

GENERAL NOTES:

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBCR. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, MATERIALS, CONSTRUCTION, AND ALL REACTIONS, DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER. THE BUILDER IS RESPONSIBLE FOR THE BUILDER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY TO VERIFY THE TRUSS DESIGN FULLY SATISFIES ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON THE ENGINEER'S DESIGN. PROVIDE APPROVED MATERIALS FOR WALLS BUILDER IS TO FURNISH TRUSS ENGINEERED TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THIS BUILDING STRUCTURE. STRAP X2B RAFTERS WITH MIN. UPLIFT CONNECTION 415LB EACH END X2B RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN

FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1500 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION SOILS TEST PROVES OTHERWISE)

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F_c = 2500 PSI.

WELDED WIRE REINFORCED SLAB: 6" x 1' W x 1' W, 4B - 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185, LOCATED IN MIDDLE OF THE SLAB, SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT, 6" x 1' W x 1' W, 4000 PSI CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS: FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL.

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE LOCATED IN A GRID PATTERN WITH A MAXIMUM SPACING OF 12' 0". SLAB PLACEMENT, THE LENGTH / WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. RECOMMENDED LOCATION FOR CONTROL JOINTS IS PERPENDICULAR TO FLOOR AND CONCRETE JOINTS. THE CONCRETE SLAB IS RECOMMENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.

REBAR: ASTM A115, GRADE 40, DEFORMED BARS, F_y = 40 KSI, ALL LAP SPLICES 40" DB (25" FOR #5 BARS). UNO ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; SHEATHING, UNBLOCKED, APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED.

STRUCTURE CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND FASTENERS ARE TO BE SPECIFIED. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED FOR ALL CONNECTORS.

ANCHOR BOLTS: #30 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NOT LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

BUILDER'S RESPONSIBILITY:

THE BUILDER AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE SPECIALLY NOTED IN THE DRAWINGS WITH THE WORDS "BUILDER'S RESPONSIBILITY".

COVERING CONSTRUCTIONS: FOR DETERMINING BEARING CAPACITY, GROUT AND BACKFILL HEIGHT, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE.

PROVIDE MATERIALS AND CONSTRUCTION TECHNIQUES WHICH COMPLY WITH FBCR REQUIREMENTS FOR THE STATED WIND VELOCITY AND DESIGN LOADS.

PROVIDE A CONTINUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU BELIEVE THE PLAN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL THE WIND LOAD ENGINEER IMMEDIATELY.

VERIFY THE TRUSS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS DESIGN, MATERIALS, CONSTRUCTION, AND REACTIONS, DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS.

ROOF SYSTEM DESIGN:

THE SEAL-ON-THIS PLANS FOR COMPLIANCE WITH FBCR IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY TO VERIFY THE DESIGN OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED AND SEALED BY A DESIGN PROFESSIONAL FOR COMPLIANCE OF THE STATED WIND VELOCITY AND DESIGN LOADS. WIND LOAD ENGINEER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE, AND TO PROVIDE RESTRAINT FOR ANY LATENT BRACKETS OR ADDITIONAL CONNECTIONS NOT SHOWN IN THE DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER. THE BUILDER IS RESPONSIBLE FOR THE BUILDER'S RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

DESIGN CRITERIA & LOADS:

DESIGN CODE: 7TH EDITION FLORIDA BUILDING CODE RESIDENTIAL 2020

CODE FOR DESIGN LOADS: ASCE 7-16

WIND LOADS

BASIC WIND SPEED (ASCE 7-16, 33 GUST) 130 MPH

WIND EXPOSURE C

TOPOGRAPHIC FACTOR (BUILDER MUST FLD VERIFY) I

RISK CATEGORY II

ENCLOSURE CLASSIFICATION ENCLOSED

INTERNAL PRESSURE 0.18

ROOF ANGLE 7.45 DEGREES

MEAN GROUND HEIGHT 30 FT

C&C DESIGN PRESSURES SEE TABLE

FLOOR LOADING

ROOMS 6' OR LESS THAN SLEEPING ROOM 40 PSF LIVE LOAD

SLEEPING ROOMS 30 PSF LIVE LOAD

ROOF LOADING

FLAT OR 4-12 20 PSF LIVE LOAD

4-12 TO 12-12 16 PSF LIVE LOAD

12-12 & GREATER 12 PSF LIVE LOAD

SOIL BEARING CAPACITY 1500 PSF

FLOOD ZONE THIS BUILDING IS NOT IN THE FLOOD ZONE

COMPONENT & CLADDING DESIGN PRESSURES 130 MPH (EXP C)

EFFECTIVE WIND AREA (FT²) ZONE 4 INTERIOR ZONE 4 FROM ALL OUTSIDE CORNER

0-20 +25.6(Vel) -27.8(Vel) +25.6(Vel) -34.2(Vel)

0-20 +42.6(Vel) -46.2(Vel) +42.6(Vel) -57(Vel)

Garage Door Design Pressures 130 MPH (EXP C)

9x9 GARAGE DOOR +22.6(Vel) -25.6(Vel)

16x7 GARAGE DOOR +21.7(Vel) -24.1(Vel)

JOB NUMBER: 230132

S-1

OF 3 SHEETS

