

ONE STORY WALL SECTION

IMPSON H2.5A U.N.O.

(2) SIMPSON LSTA21-

AND (8) -16d TO POST

w/ (8) -16d TO HEADER

EE STRUCTURAL PLAN

EXTERIOR WALL STUD TABLE FOR SPF #2 STUDS

(1) 2x4 @ 16" OC	TO 11'-9" STUD HEIGHT
(1) 2x4 @ 12" OC	TO 13'-0" STUD HEIGHT
(1) 2x6 @ 16" OC	TO 18'-10' STUD HEIGHT
(1) 2x6 @ 12" OC	TO 20.0' STUD HEIGHT

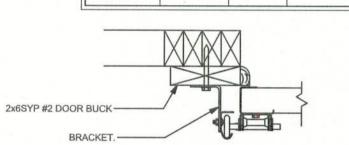
THIS STUD HEIGHT TABLE IS PER WFCM 2001, TABLE 3.20B, EXTERIOR LOAD BEARING & NON LOAD BEARING STUD LENGTH RESISTING INTERIOR ZONE WINDLOADS 110 MPH EXPOSURE B. STUD SPACINGS SHALL BE MULTIPLIED BY 0.85 FOR FRAMING LOCATED WITHIN 4 FEET OF CORNERS FOR END ZONE LOADING. EXAMPLE 16" O.C. x 0.85 = 13.6" O.C.

2x6 SYP #2 GARAGE DOOR BUCK ATTACHMENT ATTACH GARAGE DOOR BUCK TO STUD PACK AT —SIMPSON SP4 @ 48" O.C.

-(2) 2X4 SPF #2 TOP PLATE

-(2) 2X12 SYP #2 HEADER U.N.O

SEE STRUCTURAL PLAN


(2) JACKS STUDS

w/ (2) ROWS 10d @

12" O.C. EACH SIDE

EACH SIDE OF DOOR OPENING WITH 3/8"x4" LAG SCREWS w/ 1" WASHER LAG SCREWS MAY BE COUNTERSUNK. HORIZONTAL JAMBS DO NOT TRANSFER LOAD. CENTER LAG SCREWS OR STAGGER 16d NAILS OR (2) ROWS OF .131 x 3 1/4"

> DOOR WIDTH | 3/8" x 4" LAG | 16d | (2) ROVYS C. | 131 x 3 1/4" GN 24" O.C. 5" O.C. 11' - 15' 18" O.C. 4" O.C. 4" O.C. 16" O.C. 3" O.C. 3" O.C.

GARAGE DOOR BUCK INSTALLATION DETAIL

TYPICAL GARAGE DOOR HEADER STRAPING DETAIL

-IFOUNDATION SEE

2X4 OUTRIGGER @ 48" OC. -

SEE FOOTING DETAILS

7/16" STRUCTURAL ROOF SHEATHING -

2X4 X-BRACE @ 6'-0" OC. ———

TYPICAL GABLE END (X-BRACING)

ALL MEMBERS SHALL BE SYP

(2) SIMPSON LSTA21-

w/ (8) -16d TO HEADER

AND (8) -16d TO STUD PACK

(2) KINGS STUDS —

w/ (2) ROWS 10d @

SIMPSON LTTI31-

2X4 SCAB IF VERT. WEB IS

CONT. 2X4X8' #2 SYP LATERAL

2X4 BLOCKING @ 48" OC.

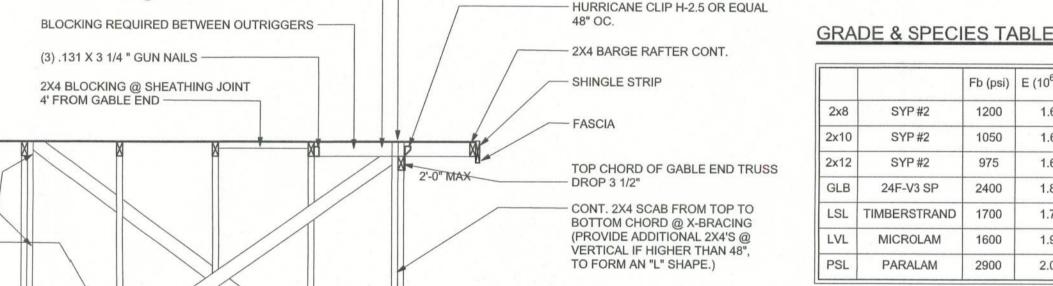
BETWEEN GABLE AND FIRST -

NOT PRESENT -

BRACE @ 48" OC.

(2) 2X12 SYP #2 MIN. --

SÉE STRUCTURAL PLAN


SIMPSON HUS412 MIN.

SEE STRUCTURAL PLAN

5/8" x 10" ANCHOR BOLT

w/ (18) - 10d &

12" O.C. EACH SIDE

TOE NAIL TRUSS TO DOUBLE PLATE w/ 16d COM @8" OC.

BOTTOM CHORD OF GABLE **END TRUSS** - 2 - 2X4 TOP PLATE SIMPSON LSTA 24 @ 48" OC.

(6) .131 x 3 1/4" GUN NAILS-

INTO KING STUD

TOE NAILED THRU HEADER

PRE ENGINEERED ROOF TRUSS -DOUBLE 2x4 SPF TOP PLATE NAILED -TOGETHER W/2-16d NAILS AT 16" O.C. 4' MIN. LAP w/ (12) - 16d OR 4" LAP w/ CS20 w/ (4) - 16d &(14) - 10d INTERIOR CEILING AS -SPECIFIED ON FLOOR PLAN 2X4 STUDS @16" OC. CONTINUOUS FRAME ----BOTTOM CHORD OF TRUSS

> ALL STUDS TO BE 2x4 ----SPF NAILED TO TOP AND BOTTOM PLATES

WITH 2-16d NAILS

CONTINUOUS FRAME TO **CEILING DIAPHRAGM DETAIL**

-LSTA18 (U.N.O.-+

CRIPPLES IF REQUIRED

(4) .131 x 3 1/4" GUNNAILS

- TOE NAILED THRU SILL

INTO JACK STUD U.N.O.

TYPICAL STRAPPING (U.N.O.)

(SEE STRUCTURAL PLAN)

SCALE: N.T.S.

GENERAL NOTES:

TRUSSES: TRUSSES SHALL BE DESIGNED BY A FLORIDA LICENSED ENGINEER IN ACCORDANCE WITH THE FBC 2004. TRUSS ENGINEERING SHALL INCLUDE TRUSS DESIGN, PLACEMENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, TRUSS-TO-TRUSS CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL BEARING LOCATIONS. TRUSS ENGINEERING IS THE RESPONSIBILITY OF THE TRUSS MANUFACTURER AND SHALL BE SIGNED & SEALED BY THE MANUFACTURER'S DESIGN ENGINEER. IT IS THE BUILDER'S RESPONSIBILITY VERIFY THE TRUSS DESIGNER FULLY SATISFIED ALL THE ABOVE REQUIREMENTS AND TO SELECT UPLIFT CONNECTIONS BASED ON TRUSS ENGINEERING UPLIFT AND PROVIDE FOOTINGS FOR INTERIOR BEARING WALLS. BUILDER IS TO FURNISH TRUSS ENGINEERING TO WIND LOAD ENGINEER FOR REVIEW OF TRUSS REACTIONS ON THE BUILDING STRUCTURE. STRAP 2X6 RAFTERS WITH MIN UPLIFT CONNECTION 415LB EACH END; 2X8 RAFTERS 700 LB EACH END.

SITE PREPARATION: SITE ANALYSIS AND PREPARATION IS NOT PART OF THIS PLAN FOUNDATION: CONFIRM THAT THE FOUNDATION DESIGN & SITE CONDITIONS MEET GRAVITY LOAD REQUIREMENTS (ASSUME 1000 PSF BEARING CAPACITY UNLESS VISUAL OBSERVATION OR SOILS TEST PROVES OTHERWISE

CONCRETE: MINIMUM COMPRESSIVE STRENGTH OF CONCRETE AT 28 DAYS, F'c = 3000 PSI.

WELDED WIRE REINFORCED SLAB: 6" × 6" W 1.4 × W 1.4, FB = 85KSI, WELDED WIRE REINFORCEMENT FABRIC (W.W.M.) CONFORMING TO ASTM A185; LOCATED IN MIDDLE OF THE SLAB; SUPPORTED WITH APPROVED MATERIALS OR SUPPORTS AT SPACINGS NOT TO EXCEED 3'.

FIBER CONCRETE SLAB: CONCRETE SLABS ON GROUND CONTAINING SYNTHETIC FIBER REINFORCEMENT. FIBER LENGTH 1/2 INCH TO 2 INCHES. DOSAGE AMOUNTS FROM 0.75 TO 1.5 POUNDS PER CUBIC YARD PER THE MANUFACTURER'S RECOMMENDATIONS. FIBERS TO COMPLY WITH ASTM C 1116. SUPPLIER TO PROVIDE ASTM C 1116 CERTIFICATION OF COMPLIANCE WHEN REQUESTED BY BUILDING OFFICIAL

CONTROL JOINTS: WHERE SPECIFIED, SAWN CONTROL JOINTS IN SLAB-ON-GRADE SHALL BE CUT IN ACCORDANCE WITH ACI 302. JOINTS SHALL BE CUT WITHIN 12 HOURS OF SLAB PLACEMENT. THE LENGTH / WIDTH RATIOS OF SLAB AREAS SHALL NOT EXCEED 1.5 AND TYPICAL SPACING OF CUTS TO BE 12FT. DO NOT CUT WWM OR REINFORCING STEEL. (RECOMMENDED LOCATION OF CONTROL JOINTS IS SUBJECT TO OWNER AND CONTRACTOR'S APPROVAL. THE CONTROL JOINTS ARE NOT INTENDED TO PREVENT CRACKS BUT RATHER TO ENCOURAGE THE SLAB TO CRACK ON A GIVEN LINE.)

REBAR: ASTM A 615, GRADE 60, DEFORMED BARS, FY = 60 KSI. ALL LAP SPLICES 40 * DB (25" FOR #5 BARS); UNO. ALL REINFORCEMENT SHALL BE DETAILED AND PLACED IN ACCORDANCE WITH ACI 315-96, U.N.O.

GLULAM BEAM, GLB, 24F-V3SP, Fb = 2.4ksi, E = 1800ksi; UNO. SUPPLIER MAY SUPPLY AN ALTERNATE BEAM WITH EQUAL PROPERTIES OR MAY SUBMIT THEIR OWN SIZING CALCS. ROOF SHEATHING: ALL ROOFS ARE HORIZONTAL DIAPHRAGMS; 7/16" OSB SHEATHING, UNBLOCKED APPLIED PERPENDICULAR TO FRAMING, OVER A MINIMUM OF 3 FRAMING MEMBERS, WITH PANEL EDGES STAGGERED, FASTENED WITH 80 COMMON NAILS (.131), 6"OC PANEL EDGES, 12"OC INTERMEDIATE MEMBERS, GABLE ENDS AND DIAPHRAGM BOUNDARY; 4"OC, UNO.

STRUCTURAL CONNECTORS: MANUFACTURERS AND PRODUCT NUMBER FOR CONNECTORS, ANCHORS, AND REINFORCEMENT ARE LISTED FOR EXAMPLE NOT ENDORSEMENT. AN EQUIVALENT DEVICE OF THE SAME OR OTHER MANUFACTURER CAN BE SUBSTITUTED FOR ANY DEVICES LISTED IN THE EXAMPLE TABLES AS LONG AS IT MEETS THE REQUIRED LOAD CAPACITIES. MANUFACTURER'S INSTALLATION INSTRUCTIONS MUST BE FOLLOWED TO ACHIEVE RATED LOADS.

ANCHOR BOLTS: A-307 ANCHOR BOLTS WITH MINIMUM EMBEDMENT AS SPECIFIED IN DRAWINGS BUT NO LESS THAN 7" IN CONCRETE OR REINFORCED BOND BEAM OR 15" IN GROUTED CMU.

WASHERS: WASHERS USED WITH 1/2" BOLTS TO BE 2" x 2" x 9/64"; WITH 5/8" BOLTS TO BE 3" x 3" x 9/64"; WITH 3/4" BOLTS TO BE 3" x 3" x 9/64"; WITH 7/8" BOLTS TO BE 3" x 3" x 5/16"; UNO.

NAILS: ALL NAILS ARE COMMON NAILS UNLESS OTHERWISE SPECIFIED OR ACCEPTED BY FBC TEST REPORTS AS HAVING EQUAL STRUCTURAL VALUES.

BUILDER'S RESPONSIBILITY

Fb (psi) E (10⁶ psi)

1.6

1.6

1.6

1.8

1.7

1.9

1200

1050

975

2400

1600

2900 2.0

-NAIL SHEATHING TO HEADER AND TOP

-(6) .131 x 3 1/4" GUN NAILS

INTO KING STUD

TOE NAILED THRU HEADER

PLATE WITH 8d AT 4" O.C. FOR UPLIFT

SYP#2

	AND OWNER ARE RESPONSIBLE FOR THE FOLLOWING, WHICH ARE Y NOT PART OF THE WIND LOAD ENGINEER'S SCOPE OF WORK.
CONFIRM SITE C BACKFILL HEIGH	ONDITIONS, FOUNDATION BEARING CAPACITY, GRADE AND T, WIND SPEED AND DEBRIS ZONE, AND FLOOD ZONE.
	IALS AND CONSTRUCTION TECHNIQUES, WHICH COMPLY WITH FBC 2004 FOR THE STATED WIND VELOCITY AND DESIGN PRESSURES.
BELIEVE THE PLA	INUOUS LOAD PATH FROM TRUSSES TO FOUNDATION. IF YOU IN OMITS A CONTINUOUS LOAD PATH CONNECTION, CALL ENGINEER IMMEDIATELY.
DESIGN, PLACEM	SS MANUFACTURER'S SEALED ENGINEERING INCLUDES TRUSS ENT PLANS, TEMPORARY AND PERMANENT BRACING DETAILS, S CONNECTIONS, AND UPLIFT AND REACTION LOADS FOR ALL IONS.

ROOF SYSTEM DESIGN

THE SEAL ON THESE PLANS FOR COMPLIANCE WITH FBC 2004, SECTION 1606 IS BASED ON REACTIONS, UPLIFTS, AND BEARING LOCATIONS IN TRUSS ENGINEERING SUBMITTED TO THE WIND LOAD ENGINEER. IT IS THE RESPONSIBILITY OF THE BUILDER TO CHECK ALL DETAILS OF THE COMPLETE ROOF SYSTEM DESIGN SUBMITTED BY THE TRUSS MANUFACTURER AND HAVE IT SIGNED, AND SEALED BY A DESIGN PROFESSIONAL FOR CORRECT APPLICATION OF FBC 2001 REQUIRED LOADS AND ANY SPECIAL LOADS. THE BUILDER IS RESPONSIBLE TO REVIEW EACH INDIVIDUAL TRUSS MEMBER AND THE TRUSS ROOF SYSTEM AS A WHOLE AND TO PROVIDE RESTRAINT FOR ANY LATERAL BRACING. THE BUILDER SHOULD USE CARE CHECKING THE ROOF DESIGN BECAUSE THE WIND LOAD ENGINEER IS SPECIFICALLY NOT RESPONSIBLE FOR THE TRUSS LAYOUT WHICH WAS CREATED BY THE TRUSS MANUFACTURER AND THE TRUSS DESIGNER ALSO DENIES RESPONSIBILITY FOR THE LAYOUT PER NOTES ON THEIR SEALED TRUSS SHEETS.

MASONRY NOTES:

MASONRY CONSTRUCTION AND MATERIALS FOR THIS PROJECT SHALL CONFORM TO ALL REQUIREMENTS OF "SPECIFICATION FOR MASONRY STRUCTURES" (ACI 530.1/ASCE 6/TMS 602). THE CONTRACTOR AND MASON MUST IMMEDIATELY, BEFORE PROCEDING, NOTIFY THE ENGINEER OF ANY CONFLICTS BETWEEN ACI 530.1-02 AND THESE DESIGN DRAWINGS. ANY EXCEPTIONS TO ACI 530.1-02 MUST BE APPROVED BY THE ENGINEER IN WRITING.

	ACI530.1-02 Section	Specific Requirements			
1.4A	Compressive strength	8" block bearing walls F'm = 1500 psi			
2.1	Mortar	ASTM C 270, Type N, UNO			
2.2	Grout	ASTM C 476, admixtures require approva			
2.3	CMU standard	ASTM C 90-02, Normal weight, Hollow, medium surface finish, 8"x8"x16" running bond and 12"x12" or 16"x16" column block			
2.3	Clay brick standard	ASTM C 216-02, Grade SW, Type FBS, 5.5"x2.75"x11.5"			
2.4	Reinforcing bars, #3 - #11	ASTM 615, Grade 60, Fy = 60 ksi, Lap splices min 48 bar dia. (30" for #5")			
2.4F	Coating for corrosion protection	Anchors, sheet metal ties completely embedded in mortar or grout, ASTM A525, Class G60, 0.60 oz/ft2 or 3/04SS			
2.4F	Coating for corrosion protection	Joint reinforcement in walls exposed to moisture or wire ties, anchors, sheet me ties not completely embedded in mortar grout, ASTM A153, Class B2, 1.50 oz/ft2 or 304SS			
3.3.E.2	Pipes, conduits, and accessories	Any not shown on the project drawings require engineering approval.			
3.3.E.7	Movement joints	Contractor assumes responsibility for typ and location of movement joints if not detailed on project drawings.			

ANCHOR TABLE

OBTAIN UPLIFT REQUIREMENTS FROM TRUSS MANUFACTURER'S ENGINEERING

UPLIFT LBS. SYP	UPLIFT LBS. SPF	TRUSS CONNECTOR*	TO PLATES	TO RAFTER/TRUSS	TO STUDS
< 420	< 420 < 245 H5A		3-8d	3-8d	
< 455	< 265	H5	4-8d	4-8d	
< 360	< 235	H4	4-8d	4-8d	
< 455	< 320	НЗ	4-8d	4-8d	
< 415	< 365	H2.5	5-8d	5-8d	
< 600	< 535	H2.5A	5-8d	5-8d	
< 950	< 820	H6	8-8d	8-8d	
< 745	< 565	H8	5-10d, 1 1/2"	5-10d, 1 1/2"	
< 1465	< 1050	H14-1	13-8d	12-8d, 1 1/2"	
< 1465	< 1050	H14-2	15-8d	12-8d, 1 1/2"	
< 990	< 850	H10-1	8-8d, 1 1/2"	8-8d, 1 1/2"	
< 760	< 655	H10-2	6-10d	6-10d	
< 1470	< 1265	H16-1	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1470	< 1265	H16-2	10-10d, 1 1/2"	2-10d, 1 1/2"	
< 1000	< 860	MTS24C	7-10d 1 1/2"	7-10d 1 1/2"	
< 1450	< 1245	HTS24	12-10d 1 1/2"	12-10d 1 1/2"	
< 2900	< 2490	2 - HTS24		Kel Harry Stall (1995)	
< 2050	< 1785	LGT2	14 -16d	14 -16d	
		HEAVY GIRDER TIEDOWNS*			TO FOUNDATION
		TIENT ORDER TIEDOWNS			TO FOUNDATION
< 3965	< 3330	MGT		22 -10d	1-5/8" THREADED ROI 12" EMBEDMENT
< 10980	< 6485	HGT-2		16 -10d	2-5/8" THREADED RO
< 10530	< 9035	HGT-3		16 -10d	2-5/8" THREADED ROI 12" EMBEDMENT
< 9250	< 9250	HGT-4		16 -10d	2-5/8" THREADED ROI 12" EMBEDMENT
		STUD STRAP CONNECTOR*			TO STUDS
< 435	< 435	SSP DOUBLE TOP PLATE	3 -10d		4 -10d
< 455	< 420	SSP SINGLE SILL PLATE	1 -10d		4 -10d
< 825	< 825	DSP DOUBLE TOP PLATE	6 -10d		8 -10d
< 825	< 600	DSP SINGLE SILL PLATE	2 -10d		8 -10d
< 885	< 760	SP4			6-10d, 1 1/2"
< 1240	< 1065	SPH4			10-10d, 1 1/2"
< 885	< 760	SP6			6-10d, 1 1/2"
< 1240	< 1065	SPH6			10-10d, 1 1/2"
< 1235	< 1165	LSTA18	14-10d		
< 1235	< 1235	LSTA21	16-10d		
< 1030	< 1030	CS20	18-8d		
< 1705	< 1705	CS16	28-8d		
		STUD ANCHORS*	TO STUDS		TO FOUNDATION
< 1350	< 1305	LTT19	8-16d		1/2" AB
< 2310	< 2310	LTTI31	18-10d, 1 1/2"		1/2" AB
< 2775	< 2570	HD2A	2-5/8" BOLTS		5/8" AB
< 4175	< 3695	HTT16	18 - 16d		5/8" AB
< 1400	< 1400	PAHD42	16-16d		0.0 . 10
< 3335	< 3335	HPAHD22	16-16d		
< 2200	< 2200	ABU44	12-16d		1/2" AB
< 2300	< 2300	ABU66	12-16d		
		MANAGE STATE	100		1/2" AB

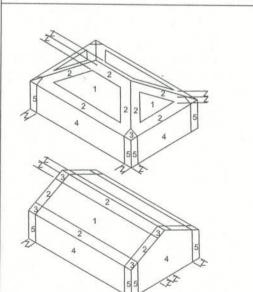
WIND LOADS PER FLORIDA BUILDING CODE 2004, SECTION 1609

(ENCLOSED SIMPLE DIAPHRAGM BUILDINGS WITH FLAT, HIPPED, OR GABLE ROOFS; MEAN ROOF HEIGHT NOT EXCEEDING LEAST HORIZONTAL DIMENSION OR 60 FT; NOT ON UPPER HALF OF HILL OR ESCARPMENT 60FT IN EXP. B, 30FT IN EXP. C AND >10% SLOPE AND UNOBSTRUCTED UPWIND FOR 50x HEIGHT OR 1 MILE WHICHEVER IS LESS.

BUILDING IS NOT IN THE HIGH VELOCITY HURRICANE ZONE BUILDING IS NOT IN THE WIND-BORNE DEBRIS REGION

1.) BASIC WIND SPEED = 110 MPH

2.) WIND EXPOSURE = B 3.) WIND IMPORTANCE FACTOR = 1.0


DESIGN DATA

4.) BUILDING CATEGORY = II

5.) ROOF ANGLE = 10-45 DEGREES

6.) MEAN ROOF HEIGHT = <30 FT

7.) INTERNAL PRESSURE COEFFICIENT = N/A (ENCLOSED BUILDING, 1609) 8.) COMPONENTS AND CLADDING DESIGN WIND PRESSURES (FBC TABLE 1609 B&C)

SOIL BEARING CAPACITY 1000PSF

NOT IN FLOOD ZONE (BUILDER TO VERIFY)

Zone	Effec	Effective Wind Area (ft2)			
	-	10		100	
1	19.9	-21.8	18.1	-18.1	
2	19.9	-25.5	18.1	-21.8	
2 O'hg		-40.6		-40.6	
3	19.9	-25.5	18.1	-21.8	
3 O'hg		-68.3		-42.4	
4	21.8	-23.6	18.5	-20.4	
5	21.8	-29.1	18.5	-22.6	
Doors of Wors (Zone	st Cas	е	21.8	-29.1	
8x7 Gar	age Do	oor	19.5	-22.9	
16v7 Ca	rage [Door	18.5	-21.0	

DESIGN	LOADS
FLOOR	40 PSF (ALL OTHER DWELLING ROOMS)
	30 PSF (SLEEPING ROOMS)
	30 PSF (ATTICS WITH STORAGE)
	10 PSF (ATTICS WITHOUT STORAGE, <3:12)
ROOF	20 PSF (FLAT OR <4:12)
	16 PSF (4:12 TO <12:12)
	12 PSF (12:12 AND GREATER)
STAIRS	40 PSF (ONE & TWO FAMILY DWELLINGS)

REVISIONS

not to be reproduced, altered or copied in any orm or manner without first the express writte ermission and consent of Mark Disosway. CERTIFICATION: I hereby certify that I have amined this plan, and that the applicable portions of the plan, relating to wind engineer comply with section 1609, florida building comply 2004, to the best of my knowledge. LIMITATION: This design is valid for one building, at specified location. MARK DISOSWAY

PE No.53915, POB 868, Lake City, FL

dimensions. Refer all questions to

Mark Disosway, P.E. hereby expressly reser

ts common law copyrights and property right in

hese instruments of service. This document

Mark Disosway, P.E. for resolution Do not proceed without clarification COPYRIGHTS AND PROPERTY RIGHTS:

32056, 386-754-5419

DIMENSIONS

William Keen

Spec House

ADDRESS: 162 SE Andrews Dr. Lake City, Florida 32025

Mark Disosway P.E. P.O. Box 868 Lake City, Florida 32056 Phone: (386) 754 - 5419 Fax: (386) 269 - 4871

PRINTED DATE: December 11, 2005 DRAWN BY: CHECKED BY: David Disosway

FINALS DATE: 11 / Dec / 05 JOB NUMBER:

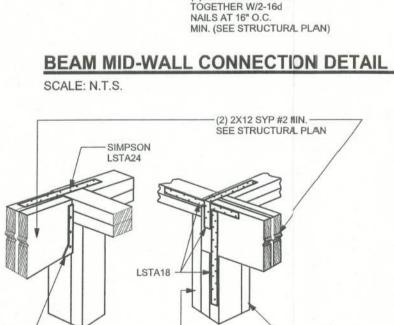
> 512075 DRAWING NUMBER S-1

OF 3 SHEETS

TYPICAL PORCH POST DETAIL

(2) 2X10 SYP #2 U.N.O.

—6X6 SYP #2 POST


SEE STRUCTURAL PLAN

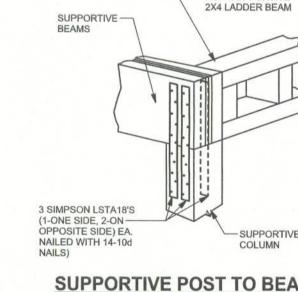
-SIMPSON ABU POST BASE

w/ (12) - 16d & 5/8" x 10"

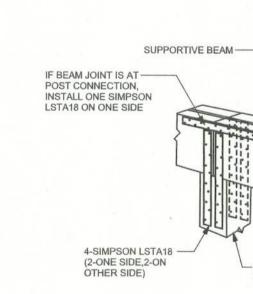
-SEE FOOTING DETAILS

ANCHOR BOLT

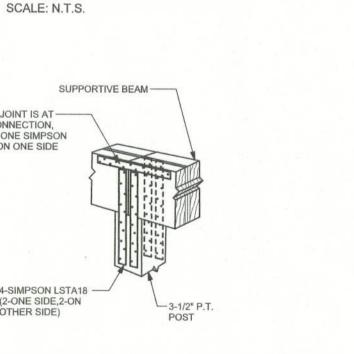
-(4)-2x4 SPF #2 NAILED


BEAM CORNER CONNECTION. DETAIL SCALE: N.T.S.

NAIL THRU 2x4 INT BEAM W/4-16d


BEAM MAY BE ATTACHED IN

SIMPSON HUS412 MIN.


SEE STRUCTURAL PLAN

SUPPORTIVE POST TO BEAM DETAIL FOR SINGLE BEAM

SUPPORTIVE CENTER POST TO BEAM DETAIL

--- NON-SUPPORTIVE

-SP4 OR (2) H2.5A OR (2) SSP-ALL OPENINGS (U.N.O.) (1) 2X6 SPF #2 SILL UP TO 11'-0" U.N.O. (1) 2X4 SPF #2 SILL UP TO 7'-3" U.N.O. (FOR: 110 MPH, 10'-0" WALL HIGHT U.N.O.) TYPICAL HEADER STRAPING DETAIL