре	Depth [ft]	Width [ft]	Heigh [ft]	t Mult	Total Area [sf]	Total Vol[cf]	
In Zone: Zone 1 1 Pr0Zo1Sp1	Zo0Sp1	Office - Open Plan	100.00	11.58	8.00	1	1158.0	9264.0	

			Lig	ghting					
No	Туре	Category	No. of Luminaires	Watts per Luminaire	Power [W]	Control	Туре	No.o Ctrl p	
n Z oi	ne: Zone 1 In Space: Pr0Zo1S LED LED	p1 General Lighting General Lighting	8	50 13	400 26	Daylightin	y sensor with		
	Walls	(Walls will be ro	tated clock	kwise by	buildin	g rotat	ion value	2)	
No	Description	Туре	Width H (Effe	ec) Multi Area plier [sf]	Orient ation	Cond- uctance [Btu/h.sf.I	Heat Capacity [Btu/sf.F]	Dens. R- [lb/cf] [h.sf	Value .F/Btu
					===				
1	one: Zone 1 Pr0Zo1Wa1	Siding/R11 Batt/Gyp	25.70 8.00	1 205.6		0.0957		.86 10.5	
2	Pr0Zo1Wa3 Pr0Zo1Wa5	gyp/R13 Batt/. gyp Adjacent wall Siding/R11	60.00 8.00 25.70 8.00	1 480.0 1 205.6		0.0719		1.59 13.9 .86 10.5	_
4	Pr0Zo1Wa7	Batt/Gyp Siding/R11	60.00 8.00	1 480.0	10.2000000	0.0957		.86 10.5	
		Batt/Gyp	500			0.0737	0.517 8	.00	-
	Windov	Batt/Gyp WS (Windows will							
No	Window		be rotated		se by l	ouilding н		value)	
		ws (Windows will	be rotated	d clockwis	se by l	ouilding н	rotation	value)	
In Z	Description Description Description Description	ws (Windows will Orientation Shaded	be rotated U [Btu/hr sf F]	d clockwis	se by l Tra w	ouilding н	rotation (Effec) Mul ft] plie	value) Iti Total Ar	
In Z	Description one: Zone 1	ws (Windows will Orientation Shade	be rotated	d clockwis SHGC Vis.1	se by l	ouilding H	rotation	value)	

escription	Туре	Ch-d-0								
		Snader	Width [ft]	H (Effec) [ft]		Area [sf]	Cond. [Btu/h.sf.F]	Dens. [lb/cf]	Ht Cap [Btu/sf. F]	. R [h.sf.F/ Btu]
Zone 1										
Wall: Pr0Z r0Zo1Wa3Dr1	ol Wa3 Solid Core Door	No	3.00	7.00	3	21.0	0.4192 3	7.00	2.41 2	.39
Wall: Pr0Z	o1Wa5									
r0Zo1Wa5Dr1	Solid Core Door	No	3.00	7.00	1	21.0	0.4192	7.00	2.41 2	.39
			F	Roofs						
cription	Туре	Width [ft]			Area [sf]	Tilt [deg]	Cond. [Btu/h.Sf. F]			
Zone 1 o1Rf1	Ceiling/R-19	11.58	100.00	0 1	1158.0	0.00	0.0500	0.57	5.70	20.0
			Sk	ylight	S					
cription T		U [Btu/hr sf F]		C Vis.Tr						l Area Sf]
	Wall: Pr0Z r0Zo1Wa3Dr1 Wall: Pr0Z r0Zo1Wa5Dr1 ription Zone 1 r01Rf1	Wall: Pr0Zo1Wa3 r0Zo1Wa3Dr1 Solid Core Door Wall: Pr0Zo1Wa5 r0Zo1Wa5Dr1 Solid Core Door Pription Type Coription Type Cription Type	Wall: Pr0Zo1Wa3 r0Zo1Wa3Dr1 Solid Core Door No Wall: Pr0Zo1Wa5 r0Zo1Wa5Dr1 Solid Core Door No Pription Type Width [ft] Zone 1 r01Rf1 Ceiling/R-19 11.58	Wall: Pr0Zo1Wa3 r0Zo1Wa3Dr1 Solid Core Door No 3.00 Wall: Pr0Zo1Wa5 Pr0Zo1Wa5Dr1 Pr0Zo1Wa5Dr1 Pr0Zo1Wa5Dr1 No 3.00 Fription Type Width H (Efficit) [ft] [ft] Zone 1 D1Rf1 Ceiling/R-19 11.58 100.00 Sk	Wall: Pr0Zo1Wa3 r0Zo1Wa3Dr1 Solid Core Door No 3.00 7.00 Wall: Pr0Zo1Wa5 Pr0Zo1Wa5Dr1 Solid Core Door No 3.00 7.00 Roofs Cription Type Width H (Effec) Multight: Multight: Fig. 1 [ft] [ft] plier [ft] plier Zone 1 Olarian Ceiling/R-19 11.58 100.00 1 Skylight: Ceiption Type U SHGC Vis.Tr	Wall: Pr0Zo1Wa3 r0Zo1Wa3Dr1 Solid Core Door No 3.00 7.00 3 Wall: Pr0Zo1Wa5 Pr0Zo1Wa5Dr1 Solid Core Door No 3.00 7.00 1 Roofs Gription Type Width H (Effec) Multi Area [ft] Multi Area [ft] [ft] [ft] plier [sf] Zone 1 Olifi Ceiling/R-19 11.58 100.00 1 1158.0 Skylights Cription Type U SHGC Vis.Trans V	Wall: Pr0Zo1Wa3 60Zo1Wa3Dr1 Solid Core Door No 3.00 7.00 3 21.0 Wall: Pr0Zo1Wa5 Pr0Zo1Wa5Dr1 Pr0Zo1Wa	Wall: Pr0Zo1Wa3 :0Zo1Wa3Dr1 Solid Core Door No 3.00 7.00 3 21.0 0.4192 3 Wall: Pr0Zo1Wa5 :0Zo1Wa5Dr1 Solid Core Door No 3.00 7.00 1 21.0 0.4192 3 Roofs Cription Type Width H (Effec) Multi Area Tilt Cond. [ft] [ft] plier [sf] [deg] [Btu/h.Sf. F] Zone 1 DolRf1 Ceiling/R-19 11.58 100.00 1 1158.0 0.00 0.0500 Skylights Cription Type U SHGC Vis.Trans W H (Effec) Multi	Wall: Pr0Zo1Wa3 0Zo1Wa3Dr1 Solid Core Door No 3.00 7.00 3 21.0 0.4192 37.00 Wall: Pr0Zo1Wa5 OZo1Wa5Dr1 Solid Core Door No 3.00 7.00 1 21.0 0.4192 37.00 Roofs Width H (Effec) Multi Area Tilt Cond. Heat C [ft] [ft] plier [sf] [deg] [Btu/h.Sf. F] [Btu/sf. Zone 1 DIRf1 Ceiling/R-19 11.58 100.00 1 1158.0 0.00 0.0500 0.57 Skylights Cription Type U SHGC Vis.Trans W H (Effec) Multi- Area Multi- Are	Wall: Pr0Zo1Wa3 0Zo1Wa3Dr1 Solid Core Door No 3.00 7.00 3 21.0 0.4192 37.00 2.41 2 Wall: Pr0Zo1Wa5 0Zo1Wa5Dr1 Solid Core Door No 3.00 7.00 1 21.0 0.4192 37.00 2.41 2 Roofs Pription Type Width H (Effec) Multi Area Tilt Cond. Heat Cap Dens. [ft] [lb/cf] [lb/cf] [lb/cf] [lb/cf] [lb/cf] [lb/cf] Zone 1 DIRf1 Ceiling/R-19 11.58 100.00 1 1158.0 0.00 0.0500 0.57 5.70 Skylights Cription Type U SHGC Vis.Trans W H (Effec) Multi- Area Total

						Floo	rs					
No	Descrip	otion	Туре		Width [ft]	H (Effec	e) Multi plier	Area [sf]	Cond. [Btu/h.sf.F	Heat Cap. [Btu/sf. F]		
In Zone: 1	Zone Pr0Zo1		Concrete f and rubber		11.58	100.00	1	1158.0	0.5987	9.33	140.00	1.67
							Syst	tems				
Pr0Sy1	13		System 13						Volume Ai em < 65000		No.	Of Units
Comp	onent	Cate	egory			Ca	pacity	Eff	iciency	IPLV		
	1	Coolir	ng System				5000.00		14.00			
	2		ng System				5000.00		1.00			
	3		andling System -Su			1	200.00		0.50			
	4	Air Di	stribution System	(Sup)					4.20			
					PI	lant						
	Equipn	nent		Category					nst.NÆff.		II	PLV
						Wat	er He	aters				
\	W-Heat	er Des	cription	Capacity	Cap.U	nit I/P	Rt.		Efficiency		Loss	
1 Ele	ectric w	ater he	ater	40 [Gal]		5	[kW]	().9300 [Ef]		[B	Btu/h]

				Ext-L	ighting.					
	Description	Ca	tegory			/atts per Lumin- aire	Area/Len/No [sf/ft/No]	Control Type	Wattag [W]	ge
1	Ext Light 1	Main e	ntries		13	50	69.00 Astr	onomical T	Γime: '###	##: 🗀
				P	iping					
No	Туре		Oper Ter [I	mp	Insulatio Conductiv [Btu-in/h.s	ity	Nomonal pipe Diameter [in]	Insulation Thickness [in]		Is nout?
	,		Fenc	estratio	n Used					
Name	(Glass Type	No. of Panes	Condu	lass uctance h.sf.F]	SHGC	VLT			
Single (Clear (Jser Defined	1	0.	7000	0.7000	0.9000			
			Mat	terials	Used					
Mat No	Acronym	Description		Only R-Value Used	RValue [h.sf.F/Bt			Density [lb/cf]	Sp. Hea [Btu/lb.l	
18	Matl18	2 in. Wood		No	2.3857	0.16	70 0.0700	37.00	0.3900	
18 187	Matl18 Matl187	GYP OR PLAS		No No	2.3857 0.4533	0.16 0.04		37.00 50.00	0.3900 0.2000	
		GYP OR PLAS BOARD,1/2IN CONC HW, DR	D, 140LB,				17 0.0920			
187	Matl187	GYP OR PLAS BOARD,1/2IN		No No	0.4533 0.4403	0.04	17 0.0920	50.00	0.2000	
187 151	Matl187 Matl151	GYP OR PLAS BOARD,1/2IN CONC HW, DR 4IN		No	0.4533	0.04	17 0.0920 33 0.7570	50.00 140.00	0.2000 0.2000	
187 151 178	Matl187 Matl151 Matl178	GYP OR PLAS BOARD,1/2IN CONC HW, DR 4IN CARPET W/RU		No No Yes	0.4533 0.4403 1.2300	0.04	17 0.092033 0.757000 0.0250	50.00	0.2000	

				Constr	ucts Us	sed				
No	Name			Simple Construct	Massless Construct	Conductance [Btu/h.sf.F]	Heat Cap [Btu/sf.F]	Density [lb/cf]	RValue [h.sf.F/Bt	
1002	Solid Core Door			No	No	0.42	2.41	37.00	2.4	
	Layer	Material No.	Material			Thickr [ft]		Framing Factor		
	1	18	2 in. Woo	d		0.167	0	0.000		
No	Name			Simple Construct	Massless Construct	Conductance [Btu/h.sf.F]	Heat Cap [Btu/sf.F]	Density [lb/cf]	RValue [h.sf.F/Bt	
1004	Concrete floor, capad	arpet and ru	bber	No	No	0.60	9.33	140.00	1.7	
	Layer	Material No.	Material			Thickr [ft]		Framing Factor		
	1	151	CONC H	W, DRD, 140	LB, 4IN	0.333	3	0.000		
	2	178	CARPET	W/RUBBER	PAD			0.000		
No	Name			Simple Construct	Massless Construct	Conductance [Btu/h.sf.F]	Heat Cap [Btu/sf.F]	Density [lb/cf]	RValue [h.sf.F/Bt	
1009	gyp/R13 Batt/. g	yp Adjacent	wall	No	No	0.07	0.85	11.59	13.9	
	Layer	Material No.	Material			Thickr [ft]		Framing Factor		_
	1	187	GYP OR	PLAS BOAR	D,1/2IN	0.041	7	0.000		
	2	1005	R-13 Gen	eric Insulation	n	0.283	7	0.000		
	3	187	GYP OR	PLAS BOAR	D,1/2IN	0.041	7	0.000		
No	Name			Simple Construct	Massless Construct	Conductance [Btu/h.sf.F]	Heat Cap [Btu/sf.F]	Density [lb/cf]	RValue [h.sf.F/Bt	u]
1016	Siding/R11 Batt/	^С Gур		No	No	0.10	0.52	8.86	10.5	
	Layer	Material No.	Material			Thickr [ft]		Framing Factor		
	1	187	GYP OR I	PLAS BOAR	D,1/2IN	0.041	7	0.000		
	2									

No	Name		Simple Construct	Massless Construct	Conductance [Btu/h.sf.F]		Density [lb/cf]	RValue [h.sf.F/Bt	
1044	Ceiling/R-19		No	No	0.05	0.57	5.70	20.0	
	Layer	Material No.	Material	77-240	Thickr [ft]		Framing Factor		
	1	23	6 in. Insulation		0.500	0	0.000		

COMMERCIAL LOAD CALCULATIONS Manual N

Air Conditioning Contractors of America

For: Name Address	Mike Hall South Hwy 4	<i>1</i> 1				Phone	
City	Lake City		St	tate & Zip		FL	
By: Contractor Address	Energy Designation 11727 Brady		In	c.		Phone	(904)268-3670
City	Jacksonvill		St	tate & Zip		FL, 32223	
		COOL	ING	LOAD			
1. DESIGN CONDI Latitude 30	TIONS a.Inside db		100	3 PM 1 50	D.	Ly Range	19
b.Outside db		77	M	Grains		49	
Otsid db @ 3pm	94 -			GLATIIS	822	inside db	74
	T.D.			e Factor=		M	

2. SOLAR RADIAT	ION HEAT GAIN	THROUGH G	LAS	S		COOLING	LOAD
Exposure				Shading /			NOTES
pybogare	Sq. Ft.	SolrFactr		GlasFactr		Sensible	NOTES
N	х Х	19	Х	0.4	=	Deligible	
NE	X	38	X	0.4	=		
E	X	56	X	0.4	=		
SE	X	57	X	0.4	=		
S	X	48	X	0.4	=		
SW	X	88	X	0.4	=		
W	63 X	81	X	0.4	=	2041	
NW	X	39	X	0.4	=		
3. TRANSMISSION	GAINS						
				Equiv or			
E: xposur				db			
	Sq. Ft.	U Factor		Temp Diff			
Glass (ALL Dirs		0.70	X	20	=	882	
N	205.6 X	0.09	X	20	=	370	
NE	0 X	0.09	X	24	=	1000	
E Walls SE	417 X 0 X	0.09 0.09	X	29 31	=	1088	
Walls SE S	184.6 X	0.09	X	39	=	648	
SW	0 X	0.09	X	45	=	040	
W	417 X	0.09	X	41	=	1539	
NW	0 X	0.09	X	26	=	1333	
Doors	84 X	0.58	X	16	=	773	
Partition	X	0.05	X	20	=	, , 3	
RA Clng	X	0.09	X	20	=		
Roof/Clng	1158 X	0.05	X	55	=	3185	
Floors	X		X	177075	=	:3000:000	
	X		X		=		
Use Table 9a to	Determine th	e Temp. Dif	: . P	Across an R	A C	eiling	

A TAIMPELLE !							
4. INTERNAL HEA	T GAIN						de l'accomp
a. OCCUPANTS	Number	Sensib	ol o	Latent		La	tent
a. occoravib	12	X 200		Lacenc	=	2400	
		X	9		=	2400	
	12		X	170	=		2040
			X		=		
b. Lights & Oth							
NOTE: Use 60% of watts for light							
RETURN AIR CEIL							
THE TOTAL TIET OF E	1110	Watts					
	Incandesc		426 X	3.4	=	1448	
	Flouresce	nt	X	3.8			
HP							
Motors		Btuh		Usg Ftr			
			X		=		
			X		=		
Appliances							
Appliances						6000	
Other							
00.01							
5. INFILTRATION							
	Ft3/Min	db Tem					
	31	X	22 X	1.1	=	747	
		Grains					
	31	X	49 X	0.68	=		1029
6. SUBTOTALS LOA	ADS & SPAC	FIDADS				21121	3060
O. BODIOTALD HOP	ADD & STAC	E LOADS				21121	3069
7. DUCT HEAT GAT	IN						
		Gain		Line 6			
		Facto	r	Sensible			
		0.1	. X	21121	=		
8. ROOM, SPACE (01101	
Add Duct gain (7	() to Subto	otal (6)				21121	
9. VENTILATION							
	Ft3/Min	db Temp Di	f				
		X		1.1	=	3133	
		Grains Dif					
	129	X	49 X	0.68	=		4314

PAGE THREE

10. RETURN AIR LOAD FROM LIGHTING AND ROOF NOTE: Use 40% of watts for lights recessed in a return air ceiling

Sq. Ft.

Incandescent

3.4 =

Flourescent

X

4.1 =

NOTE: Use 100% fo the roof load

for return air ceilings

(Roof Load)

U Factor

ETD*

X 0.09 X

*(ETD correction based on plenum temp.)

11. T	TOTAL SENSIBLE LOAD ON EQUIPMENT (Bt	:uh) =	24255	
\mathbf{T}	TOTAL LATENT LOAD ON EQUIPMENT (Btuh	1)		7383
10 m	TOTAL COOLING LOAD ON EQUIPMENT (Btu	h l	21/220 /	
IZ. T	TOTAL COORTING HOAD ON EQUIPMENT (BCC	111)	31638	

PAGE FOUR HEATING LOAD

		Inside db 72	-	Outside d	b b =	Difference 40	
LOSSES						HEATING LOAD	
				db			
	•	Factor				Heating Load	
63	X	1.13	Х	40	=	2848	
	X		X	222	=	2.22	
					=		
						665	
						1501	
						1501	
						2316	
1130	2337			40	=	2310	
					=		
	x	0.81	х		=		
	x		х		=		
	x		X		=		
m: 0 /s.:							
	**	177					
46	X	40	X	1.1	=	2038	
TING LOAD	FO	R SPACE				10869	
LOSS		~					
LOSS		Loss		Line 14			
LOSS		Factor	530	Subtotal			
LOSS			х		=	1325	
LOSS		Factor	Х	Subtotal	=	1325	
LOSS		Factor 0.15	х	Subtotal	=	1325	
		Factor 0.15	х	Subtotal	=	1325	
LOSS Ft3/Min 129.48	x	Factor 0.15	x	Subtotal	=	1325 5697	
Ft3/Min 129.48	x	Factor 0.15 db Temp Diff	-	Subtotal 8831			
Ft3/Min 129.48 ON LOAD	x	Factor 0.15 db Temp Diff	-	Subtotal 8831			
Ft3/Min 129.48	X (Factor 0.15 db Temp Diff	-	Subtotal 8831			
Ft3/Min 129.48 ON LOAD sired		Factor 0.15 db Temp Diff	Х	Subtotal 8831 1.1 Max	=	5697	
Ft3/Min 129.48 ON LOAD	(o.15 db Temp Diff 40	x)	Subtotal 8831	=	5697	
Ft3/Min 129.48 ON LOAD sired Ft3/Min		Factor 0.15 db Temp Diff	Х	Subtotal 8831 1.1 Max	=	5697	
Ft3/Min 129.48 ON LOAD Sired Ft3/Min (air)	(o.15 db Temp Diff 40	x)	Subtotal 8831 1.1 Max	=	5697	
Ft3/Min 129.48 ON LOAD sired Ft3/Min	(Temp Diff 40	x) x	Subtotal 8831 1.1 Max	=	5697	
Ft3/Min 129.48 ON LOAD Sired Ft3/Min (air)	(o.15 db Temp Diff 40	x)	Subtotal 8831 1.1 Max	=	5697	
Ft3/Min 129.48 ON LOAD sired Ft3/Min (air) Ft3/Min	(/	Temp Diff 40) X =	Subtotal 8831 1.1 Max Btu/Hr	=	5697	
Ft3/Min 129.48 ON LOAD sired Ft3/Min (air) Ft3/Min	(/	Temp Diff 40) X =	Subtotal 8831 1.1 Max Btu/Hr	=	5697) 17890	
Ft3/Min 129.48 ON LOAD sired Ft3/Min (air) Ft3/Min	(/ / / EQ	Temp Diff 40 100 100 UIPMENT (Bt	x x x = uh)	Subtotal 8831 1.1 Max Btu/Hr	= (5697	
Ft3/Min 129.48 ON LOAD sired Ft3/Min (air) Ft3/Min	(/ / / EQ	Temp Diff 40	X X = uh)	Subtotal 8831 1.1 Max Btu/Hr	= (5697) 17890	
Ft3/Min 129.48 ON LOAD sired Ft3/Min (air) Ft3/Min	(/ / / EQ	Temp Diff 40 100 100 UIPMENT (Bt ergy Design	X X X = uh) Syracelle,	Subtotal 8831 1.1 Max Btu/Hr (Tons) ystems, Indiy Rd. FL 32223	= (5697) 17890	
	Sq. Ft. 63 417 184.6 0 417 0 1158	Sq. Ft. 63	Sq. Ft. Factor 63 x 1.13 x 417 x 0.09 184.6 x 0.09 0 x 0.09 417 x 0.09 0 x 0.09 1158 x 0.05 x 0.05 x 0.05 x 0.81 x x	Sq. Ft. Factor 63 x 1.13 x x x x 417 x 0.09 x 184.6 x 0.09 x 0 x 0.09 x 417 x 0.09 x 0 x 0.09 x 1158 x 0.05 x x 0.05 x x 0.05 x x x x x 0.81 x x x x x Gb Ft3/Min Temp Diff 46 X 40 X	DOSSES Sq. Ft. Factor Temp Diff 63 x 1.13 x 40 x x x 417 x 0.09 x 40 184.6 x 0.09 x 40 0 x 0.09 x 40 417 x 0.09 x 40 0 x 0.09 x 40 1158 x 0.05 x 40 1158 x 0.05 x 40 x 0.05 x x x x x 0.81 x x x x x 1.1 db Ft3/Min Temp Diff 46 X 40 X 1.1	Sq. Ft. Factor Temp Diff 63 x 1.13 x 40 =	Cosses Compare Not